【実施例】
【0168】
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0169】
<原料>
実施例では、下記の化合物を用いた。試薬名と製品名が同一の場合は製品名を省略した。
【0170】
(1)pH感受性化合物
・デオキシコール酸ナトリウム(ナカライテスク社製)
・コール酸ナトリウム(ナカライテスク社製)
・ウルソデオキシコール酸ナトリウム(東京化成工業社製)
・ケノデオキシコール酸(東京化成工業社製)
・ヒオデオキシコール酸(東京化成工業社製)
・グリコデオキシコール酸ナトリウム(ナカライテスク社製)
・グリチルリチン酸モノアンモニウム(東京化成工業社製)
(2)両親媒性物質
・DDPC(1,2−ジデカノイル−sn−グリセロ−3−ホスファチジルコリン:日油社製、COATSOME MC−1010)
・DLPC(1,2−ジラウロイル−sn−グリセロ−3−ホスファチジルコリン:日油社製、COATSOME MC−1212)
・ポリオキシエチレンソルビタンモノ脂肪酸エステル(Tween20,80:東京化成工業社製)
・ソルビタン脂肪酸エステル(SPAN80:ナカライテスク社製−ソルビタンモノオレエート)
・ポリオキシエチレンヒマシ油(和光純薬工業社製、ポリオキシエチレン10ヒマシ油)
・α−トコフェロール(ナカライテスク社製、DL−α−トコフェロール)
(3)自然免疫を活性化する刺激を有する物質等
・MPL(Monophoshoryl Lipid A)(Sigma社製、リピッドA,モノホスホリル サルモネラ菌 セロタイプ/In Vivogen社製、Monophoshoryl Lipid A(synthetic)
・IFA(Freund‘s Incomplete Adjuvant:不完全フロイントアジュバント) (Santa Cruz Biotechnology社製)
・CpG−DNA(CpG−ODN:InvivoGen社製、ODN−2395)
・LPS(内毒素)(和光純薬工業社製、大腸菌O111由来フェノール抽出品)
(4)溶媒等
・注射用水:(大塚製薬株式会社製)
・MES−Na(メルク社製)
・塩化ナトリウム(関東化学社製)
・PBS Tabltes(Phosphate buffered saline:タカラバイオ社製)
・メタノール(ナカライテスク社製)
・クロロホルム(和光純薬工業社製)
・水酸化ナトリウム水溶液(0.1mol/L:ナカライテスク社製)
・塩酸(0.1mol/L、1mol/L:ナカライテスク社製)
・OVAペプチド:SIINFEKL,(ピーエイチジャパン委託合成)(以下、単に「ペプチド」とも称する。)
・OVAタンパク質:OVA(EndoFit Ovalbumin:InvivoGen社製社製)(以下、単に「OVA」とも称する。)
(5)培地等
・RPMI(ナカライテスク社製、RPMI 1640培地(液体))
・Penicillin−Streptamycin Mixed Solution(ナカライテスク社製)
・FBS(Fetal Bovine Serum,Centified,Heat Inactivatied,US Origin:Gibco社製)
(6)試薬
・EYPC(未水添卵黄ホスファチジルコリン:日油社製、COATSOME NC−50)
・リン脂質C−テストワコー(和光純薬工業株式会社製):リン脂質測定試薬
・Pyranine(東京化成工業社製):蛍光物質
・DPX(p−xylene−bis−pyridinium bromide:Molecular probes社製):消光剤
・Triton−X100(和光純薬工業社製):界面活性剤
・NBD−PE(1,2−Dioleoyl−sn−glycero−3−phosphoethanolamine−N(7−nitro−2−1,3−benzoxadiazol−4−yl)ammonium:AvAnti polar lipids社製)
・Rh−PE(1,2−Dioleoyl−sn−glycero−3−phosphoehanolamine−N−(lissamine rhodamine B sulfonyl)ammonium:AvAnti polar lipids社製):蛍光標識脂質
・Rh−PE(1,2−Dioleoyl−sn−glycero−3−phosphoehanolamine−N−(lissamine rhodamine B sulfonyl)ammonium:Avanti polar lipids社製):蛍光標識脂質
・Bio−Rad DC Protein Assay Reagent A、B(Bio−Rad Laboratories社製):タンパク質定量キット
IsoFlow(Beckman Coulter社製):フローサイトメトリー専用シース液
・RBC lysis buffer(Santa Cruz Biotechnology社製):赤血球溶血バッファー
・細胞分散用コラゲナーゼ(和光純薬工業社製):細胞分散試薬
・Anti−CD11cFITC(eBioscience社製、Anti−Mouse CD11cFITC):フルオレセインイソチオシアネート(FITC)標識抗体
・Anti−CD80PE(eBioscience社製、Anti−Mouse CD80(B7−1)PE):R−フィコエリスリン(PE)標識抗体(以下、CD80PEとも称する。)
・Anti−CD86PE(eBioscience社製、Anti−Mouse CD86(B7−2)PE):PE標識抗体(以下、CD86PEとも称する。)
・Anti−CD40PE(eBioscience社製、Anti−Mouse CD40PE):PE標識抗体(以下、CD40PEとも称する。)
・Anti−mouse CD16/32 (BD バイオサイエンス社製)
・Cytofix/Cytoperm(BD バイオサイエンス社製):細胞固定・細胞膜透過キット
・BD Stain Buffer:染色用バッファー
・BD GolgPlug:細胞刺激キット
・Anti−CD8αPE(eBioscience社製):PE標識抗体
・Mouse IFNγ ELISPOT Set(BD バイオサイエンス社製)
・AEC Substrate Set(BD バイオサイエンス社製)
・炭酸水素ナトリウム(和光純薬工業社製)
・炭酸ナトリウム(和光純薬工業社製)
・二次抗体(anti−mouse IgG HRP conjugate、R&D system社製)
・アルブミン(Albumin from bovine serum、Sigma社製)
・ペルオキシダーゼ用発色キット(住友ベークライト株式会社製)
(7)動物
雌、C57BL/6Nマウス(6−8週齢)は日本エスエルシーより購入した。実験はテルモ株式会社における動物実験に関する指針に従って実施した。
【0171】
<試料の調製等>
・MES Buffer
MES:25mM、NaCl:125mMの配合量で調製した。MES Bufferは、特別な記載のない限りpHは7.4である。
・PBS
PBS Tabltes(タカラバイオ社製)を用いて調製した。具体的には、PBS Tabltes10錠を蒸留水に溶解し、全量を1000mLとして調製した。なお、pHは、7.35〜7.65である。
・MPLストック溶液の作製
MPLのストック溶液は、クロロホルム、メタノール(7:3)の混合溶液を用いて、100ng/μLとなるように調製した。また、必要であればさらに希釈して使用した。
・RPMIメディウム
