【文献】
棚橋隆彦、灘口明彦,磁性流体を用いたエネルギ変換システム,ターボ機械,日本,1985年,第13巻第12号,p.41−47
【文献】
東晋平,磁場制御エネルギー変換MHD,第15回技術セミナー「高速ポンプによるエネルギー輸送と計測技術」,日本,同志社エネルギー変換研究センター,2008年 2月29日,p.1−8
(58)【調査した分野】(Int.Cl.,DB名)
磁性流体を循環させる循環流路と、該循環流路に介装され、該循環流路に封入された磁性流体に磁界を印加するとともに該磁性流体を加熱して循環駆動する駆動部とを備える磁性流体発電装置であって、
前記磁性流体は導電性を有し、
前記循環流路に介装された発電部を備え、
該発電部は、
前記循環流路と連通し、所定長に亘って対向する2組の路壁で囲まれ、矩形断面形状を有する発電側循環流路と、
対向する一方の路壁に対して略垂直方向に磁界を印加する磁界印加部と、
対向する他方の路壁それぞれに設けられた電極板と
を備え、
前記電極板を介して電力を出力するようにしてあり、
前記磁界印加部は、
前記一方の路壁それぞれに対設され、ヨークで囲まれた1対の磁石を有し、
前記1対の磁石の一方は、
前記路壁に対して略垂直方向であって該路壁に向かう方向に磁化し、該路壁よりも幅広の第1磁石と、
該第1磁石を間にして対設され、前記路壁の表面と略平行であって前記第1磁石の方向に磁化した1組の第2磁石と
を有し、
前記1対の磁石の他方は、
前記路壁に対して略垂直方向であって該路壁に向かう方向と反対方向に磁化し、該路壁よりも幅広の第3磁石と、
該第3磁石を間にして対設され、前記路壁の表面と略平行であって前記第3磁石の方向と反対方向に磁化した1組の第4磁石と
を有し、
前記第1磁石の幅に対する前記第2磁石の幅の割合、及び第3磁石の幅に対する前記第4磁石の幅の割合は、0.5以上であることを特徴とする磁性流体発電装置。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1の装置にあっては、磁性流体を駆動させるための電磁石に印加する外部電源が不要になるものの、発電方法については具体的な開示はない。
【0007】
本発明は斯かる事情に鑑みてなされたものであり、常温の環境下で簡便な構成で発電することができる磁性流体発電装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る磁性流体発電装置は、磁性流体を循環させる循環流路と、該循環流路に介装され、該循環流路に封入された磁性流体に磁界を印加するとともに該磁性流体を加熱して循環駆動する駆動部とを備える磁性流体発電装置であって、前記磁性流体は導電性を有し、前記循環流路に介装された発電部を備え、該発電部は、前記循環流路と連通し、所定長に亘って対向する2組の路壁で囲まれ、矩形断面形状を有する発電側循環流路と、対向する一方の路壁に対して略垂直方向に磁界を印加する磁界印加部と、対向する他方の路壁それぞれに設けられた電極板とを備え、前記電極板を介して電力を出力するようにしてあることを特徴とする。
【0009】
本発明にあっては、駆動部は、循環流路に封入された磁性流体に磁界を印加するとともに磁性流体を加熱して、循環流路内の磁性流体を循環駆動する。駆動部は、加熱した磁性流体の磁化を低下させて、磁性流体に作用する磁気体積力の不均衡を利用して磁性流体を駆動させる。磁性流体は、常温域で磁化が比較的大きく、温度がキュリー温度(例えば、200℃程度)に向かって上昇すると磁化が低下する。なお、駆動部内の加熱源としては、電子機器等のCPU、LSIなどの発熱を利用(廃熱利用)することもできる。したがって、常温の環境下で循環流路内の磁性流体を循環させることができる。
【0010】
磁性流体は導電性を有し、循環流路に発電部を介装してある。発電部は、循環流路と連通し、所定長に亘って対向する2組の路壁で囲まれ、矩形断面形状を有する発電側循環流路と、2組の路壁のうち、一方の路壁に対して略垂直方向に磁界を印加する磁界印加部と、他方の路壁それぞれに設けられた電極板とを備える。矩形断面形状は、例えば、正方形、長方形などである。磁界印加部は、例えば、永久磁石(磁石)を用いることができる。磁界の磁束密度をB、磁性流体の速度をu、電極板間の寸法をdとすると、電極板間に生じる電圧V
0 は、V
0=u・B・dで表すことができる。これにより、常温の環境下で、簡便な構成で発電することができる。
【0011】
本発明に係る磁性流体発電装置は、前記磁性流体の導電率は、1S/m以上であることを特徴とする。
【0012】
本発明にあっては、磁性流体の導電率は、1S/m以上である。磁性流体の母液としては、例えば、水、炭化水素系オイル、フッ素系オイルなどを用いることができる。水ベースの磁性流体の導電率は、20℃で約1〜2程度であり、温度上昇により導電率が上がる傾向にあり、例えば、80℃では約2〜5程度になる。磁性流体の導電率を、1S/m以上とすることにより、水ベースの磁性流体を用いることができる。
【0013】
本発明に係る磁性流体発電装置は、前記駆動部が介装された循環流路の総断面積よりも前記発電側循環流路の総断面積が小さいことを特徴とする。
【0014】
本発明にあっては、駆動部が介装された循環流路の総断面積よりも発電側循環流路の総断面積が小さい。例えば、駆動部が介装された循環流路を複数備える。すなわち、駆動部には複数の循環流路を設けてある。そして、循環流路の数よりも発電側循環流路の数が少なくなるように合流部で循環流路を合流する。例えば、駆動部には4本の循環流路を設け、発電部には2本の発電側循環流路を設けた場合、合流部は、発電側循環流路の上流側で4本の流路を2本の流路に合流させる。なお、発電側循環流路の下流側では2本の流路が4本の流路に分岐することになる。駆動部で駆動される磁性流体の流速をuとし、循環流路及び発電側循環流路の流路断面積を同じとすると、流量(体積流量)Qは一定であるので、発電側循環流路内での磁性流体の流速は約2倍となる。これにより、電極板間で生じる電圧を2倍にすることができ、電力は電圧の2乗に比例するので、電極板から出力する電力は4倍にすることができ、出力電力を大きくすることができる。
【0015】
