【実施例】
【0029】
以下本発明を具体的に説明するために実施例および比較例を挙げて説明するが、もちろんこれらに限定されるものではない。なお、含水ケイ酸の各物性値の測定はJIS K−5101(顔料試験法)に基づき、次に示す方法により実施した。
【0030】
●含水ケイ酸原粉中のAl
2O
3の測定
粉体試料を酸溶液に溶解したのち、ICP発光分析装置(型式:SPS3100;エスアイアイ・ナノテクノロジー社製)を用いてAl
2O
3量の定量分析を行った。
【0031】
●含水ケイ酸原粉中のSiO
2量の測定
医薬部外品原料規格2006の無水ケイ酸定量法によってSiO
2量の定量分析を行った。10%希塩酸は、医薬部外品原料規格2006に基づき調製した。また、測定サンプルのうち、ASR2は10gの非晶質含水ケイ酸を100mlの10%希塩酸中で30分攪拌後、ヌッチェ及び5A濾紙を用いて真空濾過し、pHが6以上になるまで水洗した後にろ別した含水ケイ酸を105℃、2時間以上充分乾燥したものを使用した。なお、pHは市販のガラス電極pHメーター(型式:D-14 (株)堀場製作所製)で測定した。
【0032】
●CTAB法比表面積
ASTM D3765(CARBON BLACK-CTAB SURFACE AREA)に準拠して測定を行った。但し、CTAB分子の吸着断面積を35Å
2として算出した。
【0033】
●BET比表面積(N2法比表面積)
全自動比表面積測定装置(型式:Macsorb
(R) HM model-1201;(株)マウンテック社製)を用いて1点法により測定した。
【0034】
●窒素吸脱着法による細孔分布
高精度ガス/蒸気吸着量測定装置(型式:Belsorp max;(株)日本ベル社製)を用いてBarret-Joyner-Halenda法により測定した。
【0035】
●水銀圧入法による細孔分布
水銀ポロシメーター(型式:PASCAL 440;ThermoQuest社製)を用いて水銀細孔を測定した。
【0036】
●配合物調製法
容量1.7リットルのバンバリーミキサーにて、JSR SL552(溶液重合スチレンブタジエンゴム)を80部とIR2200(ポリイソプレンゴム)を20部とを、30秒間素練り後、ステアリン酸を2部、含水ケイ酸を45部、シランKBE846(ビス(トリエトキシシリルプロピル)テトラスルフィド)を1.8〜10.8部の範囲(詳細は表1〜表3に記載)で投入し、全練り時間5分後取り出した。取り出し時のコンパウンド温度を140〜150℃にラム圧や回転数で調整を行い、コンパウンドを室温にて冷却後、更に老化防止剤ノクラック810NA(N-フェニル-N'-イソプロピル-p-フェニレンジアミン)を1部、亜鉛華を3部、加硫促進剤ノクセラーD(1,3-ジフェニルグアニジン)を1.5部、同ノクセラーCZ-G(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)を1.2部、硫黄(200メッシュ)を1.5部添加して約1分間混練り(取り出し時の温度を100℃以下とする)し、後8インチロールにてシーティングして未加硫物及び加硫物特性を測定した。
【0037】
●ムーニー粘度
ムーニー粘度計VR−1132型(上島製作所製)を用いて、125℃、L型ローターにて測定。
●キュラストタイム
JSR型キュラストメーターIIF型により、最適加硫時間(T90)を測定した。
●加硫物特性(TB, M300, EB, Hs)
JIS の試験法に準じ測定を行った。
【0038】
●摩耗試験
アクロン型摩耗試験機で測定。傾角;15°、荷重;6ポンド試験回数;1000回転での摩耗減容を測定した。測定結果は比較例1を100とした場合の指数で求めた。指数が高い程耐摩耗性が良いことを示し、指数が110以上の場合を、耐摩耗性が10%以上向上したものとみなし○とした。
【0039】
(実施例1)
ケイ酸一次粒子の凝集を早く起こすことを目的として、初期ケイ酸ナトリウム濃度を高くする反応を行った。これにより後述する比較例1よりも密な凝集体とし、発達した細孔構造を形成させることにより、様々な半径の細孔が多数生成し、ブロードな細孔分布を有する含水ケイ酸を製造できる。具体的には、撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を80リットル及びケイ酸ナトリウム水溶液を通常より多い14リットル(SiO
2150g/l、SiO
2/Na
2O質量比3.3)を投入し、加熱して温度82℃とした。この時のSiO
2濃度は22g/l、pHは11.5になった。
【0040】
硫酸過多による中和反応を行うことにより、不均一な粒子径のケイ酸を形成することで、ブロードな細孔分布を有する含水ケイ酸が生成される反応を行った。具体的には、本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度82±1℃を維持しながら100分間で、SiO
2濃度が65g/l、pHが10.9となるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。尚、上記反応液(反応開始前のpHは11.5)におけるpHが10.9になるようにケイ酸ナトリウム水溶液に対する硫酸の添加量が過剰になるように硫酸添加を行った。
【0041】
所定の中和反応終了後は同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。得られたケークを乳化し、この乳化液を乾燥して含水ケイ酸を製造し、評価を行った。窒素吸脱着法による細孔分布の測定結果を
図1に示す。
【0042】
(実施例2)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.30%分追加投入した以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0043】
(実施例3)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.50%分追加投入した以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0044】
