(58)【調査した分野】(Int.Cl.,DB名)
ウイーンブリッジ発振回路を有する荷重センサと、前記ウイーンブリッジ発振回路の出力信号の測定手段と、測定した前記出力信号によって、前記荷重センサに印加された荷重を検出する荷重信号算出手段とを、備えた計量装置において、
前記荷重センサは、金属弾性体製の平行四辺形型ロードセルを含み、
前記平行四辺形型ロードセルは、この平行四辺形型ロードセルを基礎面に取り付ける固定部と、荷重が印加される可動部とを、有し、前記可動部は、前記荷重の印加時に鉛直方向に変位し、
前記固定部には固定部用電極が設けられ、前記可動部には可動部用電極が設けられ、前記固定部用電極と前記可動部用電極とは、互いに非接触に近接して対向するように設けられ、
前記固定部用電極と前記可動部用電極とによって、前記可動部に荷重が印加されたとき、前記固定部用電極と前記可動部用電極との対向する部分の面積、または対向する部分の距離が、前記荷重の変化量に応じて変化して、静電容量が変化する容量体を、少なくとも2つ構成し、これら少なくとも2つの容量体が、前記ウイーンブリッジ発振回路の1辺に含むローパスフィルタと他の辺に含むハイパスフィルタそれぞれの一部をなす計量装置。
請求項1記載の計量装置において、前記測定手段は、前記ウイーンブリッジ発振回路の出力信号の周期を測定し、前記荷重信号算出手段は、測定した周期に基づいて、荷重に関する2次以上の高次荷重算出式によって荷重を算出する計量装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
このように歪みの生じる歪みセンサ基板に抵抗体パターンと対向電極式静電容量体パターンとを設ける特許文献1の技術では、抵抗体のみを変化させることはできるが、静電容量のみを変化させることはできない。
【0008】
また、高分解能に荷重変化分を検出するには、高分解能に発振信号の周期の変化量を検出する必要がある。そのためには荷重変化に対して大きい変化量を得る必要がある。周期Tは、
T=1/f=2π(C1・C2・R1・R2)
1/2・・・(1)
で表されるので、大きい変化量を得ようとすると、歪み発生前の印加荷重が0のときのR1、R2、C1、C2の値を大きくするか、これらR1、R2、C1、C2の印加荷重に対する変化率を大きくしなければならない。
【0009】
しかし、歪み発生前のR1、R2、C1、C2の値を大きくすると、周期Tが長くなる。荷重検出のための1周期の測定間隔が長くなると、荷重検出の間隔が長くなり、計量装置としての応答特性が低下する。従って、周期変化量を大きくするために歪み発生前のR1、R2、C1、C2の値を大きくすることはできず、荷重変化に対する変化率の値を大きくする必要がある。
【0010】
しかし、計量装置用の荷重センサでは、荷重センサの過渡応答を速くすることが重要で、歪みセンサが貼着される起歪体のバネ定数を大きくすることが必要である。そのため、印加荷重の大きさに対する起歪体の起歪部の歪み量を小さくしなければならない。印加荷重の大きさの割に起歪部の歪み量が小さいと、歪みセンサの抵抗値の変化量が小さくなり、抵抗変化率が小さくなる。また、金属パターンの伸張率に対する抵抗変化率の割合であるゲージファクタも金属材料の場合には約2程度である。従って、過度応答が適切に早い計量装置用の荷重センサでは、印加荷重により大きい抵抗変化率も、大きい抵抗変化量も得ることができない。静電容量の変化量も導線対向電極式静電容量体パターンの伸縮料に比例して決まるので、変化率は抵抗変化率と同様に小さい。
【0011】
このように特許文献1の技術の歪みセンサでは、静電容量体だけを変化させる構成にすることができない上に、抵抗及び静電容量の変化率が両方共に小さいので、ウイーンブリッジ発振回路の出力の周期Tの変化量を大きくすることができず、高分解能に周期変化量を検出することが困難で、高分解能でかつ精確な荷重出力を得ることができない。
【0012】
特許文献2の技術では、荷重の変化量によってウイーンブリッジ発振回路の一辺の静電容量のみを変化させている。即ち、ウイーンブリッジ発振回路のローパスフィルタとハイパスフィルタのいずれか一方の定数を荷重変化量に応じて変化させている。例えばローパスフィルタの定数を変化させている場合、ローパスフィルタのカットオフ周波数のみが
図6の周波数軸上を左右に移動するので、ゲイン1で帰還する周波数成分が無くなって発振が停止したり、反対に多くの周波数成分がゲイン1で帰還するため荷重変化量に応じて正弦波の発振波形が歪んだりするので、幅広く変化する荷重を精確に検出できない。しかも、静電容量体として変化率の大きい構成が用いられているが、ブリッジ回路の1辺の静電容量体しか変化させていない。従って、変化幅の小さい荷重しか精確に検出できない。
