特許第6495337号(P6495337)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニング インコーポレイテッドの特許一覧

<>
  • 特許6495337-造形ガラス品及びその成形方法 図000008
  • 特許6495337-造形ガラス品及びその成形方法 図000009
  • 特許6495337-造形ガラス品及びその成形方法 図000010
  • 特許6495337-造形ガラス品及びその成形方法 図000011
  • 特許6495337-造形ガラス品及びその成形方法 図000012
  • 特許6495337-造形ガラス品及びその成形方法 図000013
  • 特許6495337-造形ガラス品及びその成形方法 図000014
  • 特許6495337-造形ガラス品及びその成形方法 図000015
  • 特許6495337-造形ガラス品及びその成形方法 図000016
  • 特許6495337-造形ガラス品及びその成形方法 図000017
  • 特許6495337-造形ガラス品及びその成形方法 図000018
  • 特許6495337-造形ガラス品及びその成形方法 図000019
  • 特許6495337-造形ガラス品及びその成形方法 図000020
  • 特許6495337-造形ガラス品及びその成形方法 図000021
  • 特許6495337-造形ガラス品及びその成形方法 図000022
  • 特許6495337-造形ガラス品及びその成形方法 図000023
  • 特許6495337-造形ガラス品及びその成形方法 図000024
  • 特許6495337-造形ガラス品及びその成形方法 図000025
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6495337
(24)【登録日】2019年3月15日
(45)【発行日】2019年4月3日
(54)【発明の名称】造形ガラス品及びその成形方法
(51)【国際特許分類】
   C03B 23/203 20060101AFI20190325BHJP
   C03C 21/00 20060101ALI20190325BHJP
   C03C 15/00 20060101ALI20190325BHJP
   C03B 17/06 20060101ALI20190325BHJP
【FI】
   C03B23/203
   C03C21/00 101
   C03C15/00 Z
   C03B17/06
【請求項の数】14
【全頁数】31
(21)【出願番号】特願2016-566674(P2016-566674)
(86)(22)【出願日】2015年5月7日
(65)【公表番号】特表2017-525638(P2017-525638A)
(43)【公表日】2017年9月7日
(86)【国際出願番号】US2015029681
(87)【国際公開番号】WO2015171889
(87)【国際公開日】20151112
【審査請求日】2017年8月2日
(31)【優先権主張番号】61/989,712
(32)【優先日】2014年5月7日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【弁理士】
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100090468
【弁理士】
【氏名又は名称】佐久間 剛
(72)【発明者】
【氏名】ダヌー,ティエリー リュック アラン
(72)【発明者】
【氏名】ゴリヤティン,ヴラディスラフ ユリイェヴィチ
(72)【発明者】
【氏名】リッジ,ジョン リチャード
(72)【発明者】
【氏名】ウクラインチャク,リエルカ
(72)【発明者】
【氏名】ヴァッディ,ブッチ レディー
(72)【発明者】
【氏名】ヴェンカタラマン,ナテサン
【審査官】 井上 政志
(56)【参考文献】
【文献】 特開昭57−061646(JP,A)
【文献】 特開2010−285341(JP,A)
【文献】 特開2011−162413(JP,A)
【文献】 特表2013−530123(JP,A)
【文献】 特開2007−076039(JP,A)
【文献】 米国特許第05100452(US,A)
【文献】 特開2012−101975(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03B23/00−35/26
C03B40/00−40/04
C03B7/00−7/22
C03B9/00−17/06
C03B19/00−19/10
C03B21/00−21/06
C03C15/00−23/00
(57)【特許請求の範囲】
【請求項1】
方法において、
ガラスシートの第2の層を成形面と接触させて、造形ガラス品を成形する工程であって、前記ガラスシートは前記第2の層に隣接する第1の層を有し、前記第1の層は第1のガラス組成を有し、前記第2の層は第2のガラス組成を有するものである工程、
を含み、
前記接触させる工程中の前記ガラスシートの実効粘度が前記接触させる工程中の前記ガラスシートの前記第2の層の粘度より低
前記第2の層は、0.01mmから0.3mmの厚さを有し、
前記造形ガラス品は、最大1nmの表面粗さ、および最大50nmの表面うねりの少なくとも一方を有する、
ことを特徴とする方法。
【請求項2】
(i)前記第1のガラス組成の軟化点が前記第2のガラス組成の軟化点より低い、または
(ii)前記第1のガラス組成の108.2P温度が前記第2のガラス組成の108.2P温度より低い、
の内の少なくとも一方であることを特徴とする請求項1に記載の方法。
【請求項3】
前記第2のガラス組成がアルカリ金属を含有していない、または
前記方法が前記造形ガラス品をイオン交換プロセスにかける工程をさらに含む、
の内の一方であることを特徴とする請求項1または2に記載の方法。
【請求項4】
前記接触させる工程中の前記ガラスシートの最高温度が900℃より低いかまたは850℃より低いことを特徴とする請求項1から3のいずれか1項に記載の方法。
【請求項5】
前記接触させる工程が、半径が5mmより小さい曲げを前記造形ガラス品が有するように前記ガラスシートを曲げる工程を含むことを特徴とする請求項1から4のいずれか1項に記載の方法。
【請求項6】
前記造形ガラス品の外表面を試薬にさらして、前記造形ガラス品から前記外表面の少なくとも一領域を除去する工程をさらに含むことを特徴とする請求項1から5のいずれか1項に記載の方法。
【請求項7】
前記造形ガラス品の外表面の領域を選択的に試薬にさらして、前記造形ガラス品にパターンを形成する工程をさらに含み、前記第1の層が前記第2の層と異なる色または異なる表面属性を有し、前記造形ガラス品に前記パターンを形成する前記工程が、前記外表面の前記選択的にさらされた領域に対応する、前記第1の層または前記第2の層の内の一方の領域を剥き出しにする工程を含むことを特徴とする請求項6に記載の方法。
【請求項8】
前記第1の層がコア層を含み、前記第2の層が前記コア層の第1の主表面に隣接する第1のクラッド層及び前記コア層の、前記第1の主表面と表裏をなす、第2の主表面に隣接する第2のクラッド層を含むことを特徴とする請求項1から7のいずれか1項に記載の方法。
【請求項9】
造形ガラス品において、
第1のガラス組成を有する第1の層、及び
第2のガラス組成を有するとともに、0.01mmから0.3mmの厚さを有する第2の層、
を有し、
前記第1のガラス組成の軟化点が前記第2のガラス組成の軟化点より低く、前記造形ガラス品の実効108.2P温度が高くとも900℃であり、前記第2のガラス組成の粘度が前記造形ガラス品の前記実効108.2P温度において低くとも18.3Pであ
前記造形ガラス品は、最大1nmの表面粗さ、および最大50nmの表面うねりの少なくとも一方を有する、
ことを特徴とする造形ガラス品。
【請求項10】
前記第1のガラス組成が前記第2のガラス組成より大きい平均熱膨張係数(CTE)を有することを特徴とする請求項に記載の造形ガラス品。
【請求項11】
前記造形ガラス品の実効108.2P温度が高くとも875℃または高くとも750℃であることを特徴とする請求項9または10に記載の造形ガラス品。
【請求項12】
半径が5mmより小さい少なくとも1つの曲げをさらに有することを特徴とする請求項9から11のいずれかに記載の造形ガラス品。
【請求項13】
前記第1の層がコア層を含み、前記第2の層が前記コア層の第1の主表面に隣接する第1のクラッド層及び前記コア層の、前記第1の主表面と表裏をなす、第2の主表面に隣接する第2のクラッド層を含むことを特徴とする請求項9から12のいずれかに記載の造形ガラス品。
【請求項14】
ディスプレイ、自動車用板ガラスまたは建築用パネルにおいて、請求項9から13のいずれか1項に記載の前記造形ガラス品を含むことを特徴とするディスプレイ、自動車用板ガラスまたは建築用パネル。
【発明の詳細な説明】
【関連出願の説明】
【0001】