抗生物質としてペニシリン(100unit/mL)およびストレプトマイシン(100mg/mL)を添加し、必要に応じてFBSを追加で添加し、10%血清含有RPMIメディウムとした。
【0172】
<使用機器>
超音波照射機:USC−J
分光光度計:FP−6500
フローサイトメーター:(FC500,ソフトウェア:CXP Software ver2)
UV−vis分光光度計:UV−3600
凍結乾燥機:EYELA FREEZE DRYER FDU506
真空ポンプ:GCD135XA
CO
2、インキュベーター:MCO20AIC
分離用フィルター:Amicon Ultra 30K
<細胞の培養>
細胞の培養は、5%CO
2、37℃に設定したインキュベーター(MCO20AIC)を用いて実施した。
【0173】
(アジュバント組成物およびワクチン組成物の調製)
分散調製法による製造
メタノール(またはクロロホルム)に溶解した1000nmolの両親媒性物質と、メタノール(またはクロロホルム)に溶解したpH感受性化合物と、MPLのストック溶液とを10mLナスフラスコで混合し、ロータリーエバポレーターを用いて薄膜とした。
【0174】
作製した薄膜に1.0mLのMES Buffer(溶出性試験および膜融合試験の場合)または1.0mLのPBS(組込率の測定、自然免疫を活性化する刺激の評価、マウスへの免疫の場合)を添加し、超音波照射装置を用いて分散させ、アジュバント組成物の分散液を調製した。ワクチン組成物の場合は、所定量の抗原を溶解させたMES BufferあるいはPBSを使用した。
【0175】
なお、両親媒性物質とpH感受性化合物との比率は、所望の比率となるよう調整した。また、複数の両親媒性物質を使用する場合は、両親媒性物質の総量が、所望のモル数(1000nmol)となるように調整した。また、実施例や図の説明におけるpH感受性化合物の使用量は、100nmolの両親媒性物質に対する使用量である。
【0176】
混合調製法による製造
メタノール(またはクロロホルム)に溶解した1000nmolの両親媒性物質と、メタノール(またはクロロホルム)に溶解したpH感受性化合物と、MPLのストック溶液とを10mLナスフラスコで混合し、ロータリーエバポレーターを用いて薄膜とした。得られた薄膜に、0.5mLのMES Buffer(溶出性試験および膜融合試験の場合)または0.5mLのPBS(組込率の測定、自然免疫を活性化する刺激の評価、マウスへの免疫の場合)を添加し、5〜35℃で超音波照射装置を用いて分散させ、アジュバント組成物の分散液を調製した。
【0177】
得られたアジュバント組成物の分散液に、種々の濃度の抗原溶液を等量添加し、混合することで、ワクチン組成物の分散液を調製した。
【0178】
凍結融解−凍結乾燥調製法による製造
混合調製法と同様の方法で、アジュバント組成物の分散液を調製した。得られたアジュバント組成物の分散液に、種々の濃度の抗原溶液を等量添加し、凍結融解および凍結乾燥を順次行った。得られた凍結乾燥物を5〜35℃で1.0mLの注射用水にて再分散させることで、ワクチン組成物の分散液を調製した。
【0179】
なお、凍結融解は、10mLナスフラスコを冷却したメタノールに浸漬させ、分散液を凍結させた後、さらに5〜35℃での蒸留水に浸漬させることで行った。
【0180】
また、凍結乾燥は、凍結乾燥機(EYELA FREEZE DRYER FDU506)と真空ポンプ(GCD135XA)を用いて、分散液を凍結乾燥させた。
【0181】
CpG−DNA(CpG−ODN)を用いる場合は、1000nmolの両親媒性物質と、所定量のpH感受性化合物からなる混合薄膜を作製し、0.5mLのPBSと超音波照射装置によって分散液とした。さらに、所定量のCpG-DNAと、所定量の抗原を溶解させた0.5mLのPBSを添加し、実験に使用した。
【0182】
(比較試料の調製)
比較試料として、MPL単独の分散液(MPL分散液)、両親媒性物質単独の分散液、pH感受性担体単独の分散液をそれぞれ調製した。なお、マウスへの免疫を実施する場合は、さらに所定量の抗原を含む。
【0183】
すなわち、MPLストック溶液またはメタノール(またはクロロホルム)に溶解した両親媒性物質もしくはpH感受性担体を10mLナスフラスコに所定量添加し、ロータリーエバポレーターにより薄膜とした。得られた薄膜に1.0mLのMES Buffer(溶出性試験および膜融合試験の場合)または1.0mLのPBS(組込率の測定、自然免疫を活性化する刺激の評価、マウスへの免疫の場合)を添加し、超音波照射装置を用いて分散させることで、MPL単独の分散液、両親媒性物質単独の分散系、またはpH感受性担体単独の分散液を調製した。CTL誘導率を評価する場合は、所定量の抗原を溶解させたPBSを使用した。
【0184】
<測定方法>
(溶出性試験:Leakage(溶出率)の測定)
Leakage(溶出率)は、K.Kono et al. Bioconjugate Chem. 2008 19 1040−1048に記載の方法に従い、蛍光物質であるPyranineと消光剤であるDPXとを内包したEYPCリポソームを用いて評価した。
【0185】
クロロホルムに溶解させた3000nmolのEYPCを10mLナスフラスコに測り入れ、ロータリーエバポレーターを用いて薄膜とした。Pyranine溶液(Pyranine:35mM、DPX:50mM、MES:25mM、pH7.4)500μLを加え、超音波照射装置(USC−J)を用いて分散させた後、エクストルーダーを用いて孔径100nmのポリカーボネート膜を通し、粒子径を揃えた。MES BufferとG100カラムを用いて外水層の置換を行い、蛍光物質を内包したEYPCリポソーム分散液を得た。リン脂質C−テストワコーを用いてリン脂質の濃度を求め、リン脂質が1.0mmol/LとなるようにMES Bufferを用いて濃度を調整した。
【0186】
濃度を調製したEYPCリポソーム分散液20μLと、評価サンプル分散液20μLを、pHを調整した2960μLのMES Bufferに投与し、37℃にて90あるいは30分間インキュベーションした後(実施例において、特別な記載のない限り、90分間の結果である)、分光光度計FP−6500を用いてEx416、Em512nmの蛍光を観察することにより、Leakageをモニターした。
【0187】
なお、EYPCリポソーム分散液のみの場合を0%とし、10倍希釈したTriton−X100を30μL加えた場合の値を100%として、溶出率を算出した。具体的には、溶出率は、下記式に従って計算した。なお、下記式中において、測定した蛍光強度をLとし、蛍光物質を内包したEYPCリポソーム分散液のみの蛍光強度をL
0、Triton−X100を加えた場合の蛍光強度をL
100と表す。
【0188】
【数3】
【0189】
(膜融合試験:Fusion(膜融合)の測定)
Fusion(膜融合)は、K.Kono et al.Biomaterials 2008 29 4029−4036に記載の方法に従い、FRET(Fluorescence Resonance Energy Transfer)を利用して評価した。蛍光標識は、NBD−PE、Rh−PEを用いた。
【0190】
EYPCに対して0.6mol%のNBD−PE、およびRh−PEを含むEYPC(EYPC1000nmol)の薄膜を作製し、1.0mLのMES Bufferを加え、超音波照射装置(USC−J)を用いて分散させた後、エクストルーダーを用いて孔径100nmのポリカーボネート膜を通し、二重蛍光標識したEYPCリポソーム分散液を得た。
