特許第6494023号(P6494023)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000003
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000004
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000005
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000006
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000007
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000008
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000009
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000010
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000011
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000012
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000013
  • 6494023-ガスセンサ及びガスセンサの製造方法 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6494023
(24)【登録日】2019年3月15日
(45)【発行日】2019年4月3日
(54)【発明の名称】ガスセンサ及びガスセンサの製造方法
(51)【国際特許分類】
   G01N 27/416 20060101AFI20190325BHJP
   G01N 27/406 20060101ALI20190325BHJP
【FI】
   G01N27/416 371G
   G01N27/406
【請求項の数】5
【全頁数】16
(21)【出願番号】特願2015-67323(P2015-67323)
(22)【出願日】2015年3月27日
(65)【公開番号】特開2016-27317(P2016-27317A)
(43)【公開日】2016年2月18日
【審査請求日】2018年3月23日
(31)【優先権主張番号】特願2014-135013(P2014-135013)
(32)【優先日】2014年6月30日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000220767
【氏名又は名称】東京窯業株式会社
(73)【特許権者】
【識別番号】504145342
【氏名又は名称】国立大学法人九州大学
(74)【代理人】
【識別番号】100098224
【弁理士】
【氏名又は名称】前田 勘次
(72)【発明者】
【氏名】大島 智子
(72)【発明者】
【氏名】木股 幸司
(72)【発明者】
【氏名】高橋 総子
(72)【発明者】
【氏名】寺西 裕紀
(72)【発明者】
【氏名】奥山 勇治
(72)【発明者】
【氏名】松本 広重
【審査官】 黒田 浩一
(56)【参考文献】
【文献】 特開2008-243627(JP,A)
【文献】 特表2002-508073(JP,A)
【文献】 国際公開第2013/137543(WO,A1)
【文献】 特開2000-19152(JP,A)
【文献】 特開2016-11936(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/26−27/49
JSTPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
プロトン伝導性セラミックスで形成されたセンサ素子、該センサ素子の一端に設けられた基準電極、前記センサ素子の他端に設けられた測定電極、及び、前記基準電極と前記測定電極との間の電位差を測定する電位計を備え、気相中の水素分圧を測定するガスセンサであって、
前記プロトン伝導性セラミックスは、
化学式AB1−bB’3−αで表され、Aはアルカリ土類金属、Bは価数が+4価の金属、B’は+3価及び+4価の価数の双方を取り得る遷移金属であるペロブスカイト型の結晶構造を有する金属酸化物であり、
前記測定電極側の端部に、B’の価数が+3価に偏り、プロトンの輸率が1であるプロトン伝導層を有すると共に、
前記基準電極側の端部に、B’の価数が+4価に偏り、大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層を有し、
前記基準電極は、前記測定電極が接する空間と区画されていると共に、大気と接触させる空間に配されている
ことを特徴とするガスセンサ。
【請求項2】
前記センサ素子を支持する筒状のホルダを更に備え、
前記センサ素子は、前記基準電極及び前記測定電極の一方が前記ホルダの内部に位置し、他方が前記ホルダの外部に位置するように前記ホルダの一端を閉塞している
ことを特徴とする請求項1に記載のガスセンサ。
【請求項3】
前記ホルダが内部に挿入された筒状の保護スリーブを更に具備し、
該保護スリーブは、外周面に形成された雄ネジ部、外周面から外方に延出したフランジ部、及び、筒壁の厚さが内側に向けて連続的に減少するテーパ部のうち少なくとも一つを備える