【0013】
本発明は、ウイーンブリッジ発振回路を使用した荷重センサにおいて、広い範囲で変化する荷重を、高分解能に、かつ過度応答速度が速く、しかも荷重信号の検出周期を短く測定することを目的とする。
【課題を解決するための手段】
【0014】
本発明の一態様の計量装置は、正弦波を発振するウイーンブリッジ発振回路を有する荷重センサと、ウイーンブリッジ発振回路の出力信号の測定手段と、測定した前記出力信号によって、前記荷重センサに印加された荷重を検出する荷重信号算出手段とを、備えている。ウイーンブリッジ発振回路は、ブリッジ回路を有し、そのブリッジ回路の一辺には、ハイパスフィルタが設けられ、他の一辺にはローパスフィルタが設けられている。これら両フィルタは、同じカットオフ周波数を有し、いずれも静電容量体を有している。荷重センサは、金属弾性体製の平行四辺形型ロードセルを含んでいる。この平行四辺形型ロードセルは、この平行四辺形型ロードセルを基礎面に取り付ける固定部と、荷重が印加される可動部とを、有している。平行四辺形型ロードセルは、固定部と可動部との間で、四辺形の上辺と下辺とに相当する箇所をそれぞれ梁で連結し、上辺及び下辺の梁共に固定部側寄りと可動部側よりとに起歪部を設けて構成される。荷重センサとして平行四辺形型ロードセルを用いる理由は、被計量物が可動部側に結合された計量台上の任意の位置に載置されても、可動部が固定部に対して鉛直方向に変位する構成とすることが望ましいからである。また、固定部と可動部とは、互いに対向する面を有することが望ましい。この対向面は、水平方向または鉛直方向に設けることが望ましい。前記固定部には、例えば前記対向する面に固定部用電極が設けられ、可動部には、例えば前記対向する面に可動部用電極が設けられている。固定部用電極と可動部用電極とは、互いに非接触に近接して対向している。固定部用電極と可動部用電極とによって、前記可動部に荷重が印加されたとき、前記固定部用電極と前記可動部用電極との対向する部分の面積、または対向する部分の距離が、前記荷重の変化量に応じて変化した結果、静電容量が変化する容量体が少なくとも2つ構成されている。これら少なくとも2つの容量体が、前記ウイーンブリッジ発振回路がその1辺に含むローパスフィルタと他の辺に含むハイパスフィルタそれぞれの一部をなしている。これら少なくとも2つの容量体の固定部側及び可動部側の電極板は、同一形状に形成することが望ましい。
【0015】
この態様の計量装置では、上述したように変化率の大きい抵抗体を構成することが困難であるので、固定部用電極と可動部用電極とによって、変化率の大きい容量体を少なくとも2つ構成し、これら少なくとも2つの容量体を、ウイーンブリッジ発振回路のハイパスフィルタと、ローパスフィルタとのそれぞれ一部を構成させている。可動部に荷重を印加することによって可動部用電極は、固定部側電極に対して精確に鉛直方向に変位するので、両電極間の距離が印加荷重に対して比例変位するか、両電極間の重複面積が印加荷重に対して比例変化する。このようにして、ウイーンブリッジ発振回路のローパスフィルタとハイパスフィルタとにそれぞれ使用されている少なくとも2つの容量体の容量を同時に変化させているので、変化幅の大きい荷重変化であっても正弦波の発振波形が歪まず精確に測定することができる。
【0016】
また、少なくとも2つの静電容量体において、対向している両電極の重複面積が変化する場合、両電極の幅をDとし、荷重印加前の両電極の重複長さをLoとし、荷重印加後の両電極の変位量をLxとすると、静電容量の変化率はLx/Loによって求められる。過度応答を速くするためには、Lxを大きくすることはできないが、Loを予め大きくしておくことは可能である。従って、過渡応答を速くしながら、容量の変化率を大きくすることができ、短い時間で周期を測定することができる。また、Lxは少なくとも2つの容量体において同じであるので、少なくとも2つの容量変化をほぼ同じ値にでき、これら少なくとも2つの容量体が一部をなすローパスフィルタ及びハイパスフィルタのカットオフ周波数をほぼ同じに変化させることができ、幅広い印加荷重の変化によって発振が途切れたり正弦波発振波形が歪むこともなく、高分解能で高精度に荷重変化を測定できる。
【0017】