【0191】
二重蛍光標識したEYPCリポソーム分散液20μLと、評価サンプル分散液20μLを、pHを調製した2960μLのMES Bufferに投与し、37℃にて60分間インキュベーションした後、分光光度計(FP−6500)を用いて450nmの励起光による500nm〜620nmの蛍光スペクトルを測定し、520nmと580nmとの蛍光強度比を求めた。
【0192】
融合率は、上記で得られた二重蛍光標識したEYPCリポソーム分散液と両親媒性物質とをインキュベーションした場合の蛍光強度比を0%とし、二重蛍光標識したEYPCリポソーム分散液と、評価サンプル分散液と、をメタノール処理したものを100%として算出した。なお、メタノール処理は二重蛍光標識したEYPCリポソーム分散液と評価サンプル分散液との両者をメタノールに溶解させた後、ロータリーエバポレーターを用いて薄膜とし、3.0mLのMES Bufferと超音波照射装置を用いて分散させて実施した。
【0193】
具体的には、融合率は、下記式に従って計算した。なお、下記式中において、測定して得られた蛍光強度比をRとし、二重蛍光標識したEYPCリポソーム分散液と両親媒性物質とをインキュベーションした場合の蛍光強度比をR
0、二重蛍光標識したEYPCリポソーム分散液と評価サンプル分散液をメタノール処理して得られた蛍光強度比をR
100と表す。
【0194】
【数4】
【0195】
(組込率の測定)
組込率の評価は、抗原が、単独であるとフィルターを通過し、アジュバント組成物に担持または包含されたものであるとフィルターを通過しないことを利用して、下記のように実施した。
【0196】
アジュバント組成物および抗原を含む分散液を、室温、7000rpm、10分の条件にて、Amicon Ultra 30Kのフィルターを通した。
【0197】
フィルター前後の抗原を測定することで、組込率を算出した。フィルター前後において、Lowry法により抗原の呈色を行い、UV−vis分光光度計で750nmの吸光度を測定し、下記式に従って組込率を算出した。なお、呈色には200μLを用いて実施した。また、下記式中において、フィルター前の分散液の抗原の呈色に基づく吸光度をA
beforeとし、フィルター後の分散液の抗原の呈色に基づく吸光度をA
afterとし、PBSを用いた場合の吸光度をA
Bufferとした。すなわち、分子はフィルターを通過しなかった抗原、つまりアジュバント組成物に組み込まれた(担持または包含された)抗原を表す。
【0198】
【数5】
【0199】
(自然免疫を活性化する刺激の評価)
自然免疫を活性化する刺激の評価は、下記に従って実施した。
【0200】
すなわち、C57BL/6Nマウスの脾臓を摘出し、2mg/mLのコラゲナーゼ溶液500μL(RPMIメディウムを用いて調製)を摘出した脾臓に注射し、37℃にて30分間インキュベートした。BD Falconセルストレーナーを用いて脾臓を処理し、細胞懸濁液とした。RBC lysis bufferを用いて溶血操作を行った後、RPMIメディウムを用いて細胞を洗浄した。細胞をRPMIメディウムにて分散した後、細胞数をカウントし、次の操作に使用した。
【0201】
96well dishに、1.0×10
6cells/100μLとなるように細胞を播種した後、各種分散液を含むRPMIメディウム100μLをさらに添加し、一晩インキュベーションした。これらの操作は、血清非含有RPMIメディウムを用いて行った。
【0202】
細胞を回収し、BD stain bufferを用いて洗浄した後、0.25μg/100μLのAnti−CD11cFITCとインキュベーションし(4℃、30分)、細胞を染色した。細胞を洗浄した後、さらに0.25μg/100μLのAnti−CD80PE、Anti−CD86PE、またはAnti−CD40PEとインキュベーションし(4℃、30分)、染色した。細胞を少なくとも3回以上洗浄した後、フローサイトメーター(Cytomics FC500,ソフトウェア:CXP software ver2)を用いて細胞の評価を行った。
【0203】
(マウスへの免疫)
投与は麻酔下にて実施し、背部1箇所に100μL/headにて皮下注射した。両親媒性物質は100nmol/headとし、pH感受性化合物は10〜640nmol/head、MPL含率は0.0227〜22.7nmol/headとした。抗原量は、3.2〜400μg/headとした。細胞性免疫を評価する場合は、投与を1回とし、投与から7日後にアッセイを実施した。液性免疫を評価する場合は、投与を2回とした。初回投与から14日後に2回目の投与を実施し、2回目の投与から7日後にアッセイを実施した。
【0204】
(マウス脾臓からの細胞分散液の調製)
最終の投与から7日目においてマウスを安楽死させ、脾臓を摘出した。3.0mLの10%血清含有RPMIメディウムを添加した後、BD Falconセルストレーナーを用いて脾臓を処理し、細胞懸濁液とした。RBC lysis bufferを用いて溶血操作を行った後、10%血清含有RPMIメディウムを用いて細胞を洗浄した。細胞を10%血清含有RPMIメディウムにて分散した後、細胞数をカウントし、脾臓の細胞分散液を得た。
【0205】
(CTL誘導率の評価−ICS法)
脾臓の細胞分散液を10%血清含有メディウムにて1.0×10
6cells/100μLとなるように播種した。抗原の再刺激として、40μg/mLのOVAペプチドを含む10%血清含有RPMIメディウム100μLを添加し、3時間インキュベーションした。その後、BD GolgiPlugを0.2μL/100μLとなるように加え、一晩培養した。再刺激を加えない場合は、OVAペプチドを含まない10%血清含有RPMIメディウムを使用した。
【0206】
細胞を回収し、BD stain bufferを用いて洗浄した後、Anti−mouse CD16/32を添加し、4℃にて10分間インキュベートした。細胞を洗浄した後、Anti−CD8αPEにて細胞を染色し(4℃、30分)、再度、細胞を洗浄した。その後、Cytofix/Cytopermを用いて細胞を透過処理し、洗浄した後、Anti−IFNγFITCにて細胞を染色した(4℃、30分)。細胞を少なくとも3回以上洗浄した後、フローサイトメーター(Cytomics FC500,ソフトウェア:CXP software ver2)を用いて細胞の評価を行った。CTL誘導率は、全CD8陽性細胞中に占めるIFNγ産生細胞の割合として算出した。
【0207】
(ELIspot法)
ELIspot法は、Mouse IFNγ ELISPOT Setを用いて実施した。細胞を播種する前日に、96well ELIspotプレートにキットに付属のdetection antibodyを吸着させて、プレートを作製した。作製したプレートを10%血清含有RPMIメディウムにて洗浄した後、200μLの10%血清含有RPMIメディウムを添加し、37℃にて2時間静置しブロッキングを行った。10%血清含有RPMIメディウムにてプレートを洗浄した後、抗原の再刺激を加える場合は、40μg/mLのOVAペプチドを含む10%血清含有RPMIメディウム100μLをプレートに添加し、抗原の再刺激を加えない場合は10%血清含有RPMIメディウム100μLをプレートに添加した。前記プレートに、脾臓の細胞分散液を所定の細胞数となるように播種し、最後に、10%血清含有RPMIメディウムを用いて1穴あたりの全量が200μLとなるように、調整した。その後、二晩培養し、プレートの呈色を行った。
