(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
図1には、本発明の実施形態に係る光変調装置が示されている。光変調装置は、例えば、光通信システムの光送信機に用いられる。光変調装置は、光源10から出力された光に対し時間経過と共に変化する2桁のディジタル信号によってQPSK変調を施し、QPSK変調が施された光を光ファイバ16に出力する。
【0015】
角周波数ω、時間tおよび初期位相角φによって光の位相角を(ωt+φ)と表した場合、QPSK変調方式では、2桁の入力ディジタル値に光の初期位相角φが対応付けられる。例えば、ディジタル値、(00)、(01)、(10)、および(11)に対し、それぞれ、初期位相角φとしてπ/4,3π/4,5π/4、および7π/4が対応付けられる。
【0016】
光変調装置は、光源10、同相ドライバ12I、直交ドライバ12Q、変調部14、信号検出器18、バイアス設定部20、振れ幅設定部40、およびパワーモニタ30を備える。光源10は、変調部14に光を出力する。同相ドライバ12Iおよび直交ドライバ12Qのそれぞれには、1桁のディジタル信号が入力される。同相ドライバ12Iは、ディジタル値「1」および「0」に対し、それぞれ、ハイ電圧Viおよびロー電圧−Viを対応付けた同相ディジタル信号を変調部14に出力する。ハイ電圧Viおよびロー電圧−Viは、振れ幅設定部40から出力される同相振れ幅設定値に応じて設定される。直交ドライバ12Qは、ディジタル値「1」および「0」に対し、それぞれ、ハイ電圧Vqおよびロー電圧−Vqを対応付けた直交ディジタル信号を変調部14に出力する。ハイ電圧Vqおよびロー電圧−Vqは、振れ幅設定部40から出力される直交振れ幅設定値に応じて設定される。変調部14は、光源10から出力された光に対し、同相ディジタル信号および直交ディジタル信号によってQPSK変調を施す。
【0017】
変調部14は、第1マッハツェンダ変調器22、第2マッハツェンダ変調器24(以下、第1MZ変調器22、第2MZ変調器24という。)、π/2遅延器26、および合成器28を備える。光源10から入力された光は、第1MZ変調器22および第2MZ変調器24に分配される。
【0018】
第1MZ変調器22には、バイアス設定部20から出力されたIチャネルバイアス電圧が与えられる。Iチャネルバイアス電圧が適切な電圧に設定されている場合、第1MZ変調器22は、同相ディジタル信号がハイ電圧Viであるときとロー電圧−Viであるときとで、自らを通過する光の位相回転量をπだけ異なるものとする。すなわち、第1MZ変調器22は、同相ディジタル信号に応じて位相を回転させた光を合成器28に出力する。
【0019】
第2MZ変調器24には、バイアス設定部20から出力されたQチャネルバイアス電圧が与えられる。Qチャネルバイアス電圧が適切な電圧に設定されている場合、第2MZ変調器24は、直交ディジタル信号がハイ電圧Vqであるときとロー電圧−Vqであるときとで、自らを通過する光の位相回転量をπだけ異なるものとする。すなわち、第2MZ変調器24は、直交ディジタル信号に応じて位相を回転させた光をπ/2遅延器26に出力する。π/2遅延器26は、第2MZ変調器24から出力された光の位相をπ/2だけ遅らせて合成器28に出力する。合成器28は、第1MZ変調器22およびπ/2遅延器26から出力された光を合成し、光ファイバ16に出力する。
【0020】
このように、光変調装置は、同相ディジタル信号(同相成分信号)によって光を変調する、同相成分変調部としての第1MZ変調器22と、直交ディジタル信号(直交成分信号)によって光を変調する、直交成分変調部としての第2MZ変調器24とを備える。さらに、光変調装置は、第1MZ変調器22および第2MZ変調器24のそれぞれから出力された光を、位相関係を調整した上で合成する合成部を備える。この合成部は、π/2遅延器26および合成器28によって構成されている。
【0021】
光変調装置によれば、光源10から出力された光に対し、同相ディジタル信号および直交ディジタル信号によってQPSK変調が施され、その光が光ファイバ16に送信される。
【0022】