或いは、対向電極の距離が変化する場合、容量体の静電容量は、距離の逆数に比例して変化するので、荷重印加前の両電極間の距離を適切に調整すれば、過渡応答を速くしながら、容量の変化率を大きくすることができ、短い時間で周期を測定することができる。また、少なくとも2つの容量体の両電極間の距離は同じ距離だけ変化するので、容量変化をほぼ同じ値にでき、これら少なくとも2つの容量体が一部をなすローパスフィルタ及びハイパスフィルタのカットオフ周波数をほぼ同じに変化させることができ、幅広い印加荷重の変化によって発振が途切れたり発振波形が歪むこともなく、高分解能で高精度に荷重変化を測定できる。
【0018】
前記測定手段は、前記ウイーンブリッジ発振回路の出力信号の周期を測定するものとすることができる。この場合、荷重信号算出手段は、測定した周期に基づく荷重に関する2次以上の高次荷重算出式によって荷重を算出する。
【0019】
以下、荷重信号算出手段の高次荷重算出式について説明する。上述したように、可動部に荷重を印加することによって可動部側電極は、固定部側電極に対して精確に鉛直方向に変位するので、両電極間の距離が全重複面で比例変位するか、両電極間の重複面積が変化する。両電極によって形成された少なくとも2つの静電容量体をC1、C2、その静電容量体の荷重センサの無負荷時の静電容量をCo1、Co2、容積変化率をそれぞれβ1、β2とすると、可動部への荷重印加による荷重変化量がwxのとき、
C1=Co1(1+β1・wx)
C2=Co1(1+β2・wx)
となる。ローパスフィルタ及びハイパスフィルタの抵抗体R1、R2はいずれも固定抵抗とし、その値は変化しないとする。
【0020】
少なくとも2個の静電容量体が異なる部位に形成されると、対向電極板面積や対向距離を全く同一に作成することは困難であり、無負荷時静電容量Co1、Co2は互いにわずかに異なり、変化率β1、β2も互いにわずかに異なることを前提とする。上記のCo1、Co2を上述したウイーンブリッジ発振回路の周期Tの式(1)に代入して、無負荷のときの周期をTo、或る荷重が印加されたときの周期をTxとすると、To、Txは
To=2π(Co1・Co2・R1・R2)
1/2
Tx=2π{Co1・Co2(1+β1・wx)・(1+β2・wx)・R1・R2}
1/2
である。
【0021】
周期To、Txは、発振信号がコモン電位COMを中心に振る正弦波であるので、例えば測定手段の一部としてコンパレータを用い、ウイーンブリッジ発振回路の出力信号をコンパレータに供給し、コモン電位COMよりも大きい正弦波信号が入力するときである発振信号の1/2周期のハイレベルまたはローレベルが連続する矩形波信号に変換し、この周期信号の継続時間を、この周期信号より充分短い周期を持つパルス信号でカウントすることによって、周期To、Txを測定する。
【0022】
測定された周期To、Txによって、
Tx
2−To
2
=4π
2・R1・R2・Co1・Co2{(1+β1・wx)・(1+β2・wx)−1}
=4π
2・R1・R2・Co1・Co2{β1・β2・wx
2+(β1+β2)・wx}
を算出する。これから、
4π
2・R1・R2・Co1・Co2・β1・β2・wx
2+4π
2・R1・R2・Co1・Co2・β1・β2(β1+β2)・wx}−(Tx
2−To
2)=0・・・(2)
という荷重変化量wxに関する2次式が得られる。
【0023】
式(2)において、
4π
2・R1・R2・Co1・Co2・β1・β2=a1
4π
2・R1・R2・Co1・Co2・β1・β2(β1+β2)=a2
(Tx
2−To
2)=b
とすると、
式(2)は、
a1・wx
2+a2・wx+b=0・・・(3)
と表され、種々の異なる大きさの荷重を可動部に印加する度に、発振信号の周期を測定することによって既知化されるので、wxを求めるために予め係数a1、a2を既知化する。
【0024】
異なる3種類の既知の荷重を可動部に印加して、周期を測定して式(3)に代入すれば係数a1、a2が求められる。bを決定するためにTx、Toを測定した際に、測定値にノイズ成分が含まれていて、係数a1、a2の決定に影響を与えることを考慮する場合には、何種類もの既知荷重を用意して、各既知荷重を印加する都度Tx、Toを測定し、最小二乗法によってa1、a2を定めても良い。
【0025】
この計量装置の調整時点では、無負荷状態で周期Toを測定し、この周期Toを初期値として例えば荷重信号算出手段が備える不揮発性メモリに記憶させる。このとき係数a1、a2は、不揮発性メモリに既に記憶させてある。計量装置の稼動運転時には可動部に未知の荷重を印加し、ウイーンブリッジ発振回路の出力信号の測定手段によって周期Txを測定して、周期Txと既知の周期Toとからbを求め、式(3)に代入して2次方程式の解として、荷重信号算出手段において、wxが求められる。なお、精確に荷重を算出するには近似式を用いて式(3)を簡略化しないことが望ましい。
