(58)【調査した分野】(Int.Cl.,DB名)
遠心ファンがファン軸心(CL)まわりに回転することで、前記ファン軸心の軸方向(DRa)から吸い込んだ空気を前記ファン軸心の径方向(DRr)へ吹き出す遠心送風機であって、
前記ファン軸心の周りに配置された複数枚の翼(52)、前記複数枚の翼のそれぞれにおける前記軸方向の一方側の部位に連なり、空気が吸い込まれるファン吸気孔(54a)が形成された板状のシュラウドリング(54)を有する遠心ファン(18)と、
前記遠心ファンを収容し、前記軸方向の前記一方側に空気が吸い込まれるケース吸気孔(221a)が形成されたケース(12)とを備え、
前記ケースは、前記シュラウドリングの前記軸方向の前記一方側の面を覆うカバー部(221)を有し、
前記カバー部は、前記シュラウドリングに対向するカバー対向面(221c)と、前記カバー対向面に設けられ、前記ファン軸心の位置を中心位置とする円周状に配置された凹部(223)とを有し、
前記シュラウドリングは、前記カバー部に対向するリング対向面(544)と、前記リング対向面のうち前記凹部に対向する領域の少なくとも一部に設けられた少なくとも1つの突出部(545)とを有し、
前記凹部の内部に前記突出部が位置した状態で、前記カバー部と前記シュラウドリングとの間に隙間(G1)が形成されており、
前記シュラウドリングのうち前記径方向における内側の端部(541)と前記カバー部との最短距離(c1)が、前記突出部の表面と前記凹部の表面との最短距離(b1)よりも大きくされており、
前記突出部の表面のうち前記径方向の外側の面と前記凹部の表面との前記径方向での最短距離である外側最短距離(a1)が、前記突出部の表面と前記凹部の表面との前記軸方向での最短距離(h1)よりも小さくされており、
前記突出部の表面のうち前記径方向の内側の面と前記凹部の表面との前記径方向での最短距離である内側最短距離(b1)が、前記外側最短距離よりも小さくされている遠心送風機。
前記遠心ファンは、前記複数枚の翼のそれぞれにおける前記軸方向の前記一方側とは反対側の他方側の部位に連なり、前記ケースに対して前記ファン軸心まわりに回転可能に支持されるファンボス部(56)と、前記ファンボス部の前記径方向の外側に嵌合した状態で、前記複数枚の翼のそれぞれにおける前記軸方向の前記他方側の部位に接合された他端側側板(60)とを有し、
前記複数枚の翼のそれぞれは、前記吸気孔を通過して隣り合う前記翼の間に流れる空気の流れ方向における上流側に、翼前縁(523)を有し、
それぞれの前記翼前縁は、前記シュラウドリングの前記内側の端部と、前記ファンボス部のうち前記径方向における外側の端部(563)の両方よりも前記径方向の内側に位置する請求項1ないし4のいずれか1つに記載の遠心送風機。
前記遠心ファンは、前記複数枚の翼のそれぞれにおける前記軸方向の前記一方側とは反対側の他方側の部位に連なり、前記ケースに対して前記ファン軸心まわりに回転可能に支持されるファンボス部(56)と、前記ファンボス部の前記径方向の外側に嵌合した状態で、前記複数枚の翼のそれぞれにおける前記軸方向の前記他方側の部位に接合された他端側側板(60)とを有し、
前記ファンボス部のうち前記径方向における外側の端部(563)は、前記シュラウドリングの前記内側の端部よりも前記径方向の内側に位置し、
前記複数枚の翼のそれぞれは、前記吸気孔を通過して隣り合う前記翼の間に流れる空気の流れ方向における上流側に、翼前縁(523)を有し、
それぞれの前記翼前縁は、前記シュラウドリングの前記内側の端部から前記径方向の内側に向かって延びているとともに、前記ファンボス部のうち前記外側の端部よりも前記径方向の内側の部位に連なっている請求項1ないし5のいずれか1つに記載の遠心送風機。
【発明を実施するための形態】
【0013】
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
【0014】
(第1実施形態)
図1に示すように、本実施形態の送風機10は、車両用のシート空調装置に用いられる。送風機10は、乗員が着座するシートS1の内部に収容される。送風機10は、シートS1の乗員側の表面から空気を吸い込む。送風機10は、シートS1の内部で空気を吹き出す。送風機10から吹き出された空気は、シートS1の乗員側の表面以外の部位から放出される。
【0015】
図2および
図3に示すように、送風機10は遠心送風機であり、詳細に言えばターボ型送風機である。
図3は、ファン軸心CLを含む平面で切断した送風機10の軸方向断面図である。
図3の矢印DRaは、ファン軸心CLの軸方向DRaすなわちファン軸心方向DRaを示している。また、
図3の矢印DRrは、ファン軸心CLの径方向DRrすなわちファン径方向DRrを示している。
【0016】
送風機10は、その送風機10の筐体であるケース12、回転軸14、回転軸ハウジング15、電動モータ16、電子基板17、ターボファン18、ベアリング28、およびベアリングハウジング29等を備えている。
【0017】
ケース12は、電動モータ16、電子基板17、およびターボファン18を収容している。ケース12は、第1ケース部材22と第2ケース部材24とを有している。
【0018】
第1ケース部材22は、樹脂で構成されている。第1ケース部材22は、ターボファン18よりも大径であって略円盤形状を成している。第1ケース部材22は、第1カバー部221と第1周縁部222と
図2に示す複数本の支柱225とを有している。
【0019】
第1カバー部221は、ターボファン18に対しファン軸心方向DRaの一方側に配置されている。第1カバー部221は、後述するシュラウドリング54のファン軸心方向DRaの一方側の面を覆っている。したがって、本実施形態では、第1カバー部221が、シュラウドリングの軸方向の一方側の面を覆うカバー部を構成している。
【0020】
第1カバー部221の内周側には、空気吸入口221aが形成されている。空気吸入口221aは、第1カバー部221をファン軸心方向DRaに貫通した貫通孔である。空気は、この空気吸入口221aを介してターボファン18へ吸い込まれる。したがって、本実施形態では、空気吸入口221aが、ファン軸心方向DRaの一方側に形成され、空気が吸い込まれるケース吸気孔に対応する。
【0021】
また、第1カバー部221は、その空気吸入口221aの周縁を構成するベルマウス部221bを有している。このベルマウス部221bは、送風機10の外部から空気吸入口221aへ流入する空気を円滑に空気吸入口221aへと導く。
【0022】