ことを特徴とする請求項2に記載のガスセンサ。
【請求項4】
前記センサ素子は、厚さ1μm〜100μmの薄膜である
ことを特徴とする請求項1乃至請求項3の何れか一つに記載のガスセンサ。
【請求項5】
プロトン伝導性セラミックスで形成されたセンサ素子、該センサ素子の一端に設けられた基準電極、前記センサ素子の他端に設けられた測定電極、及び、前記基準電極と前記測定電極との間の電位差を測定する電位計を備え、気相中の水素分圧を測定するガスセンサの製造方法であって、
前記プロトン伝導性セラミックスを、
化学式AB1−bB’3−αで表され、Aはアルカリ土類金属、Bは価数が+4価の金属、B’は+3価及び+4価の価数の双方を取り得る遷移金属であるペロブスカイト型の結晶構造を有する金属酸化物におけるB’の価数分布を、還元処理によって制御することにより、
前記測定電極側の端部で、B’の価数を+3価に偏らせ、プロトンの輸率が1であるプロトン伝導層を形成すると共に、
前記基準電極側の端部で、B’の価数を+4価に偏らせ、大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層を形成することにより製造し、
前記基準電極を、前記測定電極が接する空間と区画されていると共に、大気と接触する空間に配置する
ことを特徴とするガスセンサの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素原子を含有するガスの濃度を検出するために、固体電解質を用いて気相中の水素分圧を測定するガスセンサ、及び、該ガスセンサの製造方法に関するものである。
【背景技術】
【0002】
高温の環境下で気相中の水素分圧を測定するガスセンサとして、プロトン伝導性を有するセラミックスを固体電解質とした、固体電解質センサが一般的に用いられている。近年では、燃料電池や水素エンジンなど水素をエネルギーとする新規技術の開発が進められており、爆発のおそれがあるなど取扱いに注意を要する水素の使用が増えることに伴い、気相中の水素濃度を検知するガスセンサの重要性が、今後益々高まることが予想される。
【0003】
また、燃焼炉や内燃機関における燃焼のフィードバック制御のために、排ガス中の炭化水素濃度や水蒸気濃度を検出する必要性、NOxの効率の良い還元処理のために排ガス中の水素やアンモニアの濃度を知る必要性、金属材料表面を硬化する窒化処理においてアンモニアガスの分解を把握する必要性など、水素原子を含有するガスの濃度を知る必要がある場面は多い。気相中の水素分圧が分かれば、温度と平衡定数から、水素、アンモニア、炭化水素、水蒸気など、水素原子を含有するガスの濃度を検出することが可能である。
【0004】
固体電解質を用いて気相中の水素分圧を測定するセンサは、同一イオンの濃度差により電位差が生じる濃淡電池の原理を利用している。この型のセンサでは、図1(a)に示すように、水素分圧(水素濃度)の異なる二種類のガスをプロトン伝導性の固体電解質100が隔てており、固体電解質100の両端部にそれぞれ電極103,104を備えている。二種類のガスを第一ガス及び第二ガス、それぞれの水素分圧をP、Pとすると、二つの電極103,104間の起電力E(電位差)は、以下のネルンストの式(数式(1))で表される。
【数1】
ここで、Eは起電力(V)、Rは気体定数(8.31J/mol・K)、Tは温度(K)、Fはファラデー定数(96485C/mol)、tは固体電解質のプロトンの輸率である。従って、第一ガス及び第二ガスのうち一方の水素分圧が既知であれば、起電力Eと測定環境の温度Tを測定することにより、他方のガスの水素分圧を算出することができる。
【0005】
水素分圧が既知である基準ガスとして、一般的にアルゴンと水素の混合ガスが使用されている。しかし、水素は高価であるため、センサを使用した測定の運用コストが高くなる。また、基準ガスは通常ガスボンベから供給されるため、センサの装置全体が大型化し、持ち運びが不便であると共に、保管のためにも広いスペースを要する。更には、海外には水素ガスを含むボンベが入手しにくい国もあり、航空機での輸送も制限されているため、海外では水素分圧を測定するセンサを使用しにくいという実情もある。加えて、水素は酸素の存在下で燃焼・爆発するため、取り扱いに十分な注意を要するという難点もあった。
【0006】
これに対して、本出願人は、基準ガスを測定ガスから生成して水素分圧を測定するガスセンサを提案している(特許文献1参照)。このガスセンサは、電圧が印加されることにより、固体電解質によって隔てられた2つのガス室の一方から他方へ水素を輸送する水素ポンプと、2つのガス室を有する水素濃淡電池とを備え、それらが互いに一方のガス室を共有するように接続された構造を有している。そして、水素ポンプを駆動する電圧値によって、共有しているガス室の水素分圧を制御し、これを基準ガスとして、測定ガスの水素分圧を測定するものである。
【0007】
しかしながら、上記のガスセンサは、基準ガス及び測定ガスの水素分圧に応じた電位差を測定するための設備に加えて、水素ポンプを駆動させるための電源が必要であった。また、精度の高い測定のためには、基準ガスの水素分圧と測定ガスの水素分圧との間にある程度差があることが望ましいが、基準ガスは測定ガスから生成されるため、そのような水素分圧を得るための電圧値の調整が難しい。そのため、水素分圧が既知である基準ガスを必要とすることなく気相中の水素分圧を測定できる、より簡易な構成のガスセンサが望まれていた。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第4115014号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで、本発明は、上記の実情に鑑み、気相中の水素分圧を測定するためのガスセンサであって、水素分圧が既知である基準ガスを必要としない、より簡易な構成のガスセンサ、及び、該ガスセンサの製造方法の提供を、課題とするものである。