【0026】
上記の説明では、2つの抵抗体を荷重印加とは無関係に固定値としたが、抵抗体として起歪部にストレインゲージを貼付するなどして、荷重変化に応じて抵抗値が変化する抵抗体をウイーンブリッジ発振回路に用いることも可能である。但し、抵抗値は静電容量のように大きい変化率で変化させることが、発明が解決しようとする課題の項で述べたように困難である。もし小さい変化率であっても抵抗体の抵抗値も変化させるならば、精確な重量を求めるためには、抵抗値の変化率をα1、α2とすると、
R1=Ro1(1+α1・wx)
R2=Ro2(1+α2・wx)
と表して変化量wxを求める必要があり、式(2)において周期を求める式は、wxに関する4次方程式で表され、決定しなければならない係数は5個になる。従って、2次以上の高次の荷重算出式によって荷重を算出することも可能である。
【0027】
但し、4次方程式の5個の係数を調整時点で決定するとしても、或いは4次方程式に解が存在するとしても、5個の係数を決定するには少なくとも値の異なる5個の既知の荷重を持つサンプル物品を使用しなければならず、荷重センサの量産時には大きな作業負担となる。従って、荷重算出式を複雑化させないため、静電容量体の容量のみを荷重変化に従って変化させ、抵抗体は荷重変化によって変化しない固定抵抗値とすることが望ましい。
【発明の効果】
【0028】
以上のように、本発明による計量装置では、ウイーンブリッジ発振回路の2辺を構成するローパスフィルタ及びハイパスフィルタの容量体の静電容量が、荷重の変化量に対して大きな変化率で変化させることが可能で、しかも両フィルタのカットオフ周波数がほぼ同じに変化するので幅広い印加荷重の変化によって発振が途切れたり発振波形が歪むこともなく、高分解能で高精度に荷重変化を測定できる。
【発明を実施するための形態】
【0030】
本発明の第1の実施形態の計量装置は、平行四辺形型ロードセルである荷重センサを有し、この荷重センサは、
図2に示すようにウイーンブリッジ発振回路2を有している。このウイーンブリッジ発振回路2は、ブリッジ回路4を有している。このブリッジ回路2は、4つの辺を有し、そのうちの直列な2辺にローパスフィルタLPFとハイパスフィルタHPFとが配置されている。この直列な2辺に対して並列に接続された直列な2辺にそれぞれ固定抵抗体Rが配置されている。ローパスフィルタLPFは、静電容量体C1と抵抗体R1とを並列に接続したもので、ハイパスフィルタHPFは静電容量体C2と抵抗体R2とを直列に接続したものである。ローパスフィルタLPFとハイパスフィルタHPFは同じカットオフ周波数fcを有している。
【0031】
ローパスフィルタLPFとハイパスフィルタHPFとの接続点が、演算増幅器6の非反転入力端子に接続され、固定抵抗体R間の接続点が演算増幅器6の反転入力端子に接続され、ハイパスフィルタHPFと固定抵抗体Rとの接続点が演算増幅器6の出力端子に接続され、ローパスフィルタLPFと固定抵抗体Rとの接続点が、基準電位、例えばコモン電位COMに接続されている。これによって、同じカットオフ周波数fcを持つローパスフィルタLPFとハイパスフィルタHPFとが、演算増幅器6の出力端子と非反転入力端子との間の正帰還回路に設けられている。固定抵抗体R、Rは、正帰還回路のゲインを定めるものである。このような構成によって、演算増幅器6の出力として周波数fcの正弦波の発振信号が得られる。抵抗体R1、R2も固定抵抗値を有している。後述するように荷重を印加することによって、静電容量体C1、C2の静電容量が変化し、
図5に示すように発振周波数がfcからfxに変化する。
【0032】
演算増幅器6の発振出力は、この計量装置が稼動モードにあるとき、波形整形回路8によって波形整形された後、測定手段、例えば周期判定回路10によって、荷重wxの印加時の周期Tx(=1/fx)が測定され、荷重信号算出手段、例えば荷重信号算出回路12に供給される。荷重信号算出回路12は、この周期Txと荷重が印加されていない初期荷重の際の周期To(=1/fo)とに基づいて課題を解決する手段の項で述べたのと同様に周期Txと既知の周期Toとから係数bを求め、式(3)に代入して2次方程式の解として、荷重を算出する。その算出結果が、表示手段、例えば表示器14に表示される。なお、この計量装置が調整モードにあるとき、課題を解決する手段の項で説明したように荷重が印加されていない状態で、係数a1、a2が定められ、かつ周期Toが測定され、荷重信号算出回路12の記憶手段、例えば不揮発性メモリに記憶されている。