本出願は2014年5月7日に出願された米国仮特許出願第61/989712号への優先権の恩典を主張する。上記仮特許出願の明細書の内容はその全体が本明細書に参照として含められる。
【技術分野】
【0002】
本開示はガラス品に関し、さらに詳しくは、複数のガラス層を有する合わせガラス品及びこれを成形するための方法に関する。
【背景技術】
【0003】
ガラスシートは非平面または3次元の形状を有する造形ガラス品を成形するためにモールド成形することができる。一般に、ガラスシートはその軟化点まで加熱され、次いで、立体モールドの表面に一致するように変形される。
【発明の概要】
【課題を解決するための手段】
【0004】
造形ガラス品及びこれを成形するための方法が本明細書に開示される。
【0005】
造形ガラス品を成形するためガラスシートの第2の層を成形面と接触させる工程を含む方法が本明細書に開示される。ガラスシートは第2の層に隣接する第1の層を有する。第1の層は第1のガラス組成を有する。第2の層は第2のガラス組成を有する。接触させる工程中のガラスシートの実効粘度は接触させる工程中の第2の層の粘度より低い。
【0006】
第1のガラス組成を有する第1の層及び第2のガラス組成を有する第2の層を有する造形ガラス品も本明細書に開示される。第1のガラス組成の軟化点は第2のガラス組成の軟化点より低い。造形ガラス品の実効108.2P温度は高くとも約900℃である。造形ガラス品の実効108.2P温度における第2のガラス組成の粘度は、低くとも約108.3Pである。
【0007】
第1のガラス組成を有する第1の層及び第2のガラス組成を有する第2の層を有する造形ガラス品も本明細書に開示される。造形ガラス品の表面粗さは大きくとも約1nmである。造形ガラス品の表面うねりは大きくとも約50nmである。
【0008】
さらなる特徴及び利点は以下の詳細な説明に述べられ、ある程度は、当業者にはその説明から容易に明らかであろうし、あるいは、以下の詳細な説明及び特許請求の範囲を、また添付図面も、含む本明細書に説明されるように実施形態を実践することで認められるであろう。
【0009】
上記の全般的説明及び以下の詳細な説明がいずれも例示に過ぎず、特許請求の範囲の本質及び特質を理解するための概要または枠組みの提供が目的とされていることは当然である。添付図面はさらに深い理解を提供するために含められ、本明細書に組み入れられて本明細書の一部をなす。図面は1つ以上の実施形態を示し、記述とともに、様々な実施形態の原理及び動作の説明に役立つ。
【図面の簡単な説明】
【0010】
図1図1はガラス品の一実施形態例の断面図である。
図2図2はガラス品を形成するために用いることができるオーバーフローディストリビュータの一実施形態例の断面図である。
図3図3はガラスシートの外表面と成形面の一実施形態例の間の界面の拡大図である。
図4図4はガラスシートと成形面の間の相互作用を表すために用いることができる解析モデルの図式表示である。
図5図5は、図4に示されるように成形面の表面構造を埋めている、粘度が異なるガラスの動態のグラフ表示である。
図6図6は、厚さが0.07mmから0.7mmの範囲にあるガラスシートに対する、1バール(1×10Pa)の曲げ圧力の印加により半径が3mmで曲げ高さが2.3mmの曲げを成形するための、ガラス粘度の関数としての、予測時間のグラフ表示である。
図7図7はガラスシートの成形面との接触によって成形された造形ガラス品の一実施形態例の写真である。
図8図8はガラスシートの成形面との接触によって形成された造形ガラス品の別の実施形態例の写真である。
図9図9は、突起を有する、別の実施形態例の成形面と接触させられているガラスシートのシミュレーション応答を示す。
図10図10図9に示されるようなコア層と第1のクラッド層の間の界面の変形の、異なる第1のガラス組成の粘度対第2のガラス組成の粘度の比(例えば、コア粘度/クラッド粘度比)に対する、第1のクラッド層の厚さの関数としての予測減衰量のグラフ表示である。
図11図11は造形ガラス品を形成するために用いられるガラス組成例に対する粘度曲線のグラフ表示である。
図12図12は、一実施形態例の造形ガラス品の、標準CADからの偏差を示す。
図13図13は、別の実施形態例の造形ガラス品の、標準CADからのイオン交換前の偏差を示す。
図14図14は、別の実施形態例の造形ガラス品の、標準CADからのイオン交換後の偏差を示す。
図15図15は、合わせガラスシートから成形された造形ガラス品の一実施形態例(右側)及び単層ガラスシートから成形された造形ガラス品の別の実施形態例(左側)の表面上に投影された、格子像を示している写真である。
図16図16は造形ガラス品の形成に用いられるガラス組成例に対する粘度曲線のグラフ表示である。
図17図17は、一例のモデル化成形プロセスを用いて造形ガラス品に形成される表面欠陥の、ガラスシートの実効粘度の関数としての、勾配のグラフ表示である。
図18図18は、別の例のモデル化成形プロセスを用いて造形ガラス品に形成される表面欠陥の、ガラスシートの実効粘度の関数としての、勾配のグラフ表示である。
【発明を実施するための形態】
【0011】
添付図面に示されている実施形態例をここで詳細に参照する。可能であれば必ず、同じ参照数字が全図面を通して同じかまたは同様の要素を指して用いられる。図面のコンポーネントは必ずしも比例尺で描かれてはおらず、代わりに、実施形態例の原理を示すにあたって強調されている。
【0012】
本明細書に用いられるように、術語「平均熱膨張係数」は与えられた材料または層の0℃と300℃の間の平均熱膨張係数を指す。本明細書に用いられるように、術語「熱膨張係数」は、別途に示されない限り、平均熱膨張係数を指す。
【0013】
本明細書に用いられるように、ガラス組成の、術語「軟化点」はガラス組成の粘度が約107.6ポアズ(P)である温度を指す。
【0014】
本明細書に用いられるように、ガラス組成の、術語「アニール点」はガラス組成の粘度が約1013.2ポアズ(P)である温度を指す。
【0015】
本明細書に用いられるように、ガラス組成の、術語「ひずみ点」はガラス組成の粘度が約1014.7ポアズ(P)である温度を指す。
【0016】
本明細書に用いられるように、ガラス品、ガラス層、またはガラス組成の、術語「108.2P温度」はガラス品、ガラス層、またはガラス組成の粘度が約108.2Pである温度を指す。
【0017】
様々な実施形態において、ガラスシートは造形ガラス品を成形するために成形面と接触させられる。ガラスシートは少なくとも第1の層及び第2の層を有する。例えば、第1の層はコア層を含み、第2の層はコア層に隣接する1つ以上のクラッド層を含む。第1の層及び/または第2の層は、ガラス、ガラス−セラミックまたはこれらの組合せを含む、ガラス層である。例えば、第1の層及び/または第2の層は、透明ガラス層である。いくつかの実施形態において、ガラスシートを成形面と接触させる工程中、第1の層の粘度は成形面と接触している第2の層の粘度より低い。例えば、ガラスシートの実効粘度は、接触工程中、成形面と接触しているガラスシートの接触粘度より低い。そのような異なる粘度により、造形ガラス品の成形が可能になり、同時に造形ガラス品と成形面の間でおこり得る有害な表面相互作用の回避が可能になり得る。
【0018】
図1は一実施形態例のガラスシート100の断面図である。いくつかの実施形態において、ガラスシート100は複数のガラス層を有する合わせガラスシートを含む。合わせガラスシートは図1に示されるように実質的に平形であるか、または非平形であり得る。ガラスシート100は第1のクラッド層104と第2のクラッド層106の間に配されたコア層102を有する。いくつかの実施形態において、第1のクラッド層104及び第2のクラッド層106は図1に示されるように外層である。別の実施形態において、第1のクラッド層104及び/または第2のクラッド層106はコア層と外層の間に配された中間層である。
【0019】
コア層102は第1の主表面及び、第1の主表面と表裏をなす、第2の主表面を有する。いくつかの実施形態において、第1のクラッド層104はコア層102の第1の主表面に融着される。さらに、またはあるいは、第2のクラッド層106がコア層102の第2の主表面に融着される。そのような実施形態において、第1のクラッド層104とコア層102の間及び/または第2のクラッド層106とコア層102の間には、例えば接着剤のような、いかなる接合材料も、コーティング層も、あるいはそれぞれのクラッド層をコア層に密着させるために付加または構成されたいかなる非ガラス材料も無い。したがって、第1のクラッド層104及び/または第2のクラッド層106はコア層102に直接融着されるか、またはコア層102に直接に隣接する。いくつかの実施形態において、ガラスシートはコア層と第1のクラッド層の間及び/またはコア層と第2のクラッド層の間に配された1つ以上の中間層を有する。例えば、中間層は中間ガラス層及び/または、コア層とクラッド層の界面に形成された拡散層を含む。拡散層は拡散層に隣接するそれぞれの層の成分を含む混合領域を有することができる。いくつかの実施形態において、ガラスシート100は、直接に隣接するガラス層の間の界面がガラス−ガラス界面である、ガラス−ガラス積層を含む(例えば、その場融着多層ガラス−ガラス積層である)。