【課題を解決するための手段】
【0010】
上記の課題を解決するため、本発明にかかるガスセンサは、気相中の水素分圧を測定するためのセンサであり、
「プロトン伝導性セラミックスで形成されたセンサ素子、該センサ素子の一端に設けられた基準電極、前記センサ素子の他端に設けられた測定電極、及び、前記基準電極と前記測定電極との間の電位差を測定する電位計を備え、気相中の水素分圧を測定するガスセンサであって、
前記プロトン伝導性セラミックスは、
化学式AB1−bB’3−αで表され、Aはアルカリ土類金属、Bは価数が+4価の金属、B’は+3価及び+4価の価数の双方を取り得る遷移金属であるペロブスカイト型の結晶構造を有する金属酸化物であり、
前記測定電極側の端部に、B’の価数が+3価に偏り、プロトンの輸率が1であるプロトン伝導層を有すると共に、
前記基準電極側の端部に、B’の価数が+4価に偏り、大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層を有し、
前記基準電極は、前記測定電極が接する空間と区画されていると共に大気と接触させる空間に配されている」ものである。
【0011】
「プロトン伝導性セラミックス」は、化学式A1−bB’3−αで表される、ペロブスカイト型の結晶構造を有する金属酸化物である。ここでAは、アルカリ土類金属であり、ストロンチウム(Sr)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)を例示することができる。Bは、+4価の金属であり、ジルコニウム(Zr)、セリウム(Ce)を例示することができる。B’は+3価及び+4価の双方を取り得る遷移金属であり、マンガン(Mn)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)を例示することができる。A、B及びB’の何れも、単一の元素からなるものであっても、複数の元素からなるものであってもよい。
【0012】
「輸率」は、イオン伝導体において、陽イオン、陰イオンを含む全イオンが運ぶ全電気量の内、着目するイオンが運ぶ電気量の割合として定義されるものであり、0〜1の値を取る。陽イオンと陰イオンの双方が電解質中を移動する液体電解質とは異なり、特定のイオンのみが伝導するイオン伝導性のセラミックスにおいては、そのイオンの輸率が1を取り得る。
【0013】
「基準電極」及び「測定電極」としては、白金(Pt)、ニッケル(Ni)、金(Au)、パラジウム(Pd)等の金属を用いることができる。
【0014】
化学式ABOで表されるペロブスカイト型の金属酸化物において、Bで表される金属原子の一部を、それより低い原子価の原子で置換することにより、酸素イオン空孔が形成されプロトン伝導性を発現するものが知られている。このような一般的なプロトン伝導性セラミックスを用いて水素分圧を測定するセンサについて、上記の数式(1)の説明における第一ガスを測定ガス、第二ガスを基準ガスとした場合の水素分圧と、基準電極と測定電極との電位差との関係を、図1(b)を用いて説明する。図1(b)は、プロトン伝導性セラミックスの輸率と水素分圧との関係を示したものであり、計測される起電力Eは、輸率tの特性線と、基準ガスの水素分圧P、及び測定ガスの水素分圧Pで囲まれた、斜線部分の面積に相当する。なお、水素濃度が既知の基準ガスとしては、ガス漏れ等に起因する水素分圧の変動の影響を受けない程度の高濃度であり、且つ、爆発のおそれのある濃度の下限値より水素濃度の低い1%水素−99%アルゴンの混合ガスが、一般的に用いられている。
【0015】
ここで、水素分圧を測定するセンサの基準ガスとして大気を用いることができれば、水素ガスボンベを備える必要が無く、装置が簡易な構成となることを想到し得る。しかしながら、大気中の水素分圧は非常に低い上に、水蒸気分圧の影響を受けて図中に示すように値が変動するため、測定される起電力も変動し、測定値に相当の誤差を含んでしまう。そのため、従来は基準ガスとして大気を用いることができなかった。
【0016】
これに対し、図2(a)に示すように、本発明のプロトン伝導性セラミックス10は、測定電極41側の端部にプロトンの輸率tが1であるプロトン伝導層11を有すると共に、基準電極31側の端部に、大気における水素分圧下でプロトンの輸率tが実質的にゼロである非プロトン伝導層12を有している。このようなプロトン伝導層11及び非プロトン伝導層12を一つのプロトン伝導性セラミックスの中に形成することは、プロトン伝導性セラミックスのB’で表される原子として、+4価と+3価の双方を取り得る遷移金属を使用したことにより可能となったものであり、B’で表される原子が+4価のセラミックス(全体が非プロトン伝導層12)を作製した後、プロトン伝導層11とする端部のみを還元してB’を+3価とすることにより、形成することができる。
【0017】
このように、B’の価数分布の制御によりプロトンの輸率tに偏りを有する本発明のプロトン伝導性セラミックスは、図2(b)に実線で示すように、大気中の水素分圧より高い水素分圧(約10−3Pa)でプロトンの輸率tがほぼゼロである。従って、これより水素分圧が低い大気を基準ガスとして使用すると、測定される起電力Eは、図2(b)に斜線で示す部分の面積に相当する。つまり、大気中の水素分圧に変動があっても、測定される起電力Eは、基準ガスの水素分圧に依存しない。
