(58)【調査した分野】(Int.Cl.,DB名)
上昇酸素レベルの前記指標を表示する前記ステップは、酸素過飽和指数のグラフを、前記パルスオキシメーターデバイスによって、表示するステップを含む、請求項2に記載の作動方法。
【発明を実施するための形態】
【0012】
本開示の態様は、図面及び様々な実施形態に関して詳細に記載される。当業者は、いくつかの他の実施形態として同程度に詳細に説明されなくても、ここに開示されるデバイス及び方法の他の実施形態及び構成が、本開示の範囲内であるということは理解されよう。
本開示に添付の特許請求の範囲によって定義されるが、説明される様々な実施形態の態様は、本開示の範囲を限定しない。
【0013】
図1を参照すると、患者モニタリングシステム100が示されている。前記患者モニタリングシステム100は、ケーブル104によって、センサー106に取り付けられていた患者モニター102を備えている。前記センサーは、患者の様々な生理学的データを監視し、かつ、処理のために患者モニター102にパラメータを示す信号を送信する。前記患者モニター102は、通常、ディスプレイ108と、制御ボタン110と、可聴式警告のためのスピーカー112とを備える。前記ディスプレイ108は、数値読み出し、及びグラフィカル読み出し等を含む様々な監視対象の患者パラメータの測定値を表示することができる。ディスプレイ108は、液晶ディスプレイ(LCD)、陰極線管(CRT)、プラズマスクリーン、発光ダイオード(LED)スクリーン、有機発行ダイオード(OLED)スクリーン、又は任意の他の適切なディスプレイであってもよい。患者モニタリングシステム102は、酸素飽和度(SpO2)、過飽和、灌流指数(PI)、脈拍数(PR)、ヘモグロビン数、及び/又は他のパラメータを監視してもよい。
【0014】
図2は、概略的に患者モニタリングシステム100の詳細を示している。典型的には、センサー106は、患者監視部位218の一側面に位置するエネルギーエミッタ216と、通常反対側に位置する1又は2以上の検出器220とを有する。前記患者監視部位218は、通常、患者の指(図示のような)、つま先、又は耳たぶ等である。LEDのようなエネルギーエミッタ216は、エネルギーを減衰させる監視部位218における患者の身体を介して、エネルギーの特定波長、通常、赤色及び赤外線信号を放出する。次いで、前記(複数の)検出器220は、減衰されたエネルギーを検出し、かつ、処理のために患者モニター102に代表的信号を送信する。前記患者モニター102は、処理基板222及びホスト機器223を備える。前記処理基板222は、センサーインターフェース224、信号プロセッサ226、及び機器マネージャ228を備える。
【0015】
前記ホスト機器は、通常は、1又は2以上のディスプレイ108と、制御ボタン110と、音声メッセージ用のスピーカー112と、無線信号放送器234とを備える。制御ボタン110は、キーボード、フルキーボード、及びトラックホイール等を備えてもよい。患者モニター102は、ソフトウェアによって実装され、かつ、マウス、トラックボール、タッチスクリーン、又は他の入力デバイスによって動作される、ボタン、スイッチ、トグル、及びチェックボックス等を備えてもよい。
【0016】
前記センサーインターフェース224は、センサー106の検出器220から信号を受信し、かつ前記信号を前記プロセッサ226に渡して処理し、生理学的パラメータの表現にする。次いで、これらは、ホスト機器223による表示のために、さらに前記パラメータを処理することができる機器マネージャ228に渡される。前記プロセッサ226は、センサー106に位置するメモリ230と通信してもよく、そのようなメモリは通常、例えば、エミッタ216のエネルギー波長のような信号を処理するために有用であってもよいセンサーの特性に関連した情報を含む。処理基板222の要素は、センサー106の信号の処理を提供する。前記信号は、実際に変化する患者パラメータを反映していない様々な異常を含むことがあり、医療信号の追跡をすることは、困難です。生の信号を厳密に表示すること又は生の信号を変換することでさえ、不正確な読み取り、又は不当なアラーム状態につながる可能性がある。処理基板222の処理は、通常、限定された期間の異常から真に変化する状態を検出するのに役立つ。次いで、ホスト機器223は、機器マネージャ228からの指示に基づいて、1又は2以上の生理学的パラメータを表示することができ、ケア提供者は、測定値(reading)の信頼性をより確信することができる。