【0020】
いくつかの実施形態において、第1の層(例えば、コア層102)は第1のガラス組成を有し、第2の層(例えば、第1のクラッド層104及び/または第2のクラッド層106)は、第1のガラス組成と異なる、第2のガラス組成を有する。例えば、図1に示される実施形態において、コア層102は第1のガラス組成を有し、第1のクラッド層104及び第2のクラッド層106のそれぞれは第2のガラス組成を有する。別の実施形態において、第1のクラッド層は第2のガラス組成を有し、第2のクラッド層は、第1のガラス組成及び/または第2のガラス組成と異なる、第3のガラス組成を有する。
【0021】
ガラスシートは、例えば、フュージョンドロープロセス、ダウンドロープロセス、スロットドロープロセス、アップドロープロセスまたはフロートプロセスのような、適するプロセスを用いて形成することができる。ガラスシートの様々な層は、ガラスシートの形成中に積層するか、あるいは、個々に形成し、続いて積層してガラスシートにすることができる。いくつかの実施形態において、ガラスシートはフュージョンドロープロセスを用いて形成される。図2は、例えばガラスシート100のような、ガラスシートを形成するために用いられ得る一実施形態例のオーバーフローディストリビュータ200の断面図である。オーバーフローディストリビュータ200は米国特許第4214886号明細書に説明されるように構成することができる。上記特許明細書はその全体が本明細書に参照として含められる。例えば、オーバーフローディストリビュータ200は下部オーバーフローディストリビュータ220及び、下部オーバーフローディストリビュータの上方に配置された、上部オーバーフローディストリビュータ240を備える。下部オーバーフローディストリビュータ220はトラフ222を備える。第1のガラス組成224が融解されて、粘性状体で、トラフ222に送り込まれる。第1のガラス組成224は、以下でさらに説明されるように、ガラスシート100のコア層102を形成する。上部オーバーフローディストリビュータ240はトラフ242を備える。第2のガラス組成244が融解されて、粘性状体で、トラフ242に送り込まれる。第2のガラス組成244は、以下でさらに説明されるように、ガラスシート100の第1のクラッド層104及び第2のクラッド層106を形成する。
【0022】
第1のガラス組成224はトラフ222から溢流し、下部オーバーフローディストリビュータ220の両側の外部形成面226及び228を流下する。外部形成面226及び228はドローライン230で合一する。外部形成面226及び228のそれぞれを流下する第1のガラス組成224の個々の流れはドローライン230で合流し、そこで融合してガラスシート100のコア層102を形成する。
【0023】
第2のガラス組成244はトラフ242から溢流し、上部オーバーフローディストリビュータ240の両側の外部形成面246及び248を流下する。第2のガラス組成244は、第2のガラス組成が下部オーバーフローディストリビュータ220の周りを流れて、下部オーバーフローディストリビュータの外部形成面226及び228上を流れている第1のガラス組成224に接触するように、上部オーバーフローディストリビュータ240によって外向きに偏向させられる。第2のガラス組成244の個々の流れは下部オーバーフローディストリビュータ220の外部形成面226及び228のそれぞれを流下している第1のガラス組成224の個々の流れのそれぞれに融着される。ドローライン230における第1のガラス組成224の流れの合流時に、第2のガラス組成244はガラスシート100の第1のクラッド層104及び第2のクラッド層106を形成する。
【0024】
いくつかの実施形態において、粘性状態にあるコア層102の第1のガラス組成224は粘性状態にある第1のクラッド層104及び第2のクラッド層106の第2のガラス組成244と接触させられて合わせガラスシートを形成する。そのような実施形態のいくつかにおいて、合わせガラスシートは図2に示されるように下部オーバーフローディストリビュータ220のドローライン230から離れる方向に進行しているガラスリボンの一部である。ガラスリボンは、例えば重力及び/または引張ローラーを含む、適する手段によって下部オーバーフローディストリビュータ220から引き離すことができる。ガラスリボンは下部オーバーフローディストリビュータ220から離れる方向に進行するにつれて冷える。ガラスリボンはガラスリボンから合わせガラスシートを分離するために切断される。このように、合わせガラスシートはガラスリボンから切り離される。ガラスリボンは、例えば、罫書き、曲げ、熱衝撃及び/またはレーザ切断のような、適する手法を用いて切断することができる。いくつかの実施形態において、ガラスシート100は図1に示されるように合わせガラスシートを含む。別の実施形態において、合わせガラスシートはガラスシート100を形成するために(例えば、裁断またはモールド成形によって)さらに処理することができる。
【0025】
図1に示されるガラスシート100は3つの層を有するが、別の実施形態が本開示に含められる。別の実施形態において、ガラスシートは、2層、4層またはさらに多くの層のような、定められた数の層を有することができる。例えば、2つのオーバーフリーディストリビュータを、2つの層がオーバーフローディストリビュータのそれぞれのドローラインから離れる方向に進行しながら接合されるように用いて、あるいは分割トラフを備える1つのオーバーフローディストリビュータを、2つのガラス組成がオーバーフローディストリビュータの両側の外部形成面上を流れてオーバーフローディストリビュータのドローラインにおいて合流するように用いて、2層を有するガラスシートを形成することができる。追加のオーバーフローディストリビュータを用いて、及び/または分割トラフを備えるオーバーフローディストリビュータを用いて、4層またはさらに多くの層を有するガラスシートを形成することができる。このように、オーバーフローディストリビュータを適宜に改変することで定められた数の層を有するガラスシートを形成することができる。
【0026】
いくつかの実施形態において、ガラスシート100は、少なくとも約0.05mm、少なくとも約0.1mm、少なくとも約0.2mm、または少なくとも約0.3mmの厚さを有する。さらに、またはあるいは、ガラスシート100は、大きくとも約3mm、大きくとも約2mm、大きくとも約1.5mm、大きくとも約1mm、大きくとも約0.7mm、または大きくとも約0.5mmの厚さを有する。いくつかの実施形態において、ガラスシート100の厚さに対するコア層102の厚さの比は、少なくとも約0.6、少なくとも約0.7、少なくとも約0.8、少なくとも約0.85、少なくとも約0.9、または少なくとも約0.95である。いくつかの実施形態において、第2の層(例えば第1のクラッド層104及び第2のクラッド層106のそれぞれ)の厚さは約0.01mm〜約0.3mmである。
【0027】
いくつかの実施形態において、ガラスシート100は強化ガラスシートとして構成される。したがって、本明細書で説明されるようなガラスシート100から成形された造形ガラス品は造形強化ガラス品を含む。例えば、いくつかの実施形態において、第2の層(例えば、第1のクラッド層104及び/または第2のクラッド層106)の第2のガラス組成は第1の層(例えばコア層102)の第1のガラス組成とは異なる平均熱膨張係数(CTE)を有する。例えば、第1のクラッド層104及び第2のクラッド層106はコア層102より小さい平均CTEを有するガラス組成から形成される。CTE不整合(すなわち、第1のクラッド層104及び第2のクラッド層106の平均CTEとコア層102の平均CTEの間の差)の結果、ガラスシート100の冷却時に、クラッド層における圧縮応力及びコア層における引張応力の形成がおこる。様々な実施形態において、第1のクラッド層及び第2のクラッド層のそれぞれは、独立に、コア層より大きい平均CTE、コア層より低い平均CTEまたはコア層と実質的に同じCTEを有することができる。
【0028】