【0018】
従って、本発明のガスセンサは、大気を基準ガスとして用いることができ、従来とは異なりボンベで供給される濃度が既知の水素を必要としないため、装置の構成が極めて簡易である。また、測定ガスから基準ガスを生成していた従来技術とは異なり、測定に際して何らかの値を調整する必要がないため、測定も容易である。
【0019】
本発明にかかるガスセンサは、上記構成に加え「前記センサ素子を支持する筒状のホルダを更に備え、前記センサ素子は、前記基準電極及び前記測定電極の一方が前記ホルダの内部に位置し、他方が前記ホルダの外部に位置するように前記ホルダの一端を閉塞している」ものとすることができる。
【0020】
「筒状のホルダ」の材質は特に限定されないが、例えば、アルミナやムライトなど耐熱性の高いセラミックスの緻密質焼結体を用いることができる。また、センサ素子と同一のプロトン伝導性セラミックスで筒状に形成されたホルダが、センサ素子と一体となっている構成とすることもできる。ここで、「筒状」は、円筒状、楕円筒状、角筒状とすることができる。
【0021】
本構成のガスセンサによれば、ホルダの一端をセンサ素子によって閉塞することにより、筒状のホルダの内部と外部に、区画された二つの空間が形成される。これにより、ホルダの内部に基準電極が位置するようにした場合は、ホルダの外部に位置する測定電極を測定ガスに接触させ、開端であるホルダの他端から大気を導入することにより、測定ガスの水素分圧を測定することができる。一方、ホルダの内部に測定電極が位置するようにした場合は、ホルダの外部に位置する基準電極を基準ガスである大気中に開放し、ホルダの内部に測定ガスを導入することにより、測定ガスの水素分圧を測定することができる。従って、本構成によれば、センサ素子を支持するための構成によって、大気用の空間と測定ガス用の空間とを、簡易に区画することができる。
【0022】
本発明にかかるガスセンサは、上記構成に加え、「前記ホルダが内部に挿入された筒状の保護スリーブを更に具備し、該保護スリーブは、外周面に形成された雄ネジ部、外周面から外方に延出したフランジ部、及び、筒壁の厚さが内側に向けて連続的に減少するテーパ部のうち少なくとも一つを備える」ものとすることができる。
【0023】
このような構成とすることにより、測定対象のガスが流通する配管、内部のガスが測定対象のガスである炉の内周壁や底壁に、ガスセンサを容易かつ安定的に取付けることができる。なお、雄ネジ部、フランジ部、及びテーパ部のうち、少なくとも雄ネジ部を採用した場合は「筒状」は円筒状となるが、その他の場合の「筒状」は、円筒状、楕円筒状、角筒状とすることができる。
【0024】
本発明にかかるガスセンサは、上記構成において、「前記センサ素子は、厚さ1μm〜100μmの薄膜である」ものとすることができる。
【0025】
このような構成とすることにより、ガスセンサを小型化することができる。また、センサ素子の体積が小さいことから、測定環境の温度変化への応答性が極めて高いガスセンサとなる。
【0026】
次に、本発明にかかるガスセンサの製造方法は、
「プロトン伝導性セラミックスで形成されたセンサ素子、該センサ素子の一端に設けられた基準電極、前記センサ素子の他端に設けられた測定電極、及び、前記基準電極と前記測定電極との間の電位差を測定する電位計を備え、気相中の水素分圧を測定するガスセンサの製造方法であって、
前記プロトン伝導性セラミックスを、
化学式AB1−bB’3−αで表され、Aはアルカリ土類金属、Bは価数が+4価の金属、B’は+3価及び+4価の価数の双方を取り得る遷移金属であるペロブスカイト型の結晶構造を有する金属酸化物におけるB’の価数分布を、還元処理によって制御することにより、
前記測定電極側の端部で、B’の価数を+3価に偏らせ、プロトンの輸率が1であるプロトン伝導層を形成すると共に、
前記基準電極側の端部で、B’の価数を+4価に偏らせ、大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層を形成することにより製造し、
前記基準電極を、前記測定電極が接する空間と区画されていると共に大気と接触する空間に配置する」ものである。
【0027】
これは、上述の構成のガスセンサの製造方法である。+3価及び+4価の価数の双方を取り得る遷移金属B’を金属酸化物に含有させ、その遷移金属B’の価数分布を、還元処理によって制御するという独創的な方法により、水素分圧が既知である基準ガスを必要とせず、大気を基準ガスとして使用できる新規かつ実用性の高いガスセンサを、提供することができる。
【発明の効果】
【0028】
以上のように、本発明の効果として、気相中の水素分圧を測定するためのガスセンサであって、水素分圧が既知である基準ガスを必要としない、より簡易な構成のガスセンサ、及び、該ガスセンサの製造方法を、提供することができる。
【図面の簡単な説明】
【0029】
図1】(a)従来のプロトン伝導性セラミックスを用いたガスセンサを説明する図、(b)従来のガスセンサによって測定される起電力を説明する図である。
図2】(a)本発明のプロトン伝導性セラミックスを用いたガスセンサを説明する図、(b)本発明のガスセンサによって測定される起電力を説明する図である。
図3】本発明の一実施形態であるガスセンサの(a)概略構成図、及び(b)〜(d)測定電極及び基準電極の位置を異ならせた変形例である。