第1周縁部222は、ファン軸心CLまわりにおいて第1ケース部材22の周縁を構成している。複数本の支柱225のそれぞれは、ファン軸心方向DRaにおいて第1カバー部221からケース12の内側へ突き出ている。また、各支柱225は、ファン軸心CLと平行な中心軸を有する厚肉の円筒形状を成している。各支柱225の内側には、第1ケース部材22と第2ケース部材24とを結合するビスが挿通されるビス孔26が形成されている。
【0023】
第1ケース部材22の各支柱225は、ファン径方向DRrにおいてターボファン18よりも外側に配置されている。そして、第1ケース部材22および第2ケース部材24は、各支柱225の先端が第2ケース部材24に突き当てられた状態で、各支柱225内に挿通される図示しないビスによって結合される。
【0024】
第2ケース部材24は、第1ケース部材22と略同じ直径の略円盤形状を成している。第2ケース部材24は、樹脂で構成されている。第2ケース部材24は、鉄やステンレス等の金属で構成されていてもよい。
【0025】
図3に示すように、第2ケース部材24は、電動モータ16および電子基板17を覆うモータハウジングとしても機能する。第2ケース部材24は、第2カバー部241と第2周縁部242とを有している。
【0026】
第2カバー部241は、ターボファン18および電動モータ16に対しファン軸心方向DRaにおける他方側に配置されている。第2カバー部241は、ターボファン18および電動モータ16の他方側を覆っている。第2周縁部242は、ファン軸心CLまわりにおいて第2ケース部材24の周縁を構成している。
【0027】
第1周縁部222および第2周縁部242は、ケース12において空気を吹き出す空気吹出部を構成している。第1周縁部222および第2周縁部242は、ファン軸心方向DRaにおける第1周縁部222と第2周縁部242との間に、ターボファン18から吹き出た空気を吹き出す空気吹出口12aを形成している。空気吹出口12aは、送風機10のファン側面に形成されており、ファン軸心CLを中心としたケース12のほぼ全周にわたって開口している。
【0028】
回転軸14および回転軸ハウジング15は、それぞれ、例えば、鉄、ステンレス、または黄銅等の金属で構成されている。回転軸14は、円柱形状の棒材である。回転軸14は、回転軸ハウジング15とベアリング28の内輪とへそれぞれ圧入等されている。そのため、回転軸ハウジング15は回転軸14とベアリング28の内輪とに対して固定されている。また、ベアリング28の外輪は、ベアリングハウジング29に対し圧入等されることで固定されている。ベアリングハウジング29は、例えばアルミニウム合金、黄銅、鉄、またはステンレス等の金属で構成されている。ベアリングハウジング29は、第2カバー部241に固定されている。
【0029】
したがって、回転軸14および回転軸ハウジング15は、第2カバー部241に対してベアリング28を介して支持されている。すなわち、回転軸14および回転軸ハウジング15は、第2カバー部241に対し、ファン軸心CLを中心として回転自在になっている。
【0030】
回転軸ハウジング15は、ケース12の内部において、ターボファン18が有するファンボス部56の内周孔56aに嵌め入れられている。回転軸14および回転軸ハウジング15は、予め相互に固定された状態で、ターボファン18のファン本体部材50にインサート成型される。これにより、回転軸14および回転軸ハウジング15は、ターボファン18のファンボス部56に相対回転不能に連結される。すなわち、回転軸14および回転軸ハウジング15は、ファン軸心CLを中心としてターボファン18と一体的に回転する。
【0031】
電動モータ16は、アウターロータ型ブラシレスDCモータである。電動モータ16は電子基板17と共に、ファン軸心方向DRaにおいてターボファン18のファンボス部56と第2カバー部241との間に配置されている。電動モータ16は、モータロータ161とロータマグネット162とモータステータ163とを備えている。モータロータ161は、鋼板等の金属で構成されている。モータロータ161は、鋼板がプレス成形されることによって形成されている。
【0032】
ロータマグネット162は永久磁石であって、例えばフェライトやネオジウム等を含むゴムマグネットで構成されている。ロータマグネット162は、モータロータ161に固定されている。また、モータロータ161は、ターボファン18のファンボス部56に固定されている。モータロータ161およびロータマグネット162は、ファン軸心CLを中心としてターボファン18と一体的に回転する。
【0033】
モータステータ163は、電子基板17に電気的に接続されたステータコイル163aおよびステータコア163bを含んで構成されている。モータステータ163は、ロータマグネット162に対し微小な隙間を空けて径方向内側に配置されている。そして、モータステータ163は、ベアリングハウジング29を介して、第2カバー部241に固定されている。
【0034】
このように構成された電動モータ16では、モータステータ163のステータコイル163aへ外部電源から通電されると、そのステータコイル163aによってステータコア163bに磁束変化が生じる。そして、そのステータコア163bでの磁束変化は、ロータマグネット162を引き寄せる力を発生する。モータロータ161は、ベアリング28により回転可能に支持されている回転軸14に対して固定されているので、上記ロータマグネット162を引き寄せる力を受けてファン軸心CLまわりに回転運動をする。要するに、電動モータ16は、通電されることにより、モータロータ161が固定されたターボファン18をファン軸心CLまわりに回転させる。
【0035】
ターボファン18は、所定のファン回転方向へファン軸心CLまわりに回転することで送風する遠心ファンである。すなわち、ターボファン18は、ファン軸心CLまわりに回転することにより、矢印FLaのようにファン軸心方向DRaの一方側から空気吸入口221aを介して空気を吸い込む。そして、ターボファン18は、ターボファン18の外周側へ矢印FLbのように、その吸い込んだ空気を吹き出す。
【0036】
具体的に、本実施形態のターボファン18は、ファン本体部材50と他端側側板60とを有している。ファン本体部材50は、複数枚の翼52とシュラウドリング54とファンボス部56とを有している。翼52は、ファンブレードとも呼ばれる。ファン本体部材50は、樹脂を用いた1回の射出成形によって形成されている。したがって、複数枚の翼52、シュラウドリング54、およびファンボス部56は、一体に構成され、何れも同じ樹脂で構成されている。このため、複数枚の翼52とシュラウドリング54との間に両者を溶着等によって接合するための接合部位は存在しない。複数枚の翼52とファンボス部56との間にも両者を溶着等によって接合するための接合部位は存在しない。
【0037】