いくつかの実施形態において、第1の層(例えばコア層102)の平均CTEと第2の層(例えば第1のクラッド層104及び/または第2のクラッド層106)の平均CTEは、少なくとも約5×10−7/℃−1、少なくとも約15×10−7/℃−1、または少なくとも約25×10−7/℃−1、異なる。さらに、またはあるいは、第1の層の平均CTEと第2の層の平均CTEは、大きくとも約55×10−7/℃−1、大きくとも約50×10−7/℃−1、大きくとも約40×10−7/℃−1、大きくとも約30×10−7/℃−1、大きくとも約20×10−7/℃−1、または大きくとも約10×10−7/℃−1、異なる。例えば、いくつかの実施形態において、第1の層の平均CTEと第2の層の平均CTEは、約5×10−7/℃−1〜約30×10−7/℃−1、または約5×10−7/℃−1〜約20×10−7/℃−1、異なる。いくつかの実施形態において、第2の層の第2のガラス組成は、大きくとも約40×10−7/℃−1、または大きくとも約35×10−7/℃−1の平均CTEを有する。さらに、またはあるいは、第2の層の第2のガラス組成は、少なくとも約25×10−7/℃−1または少なくとも約30×10−7/℃−1の平均CTEを有する。さらに、またはあるいは、第1の層の第1のガラス組成は、少なくとも約40×10−7/℃−1、少なくとも約50×10−7/℃−1、または少なくとも約55×10−7/℃−1の平均CTEを有する。さらに、またはあるいは、第1の層の第1のガラス組成は、大きくとも約90×10−7/℃−1、大きくとも約85×10−7/℃−1、大きくとも約80×10−7/℃−1、大きくとも約70×10−7/℃−1、または大きくとも約60×10−7/℃−1の平均CTEを有する。
【0029】
いくつかの実施形態において、クラッド層の圧縮応力は、大きくとも約800MPa、大きくとも約500MPa、大きくとも約300MPa、大きくとも約200MPa、大きくとも約150MPa、大きくとも約100MPa、大きくとも約50MPa、または大きくとも約40MPaである。さらに、またはあるいは、クラッド層の圧縮応力は、少なくとも約10MPa、少なくとも約20MPa、少なくとも約30MPa、少なくとも約50MPa、少なくとも約100MPa、または少なくとも約200MPaである。
【0030】
いくつかの実施形態において、第1の層の第1のガラス組成は第2の層の第2のガラス組成より低い軟化点を有する。例えば、図1に示される実施形態において、コア層102の第1のガラス組成は第1のクラッド層104及び/または第2のクラッド層106の第2のガラス組成より低い軟化点を有する。そのような異なる軟化点により、ガラスシート100の造形ガラス品への成形が可能になり、同時に、本明細書で説明されるように、ガラスシートと成形面の間でおこり得る有害な表面相互作用の回避が可能になり得る。
【0031】
いくつかの実施形態において、第1のガラス組成の軟化点は第2のガラス組成の軟化点と、少なくとも約5℃、少なくとも約15℃、少なくとも約50℃、または少なくとも約80℃、異なる。さらに、またはあるいは、第1のガラス組成の軟化点は第2のガラス組成の軟化点と大きくとも約100℃異なる。いくつかの実施形態において、第1のガラス組成は、高くとも約900℃、高くとも約880℃、高くとも約800℃、または高くとも約775℃の軟化点を有する。さらに、またはあるいは、第1のガラス組成は、低くとも約600℃、低くとも約700℃、または低くとも約800℃の軟化点を有する。さらに、またはあるいは、第2のガラス組成は、高くとも約1000℃、高くとも約975℃、高くとも約900℃、または高くとも約800℃の軟化点を有する。さらに、またはあるいは、第2のガラス組成は、低くとも約700℃、低くとも約800℃、または低くとも約900℃の軟化点を有する。
【0032】
いくつかの実施形態において、第1の層の第1のガラス組成は第2の層の第2のガラス組成より低い108.2P温度を有する。例えば、いくつかの実施形態において、第1のガラス組成の108.2P温度は第2のガラス組成の108.2P温度と、少なくとも約5℃、少なくとも約15℃、少なくとも約50℃、または少なくとも約80℃、異なる。さらに、またはあるいは、第1のガラス組成の108.2P温度は第2のガラス組成の108.2P温度と、大きくとも約125℃、大きくとも約110℃、または大きくとも約100℃、異なる。
【0033】
いくつかの実施形態において、第1の層の第1のガラス組成は、様々な温度において、第2の層の第2のガラス組成より低い粘度を有する。言い換えれば、第1のガラス組成の粘度曲線の全てまたは一部は第2のガラス組成の粘度曲線の下にある。例えば、第1の層の第1のガラス組成は第2の層の第2のガラス組成より低い107.4P温度及び/または第2の層の第2のガラス組成より低い1010P温度を有する。
【0034】
いくつかの実施形態において、ガラスシート100は、造形ガラス品を成形するため、成形面と接触させられる。そのようなプロセスは再形成プロセスまたはモールド成形プロセスと称され得る。図3はガラスシートの外表面と一実施形態例の成形面300の間の界面の拡大図である。成形面300には適する、例えば、真空成形モールド、加圧成形モールド、垂下成形モールド、またはプレス成形モールドを含む、成形ユニットまたはモールドの成形面を含めることができる。いくつかの実施形態において、成形ユニットは一個取りモールド成形ユニット(例えば、真空成形モールド、加圧成形モールドまたは垂下成形モールド)を含む。一個取りモールド成形ユニットは、造形ガラス品を成形するために一緒にプレスされる2つ以上の成形面に対するものとして、ただ一つの成形面を有する。
【0035】
図4はガラスシートと成形面の間の相互作用を表すために用いることができる解析モデルの図式表示である。パラメータRは成形面の表面構造(例えば、ディボットまたは欠陥)と接触しているガラスシートの領域の表面半径を含む。ガラスシートの表面の形状が表面構造の形状により一層近づくにつれて、パラメータRは小さくなる。パラメータRが小さくなるにつれて、成形面の表面構造とガラスシートの間の接触面積は大きくなる。接触面積がそのように大きくなる結果、得られる造形ガラス品の表面品質が低下し得る、及び/または成形面の摩損が大きくなり得る。
【0036】
図5は、図4に示されるように成形面の表面構造を埋めている、粘度の異なるガラスの動態のグラフ表示である。ガラスシートと成形面の表面構造の間の実効接触面積は、平衡接触面積に達するまで、時間とともに大きくなる。したがって、パラメータRは図5に示されるように、平衡値に達するまで、時間とともに小さくなる。いかなる理論にもこだわらず、平衡は印加される押圧力と毛管力の間の釣合いの結果であると考えられる。与えられた長さのプロセス時間(例えば5秒)に対し、粘度が高いガラスは、粘度が低いガラスに比較して、受ける変形が小さい。与えられた長さのプロセス時間に対してパラメータRが大きくなることで変形が小さくなることが証明され、これは成形面との接触面積が小さくなることを表す。
【0037】
一般的なモールド成形作業において、ガラスはその軟化点まで加熱され、次いでモールドの成形面と接触させられる。ガラスは変形して成形面の輪郭に一致する。このように、得られる造形ガラス品は成形面の形状に相補する3次元(3D)形状を有する。ガラスの粘度は、所望の3D形状を有する造形ガラス品を形成するため(例えば、十分に小さい曲げ半径を達成するため)の粘性変形を可能にするに十分に低い。しかし、ガラスの粘度が低すぎると、成形面の欠陥がガラスに微細に転写され得る、及び/またはガラスが成形面にはり付くことができる。これはガラス表面の損傷及び/またはモールドの劣化をおこさせることができる。したがって、成形中のガラス粘度を低くすれば所望の3D形状を有するガラス品の達成に役立ち得るし、成形中のガラス粘度を高くすればガラス品の表面の欠陥及び/またはモールドの劣化の回避に役立ち得る。ガラスの表面損傷及び/またはモールドも劣化を低減するため、コーティング材料で成形面を被覆することができる。しかし、そのような被覆はモールド成形作業のコストを高め得る。さらに、またはあるいは、成形粘度を高くしてガラス品を成形することができる。しかし、そのように成形粘度を高くすると、成形時間が長くなり得る、及び/または達成され得る曲げ半径が制限され得る。
【0038】
いくつかの実施形態において、ガラスシートを成形面と接触させる工程はガラスシートの第2の層を成形面と、ガラスシートの第1の面は成形面と接触させずに、接触させる工程を含む。例えば、ガラスシート100の第1のクラッド層104が成形面300と接触させられる。第1のクラッド層104がコア層102と成形面300の間に配され、よってコア層は成形面と接触させられない。ガラスシート100、またはその一領域は、ガラスシートが成形面の形状と一致するように接触に応答して変形されて造形ガラス品を形成するに十分に高い温度において接触させられる。いくつかの実施形態において、成形面300との接触中のガラスシート100の最高温度(すなわち、最高成形温度)は高くとも約900℃または高くとも850℃である。
【0039】
いくつかの実施形態において、コア層102の第1のガラス組成は、本明細書に説明されるように、第1のクラッド層104及び/または第2のクラッド層106の第2のガラス組成より低い軟化点を有する。したがって、ガラスシート100は、比較的軟質な(例えば、コア層102で形成された)コアを少なくともある程度包む、比較的硬質な(例えば、第1のクラッド層104及び/または第2のクラッド層106で形成された)クラッドを有する。ガラスシート100を成形面300と接触させる工程は比較的硬質なクラッドを、比較的軟質なコアは接触させずに、接触させる工程を含む。比較的軟質なコアにより、所望の3D形状を有する造形ガラス品へのガラスシート100の成形が可能になり得る。さらに、またはあるいは、比較的硬質なクラッドは(比較的硬質なクラッドと成形面の間の相互作用を回避することにより)造形ガラスへの表面損傷及び/または成形面300への損傷の回避に役立ち得る。