なお、第2MZ変調器24とπ/2遅延器26の順序を入れ換えてもよい。すなわち、光源10から発せられた光がπ/2遅延器26に入力され、π/2遅延器26によってπ/2だけ位相が遅らされた光が第2MZ変調器24に入力され、第2MZ変調器24から合成器28に位相変調後の光が出力されてもよい。
【0023】
バイアス設定部20が実行する処理について説明する。バイアス設定部20は、第1MZ変調器22および第2MZ変調器24のそれぞれに対し個別にバイアス電圧を設定する。第1MZ変調器22に対してIチャネルバイアス電圧を設定する場合には、調整下にあるIチャネルバイアス電圧BIにパイロット信号PIを加算した電圧を、調整用Iチャネルバイアス電圧AI(=BI+PI)として第1MZ変調器22に出力する。パイロット信号PIは、例えば、光の周波数より低い基本周波数を有する矩形波、正弦波等の波形を有する周期信号である。
【0024】
第2MZ変調器24に対してQチャネルバイアス電圧を設定する場合には、調整下にあるQチャネルバイアス電圧BQにパイロット信号PQを加算した電圧を、調整用Qチャネルバイアス電圧AQ(=BQ+PQ)として第2MZ変調器24に出力する。パイロット信号PQは、パイロット信号PIと同様、光の周波数より低い基本周波数を有する矩形波、正弦波等の波形を有する周期信号である。
【0025】
各バイアス電圧の設定は、時間経過と共に値がランダムに変化するディジタル信号が、同相ドライバ12Iおよび直交ドライバ12Qの各入力端子に入力された状態で行われる。
【0026】
信号検出器18は、パイロット信号を検出する検出部として機能する。すなわち、信号検出器18は、変調部14の出力光に含まれるパイロット信号の交流成分を検出し、その検出値を示すモニタ信号をバイアス設定部20に出力する。後述のように、バイアス設定部20は、モニタ信号を用いてIチャネルバイアス電圧およびQチャネルバイアス電圧を設定する。
【0027】
バイアス電圧を設定する処理の原理について説明する。
図2には、マッハツェンダ変調器の出力特性が示されている。出力特性は、マッハツェンダ変調器への印加電圧に対する出力光のパワー(単位時間当たりに放出されるエネルギー)を表す。出力光パワーは印加電圧の変化に対して周期的に変化する。
図2に示される例では、出力特性の電圧周期は2VPである。ここでは、第1MZ変調器のバイアス電圧の設定について説明するが、第2MZ変調器のバイアス電圧の設定においても同様の処理が実行される。
【0028】
図2における2つの極大点GLおよび極大点GHの間にある極小点SにIチャネルバイアス電圧BIを設定することで、ディジタル信号の値「1」および「0」に対し、出力光のレベルが均等となる。すなわち、同相ディジタル信号のハイ電圧Vi、同相ディジタル信号のロー電圧−Viに対し、極小点Sよりも電圧Viだけプラス側の点Aがディジタル値「1」に対応し、極小点Sよりも電圧Viだけマイナス側の点Bがディジタル値「0」に対応する。極小点Sに対して出力特性が左右対称であるため、各ディジタル値に対し出力光パワーが均等となる。そこで、極小点Sに対応する印加電圧がIチャネルバイアス電圧BIの目標値とされる。
【0029】
図3(a)には、Iチャネルバイアス電圧BIが極小点Sからずれた場合における点Aおよび点Bが示されている。ただし、この図には、同相ディジタル信号の振れ幅H=2Viが、出力特性の周期2PVと等しい場合が示されている。周期2PVに対する振れ幅Hの比率H/(2PV)は変調率と称され、この場合の変調率は100%である。なお、
図2に示されている出力特性上の点Aおよび点Bは、変調率が80%の場合について各ディジタル値に対応する点を示したものである。
【0030】
図3(b)には、変調率が100%である場合における、Iチャネルバイアス電圧BIに対するモニタ信号のレベルが示されている。このモニタ信号レベルは、モニタ信号の絶対値、自乗値等の時間平均値に極性を付加したものである。モニタ信号レベルは、パイロット信号PIとモニタ信号とが同一極性の場合に正極性となり、パイロット信号PIとモニタ信号とが逆極性の場合に負極性となる。バイアス設定処理において第1MZ変調器に印加される調整用Iチャネルバイアス電圧AIは、Iチャネルバイアス電圧BIにパイロット信号PIを加えた電圧である。そのため、