複数枚の翼52は、ファン軸心CLまわりに配置されている。詳細には、複数枚の翼52は、互いの間に空気が流れる間隔を空けつつ、ファン軸心CLの周方向へ並んで配置されている。
図2に示すように、複数枚の翼52は、互いに隣り合う翼52同士の間のそれぞれに、空気が流れる翼間流路52aを形成している。
【0038】
図3に示すように、それぞれの翼52は、翼52のうちファン軸心方向DRaで上記一方側に設けられた一方側翼端部521と、翼52のうちファン軸心方向DRaでその一方側とは反対側の他方側に設けられた他方側翼端部522とを有している。
【0039】
図3および
図4に示すように、シュラウドリング54は、ファン径方向DRrへ円盤状に拡がる形状を成している。そして、そのシュラウドリング54の内周側には、ファン吸気孔54aが形成されている。ケース12の空気吸入口221aからの空気は、矢印FLaのようにファン吸気孔54aから吸い込まれる。したがって、シュラウドリング54は、環形状を成している。
【0040】
シュラウドリング54は、リング内周端部541とリング外周端部542とを有している。リング内周端部541は、シュラウドリング54のうちファン径方向DRrにおける内側の端部である。より詳細には、リング内周端部541は、シュラウドリング54のうちファン径方向DRrにおける内側の先端を含む先端側部分である。リング内周端部541は、ファン吸気孔54aを形成している。リング外周端部542は、シュラウドリング54のうちファン径方向DRrにおける外側の端部である。
【0041】
図3に示すように、シュラウドリング54は、複数枚の翼52に対しファン軸心方向DRaにおける一方側すなわち空気吸入口221a側に設けられている。シュラウドリング54は、その複数枚の翼52のそれぞれに連結されている。言い換えれば、シュラウドリング54は、その翼52のそれぞれに対し一方側翼端部521にて連結されている。
【0042】
ファンボス部56は、ファン軸心CLまわりに回転可能な回転軸14に回転軸ハウジング15を介して固定されている。したがって、ファンボス部56は、送風機10の非回転部材としてのケース12に対してファン軸心CLまわりに回転可能に支持されている。
【0043】
また、ファンボス部56は、複数枚の翼52のそれぞれに対してシュラウドリング54側とは反対側に連結されている。詳しく言うと、ファンボス部56のうち翼52に対して連結する翼連結部位561の全体は、ファン径方向DRrにおいてシュラウドリング54全体に対し内側に設けられている。すなわち、ファンボス部56は、他方側翼端部522のうちファン径方向DRrで内側寄りの部分にて、翼52のそれぞれに対して連結されている。したがって、複数枚の翼52が、ファンボス部56とシュラウドリング54とを橋渡しするように結合させる結合リブとしての機能を兼ね備えている。このため、複数枚の翼52、ファンボス部56、およびシュラウドリング54の一体成形が可能となっている。
【0044】
また、ファンボス部56は、ターボファン18内の気流を案内するボス案内面562aを有している。そのボス案内面562aは、ファン径方向DRrへ拡がる湾曲面であり、空気吸入口221aへ吸い込まれファン軸心方向DRaを向いた空気流れをファン径方向DRrの外側へ向くように案内する。
【0045】
すなわち、ファンボス部56は、このボス案内面562aを有するボス案内部562を有している。そして、そのボス案内部562は、ファン軸心方向DRaにおいてボス案内部562の一方側にボス案内面562aを形成している。
【0046】
また、ファンボス部56を回転軸14に固定するために、ファンボス部56の内周側には、ファンボス部56をファン軸心方向DRaへ貫通した内周孔56aが形成されている。
【0047】
また、ファンボス部56は、ボス外周端部563と環形状の環状延設部564とを有している。そのボス外周端部563は、ファンボス部56のうちファン径方向DRrにおける外側に位置する端部である。詳細に言えば、ボス外周端部563は、ボス案内部562の周縁を形成する端部である。ボス外周端部563は、リング内周端部541よりもファン径方向DRrにおける内側に位置している。
【0048】
環状延設部564は円筒状のリブであり、ボス外周端部563からファン軸心方向DRaの他方側(すなわち、空気吸入口221a側とは反対側)へ延設されている。この環状延設部564の内周側には、モータロータ161が嵌め込まれて格納されている。すなわち、環状延設部564は、モータロータ161を格納するロータ格納部として機能する。そして、環状延設部564がモータロータ161に固定されることにより、ファンボス部56は、そのモータロータ161に固定されている。
【0049】
他端側側板60は、ファン径方向DRrへ円盤状に拡がる形状を成している。そして、その他端側側板60の内周側には、他端側側板60をその厚み方向へ貫通した側板嵌合孔60aが形成されている。したがって、他端側側板60は環形状を成している。他端側側板60は、ファン本体部材50とは別体として成形された樹脂成形品である。
【0050】
また、他端側側板60は、ファン径方向DRrにおけるファンボス部56の外側に嵌合した状態で、他方側翼端部522のそれぞれに接合されている。その他端側側板60と翼52との接合は、振動溶着または熱溶着によって行われる。したがって、他端側側板60と翼52との溶着による接合性に鑑みて、他端側側板60およびファン本体部材50の材質は熱可塑性樹脂であることが好ましく、更に言えば、同種材であることが好ましい。
【0051】
このように他端側側板60が翼52に接合されることによって、ターボファン18はクローズドファンとして完成する。そのクローズドファンとは、複数枚の翼52の相互間に形成された翼間流路52aのファン軸心方向DRaにおける両側がシュラウドリング54および他端側側板60で覆われたターボファンである。すなわち、シュラウドリング54は、その翼間流路52aに面し翼間流路52a内の空気流れを案内するリング案内面543を有している。また、他端側側板60は、翼間流路52aに面し翼間流路52a内の空気流れを案内する側板案内面603を有している。
【0052】
この側板案内面603は、リング案内面543に対し翼間流路52aを挟んで対向すると共に、ボス案内面562aに対しファン径方向DRrにおいて外側に配置されている。また、側板案内面603は、ボス案内面562aに沿った空気流れを円滑に吹出口18aまで導く役割を果たす。そのために、ボス案内面562aおよび側板案内面603は各々、三次元的に湾曲した仮想の一湾曲面のうちの一部と他部とを構成する。言い換えれば、ボス案内面562aおよび側板案内面603は、そのボス案内面562aと側板案内面603との境目で屈曲していない1つの湾曲面を構成する。