【0040】
特定の温度(例えば、成形温度)におけるガラスシート100の実効粘度μeffは、厚さで重み付けされた、その特定の温度におけるガラスシートの平均粘度を含む。例えば、いくつかの実施形態において、コア層102は厚さtcoreを有し、第1のクラッド層104及び第2のクラッド層106のそれぞれは厚さtcladを有する。第1のガラス組成はその特定の温度において粘度μcoreを有し、第2のガラス組成はその特定の温度において粘度μcladを有する。したがって、その特定の温度におけるガラスシート100の実効粘度は式(1):
【0041】
【数1】
【0042】
で表される。
【0043】
いくつかの実施形態において、成形面300と接触している間のガラスシート100の実効粘度μeffは接触中に成形面と接触しているガラスシートの接触粘度(例えば、表面粘度)より低い。例えば、成形面300と接触中のガラスシート100の実効粘度μeffは、本明細書で説明されるように、成形面と接触しているガラスシート100の第1のクラッド層104の粘度μcladより低い。成形温度におけるガラスシート100の実効粘度を低くすることで、所望の3D形状を有する造形ガラス品へのガラスシートの成形が可能になり得る。例えば、ガラスシート100を、成形温度において(ガラスシート100の実効粘度μeffと同様の)低い粘度を有する、単層ガラスシートで達成可能な曲げ半径と同様の小さい曲げ半径を有する3D形状に成形することができる。さらに、またはあるいは、ガラスシート100と成形面300の間の表面相互作用を成形温度において(例えば、ガラスシート100の粘度μcladと同様の)高い粘度を有する単層ガラスシートで達成可能な態様と同様の態様で回避することができる。言い換えれば、ガラスシート100は有効な形状複製を可能にするための比較的低い実効粘度μeffを、またガラス表面品質を高めること及び/またはモールド寿命を長くすることを可能にするための比較的高い接触粘度μcladも有することができる。
【0044】
本明細書に説明するようにガラスシート100を成形面300に接触させることで、単層ガラスシートの成形に比較して表面特性が改善されている造形ガラス品が可能になり得る。例えば、いくつかの実施形態において、造形ガラス品は、大きくとも約1nm、大きくとも約0.9nm、大きくとも約0.8nm、または大きくとも約0.7nmの表面粗さ(R)を有する。表面粗さはISO1302またはASTM F2791に説明されるようにして測定することができる。さらに、またはあるいは、ガラス品は、大きくとも約50nm、大きくとも約40nm、大きくとも約30nm、または大きくとも約25nmの、表面うねりを有する。表面うねりはASTM C1652/C1652Mに説明されるようにして測定することができる。いくつかの実施形態において、表面特性が改善されている造形ガラス品は本明細書に説明されるように(例えば、CTE不整合及び/またはイオン交換によって)強化される。
【0045】
いくつかの実施形態において、ガラスシート100は特定の実効粘度に対応する実効温度を有する。実効温度は、ガラスシート100が特定の実効粘度μeffを有する、ガラスシート100の温度を含む。例えば、ガラスシート100の実効108.2P温度は、ガラスシートの実効粘度μeffが108.2Pである温度を含む。いくつかの実施形態において、ガラスシート100は、高くとも約900℃、高くとも約875℃、高くとも約850℃、高くとも約800℃、または高くとも約750℃の、実効108.2P温度を有する。さらに、またはあるいは、ガラスシート100は低くとも約400℃の実効108.2P温度を有する。
【0046】
ガラスシートの成形温度は用いられる成形法に依存することができ、低くとも特定の実効粘度に対応する実効温度とすることができる。例えば、成形温度は、低くともガラスシートの実効1010P温度、低くともガラスシートの実効108.2P温度、または低くともガラスシートの実効107.4P温度である。
【0047】
いくつかの実施形態において、ガラスシート100は、成形面の形状に一致するように成形面300との接触に応答して変形されて造形ガラス品に成形される。図6は厚さが0.07mm〜0.7mmの範囲にあるガラスシートに対する、1バール(1×10Pa)の曲げ圧力の印加によって半径が3mmで曲げ高さが2.3mmの曲げを形成するための、ガラス粘度の関数としての、予測時間のグラフ表示である。直線402は厚さが0.07mmのガラスシートに対応する。直線404は厚さが0.2mmのガラスシートに対応する。直線406は厚さが0.63mmのガラスシートに対応する。直線408は厚さが0.7mmのガラスシートに対応する。横線410はガラス粘度が109.8Pの0.7mm厚ガラスシートがシミュレーション条件下で曲がるには57秒かかることを示す。対照的に、0.2mm厚ガラスシートが57秒で曲がるためには1011.5Pの粘度を有することができ、0.07mm厚ガラスシートが57秒で曲がるためにはかなり高い(例えば、ガラスが粘弾性のままであれば、1011.5Pより高い)粘度を有することができる。
【0048】
図6に示されるように、ガラスシートの成形時間は、粘度が高くなるとともに及び厚さが増大するとともに、著しく長くなる。したがって、ガラス粘度はガラスシートの成形時間にかなり強い影響を有する。いくつかの実施形態において、本明細書に説明されるように、ガラスシート100の実効粘度は比較的低いが、表面粘度は比較的高い。したがって、ガラスシート100に対する成形時間を(例えば、比較的低い実効粘度により)比較的短くすることができ、同時に、成形面300とのおこり得る有害な表面相互作用を(例えば、比較的高い表面粘度により)回避することができる。
【0049】
図7〜8は、ガラスシート100を成形面300と接触させることで成形した、一実施形態例の造形ガラス品500の写真である。すなわち、造形ガラス品500は、本明細書でガラスシート100を参照して説明した第1の層及び第2の層を有する。本明細書でガラスシート100を参照して説明したように、造形ガラス品500の第1の層は第1のガラス組成を有し、造形ガラス品の第2の層は第2のガラス組成を有する。したがって、造形ガラス品500は、またはその個々の層は、本明細書でガラスシート100を参照して説明した様々な特性(例えば、CTE、軟化点、実効粘度、実効温度、等)を保持することができる。例えば、いくつかの実施形態において、造形ガラス品500は(例えば、第1の層と第2の層の間のCTE不整合の結果として)強化造形ガラス品として構成することができる。
【0050】
いくつかの実施形態において、造形ガラス品500は、例えば、携帯型民生用電子デバイス(例えば携帯電話)のためのカバーガラスとして用いることができる。図7〜8に示される実施形態において、造形ガラス品500は、湾曲リップ504に取り囲まれた、実質的に平坦な中央領域502を有する。すなわち、ガラスシート100を接触させる工程はガラスシートに1つ以上の曲げを形成する工程を含む。例えば、曲げは実質的に平坦な中央領域502と湾曲リップ504の間の遷移におけるガラスシートの湾曲領域を含む。いくつかの実施形態において、ガラスシート100を接触させる工程は、造形ガラス品500が、半径が大きくとも約5mm、大きくとも約4mm、大きくとも約3mm、または大きくとも約2mmである、曲げを有するように、ガラスシートを曲げる工程を含む。さらに、またはあるいは、ガラスシート100を接触させる工程は、曲げ角が約70°〜約90°または約80°〜約90°の曲げを造形ガラス品500が有するように、ガラスシートを曲げる工程を含む。いくつかの実施形態において、曲げはアール曲げを含む。別の実施形態において、曲げはスプライン形曲げを含む。いくつかの実施形態において、造形ガラス品の形状精度は、造形ガラス品をイオン交換プロセスにかける前及びかけた後において、±50μmである。例えば、造形ガラス品の形状は、造形ガラス品をイオン交換プロセスにかけた後で、意図した形状の50μm以内にある。
【0051】
造形ガラス品500は、実質的に長方形の平坦領域のそれぞれの辺に1つの、4つの曲げで形成された湾曲リップを有するとして説明されるが、本開示には別の実施形態が含まれる。別の実施形態において、造形ガラス品は、1つ、2つ、3つまたはさらに多くの曲げのような、定められた数の曲げを有する。造形ガラス品500は、湾曲リップ504で取り囲まれた、実質的に平坦な中央領域502を有するとして説明されるが、本開示には別の実施形態が含まれる。別の実施形態において、造形ガラス品は、例えば、皿形、屈曲形または湾曲形を含む、適する非平坦形状または3D形状を有する。
【0052】