また、駆動部が介装された循環流路の数と発電側循環流路の数とを同数にしておき、各循環流路の断面積よりも各発電側循環流路の断面積が小さくなるようにすることもできる。さらに、駆動部が介装された循環流路の数よりも発電側循環流路の数を少なくし、かつ各循環流路の断面積よりも各発電側循環流路の断面積を小さくするように構成することもできる。
【0016】
本発明に係る磁性流体発電装置は、前記磁界印加部は、前記一方の路壁それぞれに対設され、ヨークで囲まれた1対の磁石を有し、前記1対の磁石の一方は、前記路壁に対して略垂直方向であって該路壁に向かう方向に磁化し、該路壁よりも幅広の第1磁石と、該第1磁石を間にして対設され、前記路壁の表面と略平行であって前記第1磁石の方向に磁化した1組の第2磁石とを有し、前記1対の磁石の他方は、前記路壁に対して略垂直方向であって該路壁に向かう方向と反対方向に磁化し、該路壁よりも幅広の第3磁石と、該第3磁石を間にして対設され、前記路壁の表面と略平行であって前記第3磁石の方向と反対方向に磁化した1組の第4磁石とを有することを特徴とする。
【0017】
本発明にあっては、磁界印加部は、一方の路壁それぞれに対設され、ヨークで囲まれた1対の磁石を有する。すなわち、1対の磁石の間に発電側循環流路を配置してある。なお、1対の磁石は、一方の路壁に対して略垂直方向(すなわち、他方の路壁に対して略水平方向)に磁界を印加する。なお、発電側循環流路の流路方向(磁性流体の流れる方向)をx軸、一方の路壁に対して略垂直方向(すなわち、磁界方向)をy軸、他方の路壁に対して略垂直方向(すなわち、電極板に対して略垂直方向)をz軸とする。
【0018】
1対の磁石の一方は、一方の路壁に対して略垂直方向であって当該路壁に向かう方向に磁化し、当該路壁よりも幅広の第1磁石と、第1磁石を間にして対設され、当該路壁の表面と略平行であって第1磁石の方向に磁化した1組の第2磁石とを有する。また、1対の磁石の他方は、一方の路壁に対して略垂直方向であって当該路壁に向かう方向と反対方向に磁化し、当該路壁よりも幅広の第3磁石と、第3磁石を間にして対設され、当該路壁の表面と略平行であって第3磁石の方向と反対方向に磁化した1組の第4磁石とを有する。
【0019】
すなわち、第1磁石は、発電側循環流路の路壁の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路に向かう。第2磁石は、第1磁石を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第1磁石に向かう。第3磁石は、発電側循環流路の路壁の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路の方向と反対方向に向かう。第4磁石は、第3磁石を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第3磁石の方向と反対方向に向かう。
【0020】
第1磁石のN極から間隙側へ出た磁力線は、発電側循環流路の一方の路壁を通って第3磁石のS極へ向かう。第3磁石を間にして1組の第4磁石を対設してあるので、第3磁石から出た磁力線は、各第4磁石に向かい、ヨークを通過して第2磁石へ向かう。第1磁石を間にして1組の第2磁石を対設してあるので、第2磁石から出た磁力線は、第1磁石へ向かう。すなわち、磁力線は、第1磁石、発電側循環流路の路壁、第3磁石、第4磁石、ヨーク、第2磁石、第1磁石の順に閉ループを形成することになり、第1磁石から第3磁石へ向かう磁力線の漏れを少なくすることができ、発電側循環流路の一方の路壁を通過する磁束の磁束密度を高めることができる。これにより、発電側循環流路の一方の路壁に対して略垂直方向の磁界を強くすることができ、出力電力を増加させることができる。
【0021】
本発明に係る磁性流体発電装置は、前記第1磁石の幅に対する前記第2磁石の幅の割合、及び第3磁石の幅に対する前記第4磁石の幅の割合は、0.5以上であることを特徴とする。
【0022】
本発明にあっては、第1磁石の幅wa(z軸方向の寸法)に対する第2磁石の幅wb(z軸方向の寸法)の割合p(=wb/wa)は、0.5以上である。また、第3磁石の幅wa(z軸方向の寸法)に対する第4磁石の幅wb(z軸方向の寸法)の割合p(=wb/wa)は、0.5以上である。第1磁石及び第3磁石の幅waを大きくすると、第1磁石から第3磁石へ向かう磁力線のうち、発電側循環流路の一方の路壁を通過する磁力線が相対的に少なくなるため、発電側循環流路の一方の路壁を通過する磁束の磁束密度が小さくなる。また、第1磁石及び第3磁石の幅waを大きくすると、第1磁石及び第3磁石のz軸方向の端部が、発電側循環流路の一方の路壁から離れ、第1磁石及び第3磁石のz軸方向の中央部に発電側循環流路が位置することになるので、発電側循環流路及びその付近における、第1磁石のN極から第3磁石のS極へ向かう磁力線(y軸方向の磁束密度)のz軸方向の分布が均一となる範囲が大きくなる。
【0023】
また、逆に、第1磁石及び第3磁石の幅waを小さくすると、第1磁石から第3磁石へ向かう磁力線のうち、発電側循環流路の一方の路壁を通過する磁力線が相対的に多くなるため、発電側循環流路の一方の路壁を通過する磁束の磁束密度が大きくなる。また、第1磁石及び第3磁石の幅waを小さくすると、第1磁石及び第3磁石のz軸方向の端部が、発電側循環流路の一方の路壁に近づき、第1磁石及び第3磁石のz軸方向の端部付近に発電側循環流路が位置することになるので、発電側循環流路及びその付近における、第1磁石のN極から第3磁石のS極へ向かう磁力線(y軸方向の磁束密度)のz軸方向の分布が均一となる範囲が小さくなる。
【0024】
すなわち、割合p(=wb/wa)が0.5未満の場合、相対的に幅waを大きくすることになり、磁束密度が小さくなり、出力電力が低下する。割合p(=wb/wa)を0.5以上にすることにより、発電側循環流路の一方の路壁を通過する磁束の磁束密度のy軸方向の成分(y軸方向の磁束密度)のz軸方向の分布の均一性を高めるとともに磁束密度を大きくすることができ、出力電力を増加させることができる。
【0025】
本発明に係る磁性流体発電装置は、前記1対の磁石同士の離隔寸法に対する該磁石の厚み寸法の割合は、3以上であることを特徴とする。
【0026】