【0208】
プレートの呈色は、Mouse IFNγ ELISPOT Set、およびAEC Substrate Setに記載のプロトコールに従って実施した。
【0209】
(抗体価の測定)
2回目の投与から7日後に採血を実施し、血清を得た。500mLのPBSに5gのアルブミンを溶解し、Block bufferとした。1.47gの炭酸水素ナトリウムと0.80gの炭酸ナトリウムを500mLの水に溶解させ、Coating Bufferとした。プレートの洗浄には、500mLのPBSに2.5mLのTween20を添加したものを使用した。
【0210】
OVAタンパク質をCoating Bufferに溶解させ、0.1μg/well(100μL)となるように、96wellプレートに添加した。37℃にて2時間静置した後、300μLのBlock bufferと置換し、4℃にて一晩静置した。プレートを洗浄した後、所定の倍率に希釈した血清を各wellに100μL添加し、37℃にて2時間静置した。プレートを洗浄した後、Block bufferにて1000倍希釈した二次抗体溶液を各wellに100μL添加し、37℃にて2時間静置した。プレートを洗浄した後、ペルオキシダーゼ用発色キットを用いて発色を行い、抗体価を求めた。
【0211】
[評価]
前記記載の方法に従って調製した分散液を用いて各種評価を行った。
【0212】
(1)免疫応答の誘導
細胞性免疫の誘導について検討した。アジュバント組成物の両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は0.227とし、モデル抗原としてOVAペプチド(以下、「ペプチド」とも称する)を選択した。この際、MPL含率とは100nmolの両親媒性物質に対するMPLの量(nmol)であり、pH感受性化合物の量は100nmolの両親媒性物質に対する量である。
調製法は分散調製法である。
【0213】
また、比較試料としては、ペプチド単独の溶液、pH感受性担体(DLPC−デオキシコール酸)およびペプチドの分散液、不完全フロイントアジュバント(IFA)およびペプチドの溶液を用いた。上記の溶液または分散液を、それぞれC57BL/6Nマウスの背部皮下に1回投与し、脾臓におけるIFNγ産生細胞数を測定し、CTLの誘導を評価した。
【0214】
具体的な評価は、ELIspot法により行った。得られた結果を
図2に示す。評価条件は、2×10
6cells/wellである。
図2の(A)は、IFNγのspot形成数を評価したグラフであり、(B)はペプチド単独を用いた場合のSpot形成の様子であり、(C)は、ペプチドと、MPL含有DLPC−デオキシコール酸複合体(アジュバント組成物)を用いた場合のSpot形成の様子である。ペプチド単独は未処置と同等のspot数であり、CTLは誘導されなかった(
図2(A))。また、MPLを含まないDLPC−デオキシコール酸複合体も未処置と同等のspot数であり、CTLの誘導には至らなかった(
図2(A))。これは興味深い結果であり、CTLの誘導には自然免疫を活性化する刺激が必要であることを示している。
【0215】
一方、アジュバント組成物であるMPL含有DLPC−デオキシコール酸複合体を用いた場合は、未処置やペプチド単独に比べて多数のspotを形成した(
図2(A)〜(C))。spot数はポジティブコントロールのIFAと同等であったことから、IFAと同程度に強くCTLを誘導したものと考えられる。IFAはCTLを誘導するアジュバントとして臨床試験に広く使用されており、同等の活性をもつ本発明は臨床における有効性が期待される。
【0216】
(2)MPLとの比較
MPLは自然免疫を活性化し、単独でもアジュバントとして機能することが知られている。また、細胞性免疫を誘導することが知られている。そこで、抗原と共に投与するものとして、MPLを単独で使用した場合と、MPLをpH感受性担体と共に使用した場合(アジュバント組成物)における、細胞性免疫の誘導を比較した。なお、抗原は80μgのペプチドを使用し、MPLはMPL含率0.227あるいは前記に相当する量を使用した。アジュバント組成物は、上記(1)と同様、MPL含有DLPC−デオキシコール酸複合体の分散液とした。上記の溶液または分散液を、それぞれC57BL/6Nマウスの背部皮下に1回投与し、ICS法によりCTL誘導率を求めた。この際、CTL誘導率は、死細胞の影響を受けにくい所定の領域における全CD8陽性細胞に対するIFNγ産生細胞の割合(IFNγ産生細胞/全CD8陽性細胞)である。
【0217】
得られた結果を
図3に示す。
図3の(A)は、ペプチドの溶液(ペプチド単独)を用いた場合の結果であり、(B)はペプチドと、MPL分散液(MPL単独)を用いた場合の結果であり、(C)はペプチドと、MPL含有DLPC−デオキシコール酸複合体(アジュバント組成物)を用いた場合の結果である。
【0218】
ペプチドとMPL分散液を用いた場合のCTL誘導率は0.27%であり、ペプチド単独を用いた場合(0.14%)に比べて、僅かに高い値となった(
図3(A)、(B))。また、ペプチドとMPL含有DLPC−デオキシコール酸複合体を用いた場合のCTL誘導率は0.53%となり、MPL分散液の場合と比べて、高い値となった(
図3(B)、(C))。同様の抗原を用いたにも関わらず、MPLを含むpH感受性担体(アジュバント組成物)は、MPL分散液を用いた場合よりも高いCTL誘導率を示した。この結果は、アジュバント組成物のCTL誘導増強効果を示している。
【0219】
以上の結果により、MPLのCTL誘導効果はpH感受性担体によって増強されることが示された。pH感受性担体の膜破壊機能促進効果が、細胞質基質への抗原のデリバリーを可能とし、クロスプレゼンテーションの促進を通じてCTL誘導効果を増強したものと考えられる。
【0220】
(3)調製方法の検討
ワクチン組成物は、抗原とアジュバント組成物を含む。ワクチン組成物の調製方法を検討することにより、アジュバント組成物のCTL誘導増強効果を、より高めることが出来ると考え、検討を行った。
【0221】
分散調製法、混合調製法、および凍結融解−凍結乾燥調製法を用いてワクチン組成物の分散液を調製し、上記(2)と同様の方法で、CTL誘導率を求めた。両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は0.227とし、抗原は80μgのペプチドとした。
【0222】
得られた結果を
図4に示す。
図4の(A)は、MPL含有DLPC−デオキシコール酸複合体(分散調製法)を用いた場合の結果であり、(B)はMPL含有DLPC−デオキシコール酸複合体(混合調製法)を用いた場合の結果であり、(C)はMPL含有DLPC−デオキシコール酸複合体(凍結融解−凍結乾燥調製法)を用いた場合の結果である。
【0223】
分散調製法、混合調製法、および凍結融解−凍結乾燥調製法によって調製したワクチン組成物は、いずれもMPL単独よりも高いCTL誘導率を示した(0.53%、0.54%、1.47%、
図4(A)〜(C))。このため、ワクチン組成物中における、アジュバント組成物は、いずれの調製方法においてもCTL誘導増強効果を有することが確認された。特に、凍結融解−凍結乾燥調製法により調製したワクチン組成物は、非常に高いCTL誘導率を示しており、凍結融解−凍結乾燥調製法は、ワクチン組成物中におけるアジュバント組成物に対して、高いCTL誘導増強効果を与えることが明らかとなった(