いくつかの実施形態において、造形ガラス品はイオン交換される。例えば、第1のガラス組成及び/または、造形ガラス品に圧縮応力を形成するため、適するイオン交換プロセスを用いてより大径のイオン(例えば、K+1またはAg+1)と交換され得るアルカリ金属イオン(例えば、Li+1またはNa+1)を含有する。いくつかの実施形態において、イオン交換プロセスは造形ガラス品を溶融塩溶液にさらす工程を含む。造形ガラス品(例えば、第1の層及び/または第2の層)内に存在する小径陽イオン(例えば、一価のアルカリ金属陽イオンまたは二価のアルカリ土類金属陽イオン)が、溶融塩溶液内に存在する大径陽イオン(例えば、一価のアルカリ金属陽イオン、二価のアルカリ土類金属陽イオンまたはAg)で置き換えられる。例えば、いくつかの実施形態において、NaがKで置き換えられる。小径陽イオン及び大径陽イオンは同じ原子価または酸化状態を有することができる。大径イオンによる小径イオンの置き換えは造形ガラス品に圧縮または圧縮応力下にある強化層を形成する。強化層は造形ガラス品の内部にまたはバルク内に像深さ(DOL)まで延び込む。いくつかの実施形態において、強化された造形ガラス品は第1の層または第2の層の少なくとも一方に、イオン交換プロセスの結果得られた、陽イオン濃度勾配(例えば、K及び/またはAgの濃度勾配)を有する。
【0053】
一般に、ガラス組成の軟化点及び/またはひずみ点が低くなるにつれて、ガラス組成のイオン交換特性は低下する傾向がある。そのような低下はイオン交換中の応力緩和の結果であり得る(例えば、ガラス組成のひずみ特性がイオン交換浴温度に近すぎる場合)。さらに、またはあるいは、イオン交換可能なガラスは成形して造形ガラス品にすることが比較的困難であり得る。例えば、イオン交換可能なガラスは、比較的高い温度及び圧力において、及び/または比較的長い形成時間をかけて、形成され得る。そのような困難は、イオン交換可能なガラスの比較的高い軟化点及び/またはひずみ点の結果であり得る。イオン交換可能なガラスを本明細書に説明されるように合わせガラスシートに(例えば、クラッド層として)組み込むことにより、合わせガラスシートの実効粘度を合わせガラスシートの造形ガラス品への成形が可能になるように低めることができ、同時に、イオン交換可能なガラスのイオン交換能力を維持することができる。
【0054】
いくつかの実施形態において、造形ガラス品は本明細書に説明されるようにCTE不整合を有する。そのような実施形態のいくつかにおいて、造形ガラス品は、第2の層に形成される圧縮応力をさらに高めるために、イオン交換プロセスにかけられる。例えば、CTE不整合によって得られる圧縮応力は約25MPaと約300MPaの間または約100MPaと約200MPaの間であり、イオン交換で得られる圧縮応力は約400MPaと約700MPaの間または約500MPaと約600MPaの間である。したがって、造形ガラス品は約425MPaと約1000MPaの間または約600MPaと約800MPaの間の総合圧縮応力を有する。CTE不整合及びイオン交換の強化効果を併合して所望の圧縮応力を有する造形ガラス品を達成することができるから、イオン交換可能なガラスは最適よりは低いイオン交換能力を有することができる。例えば、CTE不整合を有する合わせガラスシートにイオン交換能力が若干劣る比較的軟質のイオン交換可能なガラスを組み込んで、所望の総合強度を有する造形ガラスに成形することができる。
【0055】
いくつかの実施形態において、成形面は、造形ガラス品の成形中にガラスシート100の外表面に欠陥を付与する、不完全さ(例えば、くぼみまたは突起)を有する。成形面上の不完全さは製造欠陥または、反復使用によって生じた、成形面の摩損の結果であり得る。例えば、図9は、突起602を有する、別の実施形態例の成形面600と接触させられているガラスシート100のシミュレーション応答を示す。いくつかの実施形態において、ガラスシート100の外表面は、成形面600との接触により、もはや無垢ではない。例えば、ガラスシート100を成形面600と接触させることで成形された造形ガラス品は、図9に示されるように、非平滑及び/または非一様な外表面を有する。
【0056】
いくつかの実施形態において、第1のクラッド層104が突起602の影響を少なくともある程度吸収し、よってコア層102と第1のクラッド層の間の界面の変形を最小限に抑える。言い換えれば、界面におけるコア層102の変形は、ガラスシート100の表面における第1のクラッド層104の変形に比較して、幅が広く、浅い。図10はコア層102と第1のクラッド層104の間の界面の変形の、異なる第1のガラス組成の粘度対第2のガラス組成の粘度の比(例えば、コア粘度/クラッド粘度比)に対する、第1のクラッド層の厚さの関数としての予測減衰量のグラフ表示である。第1のクラッド層の厚さはx軸にプロットされている。成形面の突起とのガラス品の接触によって生じる、クラッドの変形または擾乱の大きさに対するコアの変形または擾乱の大きさの比δがy軸にプロットされている。曲線702は10の粘度比に対応する。曲線704は1の粘度比に対応する。曲線706は0.1の粘度比に対応する。図10は(コアの変形の大きさで表した)界面の変形が(クラッド層の変形の大きさで表した)ガラスシート100の表面における第1のクラッド層104の変形より小さいことを示す。表面の変形に比較して減じられた界面の変形は1より小さいδで表される。したがって、比較的薄い、及び/または比較的粘度の高い、クラッド層であっても、(例えば、ガラスシートの表面の突起602との接触に応答するコア層102の変形の大きさを減じることによって)造形ガラス品の表面品質の維持に役立ち得る。言い換えれば、第1のクラッド層104がコア層を成形面600とのガラスシート100の接触に応答する損傷から保護する。
【0057】
いくつかの実施形態において、ガラスシート100は、大きくとも約1、大きくとも約0.9、大きくとも約0.8、大きくとも約0.7、大きくとも約0.6、大きくとも約0.5、大きくとも約0.4、大きくとも約0.3、大きくとも約0.2、大きくとも約0.1、または大きくとも約0.05の、成形温度(例えば、特定の成形法に基づく、適する成形温度)におけるコア粘度対クラッド粘度比を有する。例えば、ガラスシート100のコア粘度対クラッド粘度比はガラスシートの実効108.2P温度におけるコア粘度対クラッド粘度比を含む。さらに、またはあるいは、ガラスシート100の第2の層(例えば、第1のクラッド層104及び/または第2のクラッド層106)は成形温度において、少なくとも約107.6Pの粘度を有する。例えば、ガラスシート100の第2の層はガラスシートの実効108.2P温度において、少なくとも約108.3P、少なくとも約108.4P、少なくとも約108.5P、少なくとも約108.6P、少なくとも約108.7P、少なくとも約108.8P、少なくとも約108.9P、または少なくとも約10Pの、粘度を有する。
【0058】
いくつかの実施形態において、第2の層は、第1の層の外表面を露出させるかまたは剥き出しにするため、第1の層からある程度または実質的に完全に除去される。例えば、損傷を受けた第1のクラッド層104が、コア層102の比較的無垢な外表面を露出させるため、コア層102から除去される。いくつかの実施形態において、第1のクラッド層104及び第2のクラッド層106がコア層102の外表面を露出させるためにコア層102から除去される。コア層102の露出された外表面は比較的無垢な(例えば、第1のクラッド層104の変形に比較して小さくなっている変形を有する)表面を有する。第1のクラッド層104及び/または第2のクラッド層106の除去は、造形ガラス品から第1のクラッド層及び第2のクラッド層の欠陥を取り除き、成形面602によって造形ガラス品に付与された欠陥が実質的に無い、比較的無垢な表面を有する造形ガラス品を残す。
【0059】
第2の層による(例えば、コアをクラッド内に少なくともある程度包み込むことによる)第1の層の保護により、造形ガラス品の成形中に損傷がガラス品の第1の層に生じることを防止することができる。第1の層の保護は不完全性をもつ成形面の使用を可能にすることができ、これにより、交換または修繕あるいは成形面の再生に至るまでに成形面を使用できる時間を長くすることができる。第1の層の保護により、造形ガラス品を研削または研磨せずに、比較的無垢な外表面を有する造形ガラス品の生産が可能になり得る。
【0060】
いくつかの実施形態において、第2の層の一部が、第1の層の対応する領域を露出させるかまたは剥き出しにするため、造形ガラス品から選択的に除去される。すなわち、第2の層の一部の選択的除去により、造形ガラス品の表面にパターンが形成される。いくつかの実施形態において、第1の層の第1のガラス組成は第2の層の第2のガラス組成と異なる色を有する。第2の層の一部の選択的除去は第1の層の対応する領域を露出させ、よって造形ガラス品の表面に多色パターンを形成する。さらに、またはあるいは、第1のガラス組成は第2のガラス組成と異なる表面属性を有する。表面属性には、例えば、濡れ性、微生物親和性、透過または反射における光学特性、導電度またはこれら組合せを含めることができる。第2の層の一部の選択的除去は第1の層の対応する領域を露出させ、よって造形ガラス品の表面に異なる表面属性のパターンを形成する。