図4】測定ガスの水素濃度を変化させた場合の起電力の変化を示す図である。
図5】測定された起電力を理論曲線と対比した図である。
図6】(a)〜(d)センサ素子の形状及びホルダとの関係が異なる他の実施形態のガスセンサの概略構成図である。
図7】(a),(b)ヒータを備える実施形態のガスセンサの概略構成図である。
図8】(a),(b)保護スリーブを備える実施形態のガスセンサの概略構成図である。
図9】(a)〜(d)固定部を備える実施形態のガスセンサの概略構成図である。
図10】(a)〜(d)フィルタ材を備える実施形態のガスセンサの概略構成図である。
図11図9(c),(d)のガスセンサが共通して備えるフィルタ材の側面図である。
図12】薄膜のセンサ素子を備える実施形態のガスセンサの概略構成図である。
【発明を実施するための形態】
【0030】
以下、本発明の一実施形態である水素センサ1aについて図2乃至図5を用いて説明する。本実施形態のガスセンサ1aは、プロトン伝導性セラミックス10で形成されたセンサ素子20、センサ素子20の一端に設けられた基準電極31、センサ素子20の他端に設けられた測定電極41、及び、基準電極31と測定電極41との間の電位差を測定する電位計90を備える水素センサであって、プロトン伝導性セラミックス10は、化学式AB1−bB’3−αで表され、Aはアルカリ土類金属、Bは価数が+4価の金属、B’は+3価及び+4価の価数の双方を取り得る遷移金属であるペロブスカイト型の結晶構造を有する金属酸化物であり、測定電極41側の端部に、B’の価数が+3価に偏り、プロトンの輸率が1であるプロトン伝導層11を有すると共に、基準電極31側の端部に、B’の価数が+4価に偏り、大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層12を有し、基準電極31は、測定電極41が接する空間と区画されていると共に、大気と接触させる空間(以下、「大気用空間30」と称する)に配されているものである。
【0031】
また、ガスセンサ1aは、センサ素子20を支持する筒状のホルダ50を更に備え、センサ素子20は、基準電極31がホルダ50の内部に位置し、測定電極41がホルダ50の外部に位置するようにホルダ50の一端を閉塞している。すなわち、ガスセンサ1aでは、ホルダ50の内部空間が大気用空間30である。
【0032】
より詳細に説明すると、本実施形態のセンサ素子20は、化学式SrZr0.9Mn0.13−αで表されるセラミックスの焼結体から形成されている。この焼結体は、以下の手順で作製した。はじめに、原料粉末である炭酸ストロンチウム(SrCO)、二酸化ジルコニウム(ZrO)、二酸化マンガン(MnO)の各粉末を、目的のモル比となるように混合した。次に、混合した粉末をか焼し、か焼後の粉末を粉砕した後、有底筒状に成形した。この成形体を温度1500℃〜1600℃の酸化雰囲気下で焼成した。焼結体のX線回折パターンを測定したところ、ペロブスカイト構造の単相であった。また、焼結体の相対密度は、1500℃焼成で93%、1600℃焼成で98%であり、緻密であった。
【0033】
本実施形態は、化学式A1−bB’3−αにおいて、AをSr、BをZr、B’をMnとしたものである。ここで、本実施形態では、aは1であり、bは0.1であるが、aは0.8以上1.2以下とすることができ、bは0.01以上0.3以下とすることができる。なお、αは酸素欠陥であり、A,B,B’のそれぞれの原子種、a,bの値、環境の温度と酸素分圧等に応じて変化する値である。
【0034】
上記の製造方法で得られた焼結体では、Mnの価数が+4価であるため、全体が非プロトン伝導層の状態であり、プロトン伝導性を有していない。プロトンの輸率が1であるプロトン伝導層は、以下の手順で形成した。はじめに、有底筒状の焼結体の底部の内表面と、底部の外表面にPtの多孔質電極を形成した。本実施形態では、焼結体の底部の内表面の電極を基準電極31とし、底部の外表面の電極を測定電極41とする。図3(a)に示すように、電気絶縁体であるセラミック製で円筒状のホルダ50の一方の端部から、焼結体の上端側及び基準電極31がホルダ50の内部に位置し、焼結体の底部側及び測定電極41がホルダ50の端部から外部に露出するように焼結体を挿入し、ホルダ50端部との隙間を耐熱性のシール材59でシールした。この状態で、ホルダ50の内部を酸化雰囲気とし、ホルダ50の外部を水素ガスを含む還元雰囲気として、温度400℃〜800℃で加熱処理した。これにより、還元雰囲気に曝された焼結体の底部の外表面近傍において、Mnの価数が+4価から+3価となり、測定電極41側にプロトンの輸率が1であるプロトン伝導層を有すると共に、基準電極31側に大気における水素分圧下でプロトンの輸率が実質的にゼロである非プロトン伝導層を有するセンサ素子20が得られる。
【0035】
ここで、大気中の水素分圧は、水と、水素及び酸素との平衡反応の平衡定数から算出することができる。平衡定数は温度依存性を示し、平衡は高温であるほど水から水素及び酸素が生成される側に傾く。室温において水蒸気が飽和した大気が、本実施形態のガスセンサの使用可能な温度範囲(詳細は後述)である400℃〜800℃まで加熱されたものとして計算すると、水素分圧は1×10−18atm〜5×10−11atm(1×10−13Pa〜5×10−6Pa)である。なお、水蒸気分圧は変動する値であり、図2では大気における水素分圧として、温度800℃の場合の数値範囲を示している。
【0036】