【0017】
生理学の背景
酸素分子が、血液と接触するとき、酸素分子の大部分は、赤色血液細胞中のヘモグロビンに結合され、かつ、わずかな部分は、血液血漿中に直接溶解される。これらの処理の両方は、酸素の分圧によって駆動される。肺では、酸素は、肺細胞を横切って、次いで、肺の毛細血管内の赤血球膜に拡散する。酸素分子が、ヘモグロビンの分子に直面すると、鉄原子とグロビン鎖に結合された窒素原子との間にそれ自信を押し込む(wedge)。これは、タンパク質内の適当な位置にヘム基を保持するのに役立ちます。その4つのヘム基を有するヘモグロビンの1つの分子は、二原子酸素O
2の4分子を結合することが可能です。オキシヘモグロビンと呼ばれるヘム基にロードされた酸素の色素は、鮮紅色である。これは、通常、動脈血の色である。血漿中及び赤血球中の周囲における溶存酸素からの圧力は、結合部位の酸素を維持するのに役立つ。
【0018】
血液が周囲に循環するとき、血漿溶存酸素の少量が、臓器及び組織内の細胞によってまず消費され、酸素の分圧の低下を引き起こす。圧力におけるこの解放は、4つの酸素分子の連続的なアンロード(unloading)を開始するヘム結合された酸素のより大きい保有(reservoir)を利用可能にする。せいぜい、通常の状況下では、酸素の3分子のみがアンロードされる。部分的に又は完全にアンロードされたヘモグロビンは、デオキシヘモグロビンと呼ばれる。それは、暗青から紫がかった色である。これは、静脈血の典型的な色である。
【0019】
血中の酸素飽和度と、酸素の分圧との間には一般的な関係がある。この非線形の関係は、
図3Aに示されるように、酸素解離曲線によって説明される。
図3Aは、SaO
2と動脈血に溶解された酸素の分圧PaO
2とのグラフを説明している。動脈血における酸素の分圧が増加するとき、ヘモグロビンの酸素飽和度の割合は増加する。SaO
2レベルが100%に達した後、PaO
2レベルは上昇し続けるが、SaO
2レベルはさらに上昇はしない。従って、
図3Aに説明されるように、SaO2が100%未満であるとき、PaO2を推定することは可能であるが、特定点の後、PaO
2における大きな変化があっても、SaO
2における変化はほとんど発生しない。曲線の第1部分において生理機能が低下する患者は、一般的に低酸素状態として参照される。
図3Aから理解できるように、PaO
2 = 30 mmHg周辺は感度が高く、つまり、傾きが大きくなる。SaO
2が水平になり始める曲線の第2部分において生理機能が低下する患者は、酸素正常状態である。SaO
2が100%に達した曲線の最後の部分において、患者は酸素過剰状態であると考えられる。
【0020】
図3Bは、個別の患者の応答に基づいて、解離曲線の電位シフトを示すグラフを示している。例えば、左シフトは、温度の減少、1,3-ジホスホグリセンリン酸(2,30DPG)の減少、pHの上昇、又は血中のCOが高い状態とともに起こる。別の実施例としては、右シフトは、親和性の低下、温度の上昇、2,3-DPGの上昇、及びpHの減少とともに起こる。従って、SaO
2測定に基づいてPaO
2を決定するときに、いくらかの不確実性が存在する。もし前記pH及び温度が、適切な曲線を選択することができる装置への入力として与えられる場合、この不確実性が低減されることができる。
【0021】
酸素消費量
以下の酸素含有量の式は、特定のヘモグロビン濃度(tHb)で指定された血液中に存在する酸素の量と、酸素の分圧(PaO
2)に関連する。
【0023】
あるいは、前記酸素含有量は、カルフォルニア州アーバインのマシモコーポレーションから入手可能なマシモレインボーパルスオキシメーターを使用して直接測定されてもよい。
【0024】
組織は、代謝のために、O2分子の必要量を必要としています。定常状態の条件下で、O2消費は、非常に一定である。酸素変換とその消費の間の関係を定量化するために、フィックの原理が適用されてもよい。フィックの原理の本質は、以下の情報が既知である場合、臓器への血流が、マーカー物質を用いて計算されてもよいということである。その情報とは、