【0053】
また、他端側側板60は、側板内周端部601と側板外周端部602とを有している。その側板内周端部601は、他端側側板60のうちファン径方向DRrにおける内側の端部である。側板内周端部601は、側板嵌合孔60aを形成している。また、側板外周端部602は、他端側側板60のうちファン径方向DRrにおける外側の端部である。
【0054】
側板外周端部602およびリング外周端部542は、ファン軸心方向DRaにおいて互いに離れて配置されている。そして、側板外周端部602およびリング外周端部542は、翼間流路52aを通過した空気が吹き出る吹出口18aを、その側板外周端部602とリング外周端部542との間に形成している。
【0055】
また、
図3に示すように、複数枚の翼52のそれぞれは、翼前縁523を有している。その翼前縁523とは、翼52のうち、矢印FLa、FLbに沿って流れる空気の流れ、すなわち、主流の流れ方向における上流側に構成された端縁である。主流は、ファン吸気孔54aを通過して翼間流路52aに流れる空気の流れである。この翼前縁523は、ファン径方向DRrにおいてリング内周端部541に対し内側へ張り出している。翼前縁523は、ボス外周端部563に対してもファン径方向DRrにおいて内側へ張り出している。換言すると、翼前縁523は、リング内周端部541とボス外周端部563の両方よりも、ファン径方向DRrの内側に位置している。翼前縁523の一端は、リング内周端部541に連なっている。翼前縁523の他端は、ボス案内面562aに連なっている。
【0056】
さらに、換言すると、翼前縁523は、リング内周端部541からファン径方向DRrの内側に向かって延びている。翼前縁523は、ファンボス部56のうちボス外周端部563よりもファン径方向DRrの内側の部位に連なっている。
【0057】
このように構成されたターボファン18は、モータロータ161と一体にファン回転方向へ回転運動する。それに伴い、ターボファン18の翼52が空気に運動量を与える。ターボファン18は、そのターボファン18の外周に開口した吹出口18aから径方向外側へ空気を吹き出す。このとき、ファン吸気孔54aから吸い込まれ翼52によって送り出された空気すなわち吹出口18aから吹き出された空気は、ケース12が形成する空気吹出口12aを経由して送風機10の外部へ放出される。
【0058】
次に、
図5A、5Bを用いて、第1カバー部221とシュラウドリング54の詳細な形状について説明する。
図5A、5Bは、第1カバー部221とシュラウドリング54のそれぞれの同じ部分を示している。
【0059】
図5Aに示すように、第1カバー部221は、シュラウドリング54に対向するカバー対向面221cを有している。さらに、第1カバー部221は、カバー対向面221cに設けられた1つの凹部223を有している。凹部223は、ファン軸心CLの位置を中心位置とする円周状に配置されている。
【0060】
シュラウドリング54は、第1カバー部221に対向するリング対向面544を有している。さらに、シュラウドリング54は、リング対向面544に設けられた1つの突出部545を有している。突出部545は、ファン軸心方向DRaで凹部223に対向する領域に設けられている。
【0061】
突出部545は、
図4に示すように、ファン軸心CLを中心とする円周状に配置されている。したがって、突出部545は、リング対向面544のうち凹部223に対向する領域における円周方向の全域にわたって設けられている。
【0062】
図5Aに示すように、凹部223の内部に突出部545が位置した状態で、第1カバー部221とシュラウドリング54との間に隙間G1が形成されている。凹部223の内部に突出部545が位置することで、ラビリンス構造が形成されている。シュラウドリング54のうち凹部223に対してファン軸方向DRaで対向する領域と凹部233とに挟まれた隙間G1の範囲R1が、ラビリンス構造の形成範囲R1である。
【0063】
図5Bに示すように、凹部223は、底部D1と、外周面D2と、内周面D3とを有する。底部D1は、凹部223の表面のうち最もファン軸方向DRa一方側に位置する部分である。外周面D2は、凹部223の表面のうち底部D1よりもファン径方向DRrの外側に位置する面である。内周面D3は、凹部223の表面のうち底部D1よりもファン径方向DRrの内側に位置する面である。凹部223の底面D1、外周面D2、内周面D3の断面形状は、それぞれ、直線形状である。すなわち、凹部223の底面D1、外周面D2、内周面D3は、それぞれ、平坦面である。
【0064】
突出部545は、頂部E1と、外周面E2と、内周面E3とを有する。頂部E1は、突出部545のうち最もファン軸方向DRaの一方側に位置する部分である。外周面E2は、突出部545の表面のうち頂部E1よりもファン径方向DRrの外側に位置する面である。内周面E3は、突出部545の表面のうち頂部E1よりもファン径方向DRrの内側に位置する面である。頂部E1、外周面E2、内周面E3のそれぞれの断面形状は、直線形状である。すなわち、頂部E1、外周面E2、内周面E3のそれぞれは、平坦面である。
【0065】
隙間G1は、次の関係式(1)、(2)を満たすように形成されている。
b1<a1<h1・・・式(1)
b1<h2<c1・・・式(2)
ここで、上記式中のa1、b1、c1、h1、h2は、
図5Bに示す距離である。a1は、突出部545の外周面E2と凹部223の外周面D2との最短距離である。換言すると、a1は、外側最短距離である。外側最短距離は、突出部545の表面のうちファン径方向DRrの外側の面と凹部223の表面との最短距離である。b1は、突出部545の内周面E3と凹部223の内周面D3との最短距離である。換言すると、b1は内側最短距離である。内側最短距離は、突出部545の表面のうちファン径方向DRrの内側の面と凹部223の表面との最短距離である。h1は、突出部545の頂部E1と凹部223の底部D1との最短距離である。換言すると、h1は、突出部545の表面と凹部223の表面とのファン軸方向DRaでの最短距離である。h2は、第1カバー部221のうち凹部223のファン軸方向DRaにおける内側周縁部とシュラウドリング54との最短距離である。換言すると、h2は、ラビリンス構造の出口でのシュラウドリング54と第1カバー部221の最短距離である。c1は、リング内周端部541と第1カバー部221との最短距離である。
【0066】
凹部223とベルマウス部221bとの間の範囲における隙間G1の寸法は、次のように設定されている。凹部223から凹部223よりもファン径方向Draでの内側の所定位置までの範囲における隙間G1の寸法は、距離h2で一定である。その所定位置からベルマウス部221bまでの範囲における隙間G1の寸法は、最短距離c1と同じ大きさで一定である。
