(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
本発明の結晶性半導体膜は、コランダム構造を有する酸化物半導体を主成分として含む結晶性半導体膜であって、前記酸化物半導体が、アルミニウムおよびガリウムを含み、アルミニウムとガリウムとの総和に対して、アルミニウム量が18.5〜76.6原子%であり、前記コランダム構造が、少なくとも800℃の熱安定性を有していれば特に限定されない。
【0013】
前記結晶性半導体膜は、単結晶膜であってもよく、多結晶膜であってもよいが、本発明においては、前記結晶性半導体膜が、多結晶が含まれていてもよい単結晶膜であるのが好ましい。
【0014】
本発明において、「主成分」とは、前記のコランダム構造を有する酸化物半導体が、原子比で、前記結晶性半導体膜の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
【0015】
また、本発明において、「少なくとも800℃の熱安定性」とは、800℃で熱処理しても主相がコランダム構造を維持していることを意味し、本発明においては、前記結晶性半導体膜のコランダム構造が少なくとも850℃の熱安定性を有しているのが好ましく、少なくとも900℃の熱安定性を有しているのがより好ましい。
【0016】
また、本発明においては、前記酸化物半導体におけるアルミニウム量が65原子%以下であるのが、表面平滑性もより優れたものになるので好ましい。
【0017】
また、本発明においては、前記酸化物半導体におけるアルミニウム量が23.3原子%以上であるのが、850℃以上の熱安定性を有し、表面平滑性もより優れたものになるのでより好ましい。
【0018】
また、本発明においては、前記酸化物半導体におけるアルミニウム量が43.2原子%以上であるのが、900℃以上の熱安定性を有し、表面平滑性もより優れたものになるので最も好ましい。
【0019】
前記結晶性半導体膜中には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×10
16/cm
3〜1×10
22/cm
3であってもよいし、また、ドーパントの濃度を例えば約1×10
17/cm
3以下の低濃度にして、例えばn型ドーパントの場合には、n−型半導体等とすることができる。また、さらに、本発明によれば、ドーパントを約1×10
20/cm
3以上の高濃度で含有させて、例えばn型ドーパントの場合にはn+型半導体等とすることもできる。本発明においては、n型ドーパントが、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブであるのが好ましく、n−型半導体層を形成する場合、前記結晶性半導体膜中のゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの濃度を、約1×10
13〜5×10
17/cm
3にすることが好ましく、約1×10
15〜1×10
17/cm
3にすることがより好ましい。また、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブをn型ドーパントとしてn+型半導体層を形成する場合には、前記結晶性半導体膜中のゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの濃度を、約1×10
20/cm
3〜1×10
23/cm
3にすることが好ましく、約1×10
20/cm
3〜1×10
21/cm
3にすることがより好ましい。以上のようにして、前記結晶性半導体膜に、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブを含ませることで、スズをドーパントとして用いたときよりも、電気特性に優れた結晶性半導体膜とすることができる。
【0020】
前記結晶性半導体膜は、下地基板上に直接形成してもよく、別の層を介して形成してもよい。別の層としては、別の組成のコランダム構造結晶薄膜、コランダム構造以外の結晶薄膜、又はアモルファス薄膜などが挙げられる。構造としては、単層構造であってもよく、複数層構造であってもよい。また、同一の層内に2相以上の結晶相が混じっていてもよい。複数層構造の場合、結晶性半導体膜は、例えば、絶縁性薄膜と導電性薄膜が積層されて構成されるが、本発明においては、これに限定されるものではない。なお、絶縁性薄膜と導電性薄膜とが積層されて複数層構造が構成される場合、絶縁性薄膜と導電性薄膜の組成は、同じであっても互いに異なっていてもよい。絶縁性薄膜と導電性薄膜の厚さの比は、特に限定されないが、例えば、(導電性薄膜の厚さ)/(絶縁性薄膜の厚さ)の比が0.001〜100であるのが好ましく、0.1〜5がさらに好ましい。このさらに好ましい比は、具体的には例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2,3、4、5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0021】
本発明においては、ミスト法により、下地基板上に、そのまま又は他の層を介して、前記結晶性半導体膜を積層することができる。
【0022】
<下地基板>