・単位時間当たりに臓器によって取り込まれるマーカー物質の量
・臓器に供給する動脈血におけるマーカー物質の濃度
・臓器を離れる静脈血におけるマーカー物質の濃度
である。
【0025】
フィックのオリジナルの方法では、“臓器”は、人体全体であり、マーカー物質は、酸素であった。
【0026】
この原理は、異なる方法で適用されてもよい。例えば、マーカー物質の動脈及び静脈の濃度とともに、臓器への血流が既知である場合、次いで、臓器によるマーカー物質の摂取が計算されてもよい。
【0027】
上述したように、ヘモグロビン及び血漿は、血液中における主な酸素ベクトル(vector)である。酸素消費量と、以下の式2に示される血流との関係を説明するために、酸素含有量の式が、フィックの原理と組み合わされてもよい。
【0029】
OCは酸素消費量 (mL / min)であり、Caは心拍出量(すなわち、試験部分における局所血流量(dL / min))であり、tHbは総ヘモグロビン(gram / dL)であり、SaO2は動脈の飽和割合(0 - 1.0)であり、SvO2は静脈の飽和割合(0 - 1.0)であり、PaO2は動脈血における酸素の分圧(mmHg)であり、PvO2は静脈血における酸素の分圧(mmHg)であり、1.34は容量を運ぶHbO2(mL O2 / gram Hb)を表し、かつ、0.0031は、血中のO2溶解度係数(mL O2 / dL)を表す。
【0030】
非侵襲酸素飽和度測定
パルスオキシメトリは、動脈の酸素飽和度を非侵襲的に測定するための技術として1972年にAyogi博士によって発明された。Ayogi博士は、測定部位における局所血流を反映する心拍に同期した信号を見ることによって組織、骨及び軟骨吸収から、動脈吸収を単離することができた。この信号は、フォトプレチスモグラフィと呼ばれ、高通過フィルタ(high-pass filter)の使用によって単離することができる。血管床を介して動脈の酸素飽和度と光吸収との間の予測可能な関係を利用することにより、動脈血酸素飽和度(SpaO
2)は、非侵襲的に計算されてもよい。動脈からの計算を示すために、SaO
2に小さいpを追加することに留意すべきである。二つの異なる光源、赤色(R)=660 nm及び赤外線(IR) =910 nmの使用し、パルスオキシメーターは、
図3Cに示される典型的なパルスオキシメーター検量曲線を介して比率=R (AC/DC) / IR (AC/DC)をヘモグロビン酸素飽和度に関連付けることによって、酸素飽和度を非侵襲的に計算することができることが示されている。この比率を(R/IR)比として参照する。
【0031】
もし、(SaO
2 - SvO
2)がΔSatに置き換えられ、(PaO
2 - PvO
2)がΔPに置き換えられ、Caが局所血流(BF)に置き換えられる場合、式2を修正し、酸素消費量は一定に設定され、かつ、式はBFのために解かれる以下の式3となる。
【0033】
式3は、血流と動静脈の飽和差ΔSat及び動静脈のO
2分圧差(ΔP)との間の逆相関を示している。通常の吸入酸素レベルにおいて、酸素の大部分は、ヘモグロビンによって供給される。しかし、吸入酸素の濃度が上昇するとき、その分圧従ってΔPが上昇し、かつ、より多くの酸素が、血漿中に溶解したO
2を介して組織に運ばれる。式3に基づくと、もし、パルスオキシメーターのプローブ(probe)が配置される指を考慮する場合、吸入酸素分圧の上昇は、動静脈のΔSatにおける減少につながる。酸素消費量が比較的一定であるときはいつでもこのようになる。
【0034】
血管床において、動脈系は、組織を介して静脈血管系に機械的に結合されている。この結合は僅かであるが、光動脈、例えばフォトプレチスモグラフィは、常に小さな静脈成分を有する。この成分は、被験者全体では固定されないが、その平均は、飽和検量曲線において間接的に測定される。動脈におけるその影響は、結合の大きさだけでなく、部位の動脈飽和と静脈飽和との間の差に比例する。98%の室内空気飽和における典型的な被験者を考える。