図3(a)の矢印で示されているように、点Aおよび点Bはパイロット信号PIに応じて出力特性に沿って振動する。したがって、Iチャネルバイアス電圧BIに対して検出されるモニタ信号は、点Aの振動に応じた出力光パワーの変動値と、点Bの振動に応じた出力光パワーの変動値とを併せた値となる。
図3(b)に示されているモニタ信号レベルの特性(以下、モニタ特性という。)は、Iチャネルバイアス電圧BIを変化させた場合の各値に対し、モニタ信号レベルを対応付けたものである。
【0031】
図3(b)に示されているように、モニタ信号レベルはIチャネルバイアス電圧BIの変化に対して周期2VPで変化する。モニタ信号レベルは、極小点Sに対応する点Qで0となり、モニタ特性は点Qの左右で極性が異なる奇対称な特性となる。したがって、モニタ信号が0となるように、あるいは、0に近づくようにIチャネルバイアス電圧BIを設定することで、Iチャネルバイアス電圧が適切に設定され得る。
【0032】
図1に戻り、バイアス設定部20は、Iチャネルバイアス電圧BIを設定するときは、Qチャネルバイアス電圧BQをある値に固定とし、パイロット信号PQを0とする。その状態で、調整下にあるIチャネルバイアス電圧BIにパイロット信号PIを加算した調整用Iチャネルバイアス電圧AI(=BI+PI)を第1MZ変調器22に出力する。
【0033】
バイアス設定部20はモニタ信号を参照しながら、調整用Iチャネルバイアス電圧AIの成分であるIチャネルバイアス電圧BIを所定の調整刻み幅で変化させる。そして、モニタ信号が目標条件を満たすときのIチャネルバイアス電圧BIを適切バイアス電圧として求める。モニタ信号に対する目標条件は、モニタ信号が0または0を中心とした誤差範囲内の値となるという条件である。すなわち、バイアス設定部20は、モニタ信号を参照しながら、探索開始電圧から調整刻み幅でIチャネルバイアス電圧BIを変化させて、モニタ信号が0となるIチャネルバイアス電圧BIを適切バイアス電圧として求める。あるいは、バイアス設定部20は、モニタ信号の0からのずれが誤差範囲内の値となるIチャネルバイアス電圧BIを適切バイアス電圧として求める。適切バイアス電圧を求める計算方法には、ニュートン法等の非線形方程式の解法が用いられてもよい。
【0034】
バイアス設定部20は、Iチャネルバイアス電圧BIを適切バイアス電圧に設定し、パイロット信号PIを0にし、Iチャネルバイアス電圧BIについてのバイアス設定処理を終了する。
【0035】
バイアス設定部20は、Qチャネルバイアス電圧BQを設定するときは、Iチャネルバイアス電圧BIをある値に固定とし、パイロット信号PIを0とする。その状態で、調整下にあるQチャネルバイアス電圧BQにパイロット信号PQを加算した調整用Qチャネルバイアス電圧AQ(=BQ+PQ)を第2MZ変調器24に出力する。バイアス設定部20は、Iチャネルバイアス電圧BIに対する処理と同様の処理によって、Qチャネルバイアス電圧BQについても適切バイアス電圧を求め、Qチャネルバイアス電圧BQを適切バイアス電圧に設定する。
【0036】
このようなバイアス設定処理によれば、出力特性の極小点Sにバイアス電圧が設定される。これよって、同相ディジタル信号および直交ディジタル信号が取り得る各値に対し、出力光パワーおよび位相回転量が均等となる。
【0037】
次に、振れ幅設定部40の処理について説明する。一般に、マッハツェンダ変調器の出力特性にはばらつきがある。そのため、第1MZ変調器22および第2MZ変調器24のバイアス電圧を各出力特性の極小点に設定したとしても、出力光の初期位相角φが所定値とならず、変調精度が低下することがある。また、同相ドライバ12Iおよび直交ドライバ12Qの出力レベルの経時変化等によって変調精度が低下することがある。そこで、振れ幅設定部40は、次に説明する構成および処理によって、同相ドライバ12Iおよび直交ドライバ12Qを制御し、同相ディジタル信号の振れ幅2Vi、および、直交ディジタル信号の振れ幅2Vqを適切な値に設定する。
【0038】