本発明にあっては、1対の磁石同士の離隔寸法d(y方向の間隙寸法)に対する磁石の厚み寸法t(y軸方向の寸法)の割合q(=t/d)は、3以上である。割合q(=t/d)を、3未満にすると、相対的に離隔寸法dが大きくなり、磁束密度が小さくなり、出力電力が低下する。割合q(=t/d)を、3以上にすることにより、磁束密度を大きくして出力電力を増加させることができる。
【0027】
本発明に係る磁性流体発電装置は、前記1対の磁石は、1.33T以上の残留磁束密度を有するネオジム磁石であることを特徴とする。
【0028】
本発明にあっては、1対の磁石は、1.33T以上の残留磁束密度を有するネオジム磁石である。残留磁束密度が1.33T以上のネオジム磁石を用いることにより、磁束密度を大きくすることができる。
【0029】
本発明に係る磁性流体発電装置は、前記磁界印加部が印加する磁界の磁束密度は1.0T以上であることを特徴とする。
【0030】
本発明にあっては、磁界印加部が印加する磁界の磁束密度は1.0T以上である。出力する電力は、磁束密度の2乗に比例するので、磁束密度を1.0T以上にすることにより、所要の電力を得ることができる。
【発明の効果】
【0031】
本発明によれば、常温の環境下で簡便な構成で発電することができる
【発明を実施するための形態】
【0033】
(第1実施形態)
以下、本発明をその実施の形態を示す図面に基づいて説明する。
図1は第1実施形態の磁性流体発電装置100の構成の一例を示す模式図である。磁性流体発電装置100は、閉ループ状の循環流路10、循環流路10の所要の位置に介装された駆動部20、駆動部20と適長離隔して循環流路10に介装された発電部30などを備える。駆動部20は、磁石21、加熱部22などを備える。循環流路10内には、導電性を有する磁性流体を封入してあり、駆動部20で磁性流体を駆動して循環流路10内を、
図1の矢印で示す方向に循環するようにしてある。
【0034】
循環流路10に封入される磁性流体は、磁性微粒子を分散させる母液に、母液よりも低沸点の溶媒を少なくとも1種混合したものとすることができる。
【0035】
磁性流体の磁性微粒子としては、例えば、酸化鉄系微粒子、スピネルフェライト(MFe
2 O
4 :M=Fe、Mn、Ni、MnZn)、γ-ヘマタイト(γ-Fe
2 O
3 )等を用いることができる。また、磁性微粒子として。最も好ましいのは、マンガン亜鉛フェライト(Mn
x Zn
1-x Fe
2 O
4 )であり、常温域で磁化が最も大きく、磁化の温度依存性が最も高く現れ、組成を制御することで、キュリー温度の調整も可能であり、感温性磁性流体の構成要素として最も適している。また、磁性流体の母液としては、例えば、水、炭化水素系オイル(ケロシン、アルキルナフタレン等)、フッ素系オイル(パープルオロポリエーテル等)を用いることができる。
【0036】
低沸点溶媒としては、磁性流体の母液よりも低沸点である溶媒を使用することができる。低沸点溶媒の種類については、特に限定されるものでなく、母液との相性等を考慮して適宜選択することができる。また、その混合比については、熱磁気的諸性質を考慮して適宜決定すればよい。磁性流体を沸騰させることにより、空間的な磁化率の低下や液体排除効果などにより、磁性流体の駆動速度を上昇させることができ、その結果、出力電圧を増加させることができる。
【0037】
循環流路10の断面内径直径は、例えば、5mm程度とすることができる。また、循環流路10のレイノルズ数は、10000以下とすることが最も好ましい。例えば、循環流路10の断面内径直径が5mm以下であれば、磁性流体発電装置100の小型化を可能にし、レイノルズ数が10000以下での層流であれば、循環流路10内の流れの乱れが少なく高効率に磁性流体を駆動させることが可能になり、循環流路10内の淀みも少なく、熱により生成した気泡も滞留しにくくなる。また、磁性流体に加える熱量も少なくて済み、例えば、少量の廃熱を利用して磁性流体を高効率で循環させることができる。
【0038】
図2は第1実施形態の駆動部20の構成の一例を示す模式図である。なお、
図2では、循環流路10での流路方向の磁場分布及び磁気体積力も例示している。
図2に示すように、駆動部20は、循環流路10の周囲に配置された磁場生成部21、加熱部22などを備える。また、磁場生成部21は、永久磁石211、ヨーク212などを備える。
【0039】
磁場生成部21は、循環流路10の流路方向(
図2中、符号xで示す方向)と垂直な磁化容易軸を持つ2個の永久磁石211を循環流路10に対向する磁極面が互いに異なるように配置(異極並列配置)してある。
【0040】
永久磁石211としては、例えば、ネオジム磁石、サマリウムコバルト磁石、フェライト磁石等を利用することが可能であるが、最も磁力が大きく高磁場を発生することができるネオジム磁石が好ましい。最も好ましいのはネオジム磁石の高残留磁束密度Brを有する材質で、Br=1.33T(Tesla)以上の磁石材質が望ましい。また、永久磁石211の形状は、どのようなものであってもよいが、通常は、角柱、円柱、楕円柱のものを用いることができる。
【0041】
加熱部22は、磁場生成部21の一方の永久磁石211と重なるようにして磁場生成部21の一端側(循環流路10の下流側)に配置してある。加熱部22は、ヒータ等の発熱体でもよく、あるいはCPU又はLSIなどの発熱部品からの廃熱を利用する構成にしてもよい。
【0042】
次に、駆動部20による磁性流体の循環駆動について説明する。磁性流体に磁界Hを印加すると磁化Mを持った流体としてふるまう。磁性流体の構成成分である酸化鉄微粒子は室温において超常磁性的振る舞いをする。超常磁性体の磁化は磁場に対してランジュバン関数に従うが、比較的低磁場領域においては、磁化が磁界に比例すると近似できる。また、酸化鉄微粒子のキュリー温度は477K(204℃)であるために、磁性流体は、温度上昇に伴いキュリー温度に向かって磁化が低下する感温特性がある。以上より、局所的な磁性流体の磁化Mは、式(1)で表すことができる。
【0044】
ここで、μ
0 は真空透磁率であり、χは磁化率であり、αは空隙率(ボイド率:気相の割合)であり、T(x)は加熱部22における磁性流体の温度であり、T
0 は非加熱部における磁性流体の温度であり、T
c は磁性微粒子のキュリー温度である。
【0045】