図3Cの飽和検量曲線に見ると、0.53の(R/IR)比は、98% 飽和に対応する。もし、吸入酸素濃度が、通常のO
2 = 21%を超えて上昇すると、(R/IR)比は、0.53未満に低下し続ける。
図3Fに示される実施例では、前記比は、0.43で開始し、0.43に低下している。さらに、吸入O
2 = 100%では、ある被験者において0.3という低いレベルに達することもできる。
【0035】
この振る舞いは、血漿酸素の利用可能量が増加することにより動脈と静脈との間のデルタ飽和が減少されるときの静脈カップリング(venous coupling)の光学的影響の減少によって説明することができる。この状況においては、静脈血は光学的に、より動脈血のように見える。従って、小さくなるΔSatを示すIR、すなわち、より高い静脈飽和に対して、赤色のフォトプレチスモグラフィ信号の大きさは小さくなる。1995年に、マシモコーポレーション(Masimo)は、人工的なパルスを指に導入することによって、静脈の酸素飽和度(SpvO
2)を計算する新たな技術を紹介した(参照によってここに組み込まれる米国特許5,638,816号を参照されたい)。プローブ及び被験者の指にパルスオキシメーターを使用することによって、SpaO
2及びSpvO
2の連続的な測定が計算されることができる。血液灌流指数(PI)は、指への血流のためのプロキシとして使用される。
図3Dは、血流(BF)と動静脈の飽和ΔSatとの間の逆相関を示している。
【0036】
図3Eは、計算されたΔSatにおける吸入O
2濃度の上昇の影響を示している。予想されるように、ΔSatにおいて、酸素濃度の増加と同等の減少がある。もし、酸素圧力が、気圧を超えて増加する場合、動静脈のΔSatは、減少し続ける。しかし、これ以上の変化が可能でなくなる収穫逓減のポイントに達する。
図3Fに示されるように、そのポイントにおいて、R/IR比は変化を停止する。PaO
2の上昇は、小さくなるΔSatの影響を見ることによって、通常の100 mmHgを超えて、間接的に監視されてもよい。これは、100%で水平状態になるように、SaO
2を調べることによって実行されることはできない。
【0037】
図4は、本発明の実施形態に基づく、SpO
2飽和の割合400及びR/IR比401のグラフを説明している。説明される実施例において、SpO
2は100%の限界に達するとき、R/IR比は0.5である。SpO
2レベルは、100%飽和の限界に達する一方で、より多くの酸素が血液中に溶解されるとき、R/IR比が低下し続ける。本発明の実施形態は、R/IR比が100%飽和のSpO
2レベルに変わるポイント403の後、R/IR比に基づいて過飽和指数402を計算する必要がある。この過飽和指数402は、医療従事者が、患者の血液が酸素で過度に過飽和でないことを確実に判断することを助ける。別の実施形態において、前記過飽和指数は、ユーザ信号に応じて計算され、つまり、SpO
2レベルが100%飽和であるポイントにおいては必ずしも必要ではない。
【0038】
過飽和のレベルを決定することは、特に、様々な患者のタイプにおいて重要である。例えば、補足O
2滴定における患者は、過飽和に起因する合併症の危険にさらされる。人工呼吸器が取り付けている患者又はFiO2療法を受けている患者も、同様の危険にさらされている。さらに、閉ループ正圧O
2運搬又はFiO
2運搬デバイスもまた、患者を過飽和の危険性にさらす。これは、例えば、CPAPマシン又は閉塞性睡眠時無呼吸を患う者を含んでもよい。
【0039】
本発明の実施形態において、患者の酸素飽和度SpO
2が決定されるとともに監視される。前記飽和度が100%に達するとき、過飽和指数のような上昇酸素レベルの指標が計算される。上昇酸素レベルの前記指標は、
図1におけるディスプレイ108のような出力デバイスに表示されてもよい。
図5は、本発明のこの実施形態を説明するフローチャートである。この実施形態において、患者の血液酸素飽和度SpO
2はステップ500において決定される。もし、血液酸素飽和度が、ステップ520において100%の限界に達する場合、過飽和の指標が、ステップ530において計算されるとともに、ステップ540において表示される。
【0040】