振れ幅設定部40が実行する処理について説明する。この処理は、各バイアス電圧が適切な値に設定された後に行われる。振れ幅設定部40は、同相ドライバ12Iおよび直交ドライバ12Qに、それぞれ、同相振れ幅設定値および直交振れ幅設定値を出力する。同相ドライバ12Iは、同相振れ幅設定値が大きい程、振れ幅2Viが大きい同相ディジタル値を出力する。直交ドライバ12Qは、直交振れ幅設定値が大きい程、振れ幅2Vqが大きい直交ディジタル値を出力する。
【0039】
各振れ幅設定値の設定は、時間経過と共に値がランダムに変化するディジタル信号が、同相ドライバ12Iおよび直交ドライバ12Qの各入力端子に入力された状態で行われる。
【0040】
パワーモニタ30は、変調部14からの出力光のレベルを検出する出力光レベル検出部として機能する。すなわち、パワーモニタ30は、出力光のレベルとしてパワーを検出し、その検出値を振れ幅設定部40に出力する。信号検出器18は、テスト信号を検出するテスト信号検出部として機能する。すなわち、信号検出器18は、後述するテスト信号の交流成分を変調部14の出力光から検出し、その検出値を示すモニタ信号を振れ幅設定部40に出力する。
【0041】
振れ幅設定部40は、次に説明す
る基準テスト状
態においてパワーモニタ検出値を読み
込む。また、振れ幅設定部40は、同相テスト状態
および直交テスト状
態のそれぞれについてのモニタ信号レベルの絶対値を、それぞれ、同相モニタ値
および直交モニタ
値として求める。
【0042】
同相テスト状態は、調整下の同相振れ幅設定値WIにテスト信号Tを加算した値を、調整用同相振れ幅設定値KI(=WI+T)として同相ドライバ12Iに出力すると共に、調整下の直交振れ幅設定値WQを直交ドライバ12Qに出力する状態である。テスト信号Tは、例えば、上述のパイロット信号と同様、光の周波数より低い基本周波数を有する矩形波、正弦波等の波形を有する周期信号である。
【0043】
直交テスト状態は、調整下の直交振れ幅設定値WQにテスト信号Tを加算した値を、調整用直交振れ幅設定値KQ(=WQ+T)として直交ドライバ12Qに出力すると共に、調整下の同相振れ幅設定値WIを同相ドライバ12Iに出力する状態である。
【0044】
基準テスト状態は、調整下の同相振れ幅設定値WIを同相ドライバ12Iに出力し、かつ、調整下の直交振れ幅設定値WQを直交ドライバ12Qに出力する状態である。
【0045】
図1には、これらの状態を実現する振れ幅設定部40の構成が示されている。振れ幅設定部40は、同相振れ幅生成部32I、直交振れ幅生成部32Q、加算器34I、加算器34Q、制御部36、テスト信号生成器38、および選択スイッチ42を備える。同相振れ幅生成部32Iは、同相振れ幅設定値WIを加算器34Iに出力する。同相振れ幅生成部32Iは、制御部36の制御に従って、同相振れ幅設定値WIの大きさを設定する。直交振れ幅生成部32Qは、直交振れ幅設定値WQを加算器34Qに出力する。直交振れ幅生成部32Qは、制御部36の制御に従って、直交振れ幅設定値WQの大きさを設定する。
【0046】
選択スイッチ42は、入力端子O、第1選択端子S1、第2選択端子S2、および第3選択端子S3を有する。入力端子Oは、テスト信号生成器38に接続されている。第1選択端子S1は、加算器34Iに接続され、第2選択端子S2は加算器34Qに接続されている。第3選択端子S3は、いずれの構成要素にも接続されておらず、開放端となっている。選択スイッチ42は、入力端子Oが第1選択端子S1に接続された第1選択状態、入力端子Oが第2選択端子S2に接続された第2選択状態、または入力端子Oが第3選択端子S3に接続された第3選択状態のいずれかの状態をとる。
【0047】
テスト信号生成器38は、選択スイッチ42の入力端子Oにテスト信号を出力する。選択スイッチ42が、第1選択状態にある場合、入力端子Oから選択端子S1を介してテスト信号が加算器34Iに入力される。加算器34Iは、同相振れ幅設定値WIにテスト信号を加算した調整用同相振れ幅設定値KIを生成し、同相ドライバ12Iに出力する。同相ドライバ12Iは、調整用同相振れ幅設定値KIに応じた振れ幅を有する同相ディジタル信号を出力する。この振れ幅は、テスト信号に応じて変動するため、同相ディジタル信号はテスト信号成分を含むこととなる。したがって、第1選択状態では、テスト信号生成器38、選択スイッチ42、同相振れ幅生成部32I、加算器34I、および同相ドライバ12Iは、ディジタル信号にテスト信号を含ませるテスト信号生成部を構成する。