また、磁化Mの磁性流体には、式(2)で示す磁気体積力Fが働く。ここで、∇Hは磁場勾配(磁界勾配)である。そして、循環流路10の流路方向であるx軸方向に対するy軸方向及びz軸方向の磁界(磁場分布)が一様であると仮定すると、循環流路10内のx軸方向(磁性流体の流れる方向)に働く磁気体積力Fxは、式(3)で表すことができる。ここで、Hxは、x軸方向の磁界である。
【0046】
図2に示す磁場生成部21による流路方向(x軸方向)の磁場分布は、
図2の中段の図のようになり、流路方向の磁気体積力は、
図2の下段の図のようになる。
【0047】
加熱前の段階では、
図2下段の図の(i)の曲線のように、磁気体積力Fの符号は、磁場Hの符号及び磁場勾配∇Hの符号が変わるたびに反転するので、F1〜F6がつりあって磁性流体は動かない。
【0048】
加熱部22において磁性流体が低沸点溶媒の沸点TL未満の温度まで加熱されると、温度Tの増大に伴い、加熱部22の磁化Mは、非加熱部の磁化M0に対して減少するため、
図2下段の(ii)の曲線のように、加熱部22の磁気体積力F4、F5、F6は、加熱されていない非加熱部の磁気体積力F1、F2、F3に比べて小さくなる。加熱部22の磁気体積力のうちF2は負の向きであるが、F1と同程度の大きさであることから相殺され、実質的には正方向のF3の磁気体積力が支配的となる。これにより磁性流体はx軸方向に自発的に移動する。
【0049】
さらに
図2下段の(iii)の曲線のように、磁性流体が低沸点溶媒の沸点TL以上、磁性流体の母液の沸点TH未満まで加熱されると、温度Tが増大し、低沸点溶媒の沸騰により気泡が発生すると空隙率αが増大するため、加熱部22の磁化Mはさらに減少し、磁性流体をx軸方向に駆動させる磁気体積力Fが増大する。このようにして、例えば、流速40mm/s程度で磁性流体を循環し続けることができる。
【0050】
上述のように、駆動部20は、循環流路10に封入された磁性流体に磁界を印加するとともに磁性流体を加熱して、循環流路10内の磁性流体を循環駆動する。駆動部20は、加熱した磁性流体の磁化を低下させて、磁性流体に作用する磁気体積力の不均衡を利用して磁性流体を駆動させる。磁性流体は、常温域で磁化が比較的大きく、温度がキュリー温度(例えば、200℃程度)に向かって上昇すると磁化が低下する。なお、駆動部20内の加熱源としては、電子機器等のCPU、LSIなどの発熱を利用(廃熱利用)することもできる。したがって、常温の環境下で循環流路10内の磁性流体を循環させることができる。
【0051】
図3は第1実施形態の発電部30の構成の第1実施例を示す外観斜視図であり、
図4は第1実施形態の発電部30の構成の第1実施例を示す正面図である。
図4に示すように、発電部30は、循環流路10と連通し、所定長に亘って対向する2組の路壁(11、12、13、14)で囲まれ、矩形断面形状を有する発電側循環流路10aと、2組の路壁(11、12、13、14)のうち、一方の路壁(11、12)に対して略垂直方向に磁界を印加する磁界印加部(31、32、33、34、35)と、他方の路壁(13、14)それぞれに設けられた電極板(15、16)とを備える。矩形断面形状は、例えば、正方形、長方形などである。磁界印加部は、例えば、永久磁石(磁石)を用いることができる。
【0052】
次に、磁界印加部について説明する。磁界印加部は、一方の路壁(11、12)それぞれに対設された1対の磁石(31、32、33、34)を有する。すなわち、1対の磁石(31、32、33、34)の間に発電側循環流路10aを配置してある。なお、1対の磁石(31、32、33、34)は、一方の路壁(11、12)に対して略垂直方向(すなわち、他方の路壁(13、14)に対して略水平方向)に磁界を印加する。1対の磁石(31、32、33、34)の周囲には、両面が開放された箱状のヨーク35を配置してある。すなわち、1対の磁石(31、32、33、34)は、ヨーク35で囲まれている。
【0053】
また、発電側循環流路10aの流路方向(磁性流体の流れる方向)をx軸、一方の路壁(11、12)に対して略垂直方向(すなわち、磁界方向)をy軸、他方の路壁(13、14)、すなわち、電極板15、16に対して略垂直方向をz軸とする。
【0054】
図4に示すように、1対の磁石の一方(31、32)は、一方の路壁(11、12)に対して略垂直方向であって当該路壁に向かう方向に磁化し、当該路壁よりも幅広の第1磁石31と、第1磁石31を間にして対設され、当該路壁の表面と略平行であって第1磁石31の方向に磁化した1組の第2磁石32、32とを有する。
【0055】
また、1対の磁石の他方(33、34)は、一方の路壁(11、12)に対して略垂直方向であって当該路壁に向かう方向と反対方向に磁化し、当該路壁よりも幅広の第3磁石33と、第3磁石33を間にして対設され、当該路壁の表面と略平行であって第3磁石33の方向と反対方向に磁化した1組の第4磁石34とを有する。
【0056】
すなわち、第1磁石31は、発電側循環流路10aの路壁(11、12)の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路10aに向かう。第2磁石32は、第1磁石31を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第1磁石31に向かう。
【0057】
第3磁石33は、発電側循環流路10aの路壁(11、12)の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路10aの方向と反対方向に向かう。第4磁石34は、第3磁石33を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第3磁石33の方向と反対方向に向かう。
【0058】
1対の磁石(31、32、33、34)それぞれの長さをLとする。また、第1磁石31及び第3磁石33の幅をwaとし、第2磁石32及び第4磁石34の幅をwbとする。また、1対の磁石(31、32、33、34)の間隙36の寸法をdとし、1対の磁石(31、32、33、34)の厚みをtとする。すなわち、便宜上、x軸方向を磁石の長さ方向とし、y軸方向を磁石の厚み方向とし、z軸方向を磁石の幅方向としている。なお、発電側循環流路10aの断面形状を正方形とすると、路壁の幅は略dとなる。
【0059】