【0067】
また、隙間G1の寸法は、次の関係式(3)を満たす。
h1=h2=h3・・・式(3)
ここで、h3は、第1カバー部221のうち凹部223よりもファン径方向DRrでの外側の部位とシュラウドリング54との最短距離である。
【0068】
次に、本実施形態の送風機10と
図6に示す比較例1の送風機J10とを対比する。比較例1の送風機J10は、凹部223の内部に突出部545が位置した状態で、第1カバー部221とシュラウドリング54との間に隙間G2が形成されている点が、本実施形態の送風機10と同じである。比較例1の送風機J10は、ファン径方向DRrの外側から内側に向かうにつれて、隙間G2の寸法が小さくなっている点が、本実施形態の送風機10の隙間G1と異なる。さらに、比較例1の送風機J10は、複数枚の翼52のそれぞれが有する翼前縁523が、本実施形態の送風機10と比較して、ファン径方向DRrの外側に位置する点が、本実施形態の送風機10と異なる。
【0069】
本実施形態の送風機10と比較例1の送風機J10は、どちらも、凹部223の内部に突出部545が位置することで、第1カバー部221とシュラウドリング54との間の隙間G1、G2にラビリンス構造が形成されている。これにより、この隙間G1、G2を空気が通過する際の圧力損失を大きくできる。したがって、本実施形態の送風機10と比較例1の送風機J10のどちらも、ラビリンス構造が形成されていない場合と比較して、ファン径方向DRrの外側から内側に向かって隙間G2を通過する空気流れである逆流F1の流量を低減できる。
【0070】
しかし、比較例1の送風機J10では、隙間G2の寸法は、シュラウドリング54のファン径方向DRrの内側の先端位置で最小である。このため、隙間G2から吹き出される逆流FL1の流速が高くなる。高速の逆流FL1がターボファン18の主流FL2に合流することで、主流FL2がリング案内面543から剥離してしまう。また、リング案内面543の近傍に渦FL3が発生してしまう。
【0071】
これに対して、本実施形態の送風機10では、隙間G1の寸法は、上記の関係式(2)を満たす。ここで、上記の関係式(1)に示されるように、b1が、突出部545の表面と凹部223の表面との最短距離である。したがって、本実施形態の送風機10では、ラビリンス構造の出口でのシュラウドリング54と第1カバー部221の最短距離h2が、突出部545の表面と凹部223の表面との最短距離b1よりも大きくされている。さらに、リング内周端部541と第1カバー部221との最短距離c1が、ラビリンス構造の出口での最短距離h2よりも大きくされている。すなわち、本実施形態の送風機10では、隙間G1が、ラビリンス構造の形成範囲R1内で最も狭くなっている。そして、ラビリンス構造の形成範囲R1、ラビリンス構造の出口、逆流の吹出口の順に、隙間G1が段階的に広がっている。
【0072】
これにより、ラビリンス構造の形成範囲R1で逆流FL1の空気流れが速くなっても、シュラウドリング54のファン径方向DRrの内側の先端位置での逆流FL1の空気流れを遅くできる。
【0073】
本実施形態の送風機10と異なり、隙間G1の寸法がh2=c1に設定されると、隙間G1の寸法が距離c1である範囲が広くなり、逆流の低減の効果が減少してしまう。これに対して、本実施形態の送風機10では、突出部545とリング内周端部541との間の所定位置での隙間G1の寸法h2を、最短距離b1よりも大きく、最短距離c1よりも小さくしている。これによれば、隙間G1の寸法がh2=c1に設定される場合と比較して、逆流の流量を低減できる。
【0074】
したがって、
図7に示すように、この送風機10によれば、主流FL2がリング案内面543から剥離することを抑制できる。また、この送風機10によれば、リング案内面543の近傍に渦FL3が発生することを抑制できる。
【0075】
よって、本実施形態の送風機10によれば、逆流FL1の流量を低減しつつ、主流FL2がリング案内面543から剥離することを抑制できる。
【0076】
また、本実施形態の送風機10では、隙間G1の寸法は、関係式(1)を満たす。したがって、突出部545と凹部223のファン軸方向DRaでの最短距離h1が、突出部545と凹部223のファン径方向DRrでの各最短距離a1、b1よりも大きくされている。
【0077】
ここで、送風機10の製造では、複数の部品を回転軸14に組み付ける。このため、製造後における送風機10を構成する各構成部品のファン軸方向DRaでの寸法公差は、ファン径方向DRrでの寸法公差よりも大きい。また、送風機10の作動時の振動の振幅は、ファン径方向DRrよりもファン軸方向DRaの方が大きい。このため、隙間G1の最短距離h1を逆流の低減のために小さく設定すると、シュラウドリング54が第1カバー部221に接触する場合が生じる。
【0078】
そこで、本実施形態の送風機10では、隙間G1の最短距離h1を、最短距離a1、b1よりも大きくしている。このため、本実施形態の送風機10によれば、送風機10の製造時における部品のファン軸方向DRaでの寸法公差や、送風機10の作動時におけるファン軸方向DRaの振動によるシュラウドリング54と第1カバー部221との接触を回避できる。
【0079】
また、送風機10の作動時では、ファン18に遠心力が働く。このため、ファン18がファン径方向DRrの外側に変形する。ファン18がこのように変形すると、最短距離a1が短くなる。このため、隙間G1の寸法をa1<b1に設定し、最短距離a1を逆流の低減のために小さく設定すると、シュラウドリング54が第1カバー部221に接触する場合が生じる。
【0080】
これに対して、本実施形態の送風機10では、隙間G1の寸法をb1<a1に設定している。このため、最短距離b1を逆流の低減のために小さく設定しても、遠心力によってシュラウドリング54が第1カバー部221に接触することを回避できる。
【0081】
よって、本実施形態の送風機10によれば、ファン軸方向DRaおよびファン径方向DRrでのシュラウドリング54と第1カバー部221との接触を回避しつつ、逆流FL1の流量を低減できる。
【0082】
また、本実施形態の送風機10では、複数枚の翼52のそれぞれが有する翼前縁523が、リング内周端部541とボス外周端部563の両方よりも、ファン径方向DRrの内側に位置している。すなわち、本実施形態の送風機10では、比較例1の送風機J10と比較して、翼前縁523がファン径方向DRrの内側に位置している。
【0083】
これによれば、