下地基板は、上記の結晶性半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記下地基板が、絶縁体基板であるのが好ましく、表面に金属膜を有する基板であるのも好ましい。本発明においては、前記下地基板が、コランダム構造を有する結晶物を主成分として含む基板、またはβ−ガリア構造を有する結晶物を主成分として含む基板であるのも好ましい。コランダム構造を有する結晶物を主成分として含む基板は、基板中の組成比で、コランダム構造を有する結晶物を50%以上含むものであれば、特に限定されないが、本発明においては、70%以上含むものであるのが好ましく、90%以上であるのがより好ましい。コランダム構造を有する結晶を主成分とする基板としては、例えば、サファイア基板(例:c面サファイア基板)や、α型酸化ガリウム基板などが挙げられる。β−ガリア構造を有する結晶物を主成分とする基板は、基板中の組成比で、β−ガリア構造を有する結晶物を50%以上含むものであれば、特に限定されないが、本発明においては、70%以上含むものであるのが好ましく、90%以上であるのがより好ましい。β−ガリア構造を有する結晶物を主成分とする基板としては、例えばβ−Ga
2O
3基板、又はGa
2O
3とAl
2O
3とを含みAl
2O
3が0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。その他の下地基板の例としては、六方晶構造を有する基板(例:SiC基板、ZnO基板、GaN基板)などが挙げられる。六方晶構造を有する基板上には、直接または別の層(例:緩衝層)を介して、前記結晶性半導体膜を形成するのが好ましい。下地基板の厚さは、本発明においては特に限定されないが、好ましくは、50〜2000μmであり、より好ましくは200〜800μmである。
【0023】
前記下地基板が、表面に金属膜を有する基板である場合には、前記金属膜は、基板表面の一部または全部に設けられていてもよく、メッシュ状やドット状の金属膜が設けられていてもよい。また、前記金属膜の厚さは、特に限定されないが、好ましくは、10〜1000nmであり、より好ましくは10〜500nmである。前記金属膜の構成材料としては、例えば、白金(Pt)、金(Au)、パラジウム(Pd)、銀(Ag)、クロム(Cr)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、マンガン(Mn)、モリブデン(Mo)、アルミニウム(Al)もしくはハフニウム(Hf)等の金属またはこれらの合金などが挙げられる。なお、前記金属は、一軸に配向しているのが好ましい。一軸に配向している金属は、膜厚方向及び膜面内方向、もしくは膜厚方向などの一定の方向に単一の結晶方位をもつ金属であればそれでよく、一軸に優先配向している金属も含む。本発明においては、膜厚方向に一軸に配向しているのが好ましい。配向については、一軸に配向しているのか否かをX線回折法により確認することができる。例えば、一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と、ランダムに配向した同一結晶粉末の一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と比較して、大きい場合(好ましくは倍以上大きい場合、より好ましくは一桁以上大きい場合)に、一軸に配向していると判断することができる。
【0024】
本発明においては、前記下地基板が、サファイア基板(例:c面サファイア基板)、α型酸化ガリウム基板、β−Ga
2O
3基板もしくはGa
2O
3とAl
2O
3とを含み、Al
2O
3が0wt%より多くかつ60wt%以下である混晶体基板または表面に金属膜が形成されているこれらの基板であるのが好ましい。このような好ましい下地基板を用いることで、前記結晶性半導体膜の不純物のカーボン含有率、キャリア濃度および半値幅が、他の下地基板を用いた場合に比べてさらに低減することができる。
【0025】
前記ミスト法は、例えば超音波振動子により、原料を霧化してミストを発生させる工程(1)と、キャリアガスを供給する工程(2)と、前記ミストをキャリアガスによってサセプタに保持されている前記下地基板へ搬送して成膜する工程(3)とを含む成膜方法であれば特に限定されない。前記ミスト法としては、より具体的には例えば、ミスト・エピタキシー法やミストCVD法などが挙げられる。
【0026】
前記工程(1)は、原料を霧化してミストを発生させれば特に限定されない。工程(1)には、原料を霧化してミストを発生させるミスト発生器を用いることができる。前記ミスト発生器は、原料を霧化してミストを発生させることができれば特に限定されず、公知のものであってもよいが、本発明においては、超音波により、原料を霧化してミストを発生させるのが好ましい。なお、原料については、後述する。
【0027】
前記工程(2)は、キャリアガスを供給すれば特に限定されない。前記キャリアガスは、原料を霧化して発生したミストを基板上に搬送できるガス状のものであれば特に限定されない。前記キャリアガスとしては、特に限定されないが、例えば、酸素ガス、窒素ガス、アルゴンガス、フォーミングガスなどが挙げられる。
【0028】
前記工程(3)は、前記ミストをキャリアガスによってサセプタに保持されている前記下地基板へ搬送して成膜できれば特に限定されない。工程(3)には、ミストをキャリアガスによって前記基板へ搬送して、供給管内にて成膜できる管状炉を好適に用いることができる。