1対の磁石(31、32、33)としては、例えば、ネオジム磁石、サマリウムコバルト磁石、フェライト磁石等を利用することが可能であるが、最も磁力が大きく高磁場を発生することができるネオジム磁石が好ましい。
【0060】
図5は第1実施例の発電部30により印加される磁力線の一例を示す模式図である。
図5に示すように、第1磁石31のN極から間隙36側へ出た磁力線は、発電側循環流路10aの一方の路壁(11、12)を通って第3磁石33のS極へ向かう。第3磁石33を間にして1組の第4磁石34、34を対設してあるので、第3磁石33から出た磁力線は、各第4磁石34、34に向かい、ヨーク35を通過して第2磁石32、32へ向かう。第1磁石31を間にして1組の第2磁石32、32を対設してあるので、第2磁石32から出た磁力線は、第1磁石31へ向かう。
【0061】
すなわち、磁力線は、第1磁石31、発電側循環流路10aの路壁(11、12)、第3磁石33、第4磁石34、ヨーク35、第2磁石32、第1磁石31の順に閉ループを形成することになり、第1磁石31から第3磁石33へ向かう磁力線の漏れを少なくすることができ、発電側循環流路10aの一方の路壁(11、12)を通過する磁束の磁束密度を高めることができる。これにより、発電側循環流路10aの一方の路壁(11、12)に対して略垂直方向の磁界を強くすることができ、出力電力を増加させることができる。
【0062】
循環流路10の断面は円形状であり、発電側循環流路10aの断面は矩形状であるが、循環流路10と発電側循環流路10aとを接続する位置で断面形状を変更すればよい。また、発電側循環流路10aは、電極板(15、16)を対向配置する範囲(長さ)において、断面形状が矩形状であればよい。
【0063】
上述の第1実施例では、発電部30は、1本の発電側循環流路10aを備える構成であったが、発電側循環流路10aは1本に限定されるものではなく、複数本備える構成であってもよい。次に、2本の発電側循環流路10aを備える構成について説明する。
【0064】
図6は第1実施形態の発電部30の構成の第2実施例を示す外観斜視図であり、
図7は第1実施形態の発電部30の構成の第2実施例を示す正面図である。
図6、
図7に示すように、上側の発電側循環流路10aに対しては、一方の路壁(11、12)それぞれに対設された1対の磁石(31、32、33、34)を有する。すなわち、1対の磁石(31、32、33、34)の間に発電側循環流路10aを配置してある。
【0065】
1対の磁石の一方(31、32)は、一方の路壁(11、12)に対して略垂直方向であって当該路壁に向かう方向に磁化し、当該路壁よりも幅広の第1磁石31と、第1磁石31を間にして対設され、当該路壁の表面と略平行であって第1磁石31の方向に磁化した1組の第2磁石32、32とを有する。
【0066】
また、1対の磁石の他方(33、34)は、一方の路壁(11、12)に対して略垂直方向であって当該路壁に向かう方向と反対方向に磁化し、当該路壁よりも幅広の第3磁石33と、第3磁石33を間にして対設され、当該路壁の表面と略平行であって第3磁石33の方向と反対方向に磁化した1組の第4磁石34とを有する。
【0067】
すなわち、第1磁石31は、発電側循環流路10aの路壁(11、12)の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路10aに向かう。第2磁石32は、第1磁石31を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第1磁石31に向かう。
【0068】
第3磁石33は、発電側循環流路10aの路壁(11、12)の幅(z軸方向の寸法)よりも幅が広く、磁化の方向(S極からN極への方向)がy軸方向であって発電側循環流路10aの方向と反対方向に向かう。第4磁石34は、第3磁石33を間にして対設された1組の磁石であり、磁化の方向(S極からN極への方向)がz軸方向であって第3磁石33の方向と反対方向に向かう。
【0069】
また、下側の発電側循環流路10bに対しては、一方の路壁(11、12)それぞれに対設された1対の磁石(31、32、33、34)を有する。すなわち、1対の磁石(31、32、33、34)の間に発電側循環流路10bを配置してある。第1磁石31、第2磁石32、第3磁石33及び第4磁石34の配置は、発電側循環流路10aに対するものと同様であるので、説明は省略する。なお、発電側循環流路10aに対する第4磁石34と発電側循環流路10bに対する第2磁石32とは共用している。また、発電側循環流路10aに対する第2磁石32と発電側循環流路10bに対する第4磁石34とは共用している。
【0070】
上述の構成により、発電側循環流路10aには、図中右側から左側に向かう方向の磁界が印加され、発電側循環流路10bには、左側から右側に向かう方向の磁界が印加される。
【0071】
次に、発電部30で発生する電力について説明する。
図8は第1実施形態の発電部30が発生する電力の算出モデルを示す模式図である。
図8において、断面矩形状の管路は、発電側循環流路10aを示す。また、発電側循環流路10aの一方の路壁(11、12)に対して略垂直方向に磁束密度Bの磁界が印加されており、他方の路壁(13、14)それぞれには、他方の路壁(13、14)と略同寸法の電極板(15、16)を設けてある。発電側循環流路10a(電極板15、16)の長さをLとし、幅をwとし、間隙をdとする。また、発電側循環流路10aの流路方向(磁性流体の流れる方向)をx軸、間隙方向をy軸、幅方向をz軸とする。磁界の方向はy軸方向となっている。
【0072】
ファラデーの電磁誘導の法則より、電極板15、16間に発生する開放電圧V
0 は、式(4)で表すことができる。これにより、常温の環境下で、簡便な構成で発電することができる。
【0074】
ここで、uは、導電性を有する磁性流体の速度である。また、電極板15、16間を通過する磁性流体の電気抵抗(内部抵抗)rは、式(5)で表すことができる。ここで、σは磁性流体の導電率[S/m]である。
【0075】
また、電極板15、16間に外部抵抗Rを接続した場合に、最大の出力電力が得られるのは、内部抵抗rと外部抵抗Rとが等しい場合であり、この場合の出力電圧V
opt は、式(6)で表すことができる。
【0076】
出力電圧がV
optのときの最大出力電力P