【0033】
ウイーンブリッジ回路4の静電容量体C1、C2は、
図1(a)に示す金属弾性体製の平行四辺形型ロードセル16に設けられている。平行四辺形型ロードセル16では、平行四辺形型の金属弾性体ブロック18の4隅に上側円形孔20a、20b、下側円形孔22a、22bを、金属体ブロック18の厚さ方向に貫通するように設けられている。上側円形孔20a、20b間を繋ぐように細幅の上側水平間隙24が金属体ブロック18の厚さ方向に貫通するように水平に設けられている。下側円形孔22、22間を繋ぐように細幅の下側水平間隙26が金属弾性体ブロック18の厚さ方向に貫通するように水平に設けられている。上側水平間隙24と下側水平間隙26の中央間を繋ぐように、金属弾性体ブロック18の厚さ方向に貫通して細幅の鉛直間隙28が形成されている。
【0034】
上側円形孔20a、20bと上側水平間隙24とによって上側梁30が形成され、下側円形孔22a、22bと下側水平間隙26とによって下側梁32が形成されている。上側円形孔20a、20b、下側円形孔22a、22bは、それらの周縁の一部が、金属弾性体ブロック18の上辺及び下辺に幅dの薄肉部34、34、34、34によって接するように設けられ、これら薄肉部34,34、34、34が、平行な上側梁30と下側梁32とリンク機構を構成する。そして、鉛直間隙28と一方の側辺までの間と、鉛直間隙28の他方の側辺までの間とが、固定部36と可動部38となる。いずれの側を固定部38としてもよいが、この実施形態では
図1の左側を固定部36とし、右側を可動部38とする。
【0035】
図1のロードセルを使用して、例えば
図3に示すような計量装置が構成されている。固定部36が基礎面40の上に設けられた基礎取付金具42に取り付けられ、可動部38には、計量台支持金具44が取り付けられ、計量台支持金具44の上に計量台46が水平に取り付けられている。計量台46上に被計量物が載置されて、被計量物の重量が測定される。
図1及び
図3に矢印で示す方向に、即ち基礎面40に対して鉛直方向に荷重が印加されたとき、計量台46上で被計量物の位置が実線で示す位置から破線で示す位置に移動しても、或いは被計量物の荷重の大小に拘わらず、可動部38は鉛直下方向に移動する。従って、
図1において鉛直間隙28を挟んで対向する固定部36側の端面48に対して可動部38側の端面50は、平行に下方に移動する。
【0036】
これら端面48、50に電極、例えば電極板を設けて対向させれば、固定部36側の端面48上の電極板に対して、可動部38側の端面50上の電極板は、被計量物の印加荷重に比例した距離で鉛直方向に端面48に対して平行移動する。その結果、2つの電極板の対向面積が荷重変化に比例して変化するので、2つの電極板を静電容量体とすると、静電容量体の静電容量が印加荷重の大きさに精確に比例して変化する。
【0037】
図1(b)、(c)に電極板の一例を示している。同図(b)に示すように、固定部36側の端面48と可動部38側の端面50とには樹脂製の絶縁基板52、54がそれぞれ接着されている。これら絶縁基板52、54上に例えばそれぞれ4つの金属パターンが互いに対向するように配置されて、それぞれ4つの固定部側電極板56a、56b、56c、56d、可動部側電極板58a、58b、58c、58dが形成されている。固定部側電極板56aと可動部側電極板58aによって1つの静電容量体が形成され、以下同様に、固定部側電極板56b、56c、56dと可動部側電極板58b、58c、58dによって3個の静電容量体が形成されている。これら4個の静電容量体のうち2つが例えば並列に接続されて、ローパスフィルタLPFの静電容量体C1として使用され、残りの2つが並列に接続されて、ハイパスフィルタHPFの静電容量体C2として使用される。
【0038】
同図(c)に示すように、電極板56a、56b、56c、56dはいずれも鉛直方向寸法Laを有し、両端にはリード線60がそれぞれハンダ接続され、このハンダ接続部を覆うように幅Dの間隔をあけて絶縁塗装62が絶縁基板52の両端に行われている。即ち、電極板56a、56b、56c、56dの幅寸法(金属弾性体ブロック18の厚さ方向の寸法)はいずれもDである。電極板58a、58b、58c、58dも同様である。
【0039】