【0048】
選択スイッチ42が第2選択状態にある場合、入力端子Oから選択端子S2を介してテスト信号が加算器34Qに入力される。加算器34Qは、直交振れ幅設定値WQにテスト信号を加算した調整用直交振れ幅設定値KQを生成し、直交ドライバ12Qに出力する。直交ドライバ12Qは、調整用直交振れ幅設定値KQに応じた振れ幅を有する直交ディジタル信号を出力する。この振れ幅は、テスト信号に応じて変動するため、直交ディジタル信号は、テスト信号の成分を含むこととなる。したがって、第2選択状態では、テスト信号生成器38、選択スイッチ42、直交振れ幅生成部32Q、加算器34Q、および直交ドライバ12Qは、ディジタル信号にテスト信号を含ませるテスト信号生成部を構成する。
【0049】
選択スイッチ42が第3選択状態にある場合、テスト信号は、加算器34Iおよび加算器34Qのいずれにも入力されない。
【0050】
このように、振れ幅設定部40は、選択スイッチ42を第1選択状態とすることで、自らを同相テスト状態に設定する。また、振れ幅設定部40は、選択スイッチ42を第2選択状態とすることで、自らを直交テスト状態に設定し、選択スイッチ42を第3選択状態とすることで、自らを基準テスト状態に設定する。
【0051】
図4には、
基準テスト状態におけるパワーモニタによる検出値
(以下、基準テスト状態におけるパワーモニタによる検出値を、単にパワーモニタ検出値という。)、同相モニタ値
および直交モニタ
値を用いて、制御部36が、同相振れ幅設定値および直交振れ幅設定値を設定する処理のフローチャートが示されている。
【0052】
一般に、
図2および
図3に示されるような特性を有するマッハツェンダ変調器では、変調率が50%より大きく100%以下である場合、パワーモニタ検出値が大きい程、モニタ信号レベル絶対値(同相モニタ値または直交モニタ値)が小さい値となり、パワーモニタ検出値が小さい程、モニタ信号レベル絶対値が大きい値となる。これは、モニタ信号レベル絶対値が出力特性の傾きに依存するためである。すなわち、バイアス電圧が極小点Sに設定されている場合、変調率が50%より大きく100%以下である場合の出力範囲では、出力光パワーが大きい程、傾きが小さくなるためである。
【0053】
一方、変調率が50%未満である場合、パワーモニタ検出値が大きい程、モニタ信号レベル絶対値が大きい値となり、パワーモニタ検出値が小さい程、モニタ信号レベル絶対値が小さい値となる。これは、モニタ信号レベル絶対値が出力特性の傾きに依存するところ、バイアス電圧が極小点Sに設定されている場合、変調率が50%未満である場合の出力範囲では、出力光パワーが大きい程、傾きが大きくなるためである。
【0054】
なお、本実施形態では、パワーモニタ検出値とモニタ信号レベル絶対値との大小関係が逆転する変調率は50%であるが、これは、出力特性の変曲点(傾きの変化率の正負が反転する点)が極小点と極大点との中点に位置するためである。したがって、パワーモニタ検出値とモニタ信号レベル絶対値との大小関係が逆転する変調率は、変曲点の位置に応じて定まる。
【0055】
図4のフローチャートには、変調率が50%より大きく100%以下である場合の処理が示されている。
図1を適宜参照しながらこのフローチャートに従う処理について説明する。制御部36は、パワーモニタ検出値が規定範囲内にあるか否かを判定する(S101)。制御部36は、パワーモニタ検出値が規定範囲内にあるときは、同相モニタ値と直交モニタ値との差の絶対値(以下、同相モニタ値と直交モニタ値との差異という。)が規定範囲内にあるか否かを判定する(S102)。そして、同相モニタ値と直交モニタ値との差異が規定範囲内である場合には、制御部36は処理を終了する。一方、制御部36は、同相モニタ値と直交モニタ値との間の差異が規定範囲外である場合には、同相モニタ値と直交モニタ値の大小関係に応じた第1調整処理を実行する(S103)。
【0056】