max は、式(7)で表すことができる。また、発電側循環流路10aを流れる磁性流体の流量(体積流量)Qは、式(8)で表すことができ、式(4)、(5)、(7)、(8)から、最大出力電力P
max は、式(9)で表すことができる。
【0077】
すなわち、発電部30で発生する電力を最適(最大)にするには、例えば、発電側循環流路10aの断面積を小さくする、導電率の高い磁性流体を用いる、発電側循環流路10aの長さを長くする、発電側循環流路10aを流れる磁性流体の体積流量を大きくする、あるいは、磁束密度を大きくすることが考えられる。これにより、常温の環境下で、簡便な構成で発電することができる。
【0078】
本実施の形態では、磁性流体の導電率は、1S/m以上である。磁性流体の母液としては、例えば、水、炭化水素系オイル、フッ素系オイルなどを用いることができる。水ベースの磁性流体の導電率は、20℃で約1〜2程度であり、温度上昇により導電率が上がる傾向にあり、例えば、80℃では約2〜5程度になる。磁性流体の導電率を、1S/m以上とすることにより、水ベースの磁性流体を用いることができる。
【0079】
また、本実施の形態では、第1磁石31の幅wa(z軸方向の寸法)に対する第2磁石32の幅wb(z軸方向の寸法)の割合p(=wb/wa)は、0.5以上である。また、第3磁石33の幅wa(z軸方向の寸法)に対する第4磁石34の幅wb(z軸方向の寸法)の割合p(=wb/wa)は、0.5以上である。第1磁石31及び第3磁石33の幅waを大きくすると、第1磁石31から第3磁石33へ向かう磁力線のうち、発電側循環流路10a、10bの一方の路壁(11、12)を通過する磁力線が相対的に少なくなるため、発電側循環流路10a、10bの一方の路壁(11、12)を通過する磁束の磁束密度が小さくなる。また、第1磁石31及び第3磁石33の幅waを大きくすると、第1磁石31及び第3磁石33のz軸方向の端部が、発電側循環流路10a、10bの一方の路壁から離れ、第1磁石31及び第3磁石33のz軸方向の中央部に発電側循環流路10a、10bが位置することになるので、発電側循環流路10a、10b及びその付近における、第1磁石31のN極から第3磁石33のS極へ向かう磁力線(y軸方向の磁束密度)のz軸方向の分布が均一となる範囲が大きくなる。
【0080】
また、逆に、第1磁石31及び第3磁石33の幅waを小さくすると、第1磁石31から第3磁石33へ向かう磁力線のうち、発電側循環流路10a、10bの一方の路壁(11、12)を通過する磁力線が相対的に多くなるため、発電側循環流路10a、10bの一方の路壁(11、12)を通過する磁束の磁束密度が大きくなる。また、第1磁石31及び第3磁石33の幅waを小さくすると、第1磁石31及び第3磁石33のz軸方向の端部が、発電側循環流路10a、10bの一方の路壁(11、12)に近づき、第1磁石31及び第3磁石33のz軸方向の端部付近に発電側循環流路10a、10bが位置することになるので、発電側循環流路10a、10b及びその付近における、第1磁石31のN極から第3磁石33のS極へ向かう磁力線(y軸方向の磁束密度)のz軸方向の分布が均一となる範囲が小さくなる。
【0081】
すなわち、割合p(=wb/wa)が0.5未満の場合、相対的に幅waを大きくすることになり、磁束密度が小さくなり、出力電力が低下する。割合p(=wb/wa)を0.5以上にすることにより、発電側循環流路10a、10bの一方の路壁(11、12)を通過する磁束の磁束密度のy軸方向の成分(y軸方向の磁束密度)のz軸方向の分布の均一性を高めるとともに磁束密度を大きくすることができ、出力電力を増加させることができる。
【0082】
また、本実施の形態では、1対の磁石(31、32、33、34)同士の離隔寸法d(y方向の間隙寸法)に対する磁石の厚み寸法t(y軸方向の寸法)の割合q(=t/d)は、3以上である。割合q(=t/d)を、3未満にすると、相対的に離隔寸法dが大きくなり、磁束密度が小さくなり、出力電力が低下する。割合q(=t/d)を、3以上にすることにより、磁束密度を大きくして出力電力を増加させることができる。
【0083】
また、本実施の形態では、1対の磁石(31、32、33、34)は、1.33T以上の残留磁束密度を有するネオジム磁石である。残留磁束密度が1.33T以上のネオジム磁石を用いることにより、磁束密度を大きくすることができる。
【0084】
また、本実施の形態では、磁界印加部が印加する磁界の磁束密度は1.0T以上である。出力する電力は、磁束密度の2乗に比例するので、磁束密度を1.0T以上にすることにより、所要の電力を得ることができる。
【0085】
次に、第1実施例の数値例を説明する。
図4の例において、例えば、第1磁石31、第2磁石32、第3磁石33及び第4磁石34の長さ(すなわち、電極板15、16の長さ)Lを100mmとし、第1磁石31の幅wa及び両側に配置された第3磁石33、33の幅wbの合計(wa+2×wb)を52.5mmとし、第2磁石32の幅wa及び両側に配置された第4磁石34、34の幅wbの合計(wa+2×wb)を52.5mmとし、第1磁石31、第2磁石32、第3磁石33及び第4磁石34の厚みtを30mmとし、間隙dを5mm、発電側循環流路10aの各路壁の幅を5mmとし、発電側循環流路10aの中心位置のz軸座標(下側のヨーク35の内面からの高さ)を26.25mmとする。かかる数値例に基づく、発電部30により印加する磁場の解析結果を以下に説明する。また、第1磁石31、第2磁石32、第3磁石33及び第4磁石34は、高残留磁束密度Brが1.38Tのネオジム磁石である。なお、数値例は上述の例に限定されるものではない。
【0086】
図9は第1実施形態の第1実施例の発電部30による割合pが0.5の場合の磁場解析結果の一例を示す説明図である。
図9に示す磁束密度は、y方向の磁束密度成分Byを表す。割合pが0.5であるので、幅waは26.25mm、幅wbは13.125mmとなる。
図9の上段の図は、z=26.25mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.3T程度でx方向の磁束密度Byは均一となる。
【0087】
図9の中段の図は、z=26.25mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0088】