このセンサ素子20及びホルダ50を備えるガスセンサ1aは、図3(a)に示すように、基準ガスである大気を大気用空間30まで導入するガス導入管35を備えている。このガス導入管35は、熱電対(図示しない)を保護する役割を兼ねており、ガス導入管35の内部に熱電対が挿入される。また、測定電極41と基準電極31は、それぞれリード線91によって電位計90に接続されている。
【0037】
なお、上記では、有底筒状のセンサ素子の底部の外表面に測定電極41を形成し、底部の内表面に基準電極31を形成した場合を例示したが、その他の態様として、底部近傍の外周面に測定電極41を形成し、底部近傍の内周面に基準電極31を形成した態様(図3(b)参照)、ホルダ50から外部に露呈しているセンサ素子20の外表面のほぼ全体に測定電極41を形成し、内表面のほぼ全体に基準電極31を形成した態様(図3(c)参照)、底部の外表面に測定電極41を形成し、上端面に基準電極31を形成した態様(図3(d)参照)を、例示することができる。センサ素子20の大きさにもよるが、測定電極41と基準電極31との間の内部抵抗を考慮すると、測定電極41と基準電極31との距離が小さくなるように両電極の位置を設定することが望ましい。
【0038】
次に、本実施形態のガスセンサ1aについて、基準ガスを大気として、測定ガスの水素濃度(水素分圧)を変化させて起電力測定を行った結果を示す。水素濃度は、水素とアルゴンの混合比を変えて、0.1vol%H〜98vol%Hの範囲で制御した。そして、一定時間ごとに水素分圧を変えて、ガスセンサ1aの起電力を電位計90で測定した。測定温度は400℃〜800℃とした。図4に、測定温度750℃の場合の測定結果を例示する。図から明らかなように、水素濃度がゼロ(アルゴン100%)であると起電力がゼロであり、水素濃度が大きくなるのに伴い起電力が大きくなることが確認された。加えて、水素濃度を変化させた時の起電力の応答も、極めて迅速なものであった。
【0039】
測定温度400℃,600℃,800℃の場合に測定された起電力と水素分圧との関係を、図5に示す。図中の一点鎖線は、各温度において数式(1)から求められる起電力の理論曲線である。図から明らかなように、何れの測定温度においても、測定された起電力の値は理論値と極めてよく一致している。このことから、本実施形態のガスセンサ1aにより、少なくとも400℃〜800℃の温度範囲で、気相中の水素分圧を正確に測定できることが確認された。
【0040】
なお、センサ素子の形状、センサ素子とホルダの関係など、ガスセンサの具体的な形態は、上記に示したものに限らず、図6乃至図8に例示するように様々の形態のガスセンサ1b〜1iとすることができる。なお、図6乃至図8においては、基準電極、測定電極、ガス導入管、電位計、及びリード線の図示は省略している。
【0041】
図6(a)に示すガスセンサ1bは、センサ素子20が上記と同様に有底筒状であるが、底部側がホルダ50の内部に位置し、開端側がホルダ50の一方の端部から外部に露出している例である。このような構成により、ホルダ50から露出したセンサ素子20の内部空間が、測定ガスが導入される簡易的な測定ガス導入空間40として機能する。測定ガス導入空間40のガスは拡散によって置換されるため、測定する環境においてガスの流れが速い場合であっても、安定した測定が可能である利点を有する。
【0042】
図6(b)に示すガスセンサ1cは、センサ素子20がホルダ50の外径以下の大きさの平板状であり、ホルダ50の一方の端部にシール材59によって固着されている例である。この場合は、センサ素子20が小さいため、温度変化に対する応答性が高い。また、センサ素子20を形成するためのプロトン伝導性セラミックスの使用量を低減することができると共に、ガスセンサを小型化できる利点を有する。
【0043】
図6(c)に示すガスセンサ1dは、センサ素子20が一方に開口した箱状であり、ホルダ50の一方の端部に外嵌してシール材59により固着されている例である。このような構成によれば、センサ素子20のプロトン伝導層に測定電極41を広い面積で形成することができるため、測定精度を高めることができる利点がある。
【0044】
図6(d)に示すガスセンサ1eは、有底筒状のセンサ素子20と円筒状5のホルダとが、それぞれ同一のプロトン伝導性セラミックスで形成されており、一体となっている例である。このような構成によれば、センサ素子20とホルダ50との間をシールする必要がないため、シールした部分の損傷に起因するガスのリークがないという利点を有する。
【0045】
更に、ガスセンサはヒータを備えた構成とすることができる。図7(a)に示すガスセンサ1fは、ヒータ55が長棒状であり、有底筒状のセンサ素子20の内部に挿入されている例である。また、図7(b)に示すガスセンサ1gは、ヒータ55bが円筒状であり、ヒータ55bの内部にホルダ50が支持されている例である。このようなヒータ55,55bは、金属製の電気ヒータや、通電により発熱する導電性セラミックス製のヒータとすることができる。ガスセンサ1f、1gのようにヒータを備えることにより、センサ素子20の温度を一定に保ち易いため、測定環境において温度分布が生じていても安定した測定が可能である利点を有する。なお、図7(b)では、図3に示した形状のセンサ素子20及びホルダ50の外部にヒータ55bが設けられている場合を図示により例示しているが、このようにホルダ50の外部にヒータ55bを設ける場合、センサ素子20の形状やホルダとの関係は問わないものであり、図6(a)〜(d)に例示したガスセンサ1b〜1dの何れも、ヒータ55bを備える形態とすることができる。