図4に電極板56a、58aの拡大図を示す。以下、電極板56a、58aを代表として説明するが、他の電極板56b、56c、56d、58b、58c、58dにおいても同様である。計量台46に被計量物が載荷されていないとき(計量台48等の荷重のみが平行四辺形型ロードセル16に印加されている初期荷重のとき)、固定部側電極板56aと可動部側電極板58aとは、鉛直方向にLbの差があるように配置されている。即ち、鉛直方向に関して、可動部電極板58aの位置が、固定部電極板56aの位置よりも高い位置にあるように配置してある。計量台48上に被計量物が載荷された場合、しかも重い被計量物が載荷された程、可動部電極板58aの位置が下方に変位して、2つの電極板56a、58aの対向面積が増加して、静電容量が増加する。
【0040】
絶縁基板52、54それぞれに電極板56a乃至56d、58a乃至58dが予め形成されており、絶縁基板52、54を固定部端面48、可動部端面50に接着することによって4個の静電容量体を構成するが、絶縁基板52、54を同じ大きさとし、予め形成される電極板56a乃至56d、58a乃至58dの位置関係を上記の関係となるように異ならせておけば、固体部側端面48に絶縁基板52を、可動部側端面50に絶縁基板54を接着するだけで、上記の好ましい初期荷重時の条件を得ることができる。
【0041】
初期荷重印加時に双方の電極板56a、58aが平行に対向する部位の長さLoは、
Lo=La−Lb
である。電極板56a、58aの幅は上述したようにDであるので、初期荷重印加時の電極板56a、58aが対向する面積Soは、
So=Lo・D
である。そして、重量wxの被計量物が計量台46上に載荷されて、可動部側電極58aがLx変位したとすると、電極板56a、58aが平行する距離は
Lo+Lx
に増加するので、計量台46上への被計量物の載置時に電極板56a、58aが対向する面積Sxは、
Sx=(Lo+Lx)・D
となる。電極板56a、58a間の距離をH、電極板56a、58a間の物質の誘電率をεとすると、
初期荷重印加時の1組の静電容量体の静電容量Coは、
Co=ε・So/H
であり、被計量物を載荷したときの1組の静電容量体の静電容量Cxは、
Cx=ε・Sx/H
となる。
【0042】
静電容量の変化率は
(Cx−Co)/Co=Lx/Lo
で表され、変位量Lxは被計量物の重量wxに比例するので、Lx=k・wxとすると、
静電容量の変化率
(Cx−Co)/Co=Lx/Lo=(k・Lo)・wx=β・wx
となり、k、Loは一定であるので、係数β=k/Loも一定である。従って、
Cx−Co=Co・(Lx/L)=Co・(k/Lo)・wx
となり、Cxは、
Cx=Co+Co・(k/Lo)・wx=Co{1+(k/Lo)・wx}
=Co(1+β・wx)
と表される。
【0043】
静電容量体が2個並列に接続される場合、1つの静電容量体での被計量物が印加されたときの静電容量Cxは上述したように表され、もう1つの静電容量体での被計量物が印加されたときの静電容量をCx’とすると、Cx’は
Cx’=Co’+Co’・(k’/Lo’)・wx
で表される。これら2つの静電容量体の並列接続の合成静電容量は、
Cx+Cx’=Co+Co’+Co(k/Lo)wx+Co’(k’/Lo’)wx
=Co+Co’+(Co+Co’)[Co/(Co+Co’)・(k/Lo)+Co’/(Co+Co’)・(k’/Lo’)]wx
となり、
Co/(Co+Co’)・(k/Lo)=K=一定
Co’/(Co+Co’)・(k’/Lo’)=K’=一定
であるので、
Cx+Cx’=(Co+Co’)+(Co+Co’)(K+K’)・wx
=(Co+Co’){1+(K+K’)・wx}
であり、K+K’=βとすれば、
Cx+Cx’=(Co+Co’){1+β・wx}
と表せる。
【0044】
このように静電容量体を1つだけ使用する場合でも、並列に接続して使用する場合でも、荷重印加後の静電容量は、課題を解決する手段の項で述べたのと同様に表される。
【0045】
上述したように並列に接続された2つの静電容量体がローパスフィルタLPFの静電容量体C1として使用され、残りの2つの並列接続された静電容量体がハイパスフィルタHPFの静電容量体C2として使用される。
【0046】
そして、ウイーンブリッジ発振回路2の演算増幅器6の出力信号が上述したように波形整形回路8に供給される。波形整形回路8は、ブリッジ回路4のコモン電位COMを中心に振動する正弦波信号がコモン電位COM以上で継続する領域でハイレベルまたはローレベルの論理信号を出力する回路である。この論理信号は周期判定回路10によって周期値として読み取られる。調整モードにおいて初期荷重状態で周期Toが読み取られ、荷重信号算出回路12の不揮発メモリに記憶され、稼動モードで被計量物を計量台46上に載荷した状態で周期Txが読み取られる。周期Txは、荷重信号算出回路12に供給される。荷重信号算出回路12では、課題を解決する手段の項で説明したのと同様に、b(=Tx