【0061】
いくつかの実施形態において、第2の層は第1の層より耐久性が低い。例えば、図1に示される実施形態において、第1のクラッド層104及び第2のクラッド層106はコア層102より耐久性が低い。第1のクラッド層104及び第2のクラッド層106の第2のガラス組成はコア層102の第1のガラス組成より大きな試薬内分解率を有する。いくつかの実施形態において、第2のガラス組成の試薬内分解率は第1のガラス組成の試薬内分解率の少なくとも10倍または少なくとも100倍である。いくつかの実施形態において、造形ガラス品は、第1の層から第2の層を除去して第1の層の外表面を露出させるため、試薬と接触させられる。第2の層と第1の層の間の耐久性の差により、第1の層を実質的に分解または溶解させずに第2の層を分解または溶解させるために造形ガラス品を試薬と接触させることで第2の層の第1の層からの除去を可能にすることができる。
【0062】
試薬は、造形ガラス品(例えば、第1の層及び/または第2の層)を分解または溶解させることができる、適する成分を含む。例えば、試薬は、酸、塩基、別の適する成分またはこれらの組合せを含む。いくつかの実施形態において、試薬は、例えば、鉱酸(例えば、HCl、HNO、HSO、HPO、HBO、HBr、HClO、またはHF)、カルボン酸(例えば、CHCOOH)、またはこれらの組合せのような酸を含む。例えば、いくつかの実施形態において、試薬はHCl(例えば、水中50体積%のHCl)を含む。さらに、またはあるいは、試薬はHNOを含む。いくつかの実施形態において、試薬は例えば、LiOH、NaOH、KOH、RbOH、CsOH、Ca(OH)、Sra(OH)、Ba(OH)、またはこれらの組合せのような塩基を含む。
【0063】
第1のガラス層(例えば、コア層102)の第1のガラス組成及び第2のガラス層(例えば、第1のクラッド層104及び/または第2のクラッド層106)の第2のガラス組成は、本明細書に説明されるような所望の特性を有するガラスシートを形成することができる、適するガラス組成を含むことができる。ガラス組成例が表1に示される。様々な成分の量は酸化物ベースのモル%として表1に与えられる。ガラス組成の選ばれた特性も表1に示される。
【0064】
いくつかの実施形態において、第1のガラス組成は、SiO、Al、B及びこれらの組合せからなる群から選ばれる、ガラス網目形成酸化物を含有する。さらに、またはあるいは、第1のガラス組成は、LiO、NaO、KO及びこれらの組合せからなる群から選ばれるアルカリ金属酸化物を含有する。さらに、またはあるいは、第1のガラス組成は、MgO、CaO、SrO、BaO及びこれらの組合せからなる群から選ばれるアルカリ土類酸化物を含有する。さらに、またはあるいは、第1のガラス組成は、例えば、SnO、Sb、As、Ce、(例えばKClまたはNaClに由来する)Cl、ZrOまたはFeを含む、1つ以上の添加成分を含有する。
【0065】
いくつかの実施形態において、第2のガラス組成は、SiO、Al、B及びこれらの組合せからなる群から選ばれる、ガラス網目形成酸化物を含有する。さらに、またはあるいは、第2のガラス組成は、LiO、NaO、KO及びこれらの組合せからなる群から選ばれるアルカリ金属酸化物を含有する。さらに、またはあるいは、第2のガラス組成は、MgO、CaO、SrO、BaO及びこれらの組合せからなる群から選ばれるアルカリ土類酸化物を含有する。さらに、またはあるいは、第2のガラス組成は、例えば、SnO、Sb、As、Ce、(例えばKClまたはNaClに由来する)Cl、ZrOまたはFeを含む、1つ以上の添加成分を含有する。
【0066】
いくつかの実施形態において、第1のガラス組成及び/または第2のガラス組成はアルカリ金属酸化物を含有する。例えば、第2のガラス組成はアルカリ金属酸化物を含有するイオン交換可能なガラス組成を含む。すなわち、造形ガラス品の第2の層は、強化層がその中に形成されているクラッド層を有するイオン交換された強化ガラス品を形成するため、第2のガラス組成をイオン交換プロセスにかけることで強化することができる。別の実施形態において、第1のガラス組成及び/または第2のガラス組成はアルカリ金属酸化物を実質的に含有していない。例えば、第2のガラス組成が含有するアルカリ金属酸化物の量は多くとも約0.01モル%である。クラッド層にアルカリ金属酸化物が存在していないことは、ガラス品と成形面の間の表面相互作用を減じ、よって造形ガラス品の表面品質を高めるに役立ち得る。
【0067】
【表1-1】
【0068】
【表1-2】
【0069】
いくつかの実施形態において、ディスプレイ(例えば、LEDディスプレイまたはLCDディスプレイ)は本明細書に説明されるようなガラス品(例えば、ガラスシート及び/または造形ガラス品)を有する。例えば、ディスプレイはガラス品を含むカバーガラスを有する。いくつかの実施形態において、カバーガラスは一体型カバーガラス/カラーフィルタを含む。いくつかの実施形態において、カバーガラスは一体型タッチカバーガラスを含む。いくつかの実施形態において、自動車用板ガラスは本明細書に説明されるようなガラス品を含む。自動車用板ガラスには、例えば、前窓、横窓(例えば、ドアガラスまたは三角窓)、サンルーフ、ムーンルーフ、後部窓、照明カバー(例えば、ヘッドライトまたはテールライトのカバー)、ミラー(例えば、サイドミラーまたはバックミラー)、インストルメントパネルまたはゲージカバー、(例えば、ピラーまたはその他のアップリケのための)インテリアパネルまたはエクステリアパネル、あるいは別の適するガラスまたは窓がある。いくつかの実施形態において、建築用パネルは本明細書に説明されるようなガラス品を含む。
【0070】
本明細書に説明されるガラス品は、例えば、LCDディスプレイ及びLEDディスプレイ、コンピュータモニタ、現金自動預け払い機(ATM)を含む、民生用または商業用の電子デバイスにおけるカバーガラスまたはガラスバックプレーン用途、タッチスクリーンまたはタッチセンサ用途、例えば、携帯電話、パーソナルメディアプレイヤー、及びタブレットコンピュータを含む、携帯型電子デバイス、例えば半導体ウエハを含む、集積回路用途、太陽光発電用途、建材ガラス用途、自動車または乗り物のガラス用途、あるいは商用または家庭用の電気ガス器具用途を、例えば含む様々な用途に用いられ得る。
【実施例】
【0071】
様々な実施形態は以下の実施例によってさらに明確になるであろう。
【0072】
実施例1
図7〜8に示される3D形状を有する造形ガラス品を、図1に示される全体構造を有する合わせガラスシートをモールドの成形面と接触させることで成形した。第1のクラッド層及び第2のクラッド層のそれぞれの厚さは約35μmであり、ガラスシートの総厚は0.7mmであった。コア層はガラス組成例1で形成した。第1のクラッド層及び第2のクラッド層のそれぞれはガラス組成例6で形成した。
【0073】
国際公開第2012/118612号に説明されるような一個取りモールド非等温圧力成形プロセスを用いて造形ガラス品を成形した。上記明細書はその全体が本明細書に参照として含められる。成形面の曲げ領域は成形面の平坦領域より高温にした。成形面はTiAlN/TiAl混成コーティングで被覆したインコネル600で作製した。造形ガラス品は4辺が曲げられた皿形状を有していた。(クラッド温度ではなく)コア温度によって成形ガラス粘度及びモールド温度を決定した。造形ガラス品は150MPaの圧縮応力及び35μmのDOLを有していた。
【0074】
比較例1
合わせガラスシートとは対照的に単層ガラスシートを用いたことを除き、実施例1で説明したプロセスを用いて造形ガラス品を成形した。単層ガラスシートはガラス組成例4で形成した。
【0075】
表2は実施例1及び対照実施例1による造形ガラス品の成形中の様々な点における(様々な点におけるモールド温度で同定される)ガラスシートの温度を示す。表2は実施例1のコア層及びクラッド層並びに対照実施例1の単層の、造形ガラスの成形中に受ける様々な温度に対応する、粘度も示す。
【0076】
【表2】
【0077】
図11は実施例1及び対照実施例1に用いたガラス組成の粘度曲線のグラフ表示である。曲線802は実施例1に用いたガラス組成例1の粘度曲線を表す。曲線804は実施例1に用いたガラス組成例6の粘度曲線を表す。曲線806は比較例1に用いたガラス組成例4の粘度曲線を表す。
【0078】
表2及び図11に示されるデータは、実施例1による造形ガラス品の成形中、クラッド層がコア層より高い粘度にあったことを示す。実施例1に用いた合わせガラスシートのコア層は対照実施例1に用いた単層ガラスシートと同様の粘度を有していた。すなわち、合わせガラスシートと単層ガラスシートは同様の温度で成形することができる。実施例1によって成形した造形ガラス品はモールドにはり付かないことが認められた。いかなる理論にもこだわらず、はり付きが無いことは成形中のクラッドの比較的高い粘度の結果であると考えられる。したがって、比較的軟質な(例えば、粘度がソーダ石灰ガラスと同様の)コア層及び比較的硬質なクラッド層を有する合わせガラスシートを用いて造形ガラス品を成形することで、(例えば、硬質クラッド層のモールドへのはり付きがほとんど無いことの結果として)モールドの劣化がほとんど無い、(例えば、軟質コア層の結果として)高速3D造形プロセスが可能になり得る。言い換えれば、硬質クラッド層は合わせガラスシートに組み込まれた一体剥離層と見なすことができる。