【0029】
なお、前記結晶性半導体膜形成の際に、前記ドーパントを用いて、ドーピング処理を行うことができる。また、本発明においては、通常、ドーピング処理を、前記原料に異常粒抑制剤を含めて行う。前記原料に異常粒抑制剤を含めてドーピング処理を行うことで、表面平滑性に優れた結晶性半導体膜を得ることができる。ドーピング量は、本発明の目的を阻害しない限り、特に限定されないが、原料中、モル比で、0.01〜10%であるのが好ましく、0.1〜5%であるのがより好ましい。
【0030】
前記異常粒抑制剤は、成膜過程で副生する粒子の発生を抑制する効果を有するものをいい、結晶性半導体膜の表面粗さ(Ra)を例えば0.1μm以下とすることができれば特に限定されないが、本発明においては、Br、I、FおよびClから選択される少なくとも1種からなる異常粒抑制剤であるのが好ましい。安定的に膜形成をするために異常粒抑制剤として、BrやIを膜中に導入すると異常粒成長による表面粗さの悪化を抑制することができる。異常粒抑制剤の添加量は、異常粒を抑制できれば特に限定されないが、原料溶液中、体積比で50%以下であることが好ましく、30%以下であることがより好ましく、1〜30%の範囲内であることが最も好ましい。このような好ましい範囲で異常粒抑制剤を使用することにより、異常粒抑制剤として機能させることができるので、結晶性半導体膜の異常粒の成長を抑制して表面を平滑にすることができる。
【0031】
結晶性半導体膜の形成方法は、本発明の目的を阻害しない限り、特に限定されないが、例えば、ガリウム化合物及びアルミニウム化合物等を結晶性半導体膜の組成に合わせて組み合わせた原料を反応させることによって形成可能である。これによって、下地基板上に、下地基板側から結晶性半導体膜を結晶成長させることができる。ガリウム化合物としては、ガリウム金属を出発材料として成膜直前にガリウム化合物に変化させたものであってもよい。ガリウム化合物としては、例えば、ガリウムの有機金属錯体(例:アセチルアセトナート錯体等)やハロゲン化物(例:フッ化、塩化、臭化又はヨウ化物等)などが挙げられるが、本発明においては、ハロゲン化物(例:フッ化、塩化、臭化又はヨウ化物等)を用いることが好ましい。また、アルミニウム化合物も、ガリウム化合物の場合と同様であり、アルミニウム化合物としては、例えば、アルミニウムの有機金属錯体やハロゲン化物などが挙げられる。
【0032】
より具体的には、結晶性半導体膜は、原料化合物が溶解した原料溶液から生成された原料微粒子を成膜室に供給して、前記サセプタを用いて、前記成膜室内で前記原料化合物を反応させることによって形成することができる。原料溶液の溶媒は、特に限定されないが、水、過酸化水素水または有機溶媒であることが好ましい。本発明においては、通常、ドーパント原料の存在下で、上記原料化合物を反応させる。なお、ドーパント原料は、好ましくは、原料溶液に含められて、原料化合物と共に又は別々に微粒子化される。前記結晶性半導体膜に含まれる炭素が、ドーパントよりも少なくなり、好ましくは、前記結晶性半導体膜に炭素を実質的に含まないようにことができる。なお、本発明の結晶性半導体膜が、ハロゲン(好ましくはBr)を含むのも良好な半導体構造を形成するため好ましい。ドーパント原料としては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの金属単体又は化合物(例:ハロゲン化物、酸化物等)などが挙げられる。
【0033】
以上のようにして成膜することにより、工業的有利に、前記結晶性半導体膜を得ることができる。なお、本発明においては、成膜時間を適宜調整することにより、膜厚を調節することができる。
【0034】
本発明においては、成膜後、アニール処理を行ってもよい。アニール処理の温度は、特に限定されないが、750℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらにより好ましく、900℃以上が最も好ましい。このような好ましい温度でアニール処理を行うことにより、より好適に前記結晶性半導体膜のキャリア濃度を調節することができるとともに、表面平滑性も格段に向上させることができる。アニール処理の処理時間は、本発明の目的を阻害しない限り、特に限定されないが、10秒〜10時間であるのが好ましく、1分〜5時間であるのがより好ましく、30分〜3時間であるのが最も好ましい。
【0035】
なお、本発明の目的を阻害しない限り、前記下地基板を前記結晶性半導体膜から剥離してもよい。剥離手段は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってもよい。剥離手段としては、例えば、機械的衝撃を加えて剥離する手段、熱を加えて熱応力を利用して剥離する手段、超音波等の振動を加えて剥離する手段、エッチングして剥離する手段などが挙げられる。
なお、下地基板が、表面に金属膜が形成されている基板である場合には、基板部分のみを剥離してもよく、金属膜が半導体層表面に残っていてもよい。金属膜を半導体層表面に残すことで、半導体表面上の電極形成が容易かつ良好なものとすることができる。
【0036】
また、前記成膜は繰り返し行ってもよく、成膜を繰り返し行うことにより、膜厚をより厚くすることができる。
本発明においては、上記のようにして成膜することにより、厚さを1μm以上、好ましくは5μm以上、より好ましくは10μm以上とすることができる。