第1調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを増加させる。そして、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを減少させる。また、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを減少させる。そして、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを増加させる。
【0057】
ステップS101において、パワーモニタ検出値が規定範囲外であると判断したときは、制御部36は、パワーモニタ検出値が規定範囲の下限値未満であるか否かを判定する(S104)。そして、パワーモニタ検出値が規定範囲の下限値未満であると判定したときは、同相モニタ値と直交モニタ値の大小関係に応じた第2調整処理を実行する(S105)。
【0058】
第2調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅設定値WIの値を維持すると共に、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを減少させる。また、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを減少させると共に、直交振れ幅設定値WQの値を維持する。さらに、同相モニタ値と直交モニタ値との差異が規定範囲内にあるときは、制御部36は、同相振れ幅生成部32Iおよび直交振れ幅生成部32Qを制御し、同相振れ幅設定値WIおよび直交振れ幅設定値WQの両者を減少させる。
【0059】
ステップS104において、パワーモニタ検出値が規定範囲の上限値を超える(規定範囲の下限値未満でない)と判定したときは、制御部36は、同相モニタ値と直交モニタ値の大小関係に応じた第3調整処理を実行する(S106)。
【0060】
第3調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅設定値WIの値を維持すると共に、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを増加させる。また、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを増加させると共に、直交振れ幅設定値WQの値を維持する。さらに、同相モニタ値と直交モニタ値との差異が規定範囲内にあるときは、制御部36は、同相振れ幅生成部32Iおよび直交振れ幅生成部32Qを制御し、同相振れ幅設定値WIおよび直交振れ幅設定値WQの両者を増加させる。
【0061】
制御部36は、第1調整処理(S103)、第2調整処理(S105)、または第3調整処理(S106)のうちいずれかを実行した後、ステップS101の処理に戻る。
【0062】
なお、パワーモニタ検出値に対する規定範囲の代わりに規定値が定められていてもよい。この場合、例えば、パワーモニタ検出値が規定範囲の下限値未満であるか否かという判定の代わりに、パワーモニタ検出値が規定値未満であるか否かという判定が行われる。そして、パワーモニタ検出値が規定範囲の上限値を超えるか否かという判定の代わりに、パワーモニタ検出値が規定値以上であるか否かという判定が行われる。また、同相モニタ値と直交モニタ値との差異が規定範囲内であるか否かという判定の代わりに、これら2つの数値が一致するか否かという判定が行われてもよい。
【0063】
変調率が50%未満の場合、制御部36は、第1調整処理、第2調整処理および第3調整処理の代わりに、それぞれ、同相振れ幅設定値WIおよび直交振れ幅設定値WQの増減を逆にした、第4調整処理、第5調整処理および第6調整処理を実行する。
【0064】
第4調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを減少させる。そして、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを増加させる。また、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを増加させる。そして、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを減少させる。