図7に示すように、逆流FL1が主流FL2に合流する合流位置よりも上流側で、主流FL2を翼52で加速することができる。このため、隙間G1から吹き出される逆流FL1の空気流れをリング案内面543に沿うように転向させることができる。したがって、本実施形態の送風機10では、このような翼前縁523の位置によって、主流FL2がシュラウドリングから剥離することをより抑制できる。
【0084】
(第2実施形態)
図8に示すように、本実施形態の送風機10は、第1実施形態の送風機10における突出部545の表面形状と凹部223の表面形状を変更したものである。
【0085】
本実施形態の送風機10では、凹部223の表面の断面形状は円弧形状である。凹部223は、底部K1と、外周面K2と、内周面K3とを有する。底部K1は、凹部223のうち最もファン軸方向DRaの一方側に位置する部分である。外周面K2は、凹部223の表面のうち底部K1よりもファン径方向DRrの外側に位置する面である。内周面K3は、凹部223の表面のうち底部K1よりもファン径方向DRrの内側に位置する面である。底部K1の断面形状は点形状である。外周面K2と内周面K3のそれぞれの断面形状は曲線形状である。
【0086】
突出部545の表面の断面形状は円弧形状である。突出部545は、頂部M1と、外周面M2と、内周面M3とを有する。頂部M1は、突出部545のうち最もファン軸方向DRaの一方側に位置する部分である。外周面M2は、突出部545の表面のうち頂部M1よりもファン径方向DRrの外側に位置する面である。内周面M3は、突出部545の表面のうち頂部M1よりもファン径方向DRrの内側に位置する面である。頂部M1の断面形状は点形状である。外周面M2と内周面M3のそれぞれの断面形状は曲線形状である。
【0087】
本実施形態の送風機10は、第1実施形態の送風機10と同様に、関係式(1)、(2)を満たすように隙間G1が形成されている。
b1<a1<h1・・・式(1)
b1<h2<c1・・・式(2)
ここで、a1は、突出部545の外周面M2と凹部223の外周面K2との最短距離である。換言すると、a1は、外側最短距離である。b1は、突出部545の内周面M3と凹部223の内周面K3との最短距離である。換言すると、b1は、内側最短距離である。h1は、突出部545の頂部M1と凹部223の表面とのファン軸方向DRaでの最短距離である。換言すると、h1は、突出部545の表面と凹部223の表面とのファン軸方向DRaでの最短距離である。
【0088】
したがって、本実施形態の送風機10においても、第1実施形態の送風機10と同様の効果が得られる。
【0089】
(第3実施形態)
図9に示すように、本実施形態の送風機10は、第1実施形態の送風機10における突出部545の表面形状を変更したものである。
【0090】
本実施形態の送風機10では、第2実施形態の送風機10と同様に、突出部545の表面の断面形状は円弧形状である。また、第1実施形態の送風機10と同様に、凹部223の底面D1、外周面D2、内周面D3の断面形状は、それぞれ、直線形状である。
【0091】
本実施形態の送風機10は、第1実施形態の送風機10と同様に、関係式(1)、(2)を満たすように隙間G1が形成されている。
b1<a1<h1・・・式(1)
b1<h2<c1・・・式(2)
ここで、a1は、突出部545の外周面M2と凹部223の外周面D2との最短距離である。換言すると、a1は、外側最短距離である。b1は、突出部545の内周面M3と凹部223の内周面D3との最短距離である。換言すると、b1は、内側最短距離である。h1は、突出部545の頂部M1と凹部223の底面D1とのファン軸方向DRaでの最短距離である。換言すると、h1は、突出部545の表面と凹部223の表面とのファン軸方向DRaでの最短距離である。
【0092】
したがって、本実施形態の送風機10においても、第1実施形態の送風機10と同様の効果が得られる。
【0093】
(第4実施形態)
図10に示すように、本実施形態の送風機10は、第1実施形態の送風機10における凹部223の表面形状を変更したものである。
【0094】
本実施形態の送風機10では、第2実施形態の送風機10と同様に、凹部223の表面の断面形状は円弧形状である。また、第1実施形態の送風機10と同様に、突出部545の頂部E1、外周面E2、内周面E3のそれぞれの断面形状は、直線形状である。
【0095】
本実施形態の送風機10は、第1実施形態の送風機10と同様に、関係式(1)、(2)を満たすように隙間G1が形成されている。
b1<a1<h1・・・式(1)
b1<h2<c1・・・式(2)
ここで、a1は、突出部545の外周面E2と凹部223の外周面K2との最短距離である。換言すると、a1は、外側最短距離である。b1は、突出部545の内周面E3と凹部223の内周面K3との最短距離である。換言すると、b1は、内側最短距離である。h1は、突出部545の頂部E1と凹部223の表面とのファン軸方向DRaでの最短距離である。換言すると、h1は、突出部545の表面と凹部223の表面とのファン軸方向DRaでの最短距離である。
【0096】
したがって、本実施形態の送風機10においても、第1実施形態の送風機10と同様の効果が得られる。
【0097】
(第5実施形態)
図11に示すように、本実施形態の送風機10は、関係式(1)、(2)、(3)を満たすように隙間G1が形成されている点が、第1実施形態の送風機10と同じである。
【0098】
本実施形態の送風機10は、ラビリンス構造の出口からリング内周端部541までの範囲での隙間G1の寸法が第1実施形態の送風機10と異なる。具体的には、ラビリンス構造の出口からリング内周端部541に向かうにつれて隙間G1が徐々に広がっている。すなわち、隙間G1の寸法は、ラビリンス構造の出口からリング内周端部541に向かうにつれて、ラビリンス構造の出口での最短距離h2からリング内周端部541での最短距離c1の大きさまで徐々に大きくなっている。
【0099】
本実施形態の送風機10は、関係式(1)、(2)を満たすように隙間G1が形成されているので、第1実施形態の送風機10と同様の効果が得られる。
【0100】
(第6実施形態)
図12に示すように、本実施形態の送風機10は、関係式(1)を満たすように隙間G1が形成されている点が、第1実施形態の送風機10と同じである。
b1<a1<h1・・・式(1)
本実施形態の送風機10は、関係式(4)、(5)を満たすように隙間G1が形成されている点が、第1実施形態の送風機10と異なる。
b1<h2=c1・・・式(4)
h1=h3<h2・・・式(5)
すなわち、本実施形態の送風機10では、隙間G1は、ラビリンス構造の形成範囲R1内で最も狭くなっている。そして、隙間G1は、ラビリンス構造の出口から逆流の吹出口までの全範囲において、最も広がっている。