2−To
2)が算出され、このbと調整モードで予め上記不揮発性メモリに設定されている係数a1、a2を用いて、荷重wxが算出され、表示器14に表示される。
【0047】
周期の変化量に対応するb(=Tx
2−To
2)の値を高分解能に測定するには、TxとToの間で差が大きいことが要求される。それには静電容量の変化率が大きい必要がある。静電容量の変化率は
(Cx−Co)/Co=Lx/Lo
であるので、計量台46上に被計量物を載荷したときLoに対するLxの値が大きいほどLx/Loの値は大きい。Lxは平行四辺形型ロードセル16に定格荷重を印加したときの鉛直方向の変位量をLxとすると、例えば約150μmである。この値を変更することは容易でないが、Loの値は容易に変更することができる。Loは、初期荷重が印加された状態における固定部電極56a乃至56dと可動部電極58a乃至58dが平行して対向する部分の長さであるので、容易に数mm程度、例えば3mm程度にすることができる。従って、変化率は、例えば150/3000=1/20程度に容易に設定することができるので、高い分解能で周期測定ができ、それに応じて高い分解能で被計量物の重量wxを求めることができる。しかも、Loを小さくすれば、対向電極(固定部電極と可動部電極)を複数組並べることができ、係数β、即ち変化率の値を対向電極ごとの加算値として大きくすることができる。
【0048】
図2に示すウイーンブリッジ発振回路2の固定抵抗体R1、R2、R、R及び演算増幅器6は、
図1に示すように樹脂製プリント基板64上に搭載され、このプリント基板64は、固定部36の側面に取り付けられている。
【0049】
ローパスフィルタLPF、ハイパスフィルタHPFを構成する抵抗体R1、R2は、常にR1≒R2が成立するように、C1、C2は、初期荷重印加時にC1≒C2が成立するように設定される。固定部側電極56a乃至56d、固定部側電極58a乃至58dは、初期位置や荷重印加による変位量は、4つの静電容量体において同じに構成してある。従って、任意の荷重の印加時にもC1≒C2が成立し、ローパスフィルタLPF及びハイパスフィルタHPFにおいてR1、R2及びC1、C2で決まるカットオフ周波数は初期荷重の印加時も、任意の大きさの荷重の印加時においても常にほぼ一致している。従って、ウイーンブリッジ発振回路2は任意の印加荷重に対して常にローパスフィルタLPF及びハイパスフィルタHPFのカットオフ周波数が一致した状態で、そのカットオフ周波数の値が荷重変化量の大きさに応じて変化するので、常に精確な形状の発振信号を得ることができ、精確な周期測定が行え、精確に荷重の変化量を求めることができる。
【0050】
図6に第2の実施形態の計量装置に使用する平行四辺形型ロードセル161を示す。この計量装置は、平行四辺形型ロードセル161の構成が異なる以外、第1の実施形態の計量装置と同様に構成されているので、平行四辺形型ロードセル161の構成についてのみ説明する。
【0051】
この平行四辺形型ロードセル161でも、第1の実施形態の平行四辺形型ロードセル16と同様に、平行四辺形型の金属弾性体ブロック18の4隅に上側円形孔20a、20b、下側円形孔22a、22bが設けられている。上側円形孔20a、20b間を繋ぐように細幅の上側水平間隙24が水平に設けられ、下側円形孔22、22間を繋ぐように細幅の下側水平間隙26が水平に設けられている。上側円形孔20bの下部と、下側円形孔22aの上部とを繋ぐように、鉤型の間隙281が金属弾性体ブロック18の厚さ方向に貫通するように形成されている。
【0052】
この間隙281は、上側円形孔20bの下部から鉛直に伸びた上側鉛直部281aと、上側鉛直部281aの下端から下側円形孔22a側に水平に伸びた水平部281bと、水平部281bの端から下側円形孔22a側に鉛直に伸びている下側鉛直部281cを有している。この鉤型間隙281によって、金属弾性体ブロック18は、固定部361と可動部381とに分けられている。また、第1の実施形態と同様に薄肉部34、34、34、34が形成され、上側梁30と下側梁32とを有する平行リンク機構とされている。鉤型間隙281の水平部281bを挟んで対向する固定部361側の面481と、可動部381の面501とに電極板を形成すると、静電容量体を構成することができる。