図4(C))。
【0224】
(4)組込率の評価
(3)において、凍結融解−凍結乾燥調製法により調製されたワクチン組成物は、非常に高いCTL誘導率を示した。
【0225】
アジュバント組成物への抗原の組込が、細胞質基質へのデリバリー効率の向上をもたらし、高いCTL誘導増強効果をもたらしたと考えられる。そこで、アジュバント組成物への抗原の組込率を評価した。まず、評価系の確認を行った。ペプチド単独の溶液では、フィルター前後においてLowry法の吸光度に変化はなく、ペプチドはフィルターに捕獲されなかった(
図5(A))。一方、テストワコーによる吸光度はフィルターにより、ほぼ完全に消失し(
図5(B))、アジュバント組成物はフィルターによって捕獲されることが明らかとなった。以上より、本評価系によりアジュバント組成物への抗原の組込率を評価可能であると考えた。
【0226】
図5の(C)は、分散調製法、混合調製法、および凍結融解−凍結乾燥調製法によってワクチン組成物を調製し、組込率の評価を行った結果である。分散調製法は5%前後と低い組込率であり、混合調製法においても低い組込率であった。一方、凍結融解−凍結乾燥調製法は、最大で約60%の組込率であった(
図5(C))。凍結融解−凍結乾燥調製法により調製したワクチン組成物は、アジュバント組成物と抗原が高い割合で一体となっていることが示された。なお、両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は0.227である。
【0227】
凍結融解−凍結乾燥調製法は、抗原の高い組込率を実現し、アジュバント組成物と抗原が同一のエンドソームに取り込まれる確率を高めたと考えられる。その結果、膜破壊機能促進効果による細胞質基質デリバリーが効率良く実現し、上記(3)の結果でも示されたような高いCTL誘導増強効果に繋がったと考えられる。
【0228】
(5)MPLの量について
上述の(1)の結果において、MPLを含まないDLPC−デオキシコール酸複合体を用いた場合は、CTLの誘導には至らなかったことが確認された。これは、pH感受性担体をアジュバント組成物として利用するためには、自然免疫を活性化する物質が必要であることを示している。そこで、nature materials 2011 vol:10(3) 243−251やCancer Res. 2011 71 2858−2870の報告を参考にマウス脾臓細胞を用いたex vivo実験を行うことで、自然免疫を活性化する刺激の強さを調べた。これにより必要なMPLの量を求めた。
【0229】
まず、評価系の確認を行った。
【0230】
図6に、評価系の確認を行った結果を示す。
図6の(A)は、培養したマウス脾臓細胞を染色せずに評価したフローサイトメトリーの結果であり、死細胞の領域を調べたものである。
図6の(B)および(C)は培養したマウス脾臓細胞にPBS単独、LPSを400ng/mLの濃度で添加し、CD80の発現増強を確認した結果である。
図6の(D)は種々の濃度でLPSを添加した場合における、フローサイトメトリーの結果をまとめたグラフである。
図6の(E)および(F)は、他の補助刺激分子であるCD86、およびCD40の発現増強を確認した結果である。
【0231】
モニターした領域において、CD80PEの蛍光強度がLPS量に依存して増大した(
図6(B)〜(D))。また、他の補助刺激分子であるCD86やCD40も同様に増強された(
図6(E)、(F))。以上から本評価系により、自然免疫を活性化する刺激の強さが評価可能であることを確認した。
【0232】
次に、MPLの含有量を適宜変更し、アジュバント組成物による、自然免疫を活性化する刺激の評価を行った。得られた結果を
図7に示す。アジュバント組成物の両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。また、比較試料としては、PBS、pH感受性担体(DLPC−デオキシコール酸)の分散液、リポ多糖(LPS)の溶液を用いた。
【0233】
図7の(A)は、CD80の産生増強を評価した結果であり、(B)および(C)は、他の指標であるCD86、CD40の発現増強を評価した結果である。MPLを含まないDLPC−デオキシコール酸複合体は、0.1μLと10μLの、いずれの添加量においてもPBS単独と同等の蛍光強度であり、自然免疫を活性化する刺激は認められなかった(
図7(A))。一方、MPL含率を増大させた場合、得られる蛍光強度は増大し、自然免疫を活性化する刺激も増大する傾向であることが明らかとなった(
図7(A))。この際、MPL含率が、0.00227の場合、MFI(蛍光強度)の値は、41.6であり、PBS単独のMFI(39.1)およびMPL含率がゼロの場合(pH感受性担体)のMFI(38.8)よりも大きい値となった。また、MPL含率が、2.27である場合および22.7である場合のMFIの値を対比すると、それぞれ69.1および70.9であり、自然免疫を活性化する刺激に若干の飽和が見られた(
図7(A)値は添加量10μLのもの)。
【0234】
なお、他の共刺激分子であるCD40やCD86の産生増強も確認されたことから、これらのアジュバント組成物は確かに自然免疫を活性化する刺激を有していることが確認された(
図7(B)、(C))。
【0235】
(6)細胞性免疫の増強と自然免疫の活性化について
ここで、細胞性免疫の増強と自然免疫の活性化について、相関を検証した。
【0236】
まず、(1)において、CTLの誘導に至らなかった、MPLを含まないDLPC−デオキシコール酸複合体は、(5)において、自然免疫を活性化する刺激は認められなかった。
図8(A)は、さらに詳細を調べた結果である。MPLを含まないDLPC−デオキシコール酸複合体を0.5μLから50μLで添加した場合においても、CD80PEの蛍光強度はPBSのそれから増加せず、MPLを含まないDLPC−デオキシコール酸複合体は、自然免疫を活性化する刺激を有していないことが明らかとなった(
図8(A))。
【0237】
一方、(2)においてCTL誘導増強効果を示したアジュバント組成物のMPL含率は0.227であり、(5)において、確かに自然免疫を活性化する刺激が認められている。以上より、細胞性免疫の増強と、自然免疫の活性化は相関していると考えられる。
【0238】
なお、
図8(B)は、種々のサンプルにおいて、培養したマウス脾臓細胞に5μLの溶液を添加し、CD80の産生増強(自然免疫の活性化)を調べた結果である。ペプチドおよびOVA溶液は800μg/mL、DLPC単独は1000nmol/mL、デオキシコール酸単独は1600nmol/mLの溶液を使用した結果である。
【0239】
ペプチド単独、OVA単独、DLPC単独、およびデオキシコール酸単独を添加した場合、CD80PEの蛍光強度は、PBSを添加した場合と変わらず、自然免疫を活性化する刺激は認められなかった(
図8(B))。
【0240】
(7)膜破壊機能促進効果に及ぼす影響
(7−1)MPLの影響
アジュバント組成物の膜破壊機能促進効果に及ぼすMPL含有の影響を調べた。結果を
図9に示す。