【0037】
前記結晶性半導体膜は、半導体装置に有用な半導体構造を有しており、本発明においては、前記結晶性半導体膜をそのままで又は所望により更に加工等の処理を施して、半導体装置に用いることができる。また、前記結晶性半導体膜を半導体装置に用いる場合には、本発明の結晶性半導体膜をそのまま半導体装置に用いてもよいし、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などを形成して用いてもよい。
【0038】
本発明の結晶性半導体膜は、様々な半導体装置に有用であり、とりわけ、パワーデバイスに有用である。また、半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明においては、前記結晶性半導体膜を横型デバイスにも縦型デバイスにも好適に用いることができるが、中でも、縦型デバイスに用いることが好ましい。前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオードなどが挙げられる。本発明においては、前記半導体装置が、SBD、MOSFET、SIT、JFETまたはIGBTであるのが好ましく、SBD、MOSFETまたはSITであるのがより好ましい。また、本発明においては、前記半導体装置が、p型半導体層を含まないものであってもよい。
【0039】
以下、前記結晶性半導体膜をn型半導体層(n+型半導体やn−型半導体等)に適用した場合の好適な例を、図面を用いて説明するが、本発明は、これらの例に限定されるものではない。なお、以下に例示する半導体装置において、本発明の目的を阻害しない限り、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などが含まれていてもよいし、また、緩衝層(バッファ層)なども適宜省いてもよい。
【0040】
(SBD)
図1は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図1のSBDは、n−型半導体層101a、n+型半導体層101b、ショットキー電極105aおよびオーミック電極105bを備えている。
【0041】
ショットキー電極およびオーミック電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0042】
ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、ショットキー電極を形成する場合、Moからなる層とAlからなる層を積層させ、Moからなる層およびAlからなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。
【0043】
図1のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層101aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極105bからショットキー電極105aへ電子が流れる。このようにして前記半導体構造を用いたSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。
【0044】
図2は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図2のSBDは、
図1のSBDの構成に加え、さらに絶縁体層104を備えている。より具体的には、n−型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび絶縁体層104を備えている。
【0045】
絶縁体層104の材料としては、例えば、GaO、AlGaO、InAlGaO、AlInZnGaO
4、AlN、Hf
2O
3、SiN、SiON、Al
2O
3、MgO、GdO、SiO
2またはSi
3N
4などが挙げられるが、本発明においては、コランダム構造を有するものであるのが好ましい。コランダム構造を有する絶縁体を絶縁体層に用いることで、界面における半導体特性の機能を良好に発現させることができる。絶縁体層104は、n−型半導体層101とショットキー電極105aとの間に設けられている。絶縁体層の形成は、例えば、スパッタリング法、真空蒸着法またはCVD法などの公知の手段により行うことができる。
【0046】
ショットキー電極やオーミック電極の形成や材料等については、上記
図1のSBDの場合と同様であり、例えばスパッタリング法、真空蒸着法、圧着法、CVD法等の公知の手段を用いて、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などからなる電極を形成することができる。
【0047】
図2のSBDは、
図1のSBDに比べ、さらに絶縁特性に優れており、より高い電流制御性を有する。
【0048】
図3のSBDは、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図3のSBDは、
図1や
図2のSBDの構成とは、トレンチ構造を有しており、半絶縁体層104を備えている点で大きく異なっている。
図3のSBDは、n−型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび半絶縁体層103を備えており、耐圧性を維持したまま、リーク電流を大幅に低減することができ、大幅な低オン抵抗化も可能となる。