図9の下段の図は、間隙dの中央、すなわち、発電側循環流路10aの中央におけるz方向の磁束密度Byの分布を示す。z=15〜35mmの範囲で、磁束密度Byの最大値が略均一となっている。
【0089】
図10は第1実施形態の第1実施例の発電部30による割合pが1.0の場合の磁場解析結果の一例を示す説明図である。
図10に示す磁束密度は、y方向の磁束密度成分Byを表す。割合pが1.0であるので、幅wa及び幅wbは17.7mmとなる。
図10の上段の図は、z=26.25mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.5T程度でx方向の磁束密度Byは均一となる。
【0090】
図10の中段の図は、z=26.25mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0091】
図10の下段の図は、間隙dの中央、すなわち、発電側循環流路10aの中央におけるz方向の磁束密度Byの分布を示す。z=20〜33mmの範囲で、磁束密度Byの最大値が略均一となっている。
【0092】
図11は第1実施形態の第1実施例の発電部30による割合pが1.5の場合の磁場解析結果の一例を示す説明図である。
図11に示す磁束密度は、y方向の磁束密度成分Byを表す。割合pが1.5であるので、幅waは13.125mm、幅wbは約19.69mmとなる。
図11の上段の図は、z=26.25mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.65T程度でx方向の磁束密度Byは均一となる。
【0093】
図11の中段の図は、z=26.25mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0094】
図11の下段の図は、間隙dの中央、すなわち、発電側循環流路10aの中央におけるz方向の磁束密度Byの分布を示す。z=23〜30mmの範囲で、磁束密度Byの最大値が略均一となっている。
【0095】
図12は第1実施形態の第1実施例の発電部30による割合pが2.0の場合の磁場解析結果の一例を示す説明図である。
図12に示す磁束密度は、y方向の磁束密度成分Byを表す。割合pが2.0であるので、幅waは10.5mm、幅wbは21mmとなる。
図12の上段の図は、z=26.25mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.75T程度でx方向の磁束密度Byは均一となる。
【0096】
図12の中段の図は、z=26.25mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0097】
図12の下段の図は、間隙dの中央、すなわち、発電側循環流路10aの中央におけるz方向の磁束密度Byの分布を示す。z=24〜29mmの範囲で、磁束密度Byの最大値が略均一となっている。
【0098】
図13は第1実施形態の第1実施例の発電部30による割合pが3.0の場合の磁場解析結果の一例を示す説明図である。
図13に示す磁束密度は、y方向の磁束密度成分Byを表す。割合pが3.0であるので、幅waは7.5mm、幅wbは22.5mmとなる。
図13の上段の図は、z=26.25mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.8T程度でx方向の磁束密度Byは均一となる。
【0099】
図13の中段の図は、z=26.25mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0100】
図13の下段の図は、間隙dの中央、すなわち、発電側循環流路10aの中央におけるz方向の磁束密度Byの分布を示す。z=25付近で磁束密度Byが最大となっている。
【0101】
図9乃至
図13の例から分かるように、割合p(=wb/wa)が0.5以上である場合、磁束密度Byは、x軸方向、y軸方向及びz軸方向の依存性がほとんどなく(すなわち、磁束密度のy方向成分Byのx軸方向、y軸方向及びz軸方向の分布が均一であり)、磁束密度Byが所要の1.0T以上確保することができる。
【0102】
また、割合p(=wb/wa)を0.5より大きくした場合、磁束密度Byをさらに大きくすることができる。
【0103】
一方で、割合p(=wb/wa)が2.0程度になると、磁束密度Byのz軸方向の分布が均一である範囲が、z=24〜29mmとなる。したがって、割合p(=wb/wa)を2.0以下にすることにより、幅寸法が5mm程度以上の発電側循環流路10aを配置しても、流路内のz方向の磁束密度Byを均一にすることができる。
【0104】
すなわち、割合pは0.5以上であればよいが、さらに最も好ましくは、割合pを2.0程度にするのがよい。
【0105】
次に、第2実施例の数値例を説明する。
図7の例において、例えば、第1磁石31、第2磁石32、第3磁石33及び第4磁石34の長さ(すなわち、電極板15、16の長さ)Lを100mmとし、第1磁石31及び第2磁石32の幅wa及び第2磁石32及び第4磁石34の幅wbをそれぞれ10mmとし、第1磁石31、第2磁石32、第3磁石33及び第4磁石34の厚みtを30mmとし、間隙dを5mm、発電側循環流路10a、10bの各路壁の幅を5mmとし、下側の発電側循環流路10bの中心位置のz軸座標(下側のヨーク35の内面からの高さ)W1を15mmとし、上側の発電側循環流路10aの中心位置のz軸座標(下側のヨーク35の内面からの高さ)W2を35mmとする。かかる数値例に基づく、発電部30により印加する磁場の解析結果を以下に説明する。また、第1磁石31、第2磁石32、第3磁石33及び第4磁石34は、高残留磁束密度Brが1.38Tのネオジム磁石である。なお、数値例は上述の例に限定されるものではない。
【0106】
図14は第1実施形態の第2実施例の発電部30による割合pが1.0の場合の磁場解析結果の一例を示す説明図である。
図14に示す磁束密度は、y方向の磁束密度成分Byを表す。
図14の上段左側の図は、z=15mmにおけるx方向の磁束密度Byの分布を示す。また、