図9の(A)は、MPL含率0.227に相当する量のMPLを、溶出性試験の評価系に投与した場合の溶出率であり、(B)はMPL含有DLPC−デオキシコール酸複合体の各pHにおける溶出率であり、(C)は、MPL含率を変化させた場合のDLPC―デオキシコール酸複合体のpH7.4とpH5.0における溶出率である。
【0241】
MPLを、PBSあるいはDMSOに分散させてセル中に添加し、低pHにおける溶出率の増大を調べたところ、いずれの場合においても、PBS単独と同等であった。(
図9(A))。MPLは溶出を引き起こす性質を有していないことが示された。
【0242】
次に、MPLを種々の割合でpH感受性担体に含有させて、アジュバント組成物とし、種々のpHにおける溶出率を調べた。MPL含率が、0.227や、2.27である場合であっても、各pHにおける溶出率は、通常のpH感受性担体(DLPC−デオキシコール酸複合体)と一致する値を示した(
図9(B))。したがって、膜破壊機能促進効果を発現するpHに対して、MPL含有の影響は小さいことが示された。また、pH5.0の溶出率をモニターし、広範囲のMPL含率の影響を調べたところ、MPL含率が22.7においても、溶出率は通常のpH感受性担体(MPL含有割合=0)と変化がなかった(
図9(C))。膜破壊機能促進効果に及ぼすMPL含有の影響は小さいことが改めて確認された。含有されるMPLが、pH感受性担体の両親媒性物質に対して少量であるため、MPLによる膜破壊機能促進効果に及ぼす影響は少ないものと考えられる。
【0243】
(7−2)調製方法の影響
抗原とアジュバント組成物からなる、ワクチン組成物において、膜破壊機能促進効果に及ぼす、調製方法の影響を調べた。
図10は、分散調製法、混合調製法、凍結溶融−凍結乾燥法により調製したワクチン組成物におけるpH7.4とpH5.0の溶出率である。なお、ワクチン組成物の両親媒性物質はDLPCとし、pH感受性化合物はデオキシコール酸を使用した。MPL含率は0.227であり、複合化量は160nmolである。15μgのペプチドを使用した。
【0244】
いずれの調製方法によるワクチン組成物においても、pH7.4とpH5.0における溶出率は同様の値を示したことから、ワクチン組成物の調製方法の相違は、膜破壊機能促進効果に影響を及ぼさないことを確認した(
図10)。
【0245】
(7−3)pH感受性化合物の複合化量の影響
図11は、アジュバント組成物の膜破壊機能促進効果に及ぼす、MPL含有の影響を、種々のデオキシコール酸複合化量において調べた結果である。アジュバント組成物の両親媒性物質はDLPCとし、デオキシコール酸の複合化量は(A)10、(B)20、(C)640nmolである。MPL含率は、0.0227および22.7のものを使用した。比較試料としては、DLPC単独、デオキシコール酸単独、pH感受性担体(MPL不含)を用いた。溶出率は、pH7.4とpH5.0の条件で測定した。
【0246】
まず、MPLを含まないアジュバント組成物(pH感受性担体、図中:MPL不含)は、いずれの複合化量においても、膜破壊機能促進効果を発現した(
図11(A)〜(C))。次に、MPL含率が0.0227および22.7であるアジュバント組成物の溶出率は、pH7.4およびpH5.0の双方において、MPLを含まないアジュバント組成物の溶出率と同様の値を示しており、同程度の膜破壊機能促進効果を有していた(
図11(A))。また、同様の結果は、複合化量が20および640のアジュバント組成物においても確認された(
図11(B)、(C))。これらの結果は、いずれの複合化量のアジュバント組成物においても、MPLの含有は膜破壊機能促進効果に影響を及ぼさないことを示している。
【0247】
pH感受性化合物の複合化量の相違により、MPLの含有による膜破壊機能促進効果への影響はないことを確認した(
図11)。
【0248】
(7−4)両親媒性物質またはpH感受性化合物の種類による影響
アジュバント組成物の膜破壊機能促進効果に及ぼす、両親媒性物質およびpH感受性化合物の種類の影響を調べた。
【0249】
表1および表2に、それぞれ、種々の両親媒性物質を用いて調製したアジュバント組成物の膜破壊機能促進効果と、種々のpH感受性化合物を用いて調製したアジュバント組成物の膜破壊機能促進効果を評価した結果を示す。
【0250】
【表1】
【0251】
【表2】
【0252】
まず、いずれの両親媒性物質やpH感受性化合物においても、調製したpH感受性担体(表中、MPL:0)は、膜破壊機能促進効果を発現した(表1、表2)。次に、MPLを含むアジュバント組成物(表中、MPL:0.227)は、いずれの両親媒性物質やpH感受性化合物を用いて調製した場合においても、pH7.4とpH5.0の双方において、MPLを含まないアジュバント組成物、すなわちpH感受性担体と同様の溶出率となり、同様に膜破壊機能促進効果を有していた(表1、表2)。これらの結果は、いずれの両親媒性物質や、いずれのpH感受性化合物を用いて調製したアジュバント組成物においても、MPLの含有は膜破壊機能促進効果に影響を及ぼさないことを示している。
【0253】
両親媒性物質またはpH感受性化合物の種類の相違は、MPLの含有による膜破壊機能促進効果への影響に対して、無関係であることを確認した。
【0254】
以上の(7−1)〜(7−4)の結果から、調製方法、複合化量、両親媒性物質、pH感受性化合物、の要因において、いずれの設定においても、アジュバント組成物は膜破壊機能促進効果を有すると考えられる。
【0255】
(8)膜融合促進効果に及ぼす影響
図12は、アジュバント組成物の膜融合促進効果に及ぼす、MPL含有の影響を調べた結果である。両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。また、MPL含率は0〜0.227とし、アジュバント組成物は、分散調製法により調製した。
図12の結果からも明らかなように、MPLの含有による膜融合促進機能に及ぼす影響はないことを確認した。
【0256】
(9)自然免疫を活性化する刺激への影響
(9−1)抗原量の影響
抗原とアジュバント組成物からなる、ワクチン組成物において、自然免疫を活性化する刺激の強さに及ぼす、抗原量の影響を調べた。なお、両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸を使用した。MPL含率は、0.0227(以下、単に「低MPL」とも称する)および22.7(以下、単に「高MPL」とも称する)の2種のアジュバント組成物を用い、ワクチン組成物は、分散調製法により調製した。
【0257】
結果を
図13に示す。
図13の(A)は、種々の量のペプチドを含むワクチン組成物を、培養したマウス脾臓細胞に添加した場合のCD80PEの蛍光強度であり、(B)は、種々の量のOVAタンパク質(以下、単に「OVA」とも称する)を含むワクチン組成物を、添加した場合のCD80PEの蛍光強度である。
【0258】
低MPLおよび高MPLの双方において、CD80PEの蛍光強度はペプチド量、およびOVA量に依存せず一定の値となった(
図13(A),(B))。すなわち、抗原量は、自然免疫を活性化する刺激の強さに影響を及ぼさないことが示された。
【0259】
(9−2)両親媒性物質の種類による影響
アジュバント組成物の自然免役を活性化する刺激に対する、両親媒性物質の影響を調べた。表3、
図14に、種々の両親媒性物質を用いて調製したアジュバント組成物の結果を示す。pH感受性化合物は160nmolのデオキシコール酸とし、MPL含率は0.0227〜22.7とした。調製方法は分散調製法である。