【0049】
半絶縁体層104は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えば、マグネシウム(Mg)、ルテニウム(Ru)、鉄(Fe)、ベリリウム(Be)、セシウム(Cs)、ストロンチウム、バリウム等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
【0050】
(MESFET)
図4は、本発明に係る金属半導体電界効果トランジスタ(MESFET)の一例を示している。
図4のMESFETは、n−型半導体層111a、n+型半導体層111b、緩衝層(バッファ層)118、半絶縁体層114、ゲート電極115a、ソース電極115bおよびドレイン電極115cを備えている。
【0051】
ゲート電極、ドレイン電極およびソース電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
【0052】
半絶縁体層114は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えば、マグネシウム(Mg)、ルテニウム(Ru)、鉄(Fe)、ベリリウム(Be)、セシウム(Cs)、ストロンチウム、バリウム等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
【0053】
図4のMESFETでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。
【0054】
(HEMT)
図5は、本発明に係る光電子移動度トランジスタ(HEMT)の一例を示している。
図5のHEMTは、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、半絶縁体層124、ゲート電極125a、ソース電極125bおよびドレイン電極125cを備えている。
【0055】
ゲート電極、ドレイン電極およびソース電極の材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
【0056】
なお、ゲート電極下のn型半導体層は、少なくともバンドギャップの広い層121aと狭い層121bとで構成されており、半絶縁体層124は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えばルテニウム(Ru)や鉄(Fe)等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
図5のHEMTでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。また、本発明においては、さらにリセス構造とすることで、ノーマリーオフを発現することができる。
【0057】
(MOSFET)
本発明の半導体装置がMOSFETである場合の一例を
図6に示す。
図6のMOSFETは、トレンチ型のMOSFETであり、n−型半導体層131a、n+型半導体層131b及び131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている。
【0058】
ドレイン電極135c上には、例えば厚さ100nm〜100μmのn+型半導体層131bが形成されており、前記n+型半導体層131b上には、例えば厚さ100nm〜100μmのn−型半導体層131aが形成されている。そして、さらに、前記n−型半導体層131a上には、n+型半導体層131cが形成されており、前記n+型半導体層131c上には、ソース電極135bが形成されている。
【0059】
また、前記n−型半導体層131a及び前記n+型半導体層131c内には、前記n+半導体層131cを貫通し、前記n−型半導体層131aの途中まで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内には、例えば、10nm〜1μmの厚みのゲート絶縁膜134を介してゲート電極135aが埋め込み形成されている。
【0060】
図6のMOSFETのオン状態では、前記ソース電極135bと前記ドレイン電極135cとの間に電圧を印可し、前記ゲート電極135aに前記ソース電極135bに対して正の電圧を与えると、前記n−型半導体層131aの側面にチャネル層が形成され、電子が前記n−型半導体層に注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n−型半導体層が空乏層で満たされた状態になり、ターンオフとなる。
【0061】
図7は、
図6のMOSFETの製造工程の一部を示している。例えば
図7(a)に示すような半導体構造を用いて、n−型半導体層131aおよびn+型半導体層131cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、さらに、反応性イオンエッチング法等により異方性エッチングを行って、
図7(b)に示すように、前記n+型半導体層131c表面から前記n−型半導体層131aの途中にまで達する深さのトレンチ溝を形成する。次いで、