【0101】
本実施形態の送風機10は、b1<c1という関係を満たすように隙間G1が形成されているので、第1実施形態の送風機10と同様の効果が得られる。
【0102】
(第7実施形態)
図13に示すように、本実施形態の送風機10は、第1実施形態の送風機10における突出部545を複数の突出部545aに変更したものである。
【0103】
複数の突出部545aは、リング対向面544に設けられている。複数の突出部545aのそれぞれが設けられている部分は、リング対向面544のうちファン軸方向DRaで凹部223に対向する領域における円周方向での複数の部分である。複数の突出部545aは、ファン軸心CLを中心とする円周方向に並んでいる。複数の突出部545aのそれぞれは、ファン軸心CLを中心とする円周方向に沿って延びている。
【0104】
突出部545aを通る切断面におけるシュラウドリング54と第1カバー部221の断面構造は、
図5A、5Bに示す断面構造と同じである。このため、本実施形態の送風機10においても、第1実施形態の送風機10と同様の効果が得られる。
【0105】
なお、本実施形態の送風機10では、リング対向面544のうちファン軸方向DRaで凹部223に対向する領域に、円周方向に並ぶ複数の突出部545aが設けられていたが、1つの突出部が設けられていてもよい。
【0106】
(第8実施形態)
図14に示すように、本実施形態の送風機10は、第1実施形態の送風機10に対して、第1カバー部221に設けられた凹部の数が異なる。
【0107】
本実施形態の送風機10では、第1カバー部221は、カバー対向面221cに設けられた1つの第1凹部223と1つの第2凹部224とを有する。シュラウドリング54は、リング対向面544に設けられた1つの第1突出部545と1つの第2突出部546とを有する。第1凹部223と第1突出部545は、それぞれ、第1実施形態の送風機10における凹部223と突出部545と同じものである。
【0108】
第2凹部224は、第1凹部223のファン径方向Drrの外側に、ファン軸心CLの位置を中心位置とする円周状に配置されている。第2突出部546は、リング対向面544のうちファン軸方向DRaで第2凹部224に対向する領域に設けられている。本実施形態では、第2突出部546は、第2凹部224に対向する領域における円周方向の全域にわたって設けられている。すなわち、第2突出部546は、ファン軸心CLを中心とする円周状に配置されている。
【0109】
本実施形態の送風機10では、第1凹部223の内部に第1突出部545が位置し、第2凹部224の内部に第2突出部546が位置した状態で、第1カバー部221とシュラウドリング54との間に隙間G1が形成されている。隙間G1は、第1実施形態の送風機10と同様に、関係式(1)、(2)、(3)を満たすように形成されている。さらに、隙間G1は、関係式(6)を満たすように形成されている。
b2<a2<h4・・・式(6)
ここで、a2は、第2突出部546の表面のうちファン径方向DRrの外側の面と第2凹部224の表面との最短距離である。b2は、第2突出部545の表面のうちファン径方向DRrの内側の面と第2凹部224の表面との最短距離である。h4は、第2突出部546の表面と第2凹部224の表面とのファン軸方向DRaでの最短距離である。
【0110】
なお、b1とb2、a1とa2、h1とh4との寸法関係は次の通りである。
b1<b2、a1<b2、h1<h4
隙間G1が有するラビリンス構造が多いほど、隙間G1を空気が通過する際の圧力損失が大きくなる。よって、本実施形態の送風機10によれば、ラビリンス構造が1つの場合と比較して、逆流の流量をより低減できる。
【0111】
なお、本実施形態の送風機10は、凹部とその凹部の内部に配置された突出部を一組とすると、二組の凹部と突出部を有しているが、これに限定されない。凹部と突出部の組数は、三組以上であってもよい。
【0112】
また、本実施形態の送風機10では、第1突出部545がリング対向面544のうち第1凹部223に対向する領域における円周方向の全域にわたって設けられているが、これに限定されない。第7実施形態の送風機10と同様に、複数の第1突出部545aのそれぞれが、第1凹部223に対向する領域における円周方向での複数の部分のそれぞれに設けられていてもよい。また、1つの第1突出部545aが、第1凹部223に対向する領域の一部に設けられていてもよい。
【0113】
同様に、本実施形態の送風機10では、第2突出部546が第2凹部224に対向する領域における円周方向の全域にわたって設けられているが、これに限定されない。複数の第2突出部のそれぞれが、第2凹部に対向する領域における円周方向での複数の部分のそれぞれに設けられていてもよい。また、1つの第2突出部が、第2凹部224に対向する領域における円周方向での一部に設けられていてもよい。
【0114】
(他の実施形態)
(1)第1実施形態の送風機10では、隙間G1の寸法がb1<a1<h1とされていたが、これに限定されない。隙間G1の寸法がb1=a1<h1とされていてもよい。また、隙間G1の寸法がa1<b1<h1とされていてもよい。どちらの場合も、突出部545と凹部223の軸方向での最短距離h1が、外側最短距離a1および内側最短距離b1よりも大きくされている。このため、突出部545と凹部223のファン径方向DRrでの距離を、逆流の流量を低減できるように小さく設定しても、ファン軸方向DRrでのシュラウドリング54と第1カバー部221の接触を回避できる。また、逆流の流量を低減するという観点では、隙間G1の寸法がb1<h1<a1とされていてもよい。
【0115】
(2)ラビリンス構造の出口とリング内周端部541との間の範囲での隙間G1の寸法については、上記各実施形態の記載に限定されない。ラビリンス構造の出口とリング内周端部541との間の範囲内に、最短距離h2よりも隙間G1の寸法が小さい部位が存在していてもよい。
【0116】
(3)上記各実施形態の送風機10では、ファン本体部材50と他端側側板60とを有するターボファン18が用いられていたが、これに限定されない。遠心ファンとして、他端側側板60を有していないターボファンが用いられていてもよい。遠心ファンとして、シロッコファンが用いられていてもよい。
【0117】
(4)上記各実施形態の送風機10は、車両用のシート空調装置に用いられていたが、送風機10の用途はこれに限定されない。送風機10は、シート空調装置以外の空調装置や冷却装置に適用されてもよい。
【0118】