【0046】
また、ガスセンサは、ホルダ50の外部に筒状の保護スリーブ60を備えた構成とすることができる。図8(a),(b)に示すガスセンサ1h,1iは、ホルダ50の外径より内径が大きい円筒状の保護スリーブ60に、センサ素子20を支持するホルダ50を、センサ素子20の先端がスリーブの内部に位置するように挿入したものである。ホルダ50と保護スリーブ60との間は、シール材59でシールされており、ホルダ50の内部及び外部の空間は連通していない。このような保護スリーブ60を備える構成とすることにより、測定場所にガスセンサ1h,1iを挿入し易いことに加え、ホルダ50の端部から露出しているセンサ素子20を、外部との衝突から保護することができる利点がある。なお、保護スリーブ60は、金属やセラミックスで形成することができる。また、ガスセンサ1iは、ガスセンサ1hの構成に加えて、ホルダ50と保護スリーブ60との間に配された断熱材層57を有する構成であり、測定の際に、ガスセンサ1iの温度の変動を抑制することができる。
【0047】
なお、図8(a),(b)では、保護スリーブ60の内部の構成が図3に示した形状のセンサ素子20及びホルダ50である場合を図示により例示したが、これに限定されず、図6(a)〜(d)、図7(a),(b)に例示したガスセンサ1b〜1gが、保護スリーブ60を備える形態とすることができる。
【0048】
また、このように保護スリーブ60を備えるガスセンサにおいて、ガスセンサを取付け対象に固定するための固定部を、保護スリーブ60が備える構成とすることができる。固定部としては、保護スリーブ60の外周面に形成された雄ネジ部、外周面から外方に延出したフランジ部、及び、筒壁の厚さが内側に向けて連続的に減少するテーパ部のうち少なくとも一つを備えるものとすることができる。このような実施形態のガスセンサを、図9を用いて説明する。ここでは、基準電極、測定電極、ガス導入管、電位計、及びリード線の図示を省略している。
【0049】
図9(a)に示すガスセンサ1jは、保護スリーブ60の外周面に雄ネジ部61が形成されている例である。このような構成とすることにより、雄ネジ部61の雄ネジと螺合する雌ネジを有する箇所に、安定的にガスセンサ1jを固定することができる。例えば、測定対象のガスが流通する配管、または、その配管から分岐させた分岐管に雌ネジを設けることにより、流通するガスにおける水素分圧を安定した姿勢で継続的に測定することができる。また、炉壁に孔部を設け、その孔部の内周面に雌ネジを形成すれば、炉の内部空間に向けて測定電極41を突出させた状態で、炉壁の孔部にガスセンサ1jを安定的に支持させることができ、炉の内部空間のガスにおける水素分圧を安定した姿勢で測定することができる。
【0050】
図9(b)に示すガスセンサ1kは、保護スリーブ60の外周面から外方に延出したフランジ部62を、保護スリーブ60が備えている例である。このような構成とすることにより、配管の端部や配管の接続部において、フランジ部62を配管のフランジ部と重ね合わせボルト等で留め付けることにより、ガスセンサ1kを安定的に固定することができる。また、炉壁に設けた孔部の周縁にフランジ部62を重ね合わせボルト等で留め付けることにより、炉壁の孔部にガスセンサ1kを安定的に支持させることができる。更に、フランジ部62を備えていることにより、保護スリーブ60の外径より大径だがフランジ部の外径より小径である配管や孔部に対しても、ガスセンサ1kを固定することができるため、取付け対象の範囲が広いものとなる。
【0051】
図9(c)に示すガスセンサ1mは、雄ネジ部61とフランジ部62との双方を、保護スリーブ60が備えている例である。このような構成では、ガスセンサ1mを取付け対象物に、より堅固に固定することができる。
【0052】
図9(d)に示すガスセンサ1nは、保護スリーブ60が、筒壁の厚さが一定(外径が一定)の不変部63aと、筒壁の厚さが内側に向けて内側に向けて連続的に減少するテーパ部63bとを備えている例である。このような構成とすることにより、外径が漸次減少するテーパ部63bのどこかで配管や孔部の径と一致する。そのため、ガスセンサ1nを取付けることができる配管や孔部が、その径において自由度が高いものとなる。
【0053】
なお、図示により例示している構成の他、雄ネジ部61とテーパ部63bとの双方を、保護スリーブ60が備える構成とすることができる。この場合、雄ネジ部61と螺合する雌ネジを有する対象物には、雄ネジ部61でガスセンサを取付け、そのような雌ネジを有さない対象物には、テーパ部63bでガスセンサを取付けることができる。或いは、フランジ部62とテーパ部63bとの双方を、保護スリーブ60が備える構成とすることができる。この場合、不変部63aの外径より大径の対象物には、フランジ部62でガスセンサを取付け、不変部63aの外径より小径の対象物には、テーパ部63bでガスセンサを取付けることができる。従って、これらの構成とすることにより、一つのガスセンサの取付け対象の範囲が、より広いものとなる。
【0054】
また、本発明の他の実施形態として、測定電極41を被覆するフィルタ材を備えるガスセンサとすることができる。このような実施形態のガスセンサを、図10及び図11を用いて説明する。ここでは、ガス導入管、電位計、及びリード線の図示を省略している。
【0055】