【0260】
【表3】
【0261】
いずれの両親媒性物質を用いた場合においても、両親媒性物質単独に比べて、アジュバント組成物は、高いCD80PEの蛍光強度となり、自然免疫を活性化する刺激が付加された(表3、
図14)。この結果は、いずれの両親媒性物質を用いても、アジュバント組成物として機能することを示唆している。
【0262】
(9−3)pH感受性化合物の複合化量による影響
図15は、アジュバント組成物、およびワクチン組成物の自然免疫を活性化する刺激の強さに及ぼす、pH感受性化合物の複合化の影響を調べた結果である。両親媒性物質はDLPCとし、pH感受性化合物はデオキシコール酸とした。MPL含率は0.0227と、227とし、抗原は0μg(アジュバント組成物)と400μg(ワクチン組成物)とした。調製方法は、いずれも分散調製法である。なお、評価は、5μLの分散液を用いて実施した。
【0263】
図15の(A)は、MPL含率が0.0227において、DLPCに種々の量のデオキシコール酸を複合化させた場合の、CD80PEの蛍光強度であり、(B)は、MPL含率が22.7において、DLPCに種々の量のデオキシコール酸を複合化させた場合の、CD80PEの蛍光強度である。
【0264】
MPL含率0.0227、および22.7の双方の場合において、CD80PEの蛍光強度は、デオキシコール酸の複合化、および複合化量に関わらず、一定の値となった。すなわち、デオキシコール酸の複合化は、アジュバント組成物、およびワクチン組成物の自然免疫を活性化する刺激の強さに影響を及ぼさないことが示された(
図15(A)、(B))。
【0265】
(9−4)pH感受性化合物の種類による影響
図16は、ワクチン組成物の自然免疫を活性化する刺激の強さに及ぼす、pH感受性化合物の種類の影響を調べた結果である。
図16の(A)および(B)は、種々のpH感受性化合物を用いて調製したワクチン組成物を、培養したマウス脾臓細胞に添加した場合における、CD80の蛍光強度である。両親媒性物質はDLPCとし、pH感受性化合物の複合化量は160nmolとした。MPL含率は0.0227〜22.7とし、抗原は400μgのペプチドとした。調製法は混合調製法である。
【0266】
いずれのpH感受性化合物においてもCD80PEの蛍光強度は、抗原とPBS(図中、PBS単独)よりも大きく、自然免疫を活性化する刺激が付加された。すなわち、pH感受性化合物の種類は、自然免疫を活性化する刺激の強さに影響を及ぼさないことが明らかとなった(
図16(A)、(B))。
【0267】
以上の(9−1)〜(9−4)の結果から、抗原量、両親媒性物質、複合化量、pH感受性化合物の要因において、いずれの設定においても、アジュバント組成物として機能すると考えられる。
【0268】
(10)免疫応答誘導の検証
(10−1)MPL量の影響
MPL含率0.0227(低MPL)、および22.7(高MPL)において、アジュバント組成物のCTL誘導増強効果を検証した。両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。抗原は1匹あたり3.2μgから400μgのOVAペプチドとし、C57BL/6Nマウスの背部皮下に1回投与した。調製法は、分散調製法であり、各群n=3とした。下記表4に結果を示す。なお、MPL単独は、抗原とMPL分散液を用いた場合の結果である。
【0269】
【表4】
【0270】
同一の抗原量の結果を比較した場合、双方のMPL含率において、アジュバント組成物を用いた場合は、MPL単独を用いた場合よりも高いCTL誘導率となった(表4)。前記の条件において、アジュバント組成物のCTL誘導増強効果が示された。また、
図17に、ワクチン組成物を用いた場合の、ELIspot法の評価結果を示す。用いた抗原は、80μgのOVAであり、
図17の(A)は、高MPLの条件において、ペプチドとMPL分散液(MPL単独)を用いた場合のSpot形成の様子であり、(B)は、高MPLの条件において、ペプチドとアジュバント組成物を用いた場合(ワクチン組成物)のSpot形成の様子である。なお、評価条件は、1×10
6cells/wellである。
【0271】
ELIspot法の評価においても、アジュバント組成物を用いた場合は、MPL単独と比較して、多数のIFNγのspotを誘導しており、前記結果を支持している(
図17(A)、(B))。
【0272】
(10−2)pH感受性化合物の複合化量の影響について
アジュバント組成物のCTL誘導増強効果に及ぼす、pH感受性化合物の複合化量の影響を調べた。具体的には、DLPCに種々の量のデオキシコール酸を複合化させてアジュバント組成物を調製し、CTL誘導増強効果を検証した。MPL含率は0.227とし、80μgのペプチド、あるいは80μgのOVAを抗原としてC57BL/6Nマウスに投与した。分散調製法により調製し、各群n=1とした。結果を表5に示す。
【0273】
【表5】
【0274】
ペプチド、およびOVAの双方において、アジュバント組成物を用いた場合のCTL誘導率は、いずれの複合化量においてもMPL単独(抗原とMPL分散液)に比べて高い値を示した(表5)。100nmolの両親媒性物質に対して、10〜640nmolのpH感受性化合物において、CTL誘導増強効果が得られることが示された。
【0275】
(10−3)両親媒性物質またはpH感受性化合物の種類による影響
続いて、アジュバント組成物のCTL誘導増強効果に及ぼす、両親媒性物質およびpH感受性化合物の種類の影響を調べた。具体的には、種々の両親媒性物質またはpH感受性化合物を用いてアジュバント組成物を調製し、CTL誘導増強効果の有無を検証した。
【0276】
この際、MPL含率は0.227とし、80μgのOVAを抗原とした。pH感受性化合物の複合化量は160nmolとし、分散調製法により調製した。各群n=1である。
【0277】
表6に、種々の両親媒性物質を用いて調製した場合の結果を示し、表7に、種々のpH感受性化合物を用いて調製したアジュバントの結果を示す。
【0278】
【表6】
【0279】
【表7】
【0280】
いずれの両親媒性物質、およびいずれのpH感受性化合物を用いて調製した場合においても、アジュバント組成物を用いた場合のCTL誘導率は、MPL単独のそれよりも高い値を示しており、アジュバント組成物のCTL誘導増強効果が確認された(表6、表7)。
【0281】
また、
図18に、種々のpH感受性化合物を用いて調製したワクチン組成物における、ELIspot法の評価結果を示す。評価条件は2×10
6cells/wellであり、用いた抗原は80μgのOVAである。MPL含率は0.227であり、自然免疫を刺激する物質、あるいはアジュバント組成物として、
図18の(A)は、MPL分散液を用いた場合のSpot形成の様子であり、(B)は、MPL含有DLPC−デオキシコール酸を用いた場合のSpot形成の様子であり、(C)は、MPL含有DLPC−コール酸を用いた場合のSpot形成の様子であり、(D)は、MPL含有DLPC−ウルソデオキシコール酸を用いた場合のSpot形成の様子であり、(E)は、MPL含有DLPC−ヒオデオキシコール酸を用いた場合のSpot形成の様子である。
【0282】
いずれのpH感受性化合物を用いて調製したアジュバント組成物においても、MPL単独の場合と比較して、多数のIFNγのspotを誘導しており、アジュバント組成物は、いずれのpH感受性化合物を用いて調製した場合においても、CTL誘導増強効果を有することが示された