図14の上段右側の図は、z=35mmにおけるx方向の磁束密度Byの分布を示す。x=20〜80mmの範囲において、磁束密度Byは1.35T程度又は−1.35T程度であり、x方向の磁束密度Byは均一となる。
【0107】
図14の下段左側の図は、z=15mm、及びz=35mmにおけるy方向の磁束密度Byの分布を示す。y方向の磁束密度Byは一定値となり、発電側循環流路10aの流路内のy方向の磁束密度Byを均一にすることができる。
【0108】
図14の下段右側の図は、間隙dの中央、すなわち、発電側循環流路10a、10bの中央におけるz方向の磁束密度Byの分布を示す。z=12〜17mmの範囲、及びz=34〜39mmの範囲で、磁束密度Byの最大値が略均一となっている。
【0109】
図15は第1実施形態の発電部30による磁石の厚みを変化させた場合の磁場解析結果の一例を示す説明図である。
図15に示す磁束密度は、y方向の磁束密度成分Byを表す。
図15の上段の図は、第1磁石31、第2磁石32、第3磁石33及び第4磁石34の厚みtを15mm、30mm、45mm、90mmと変化させた場合のy方向の磁束密度成分Byのx方向の分布を示し、
図15の下段の図は、厚みtを15mm、30mm、45mm、90mmと変化させた場合の磁束密度Byの最大値をプロットしたものである。間隙dが5mmであるので、厚みtを15mm、30mm、45mm、90mmは、それぞれ割合q(=t/d)が、3、6、9、18に対応する。磁石の厚みt、すなわち割合qが大きくなると磁束密度Byは増加する。磁束密度Byを略1.0T以上とするためには、割合qを3以上にすればよいことが分かる。
【0110】
なお、発電側循環流路10a、10bの路壁の幅が予め定められると、1対の磁石同士の間隔dも定まるが、磁石の厚みtを厚くすればするほど、磁束密度Byを増加させることができる。ただ、厚みtを厚くすると、磁界印加部の寸法が大きくなり装置全体が大きくなってしまうが、装置の寸法が許容できる範囲で割合qを大きくすればよい。例えば、割合qを3から6にすれば、磁束密度Byを約50%増加させることができる。
【0111】
上述の第1実施例又は第2実施例と同寸法、同材質の第1磁石31及び第3磁石33のみを用いた構成、すなわち、発電側循環流路10aを間にして、一方の磁石のN極と他方の磁石のS極を対向配置した場合には、発電側循環流路10a、10bに印加することができる磁束の磁束密度は、0.8T以下であった。上述の第1実施例又は第2実施例の構成を採用することにより、発電側循環流路10aを間にして、一方の磁石のN極と他方の磁石のS極を対向配置した場合に比較して、発電側循環流路10a、10bに印加することができる磁束の磁束密度を25%以上増加させることができる。
【0112】
(第2実施形態)
図16は第2実施形態の磁性流体発電装置100の構成の一例を示す模式図である。
図16に示すように、第2実施形態では、駆動部20が介装された循環流路10を複数備える。すなわち、駆動部20には複数の循環流路10を設けてある。
図16の例では、駆動部20には4本の循環流路10を設けている。
【0113】
合流部50は、循環流路10の数よりも発電側循環流路10a、10bの数が少なくなるように、循環流路10を合流する。例えば、
図16に示すように、駆動部20には4本の循環流路10を設け、発電部30には2本の発電側循環流路10a、10bを設けた場合、合流部50は、発電側循環流路の上流側で4本の流路を2本の流路に合流させる。なお、発電側循環流路の下流側では2本の流路が4本の流路に分岐する分岐部51を配置してある。
【0114】
すなわち、駆動部20が介装された循環流路10の総断面積よりも発電側循環流路10a、10bの総断面積が小さい。
【0115】
駆動部20で駆動される磁性流体の流速をuとし、循環流路10及び発電側循環流路10a、10bの流路断面積を同じとすると、流量(体積流量)Qは一定であるので、発電側循環流路10a、10b内での磁性流体の流速は約2倍となる。これにより、電極板15、16間で生じる電圧を2倍にすることができ、電力は電圧の2乗に比例するので、電極板15、16から出力する電力は4倍にすることができ、出力電力を大きくすることができる。
【0116】
また、駆動部20が介装された循環流路10の数と発電側循環流路10a、10bの数とを同数にしておき、各循環流路10の断面積よりも各発電側循環流路10a、10bの断面積が小さくなるようにすることもできる。さらに、駆動部20が介装された循環流路10の数よりも発電側循環流路10a、10bの数を少なくし、かつ各循環流路10の断面積よりも各発電側循環流路10a、10bの断面積を小さくするように構成することもできる。
【0117】
図17は発電部30が発生する電力の数値例を示す説明図である。
図17の上段の図は、第1実施形態の第1実施例に相当する場合であり、循環流路10及び発電側循環流路10aが1本の場合であり、流路長を0.8mとした場合の例を示す。磁性流体が水ベース磁性流体の場合、導電率は5.25[S/m]であり、発電量は、0.075[mW]となる。また、磁性流体がリン酸系電解質磁性流体の場合、導電率は50[S/m]であり、発電量は、0.71[mW]となる。
【0118】
図17の下段の図は、第2実施形態に相当する場合であり、駆動部20側の循環流路10が4本であり、発電側循環流路10a、10bが2本の場合であり、流路長を0.8mとした場合の例を示す。磁性流体が水ベース磁性流体の場合、導電率は5.25[S/m]であり、発電量は、0.60[mW]となる。また、磁性流体がリン酸系電解質磁性流体の場合、導電率は50[S/m]であり、発電量は、5.68[mW]となる。
【0119】
上述のように、第1実施形態及び第2実施形態によれば、永久磁石及び熱源のみで磁性流体の循環駆動が可能であり、当該循環駆動された磁性流体により発電することができるので、常温領域の廃熱を利用した、常温環境、安全な環境下において、小型化が可能な発電装置又は電源装置を実現することができる。
【0120】
上述の実施形態では、循環流路は、略矩形状に配置された構成をなすが、かかる構成に限定されるものではなく、例えば、循環流路を円形状に配置してもよく、あるいは発電装置が組み込まれる装置内のスペース等に応じて他の形状に配置することもできる。
【0121】
なお、前述の実施形態の少なくとも一部を任意に組み合わせることができる。