図10(a)に示すガスセンサ1pは、測定電極41を被覆するフィルタ材71が、多孔質セラミックス膜である例である。このようなフィルタ材71は、セラミックス粉末、珪酸系ガラス成分、及びバインダー成分を混合した粘性の高い流動性組成物を、測定電極41の上からセンサ素子20にコーティングし、センサ素子20を作製するときの還元処理の際より低い温度で加熱処理することにより、形成することができる。加熱処理によって組成物が硬化及び熱収縮し、耐熱性を有する多孔質セラミックス膜が形成される。測定対象のガスは多孔質セラミックス膜を通過するが、ガスに含まれる固体粒子は通過しにくいため、フィルタ材71によって測定電極41の腐食や損傷を抑制することができる。
【0056】
図10(b)に示すガスセンサ1qは、既述のガスセンサ1bと同様にセンサ素子20の内部空間が測定ガス導入空間40となっており、この測定ガス導入空間40に測定電極41を被覆するフィルタ材72として、繊維材料が充填されている例である。繊維材料としては、アルミナ繊維など耐熱性の高いセラミックス繊維を好適に使用することができる。測定対象のガスは繊維材料の隙間を通過するが、ガスに含まれる固体粒子は通過しにくいため、フィルタ材72によって測定電極41の腐食や損傷を抑制することができる。
【0057】
図10(c)及び図10(d)に示すガスセンサ1r及びガスセンサ1sは、それぞれ上記のガスセンサ1p及びガスセンサ1qが、更に測定電極41を被覆するフィルタ材80を備えている例である。フィルタ材80は、図11に示すように、金属板で形成された周壁を二重構造としたキャップであり、外側の周壁81を貫通する小孔81hと、内側の周壁82を貫通する小孔82hが、位置をずらして多数設けられている。このような構成とすることにより、測定ガスに含まれる粉塵など、比較的大きな粒子からはフィルタ材80によって測定電極41を保護し、微細な粒子からはフィルタ材71またはフィルタ材72によって測定電極41を保護することができる。従って、フィルタ材71,72の早期の目詰まりを防止して、より確実に測定電極41を保護することができる。
【0058】
以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。
【0059】
例えば、上記の実施形態では、ホルダ50の内部空間が基準ガスである大気を導入する大気用空間30である場合を例示したが、逆に、ホルダの外部の空間を大気用空間とすることができる。この場合、センサ素子においてプロトン伝導層及び測定電極をホルダの内部に位置させ、非プロトン伝導層及び基準電極をホルダの外部に位置させる。つまり、B’で表される原子を+4価から+3価にするために焼結体を還元雰囲気下で加熱する処理は、ホルダの内部に位置させる部分に対して行う。このような構成のガスセンサでは、ホルダの外部に露出している基準電極を大気下に開放し、ホルダの内部空間に測定ガスを導入することにより、測定ガスの水素分圧を測定することができる。
【0060】
また、上記の実施形態では、センサ素子20が有底筒状、平板状、箱状など、ある程度の厚さ(例えば、5mm以上)を有するブロックであったが、図12に例示するように、厚さ1μm〜100μmの薄膜のセンサ素子20tを備えるガスセンサ1tとすることができる。このようなセンサ素子20tのもととなる金属酸化物の薄膜は、上記と同様に、B’の価数が+4価である金属酸化物の焼結体を作製し、これをターゲットとして、測定電極41または基準電極31を基板としてスパッタリングすることにより、形成することができる。そして、適宜のマスキングをした上で、金属酸化物の薄膜の片面のみに対して上記と同様の還元処理をごく短時間施すことにより、薄膜のセンサ素子20tを得ることができる。
【0061】
薄膜のセンサ素子20t、その片面に積層された基準電極31、もう片面に積層された測定電極41からなる積層体(以下、「センサ積層体」と称する)は、上記と同様に電気絶縁性で筒状のホルダ50に支持させることができる。ここでは、センサ積層体の側周面(積層方向の周面)を、電気絶縁材45で被覆することにより、基準電極31と測定電極41との短絡を防止している場合を例示している。また、この実施形態では、電気伝導性の材料で、有底筒状に形成されていると共に底部に貫通孔を有する電導性キャップ43をガスセンサ1tが備えている。この電導性キャップ43は、貫通孔の周縁を測定電極41に当接させた状態で、電気絶縁材45の外側からセンサ積層体に嵌め込まれている。このような構成とすることにより、電導性キャップ43を介してリード線91を測定電極41に接続することができるため、測定電極41に接続されたリード線91と、基準電極31に接続されたリード線91とを同一の方向に延ばすことができる。加えて、センサ積層体を、電導性キャップ43で保護することができる。
【0062】
ここで、薄膜のセンサ素子20tに積層される測定電極31及び基準電極41の厚さは、10μm〜100μmとすることができる。図12では、薄膜のセンサ素子20t、測定電極31、及び基準電極41の厚さを誇張して図示している。なお、電気絶縁材45に代替して、電気絶縁性のホルダ50の端部の内周面で、センサ積層体の側周面を被覆することにより、ホルダ50が上記の電気絶縁材45を兼ねる構成とすることもできる。
【符号の説明】
【0063】
1a〜1t ガスセンサ
10 プロトン伝導性セラミックス
11 プロトン伝導層
12 非プロトン伝導層
20,20t センサ素子
30 大気用空間(大気と接触する空間)
31 基準電極
41 測定電極
50 ホルダ
60 保護スリーブ
61 雄ネジ部
62 フランジ部
63 テーパ部
90 電位計
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12