本発明の別の実施形態において、
図6に示されるように、ステップ610におけるユーザからの信号に応じて、ステップ620において、患者の酸素飽和度SpO
2が決定され、かつ記憶される。前記信号は、通常、医療処置が始まろうとしていることを示す。次いで、ステップ630において、基準過飽和指数値は、前記記憶された酸素飽和度及び前記R/IR比に基づいて計算される。次いで、ステップ640において、前記過飽和指数は、患者の酸素飽和度が変化するにつれて監視される。次に、前記過飽和指数値が基準過飽和指数値よりも小さい又は等しいとステップ650において決定されるとき、ステップ660において、アラームトリガーが生成される。最後に、アラームは、アラームトリガーに応じてステップ670において活性化される。
【0041】
別の実施形態において、オキシメータは、患者を監視し、かつ、オキシメータが最初の測定を開始したときに取得される安定した測定から基準酸素飽和度及び/又は基準比率を自動的に決定する。前記オキシメータは、基準測定値が決定されたことを示すことができ、又は、もし安定した測定値が取得できない場合、基準測定値を決定できないことを示すことができる。一度、基準測定値が取得されると、前記オキシメータは、飽和及び比率の計算における変曲点について患者を監視する。もし、患者の酸素飽和度が上昇し始める、かつ/又は、比率が降下し始める変曲点をオキシメータが見つけた場合、酸素が患者に投与されていることを決定する。このように、ケア提供者は、ボタンを押下すること、又は、それ以外の処置の開始または酸素投与の開始を示すことの必要がない。同様にして、患者が過飽和になった時点で、酸素が、もう患者に投与されないことを示す変曲点のために、オキシメータは、飽和度及び/又は患者の比率計算を監視する。さらに、前記酸素飽和度の値及び/又は比率が、それらの正常な基準レベルに戻るとき、オキシメータは危険を知らせる。
【0042】
本発明のさらに別の実施形態において、ユーザ信号に応じて、最大過飽和指数値が、さらに計算され、かつ記憶される。この実施形態において、監視された過飽和指数値が、前記最大過飽和指数値よりも大きいか又は等しいとき、アラームトリガーが生成される。
【0043】
代替的な実施形態において、視覚的な酸素過飽和アラームが活性化される。前記酸素過飽和アラームは、酸素過飽和指数が基準過飽和指数値未満に低下したことを示すテキストを含んでもよい。別の実施形態において、前記アラームは、前記酸素過飽和指数が閾値を超えたことを示すテキストを含んでもよい。特定に実施形態において、前記視覚的な酸素過飽和アラームは、音声アラームを伴ってもよく、又は前記音声アラームによって置き換えられてもよい。
【0044】
図7は、本発明の実施形態による過飽和の指標の可視化の実施例を示している。この可視化は、例えば
図1の中のディスプレイ108のようなディスプレイにおいて表示されてもよい。図示された実施形態において、インジケータは、速度計-タイプの可視化として表示される。前記ディスプレイは、過飽和インジケータの現在の値を指すポインタ700を含む。前記値は、例えば、酸素飽和度と区別するために、0-100又は0-10のスケールであってもよい。一実施形態において、可能なレベルのスペクトルは、様々な網掛け又は色によって示されてもよい。例えば、値の低い範囲は、緑色であるエリア701によって示されてもよく、値の中間の範囲は、オレンジ色であるエリア702によって示されてもよく、かつ、値の高い値は、赤色であるエリア703によって示されてもよい。
【0045】
図8Aは、本発明の実施形態による過飽和の指標の可視化の別の実施例を示している。この可視化は、
図1におけるディスプレイ108のようなディスプレイ上に表示されてもよい。図示された実施形態において、過飽和インジケータが、バー800として表示される。一実施形態において、網掛け又は色づけされた前記バーのエリアのサイズは、過飽和インジケータの値に依存する。例えば、低い値は、“L”レベル801未満の小さい網掛けのエリアによって表されてもよい。中間の値は、“M”レベル802未満に残るより大きな網掛けのエリアによって表されてもよい。最後に、高い値は、“H”レベル803までのバーの全体をカバーすることができるさらに大きな網掛けのエリアによって表されてもよい。