図18(A)〜(E))。これらの結果は、ICS法における結果と一致している。
【0283】
(11)調製方法について
タンパク質を用いた場合における、ワクチン組成物の調製方法の相違が与える影響について調べた。
図19は、各調製方法で調製したワクチン組成物のCTL誘導率を示すグラフである。ワクチン組成物は、分散調製法、混合調製法、凍結融解−凍結乾燥調製法により調製し、両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は0.0227〜22.7とし、抗原は80μgのOVAを投与した。各群はn=1である。
【0284】
図19からも明らかなように、いずれの調製方法においてもワクチン組成物は、MPL単独よりも高いCTL誘導率を示した。また、凍結融解−凍結乾燥調製法は、高いCTL誘導率を示した。これらの結果は、どのようなワクチン組成物の調製方法においても、アジュバント組成物はCTL誘導増強効果を有していることを示している(
図19)。抗原としてタンパク質を用いた場合においても、凍結融解−凍結乾燥調製法により調製されたワクチン組成物は、他の調製方法と比較して、高いCTL誘導率を示した(
図19)。
【0285】
(12)抗原特異性について
ワクチン組成物により誘導されたCTLが抗原特異性を有するかどうかを確認した。具体的には、マウスから摘出した脾臓細胞の懸濁液に、抗原であるOVAペプチドを添加した場合(再刺激あり)と、OVAペプチドを添加することなく、メディウムのみで培養した場合(再刺激なし)におけるCTL誘導率を比較した。ワクチン組成物の両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は22.7であり、80μgのOVAをC57BL/6Nマウスに投与した。ワクチン組成物の分散液は、混合調製法により調製した。各群n=1とした。
【0286】
得られた結果を
図20に示す。
図20の(A)は再刺激ありの場合のCTL誘導率であり、(B)は再刺激なしの場合のCTL誘導率である。再刺激ありの場合におけるCTL誘導率は1.08%であり、CTLの誘導が確認された。一方、再刺激なしの場合におけるCTL誘導率は0.31%であり、抗原の再刺激を加えた場合と対比して、小さな値となった(
図20)。同様の結果は、種々のpH感受性化合物を用いた場合においても確認されている(表7)。これらの結果は、ワクチン組成物により誘導されたCTLは、抗原特異的であることを示している。
【0287】
さらに、ELIspot法においても抗原特異性の確認を行った。ワクチン組成物の両親媒性物質はDLPCとし、pH感受性化合物は160nmolおよび640nmolのデオキシコール酸とした。MPL含率は0.227であり、80μgのOVAあるいは80μgのペプチドをC57BL/6Nマウスに投与した。ワクチン組成物の分散液は、分散調製法により調製した。評価条件は2×10
6cells/wellである。
【0288】
得られた結果を
図21に示す。
図21の(A)〜(F)は、抗原であるOVAペプチドを添加して培養した場合(再刺激あり)のspot形成の様子であり、(G)〜(L)は、メディウムのみで培養した場合(再刺激なし)のspot形成の様子である。ワクチン組成物を用いた場合のspot形成は、再刺激を加えた場合に比べて、再刺激を加えない場合に顕著に少ないものとなっており、ワクチン組成物により誘導されたCTLは、抗原特異的であることを示している(
図21)。ELIspot法においても、ICS法と同様の結論を示す結果が得られた。
【0289】
(13)液性免疫の増強について
ワクチン組成物による液性免疫の誘導、およびアジュバント組成物の液性免疫誘導増強効果を検証した。具体的には、種々の調製法に従って調製したワクチン組成物を、C57BL/6Nマウスの背部皮下に2回投与し、血中のIgG抗体価を測定した。両親媒性物質はDLPCとし、pH感受性化合物は160nmolのデオキシコール酸とした。MPL含率は0.227であり、抗原は80μgのOVAとした。比較としては、抗原を投与しない未処置群と、抗原を含むMPL単独群を設けた。各群n=3とした。
【0290】
得られた結果を
図22に示す。分散調製法、混合調製法、および凍結融解−凍結乾燥調製法のいずれの調製法においても、ワクチン組成物は未処置群と比較して、高いIgG抗体価を示したことから、ワクチン組成物によって液性免疫が誘導されることが明らかとなった(
図22)。
【0291】
また、いずれの調製方法のワクチン組成物(抗原とアジュバント組成物)においても、抗体価の値は、MPL単独群(抗原とMPL分散液)と比較して高い値を示した(
図22)。アジュバント組成物を用いた場合は、MPLを単独で用いた場合と比較して、高い抗体価を示したことから、アジュバント組成物は液性免疫誘導増強効果を有していることが示された(
図22)。
【0292】
(14)CpG−DNAを含むアジュバント組成物について
MPL以外の自然免疫を活性化する物質として、CpG−DNA(CpG−ODN)を用いた場合における、アジュバント組成物のCTL誘導増強効果を検証した。具体的には、1匹あたり5μgのCpG−ODNと、DLPC−デオキシコール酸複合体を混合し、アジュバント組成物とし、さらに80μgのOVAを混合することで、ワクチン組成物とした。デオキシコール酸は160nmolとし、ワクチン組成物の全量は100μLとした。各群1匹とし、C57BL/6Nマウスに投与した。ELIspot法における評価条件は2×10
6cells/wellである。
【0293】
表8は、抗原の再刺激を加えた場合と、再刺激を加えなかった場合における、CTL誘導率であり、抗原とCpG−ODN(CpG−ODN単独)、または抗原と、CpG−ODNを含むアジュバント組成物(ワクチン組成物)を投与に用いた場合の結果である。CpG−ODNを含むアジュバント組成物を用いた場合のCTL誘導率は、CpG−ODN単独の場合に比べて高い値を示した(表8)。MPL以外の自然免疫を活性化する物質を用いた場合によっても、アジュバント組成物はCTL誘導増強効果を有することが示された。また、再刺激を加えなかった場合のCTL誘導率は、再刺激を加えた場合に比べて、小さな値となったことから、CpG−ODNを含むワクチン組成物により誘導されたCTLは、MPLの場合と同様に、抗原特異的であることが明らかとなった(表8)。これらと同様の結果は、ELIspot法の評価においても得られた(
図23)。
【0294】
なお、
図23において、(A)は、80μgのOVAとCpG−ODN単独をマウスに投与した場合のspot形成の様子であり、(B)は80μgのOVAと、CpG−ODNを含むアジュバント組成物を用いた場合のspot形成の様子であり、(C)は抗原の再刺激を加えなかった場合における、80μgのOVAとCpG−ODN単独をマウスに投与した場合のspot形成の様子であり、(D)は、抗原の再刺激を加えなかった場合における、80μgのOVAと、CpG−ODNを含むアジュバント組成物を用いた場合のspot形成の様子である。
【0295】
【表8】
【0296】
本出願は、2013年11月29日に出願された日本特許出願番号2013−248543号に基づいており、その開示内容は、参照され、全体として、組み入れられている。