図7(c)に示すように、熱酸化法、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、前記トレンチ溝の側面及び底面に、例えば50nm〜1μm厚のゲート絶縁膜134を形成した後、CVD法、真空蒸着法、スパッタリング法等を用いて、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料をn−型半導体層の厚み以下に形成する。
【0062】
そして、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層131c上にソース電極135bを、n+型半導体層131b上にドレイン電極135cを、それぞれ形成することで、パワーMOSFETを製造することができる。なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0063】
このようにして得られたMOSFETは、従来のトレンチ型MOSFETに比べて、さらに耐圧性に優れたものとなる。なお、
図6では、トレンチ型の縦型MOSFETの例を示したが、本発明においては、これに限定されず、種々のMOSFETの形態に適用可能である。例えば、
図6のトレンチ溝の深さをn−型半導体層131aの底面まで達する深さまで掘り下げて、シリーズ抵抗を低減させるようにしてもよい。なお、横型のMOSFETの場合の一例を
図8に示す。
図8のMOSFETは、n−型半導体層131a、第1のn+型半導体層131b、第2のn+8型半導体層131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135b、ドレイン電極135c、緩衝層138および半絶縁体層139を備えている。
図8に示すように、n+型半導体層をn−型半導体層に埋め込むことで、他の横型のMOSFETに比べ、より良好に電流を流すことができる。
【0064】
(SIT)
図9は、本発明の半導体装置がSITである場合の一例を示す。
図9のSITは、n−型半導体層141a、n+型半導体層141b及び141c、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている。
【0065】
ドレイン電極145c上には、例えば厚さ100nm〜100μmのn+型半導体層141bが形成されており、前記n+型半導体層141b上には、例えば厚さ100nm〜100μmのn−型半導体層141aが形成されている。そして、さらに、前記n−型半導体層141a上には、n+型半導体層141cが形成されており、前記n+型半導体層141c上には、ソース電極145bが形成されている。
【0066】
また、前記n−型半導体層141a内には、前記n+半導体層131cを貫通し、前記n−半導体層131aの途中の深さまで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内のn−型半導体層上には、ゲート電極145aが形成されている。
図9のSITのオン状態では、前記ソース電極145bと前記ドレイン電極145cとの間に電圧を印可し、前記ゲート電極145aに前記ソース電極145bに対して正の電圧を与えると、前記n−型半導体層141a内にチャネル層が形成され、電子が前記n−型半導体層に注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n−型半導体層が空乏層で満たされた状態になり、ターンオフとなる。
【0067】
図9に示されるSITの製造には、公知の手段を用いることができる。例えば、
図7(a)に示される半導体構造を用いて、上記の
図7のMOSFETの製造工程と同様にして、n−型半導体層141aおよびn+型半導体層141cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、例えば、反応性イオンエッチング法等により異方性エッチングを行って、前記n+型半導体層131c表面から前記n−型半導体層の途中まで達する深さのトレンチ溝を形成する。次いで、CVD法、真空蒸着法、スパッタリング法等で、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料をn−型半導体層の厚み以下に形成する。そして、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層131c上にソース電極135bを、n+型半導体層131b上にドレイン電極135cを、それぞれ形成することで、
図9に示されるSITを製造することができる。
【0068】
なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0069】
上記例では、p型半導体を使用していない例を示したが、本発明においては、これに限定されず、p型半導体を用いてもよい。p型半導体を用いた例を
図10〜16に示す。これらの半導体装置は、上記例と同様にして製造することができる。なお、p型半導体は、n型半導体と同じ材料であって、p型ドーパントを含むものであってもよいし、異なるp型半導体であってもよい。
【0070】
図10は、n−型半導体層101a、n+型半導体層101b、p型半導体層102、絶縁体層104、ショットキー電極105aおよびオーミック電極105bを備えているショットキーバリアダイオード(SBD)の好適な一例を示す。
【0071】