【0046】
図8Bは、過飽和の指標の可視化のさらに別の実施形態を示している。表示されたグラフ820は、0-100%のスケールで過飽和を示している。線821は、推定された過飽和値を示している。網掛けのエリア823は、前記過飽和指数の変動性を示している。換言すると、各患者の生理機能は異なるとともに、患者に依存しており、彼らの過飽和は、正確に母集団の平均に従わなくてもよい。これは、例えば
図3Bに関連して詳細に説明される。従って、前記網掛けのエリア823は、推定821における不確実性の指標を提供する。これは、ケア提供者に、患者が体験している実際の過飽和のより良い指標を提供する。
図8Bの実施形態において、0%は、検出可能な酸素保有がなく、又は過飽和の指標がないことを表している。100%は、最大の検出可能保有又は最大の過飽和を示している。
【0047】
図9Aは、過飽和タイマー900の実施形態を示している。例えば患者が呼吸を停止させられることを余儀なくされる患者挿管のような処置中に、過飽和タイマー900は有用である。前記タイマーは、患者が、過飽和状態から基準飽和状態に戻る前に、ケア提供者が有する時間の量の指標を提供する。前記タイマーは、カウントダウンの指標901-905を含む。
図9Aの実施形態において、カウントダウンは、約60秒で始まり、0までカウントダウンされる。カウンターが最初に開始されるとき、患者が基準飽和状態に戻るためにかかる時間の量を決定することは比較的困難である。従って、前記タイマー900は、網掛けのエリア907によって示される残り時間の範囲を提供する。前記網掛けのエリアは、患者が基準状態に達する前の残り時間の範囲を示すタイマーを中心に時計回りに動く。時間が経過するにつれて、患者が基準飽和状態に戻るためにかかる時間の量は、どれだけ早く比率が変化するかに基づいて、より予測可能になる。従って、
図9Bに示されるように、網掛けのエリア910によって示される範囲は、小さくなる。
【0048】
図10は、タイマー1000の別の実施形態を示している。
図9A及びBと同様に、タイマー1000は、時間が満了するにつれて、かつ、患者が彼らの基準飽和に戻る時間がより僅かになるにつれて減少するカウントダウン範囲1002を有している。
【0049】
図示されていない別の実施形態において、単純なデジタル式カウントダウン時計が、過飽和患者が彼らの基準飽和度に戻るための残り時間の量を示すために使用されてもよい。前記カウントダウン時計は、範囲を示してもよく、又は、単純に数を示すとともに、患者によって体験される戻り率に基づいてスピードアップ又はスローダウンしてもよい。
【0050】
図11は、酸素保有、又は、過飽和患者が基準飽和に戻る残り時間のカウントダウン表示の実施形態を示している。換言すると、秒単位の時間は、被験者が酸素正常から酸素過剰へと推移するとき、0から増加し始める。次いで、被験者が過酸素状態から酸素正常状態へと推移するとき、前記表示は減少する。
図11の表示は、例えば、アークインジケータ1101、1102及び1103のようなアークインジケータを示している。前記インジケータは、表示の残り時間の不確実性の範囲を示すために円弧を描いている。アーク1101、1102及び1103は、図示及び説明の目的のために、ディスプレイにおいて全て図示されているが、測定時には、1つのアークのみが、相対時間に基づいて表示されると理解される。
【0051】
上記において特定の実施形態に関して説明してきたが、他の実施形態が、本明細書の開示から当業者には明らかであろう。さらに、説明された実施形態は例としてのみ提示したものであり、本開示の範囲を限定するものではない。実際に、ここに記載の新規の方法およびシステムは、その精神から逸脱することなく他の様々な形態で実施することができる。従って、他の組合せ、省略、置換、および改変は、本明細書の開示に鑑みて当業者には明らかであろう。従って、本開示は、開示された実施形態によって限定されるものではなく、添付の特許請求の範囲を参照することによって定義される。添付の特許請求の範囲およびそれらの均等物は、本開示の範囲および精神内に入るような形態または改変を包含することを意図している。