(実施例4)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.70%分追加投入する以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0045】
【表1】
【0046】
表1に示すように、ブロードな細孔分布を有する(請求項1の条件を全て満たす)実施例1,2,3,4は、後述する比較例1に対し耐摩耗性向上効果が認められた。とりわけこれらの実施例1,2,3,4の中でも、乳化液にアルミン酸ソーダを適切な量添加し、ASR1‐ASR2が0.2〜0.6の範囲内にある実施例2と3は、特に高い耐摩耗性向上効果が認められた。
【0047】
(実施例5)
撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を80リットル及びケイ酸ナトリウム水溶液3.5リットル(SiO
2150g/l、SiO
2/Na
2O質量比3.3)を投入し、加熱して温度72℃とした。この時のSiO
2濃度は6.0g/l、pHは10.9になった。本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度72±1℃、pH10.9を維持しながら100分間で、SiO
2濃度が65g/lとなるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。比較例1の場合に比べて反応温度を低くすることで、ケイ酸一次粒子の成長速度を抑制し、一次粒子が微粒子の段階で凝集を起こさせている。これにより比較例1よりも密な凝集体とし、発達した細孔構造を形成させることにより、様々な半径の細孔が多数生成し、ブロードな細孔分布を有する含水ケイ酸を製造した。
【0048】
所定の中和反応終了後は同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。得られたケークを乳化し、この乳化液を乾燥して含水ケイ酸を製造し、評価を行った。
【0049】
(実施例6)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.30%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
【0050】
(実施例7)
ケイ酸ナトリウム水溶液と硫酸(18.4mol/l)の同時滴下が終了した直後に、アルミン酸ソーダを、反応液中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.40%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
【0051】
(実施例8)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.50%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
【0052】
(実施例9)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.70%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
【0053】
【表2】
【0054】
表2に示すように、ブロードな細孔分布を有する(請求項1の条件を全て満たす)実施例5,6,7,8,9は、後述する比較例1に対し耐摩耗性向上効果が認められた。とりわけこれらの実施例5,6,7,8,9の中でも、乳化液または反応液にアルミン酸ソーダを適切な量添加しASR1‐ASR2が0.2〜0.6の範囲内にある実施例6,7,8は、特に高い耐摩耗性向上効果が認められた。
【0055】
(比較例1)
撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を85リットル及びケイ酸ナトリウム水溶液6.0リットル(SiO
2150g/l、SiO
2/Na
2O質量比3.3)を投入し、加熱して温度90℃とした。この時のpHは11.2、SiO
2濃度は10.0g/lであった。本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度90±1℃、pH11.2を維持しながら100分間で、SiO
2濃度が60g/lとなるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。続けて同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。
【0056】
得られたケークを乳化(強い攪拌によりケークを水中に分散させ液状とする)し、この乳化液を乾燥してゴム用の基準となる含水ケイ酸を製造し、評価を行った。窒素吸脱着法による細孔分布の測定結果を
図1に示す。
【0057】
尚、比較例1の含水ケイ酸は、従来よりゴム用含水ケイ酸の基準反応として広く利用されているものである。この含水ケイ酸の摩耗指数を100として、実施例1〜9、比較例2〜4の摩耗指数を求めた。
【0058】
(比較例2)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.30%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0059】
(比較例3)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.50%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0060】
(比較例4)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al
2O
3/SiO
2質量比で0.70%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
【0061】
請求項1の条件を前述のように(A)(B)(C)に分け、請求項3は条件(D)として、比較例1〜4がどの条件を満たすかを表3に示した。
【0062】
【表3】
【0063】
表3に示すように、比較例1〜4は、ブロードな細孔分布を有する実施例1〜9に比べて耐摩耗性が低い。