図11は、n−型半導体層101a、n+型半導体層101b、p型半導体層102、ショットキー電極105aおよびオーミック電極105bを備えているトレンチ型のショットキーバリアダイオード(SBD)の好適な一例を示す。トレンチ型のSBDによれば、耐圧性を維持したまま、リーク電流を大幅に低減することができ、大幅な低オン抵抗化も可能となる。
【0072】
図12は、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、p型半導体層123、ゲート電極125a、ソース電極125b、ドレイン電極125cおよび基板129を備えている高電子移動度トランジスタ(HEMT)の好適な一例を示す。
【0073】
図13は、n−型半導体層131a、第1のn+型半導体層131b、第2のn+型半導体層131c、p型半導体層132、p+型半導体層132a、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を示す。なお、p+型半導体層132aは、p型半導体層であってもよく、p型半導体層132と同じであってもよい。
【0074】
図14は、n−型半導体層141a、第1のn+型半導体層141b、第2のn+型半導体層141c、p型半導体層142、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている接合電界効果トランジスタ(JFET)の好適な一例を示す。
【0075】
図15は、n型半導体層151、n−型半導体層151a、n+型半導体層151b、p型半導体層152、ゲート絶縁膜154、ゲート電極155a、エミッタ電極155bおよびコレクタ電極155cを備えている絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を示す。
【0076】
(LED)
本発明の半導体装置が発光ダイオード(LED)である場合の一例を
図16に示す。
図16の半導体発光素子は、第2の電極165b上にn型半導体層161を備えており、n型半導体層161上には、発光層163が積層されている。そして、発光層163上には、p型半導体層162が積層されている。p型半導体層162上には、発光層163が発生する光を透過する透光性電極167を備えており、透光性電極167上には、第1の電極165aが積層されている。なお、
図16の半導体発光素子は、電極部分を除いて保護層で覆われていてもよい。
【0077】
透光性電極の材料としては、インジウム(In)またはチタン(Ti)を含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In
2O
3、ZnO、SnO
2、Ga
2O
3、TiO
2、CeO
2またはこれらの2以上の混晶またはこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極を形成できる。また、透光性電極を形成した後に、透光性電極の透明化を目的とした熱アニールを施してもよい。
【0078】
図16の半導体発光素子によれば、第1の電極165aを正極、第2の電極165bを負極とし、両者を介してp型半導体層162、発光層163およびn型半導体層161に電流を流すことで、発光層163が発光するようになっている。
【0079】
第1の電極165a及び第2の電極165bの材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。電極の形成法は特に限定されることはなく、印刷方式、スプレー法、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。
【0080】
なお、発光素子の別の態様を
図17に示す。
図17の発光素子では、基板169上にn型半導体層161が積層されており、p型半導体層162、発光層163およびn型半導体層161の一部を切り欠くことによって露出したn型半導体層161の半導体層露出面上の一部に第2の電極165bが積層されている。
【実施例】
【0081】
以下、本発明の実施例を説明する。
【0082】
<実施例1〜6および比較例>
1.成膜装置
図18を用いて、本実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28を備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
【0083】
2.成膜
下記表1に示す成長条件にて、AlGaO系半導体膜を成膜し、アルミニウム含有率が、9.5%(比較例)、18.5%(実施例1)、23.3%(実施例2)、29.8%(実施例3)、43.2%(実施例4)、65.0%(実施例5)、76.6%(実施例6)である半導体膜をそれぞれ得た。アルミニウムの含有率をX線にて測定した。XRD測定結果を
図19に示す。
【0084】
【表1】
【0085】
3.アニール処理
成膜後、下記表2に示すアニール条件にて、得られたAlGaO系半導体膜をアニール処理した。成膜後およびアニール後にXRD測定を実施し、各膜の構造相転移温度を分析し、それぞれの熱安定性を調べた。結果を
図20に示す。
【0086】
【表2】
【0087】
4.表面モフォロジー
前記3.において、x=43.2%の950℃アニール処理前後の膜表面をAFMにて測定した。結果を、
図21に示す。この結果から、アニール処理によって、表面平坦性が向上していることが分かる。