【0053】
図示を省略しているが、可動部381には、
図3に示したのと同様に計量台支持金具を介して計量台が結合され、固定部361は、基礎取付金具を介して基礎面に取り付けられている。可動部381に矢印で示すように鉛直方向の荷重が印加されると、可動部381が鉛直方向下方に移動する。従って、荷重の印加によって固定部361側の面481と可動部381の面501との電極板間の距離が変化するので、静電容量体の静電容量の逆数が印加荷重の大きさに精確に比例して変化する。
【0054】
同図(b)に示すように電極板は、固定部361側の面481と、可動部381の面501とに貼り付けた樹脂製の絶縁基板521、541上に形成されている。2つの電極板561a、561bが、同図(c)に示すように金属弾性体ブロック18の厚さ方向に沿って絶縁基板521上に設けられている。また、絶縁基板541上に、2つの電極板581aと電極板581b(図示せず)とが、電極板561a、561bと対向するように設けられている。電極板561a、561b、581a、581bには、第1の実施形態と同様に、リード線60及び絶縁塗装62が設けられている。
【0055】
電極板561aと581aとの対向面積、電極板561bと581bとの対向面積をそれぞれS、電極板561a、561bと581a、581bとの間に存在する空気などの物質の誘電率をε、電極板561a、561bと581a、581bとの間の距離が初期荷重印加時にHo、被計量物の印加時にHxとすると、初期荷重印加時の1組、例えば電極板561aと581aとの静電容量Coは、
Co=ε・S/Ho
で表され、被計量物を印加したときの静電容量Cxは、
Cx=ε・S/Hx
で表される。Hxは、印加加重に比例して変化するので、静電容量の逆数1/Cxは、
1/Cx=Hx/ε・S
と表され、印加荷重に比例して変化する。電極板561bと581bとの静電容量も同様である。そして、電極板561aと581aとによる静電容量体をウイーンブリッジ発振回路2のローパスフィルタLPFの静電容量体C1と、電極板561bと581bとによる静電容量体をハイパスフィルタHPFの静電容量体C2として使用する。
【0056】
初期荷重印加時のウイーンブリッジ発振回路2の発振信号の周期をTo、或る荷重wxを印加したときの周期をTxとすると、式(2)のTx
2−To
2を(1/Tx
2−1/To
2)に置き換えれば、課題を解決する手段の項で述べたのと同様に、a1、a2を予め求め、b=(1/Tx
2−1/To
2)とすることによって、式(3)によって荷重wxを求めることができる。
【0057】
初期荷重印加時の鉤型間隙281の水平部281bの鉛直方向の寸法d1(
図6参照)を、荷重変化による可動部381の変位量に対して適切に選択すれば、大きい静電容量の変化率を自在に得ることができる。例えば、dが好ましい初期荷重印加時の寸法になるように、水平部281bを予め機械加工する。
【0058】
第1の実施形態では4つの静電容量体を構成し、第2の実施形態では2個の静電容量体を構成したが、2個以上の個数であれば、任意の個数の静電容量体を構成することもできる。但し、ウイーンブリッジ発振回路のローパスフィルタ及びハイパスフィルタHPFのカットオフ周波数を一致させることが望ましいので、偶数個の静電容量体を設けることが望ましい。
【0059】
第1及び第2の実施形態では、ウイーンブリッジ発振回路のローパスフィルタ及びハイパスフィルタの静電容量体の値のみを荷重の印加に応じて変化させたが、ローパスフィルタ及びハイパスフィルタの抵抗体の値も、荷重の印加に応じて変化させることもできる。その場合、例えば抵抗体としてストレインゲージを用い、
図1及び
図6に示す起歪部34にストレインゲージを貼付する。但し、荷重の印加に対して抵抗値が増加するようにストレインゲージを貼付する場合には、上側円形孔20a、20b側の起歪部34に貼付し、これらストレインゲージを、
図2に示す固定抵抗器R1、R2の代わりに使用する。但し、上述したように、この場合、荷重を求めるための高次方程式としては、上述したように4次方程式を使用する。
【0060】
上記の2つの実施形態で示したウイーンブリッジ発振回路は、基本形態を示したもので、公知の種々の変形型のウイーンブリッジ発振回路を使用することもできる。例えば、演算増幅器16の反転入力端子に接続されている固定抵抗器Rに直列に可変抵抗器を接続し、その可変抵抗器を演算増幅器16の出力レベルに応じて変化させて自動利得制御付きのウイーンブリッジ発振回路とすることもできる