【0065】
第5調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅設定値WIの値を維持すると共に、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを増加させる。また、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを増加させると共に、直交振れ幅設定値WQの値を維持する。さらに、同相モニタ値と直交モニタ値との差異が規定範囲内にあるときは、制御部36は、同相振れ幅生成部32Iおよび直交振れ幅生成部32Qを制御し、同相振れ幅設定値WIおよび直交振れ幅設定値WQの両者を増加させる。
【0066】
第6調整処理では制御部36は次のような処理を実行する。すなわち、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも大きいときは、制御部36は、同相振れ幅設定値WIの値を維持すると共に、直交振れ幅生成部32Qを制御して、直交振れ幅設定値WQを減少させる。また、同相モニタ値と直交モニタ値との差異が規定範囲外にあり、同相モニタ値が直交モニタ値よりも小さいときは、制御部36は、同相振れ幅生成部32Iを制御して、同相振れ幅設定値WIを減少させると共に、直交振れ幅設定値WQの値を維持する。さらに、同相モニタ値と直交モニタ値との差異が規定範囲内にあるときは、制御部36は、同相振れ幅生成部32Iおよび直交振れ幅生成部32Qを制御し、同相振れ幅設定値WIおよび直交振れ幅設定値WQの両者を減少させる。
【0067】
このような処理によれば、第1MZ変調器22および第2MZ変調器24の特性のばらつきや、同相ドライバ12Iおよび直交ドライバ12Qの特性のばらつき等に対し、同相振れ幅設定値および直交振れ幅設定値が適切に設定される。これによって、変調部14の出力光の初期位相角φや出力光パワーの誤差が減少し、変調精度が向上する。また、このような処理によれば、パワーモニタ値が規定範囲内にあるか否かの判定、同相モニタ値と直交モニタ値との差異が規定範囲内にあるか否かの判定、および変調率に応じて、同相振れ幅設定値WIまたは直交振れ幅設定値WQが増加し、または減少する。これによって、同相振れ幅設定値WIおよび直交振れ幅設定値WQの増減方向が適切となり、これらを適切な値に設定する処理が迅速に行われる。
【0068】
図5には、本発明に係る光変調装置を用いた偏波多重・光変調装置が示されている。偏波多重・光変調装置は、光源10、第1光変調装置50、第2光変調装置52、偏波調整器54、および合成器56を備える。
【0069】
第1光変調装置50および第2光変調装置52は、
図1に示される光変調装置から光源10を取り除いたものに相当する。偏波多重・光変調装置では、光源10から発せられた光が第1光変調装置50および第2光変調装置52に入力され、各光変調装置でQPSK変調が施される。
【0070】
第1光変調装置50のディジタル入力端子I1およびQ1には、2桁のディジタル信号が入力される。第1光変調装置50は、光源10から入力された光に対し2桁のディジタル信号によってQPSK変調を施し、合成器56に出力する。
【0071】
第2光変調装置52のディジタル入力端子I2およびQ2には、2桁のディジタル信号が入力される。第2光変調装置52は、光源10から入力された光に対し2桁のディジタル信号によってQPSK変調を施し、偏波調整器54に出力する。偏波調整器54は、第1光変調装置50の出力光の偏波面と、第2光変調装置52の出力光の偏波面とが同一とならないように、第2光変調装置52の出力光の偏波面を調整する。偏波調整器54は、第1光変調装置50の出力光の偏波面と、第2光変調装置52の出力光の偏波面とが垂直となるように、第2光変調装置52の出力光の偏波面を調整してもよい。
【0072】
合成器56は、第1光変調装置50の出力光と、偏波調整器54の出力光とを合成し、光ファイバ16に出力する。
【0073】
このような構成によれば、第1光変調装置50および第2光変調装置52の各出力光のパワーが規定範囲内に調整されるため、2つの偏波間での出力光パワーが同等となる。