なお、本開示は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能であり、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
【0119】
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、遠心送風機は、シュラウドリングを有する遠心ファンと、カバー部を有するケースとを備える。カバー部は、シュラウドリングに対向するカバー対向面と、カバー対向面に設けられ、ファン軸心の位置を中心位置とする円周状に配置された凹部とを有する。シュラウドリングは、カバー部に対向するリング対向面と、リング対向面のうち凹部に対向する領域の少なくとも一部に設けられた少なくとも1つの突出とを有する。凹部の内部に突出部が位置した状態で、カバー部とシュラウドリングとの間に隙間が形成されている。シュラウドリングのうち径方向における内側の端部とカバー部との最短距離が、突出部の表面と凹部の表面との最短距離よりも大きくされている。
【0120】
また、第2の観点によれば、外側最短距離と内側最短距離の両方が、突出部の表面と凹部の表面の軸方向での最短距離よりも小さくされている。外側最短距離は、突出部の表面のうち径方向の外側の面と凹部の表面との最短距離である。内側最短距離は、突出部の表面のうち径方向の内側の面と凹部の表面との最短距離である。
【0121】
ここで、隙間を通過する逆流の流量を低減するために、突出部と凹部の軸方向での最短距離を小さく設定することが考えられる。しかし、この場合、遠心送風機の製造時における部品の軸方向での寸法公差や、遠心送風機の作動時における軸方向の振動によって、シュラウドリングとカバー部とが接触するおそれがある。
【0122】
これに対して、この遠心送風機では、突出部と凹部の軸方向での最短距離が、突出部と凹部の径方向での距離である外側最短距離および内側最短距離よりも大きくされている。このため、突出部と凹部の径方向での距離を、逆流の流量を低減できるように小さく設定しても、軸方向でのシュラウドリングとカバー部の接触を回避できる。よって、この遠心送風機によれば、軸方向でのカバー部とシュラウドリングの接触を回避しつつ、逆流の流量を低減できる。
【0123】
また、第3の観点によれば、外側最短距離が、突出部の表面と凹部の表面との軸方向での最短距離よりも小さくされている。内側最短距離が、外側最短距離よりも小さくされている。外側最短距離は、突出部の表面のうち径方向の外側の面と凹部の表面との最短距離である。内側最短距離は、突出部の表面のうち径方向の内側の面と凹部の表面との最短距離である。
【0124】
この遠心送風機では、突出部と凹部の軸方向での最短距離が、突出部と凹部の径方向での距離である外側最短距離および内側最短距離よりも大きくされている。このため、第2の観点の遠心送風機と同様に、突出部と凹部の径方向での距離を、逆流の流量を低減できるように小さく設定しても、軸方向におけるシュラウドリングとカバー部の接触を回避できる。
【0125】
ここで、遠心送風機の作動時では、遠心ファンに遠心力が働く。このため、遠心ファンが径方向の外側に変形する。この変形により、外側最短距離が小さくなる。このため、外側最短距離を内側最短距離よりも小さくし、かつ、逆流の低減のために外側最短距離を小さく設定すると、シュラウドリングがカバーに接触する場合が生じる。
【0126】
これに対して、この遠心送風機では、内側最短距離が外側最短距離よりも小さくされている。このため、逆流の低減のために内側最短距離を小さく設定しても、遠心力によってシュラウドリングがカバーに接触することを回避できる。よって、この遠心送風機によれば、軸方向と径方向でのカバー部とシュラウドリングの接触を回避しつつ、逆流の流量を低減できる。
【0127】
また、第4の観点によれば、突出部は、凹部に対向する領域における円周方向の全域にわたって設けられている。これによれば、凹部に対向する領域の一部のみに突出部が設けられている場合よりも高い効果が得られる。
【0128】
また、第5の観点によれば、凹部は第1凹部である。突出部は第1突出部である。カバー部は、カバー対向面に設けられ、第1凹部の径方向の外側に、ファン軸心の位置を中心位置とする円周に配置された第2凹部を有する。シュラウドリングは、リング対向面のうち第2凹部に対向する領域の少なくとも一部に設けられた少なくとも1つの第2突出部を有する。第2凹部の内部に第2突出部が位置する。
【0129】
隙間G1が有するラビリンス構造が多いほど、隙間を空気が通過する際の圧力損失が大きくなる。よって、この遠心送風機によれば、ラビリンス構造が1つの場合と比較して、逆流の流量をより低減できる。
【0130】
また、第6の観点によれば、第2突出部は、第2凹部に対向する領域における円周方向の全域にわたって設けられている。これによれば、第2凹部に対向する領域の一部のみに第2突出部が設けられている場合よりも高い効果が得られる。
【0131】
また、第7の観点によれば、遠心ファンは、複数枚の翼のそれぞれにおける軸方向の一方側とは反対側の他方側の部位に連なり、ケースに対してファン軸心まわりに回転可能に支持されるファンボス部を有する。遠心ファンは、ファンボス部の径方向の外側に嵌合した状態で、複数枚の翼のそれぞれにおける軸方向の他方側の部位に接合された他端側側板を有する。複数枚の翼のそれぞれは、吸気孔を通過して隣り合う翼の間に流れる空気の流れ方向における上流側に、翼前縁を有する。それぞれの翼前縁は、シュラウドリングの内側の端部と、ファンボス部のうち径方向における外側の端部の両方よりも径方向の内側に位置する。
【0132】
また、第8の観点によれば、遠心ファンは、複数枚の翼のそれぞれにおける軸方向の一方側とは反対側の他方側の部位に連なり、ケースに対してファン軸心まわりに回転可能に支持されるファンボス部を有する。遠心ファンは、ファンボス部の径方向の外側に嵌合した状態で、複数枚の翼のそれぞれにおける軸方向の他方側の部位に接合された他端側側板を有する。ファンボス部のうち径方向における外側の端部は、シュラウドリングの内側の端部よりも径方向の内側に位置する。複数枚の翼のそれぞれは、吸気孔を通過して隣り合う翼の間に流れる空気の流れ方向における上流側に、翼前縁を有する。それぞれの翼前縁は、シュラウドリングの内側の端部から径方向の内側に向かって延びているとともに、ファンボス部のうち外側の端部よりも径方向の内側の部位に連なっている。
【0133】
第7、第8の観点によれば、逆流が主流に合流する合流位置よりも上流側で、主流を翼で加速することができる。このため、逆流の空気流れをシュラウドリングに沿うように転向させることができる。したがって、この遠心送風機によれば、ファンの主流がシュラウドリングから剥離することをより抑制できる。