【0079】
図12は実施例1によって成形された造形ガラス品の標準CADからの偏差を示し、図13〜14は、それぞれイオン交換の前及び後の、比較例1によって成形された造形ガラス品の標準CADからの偏差を示す。モールドは単層ガラスシートに対して設計し、イオン交換における3D反りに対して補正した。したがって、図12に示される造形ガラス品の大きな正の偏差は実施例1のより高い成形温度におけるモールドのより大きな熱膨張の結果であり、また合わせガラスシートの単層ガラスシートに比較して小さい熱膨張の結果でもある。低膨張合わせガラスシートに対して最適化されていないモールド設計にもかかわらず、造形ガラス品の形状偏差は、一部周縁を除いて、±0.1mm以内であった。
【0080】
図15は実施例1によって成形された造形ガラス品(右側)の表面上及び対照実施例1によって成形された造形ガラス品(左側)の表面上に投影された格子像を示す写真である。合わせガラスシートを用いて成形された造形ガラス品(実施例1)は、平坦領域から曲げ領域への遷移領域において、単層ガラスシートを用いて成形された造形ガラス品(対照実施例1)より小さい光学ひずみを示す。そのような減じられた光学歪は合わせガラスシートと成形面の間の(例えば、クラッド層の高粘度の結果として)制限された表面相互作用の結果とすることができる。
【0081】
実施例2
造形ガラス品を、コア層をガラス組成例9で形成し、第1のクラッド層及び第2のクラッド層のそれぞれをガラス組成例8で形成したことを除き、実施例1で説明したプロセスを用いて成形した。
【0082】
表3は、実施例2による造形ガラス品の成形中の様々な点における(様々な点におけるモールド温度で同定される)ガラスシートの温度を示す。表3は実施例2のコア層及びクラッド層の、造形ガラスの成形中に受ける様々な温度に対応する、粘度も示す。
【0083】
【表3】
【0084】
図16は実施例2に用いたガラス組成の粘度曲線のグラフ表示である。曲線902は実施例2に用いたガラス組成例9の粘度曲線を表す。曲線904は実施例2に用いたガラス組成例8の粘度曲線を表す。
【0085】
表3及び図16に示されるデータは、実施例2による造形ガラスの成形中、クラッド層がコア層より高い粘度にあったことを示す。実施例2によって成形した造形ガラス品はモールドにはり付かないことが認められた。いかなる理論にもこだわらず、はり付きが無いことは成形中のクラッドの比較的高い粘度の結果であると考えられる。
【0086】
実施例3
造形ガラス品の成形中のガラスシートの表面上へのモールド欠陥(例えば、モールド粗さまたは異物粒子)の転写へのコア粘度対クラッド粘度比の効果を評価するため、モデリングを行った。図7〜8に示される3D形状を有する造形ガラス品を成形するための、図1に示される全体構造を有する合わせガラスシートのモールドの成形面との接触をシミュレートするため、モデルを開発した。第1のクラッド層及び第2のクラッド層のそれぞれの厚さは50μmとし、ガラスシートの総厚は0.7mmとした。真空成形プロセス及び加圧成形プロセスの両者をモデル化した。曲げ領域におけるガラスシートの粘度は平坦領域における粘度より(例えば、より多くの熱が曲げ領域に向けられる結果として)低く、よって2つの異なる粘度をモデル化した。加圧成形モデルに対し、(例えば、平坦領域は成形プロセス全体を通して成形面に接触していたが、曲げ領域は成形プロセスの比較的後になるまで成形面に接触していなかったから)平坦領域には曲げ領域より高い実効圧力をかけた。成形面に高さが50μmで幅が50μmの突起を与えた。3mmの曲げ半径に対する加圧成形条件及び真空成形条件のいずれもモデル化した。このモデルではガラスシートからモールドへの熱伝達は考慮しなかった。有限要素ソルバーPOLYFLOWにおいて、プロセス中にガラス粘度は変化していないとしている等温粘性ニュートン流動を含む、2D非対称モデルを用いた。ガラス温度はより低温のモールドに接触するとほとんど瞬間的に低下する(この結果、対応してガラス粘度は高くなる)から、モデル化結果は粘度に関して最悪の場合のシナリオを示す。モデル条件が表4に示される。
【0087】
【表4】
【0088】
ガラス表面上の小さい欠陥の可視性は、欠陥の勾配で決定される。一般に、勾配が2×10−4(1/5000)より大きい欠陥は(一般的な人間の眼の角度分解能は〜1/3600であることの結果として)人間の眼で見ることができる。欠陥の勾配は欠陥深さを欠陥半値幅で割ることで計算される。
【0089】
比較例2
実施例3に説明されるような造形ガラス品を成形するための、単層(非合わせ)ガラスのモールドの成形面との接触をシミュレートするために、モデルを開発した。
【0090】
図17は、15秒の成形時間及び0.1のコア粘度対クラッド粘度比を用いる実施例3のモデル化成形プロセスに対する造形ガラス品の表面欠陥の勾配の、ガラスシートの実効粘度の関数としての、グラフ表示である。図18は、30秒の成形時間及び0.1のコア粘度対クラッド粘度比を用いる実施例3のモデル化成形プロセスに対する造形ガラス品の表面欠陥の勾配の、ガラスシートの実効粘度の関数としての、グラフ表示である。図17〜18における黒丸印は実施例3に説明したようなガラスシートに対するモデル計算結果を表し、三角印は同じ成形プロセスにかけられた、比較例2に説明したような単層(非合わせ)ガラスシートに対するモデル計算結果を表す。図17〜18に示されるデータラベルは成形圧力をバール(×10Pa)で表す。図17〜18に示されるように、合わせガラスシートにおいて、成形表面の突起は単層ガラスシートに比較して小さい欠陥を付与した。さらに詳しくは、合わせガラスシートの使用により、欠陥勾配は単層ガラスシートに比較して約50%小さくなる。また、より高い成形圧力のより高いガラス粘度との組合せ(例えば、実効粘度をより高くした加圧成形)によっても、真空成形だけ(例えば低圧とより低い実効粘度)の場合に比較して欠陥勾配が小さくなる。
【0091】
実施例4
実施例1に説明したプロセスと同様のプロセスを用い、図1に示される全体構造を有する合わせガラスシートをモールドの成形面に接触させることで、図7〜8に示される3D形状を有する造形ガラス品を成形した。第1のクラッド層及び第2のクラッド層のそれぞれの厚さは約47μmであり、ガラスシートの総厚は0.55mmであった。コア層の108.2P温度は第1のクラッド層及び第2のクラッド層のそれぞれの108.2P温度より約57℃低く、ガラスシートの実効108.2P温度は約812℃であった。造形ガラス品が有する圧縮応力は約190MPaであった。造形ガラス品は、成形後に仕上げプロセス(例えば、研磨またはエッチング)を受けずに、0.7nmの表面粗さ(R)及び23nmの表面うねりを有していた。
【0092】
本発明の精神または範囲を逸脱することなく様々な改変及び変形がなされ得ることが当業者には明らかであろう。したがって、本発明は、添付される請求項及びそれらの等価形態の観点における以外に、制限されるべきではない。
【0093】
以下、本発明の好ましい実施形態を項分け記載する。
【0094】
実施形態1
方法において、
ガラスシートの第2の層を成形面と接触させて、造形ガラス品を成形する工程であって、前記ガラスシートは前記第2の層に隣接する第1の層を有し、前記第1の層は第1のガラス組成を有し、前記第2の層は第2のガラス組成を有するものである工程、
を含み、
前記接触させる工程中の前記ガラスシートの実効粘度が前記接触させる工程中の前記ガラスシートの前記第2の層の粘度より低い、
方法。
【0095】
実施形態2
(i)前記第1のガラス組成の軟化点が前記第2のガラス組成の軟化点より低い、または
(ii)前記第1のガラス組成の108.2P温度が前記第2のガラス組成の108.2P温度より低い、
の内の少なくとも一方である、実施形態1に記載の方法。
【0096】
実施形態3
前記第2のガラス組成がアルカリ金属を実質的に含有していない、実施形態1または2に記載の方法。
【0097】
実施形態4
前記接触させる工程中の前記ガラスシートの最高温度が約900℃より低いかまたは約850℃より低い、実施形態1から3のいずれかに記載の方法。
【0098】
実施形態5
前記成形面が一個取りモールド成形ユニットの成形面を含む、実施形態1から4のいずれかに記載の方法。
【0099】
実施形態6
前記接触させる工程が、半径が約5mmより小さい曲げを前記造形ガラス品が有するように前記ガラスシートを曲げる工程を含む、実施形態1から5のいずれかに記載の方法。
【0100】
実施形態7
前記造形ガラス品をイオン交換プロセスにかける工程をさらに含む、実施形態1から6のいずれかに記載の方法。
【0101】
実施形態8
前記造形ガラス品の外表面を試薬にさらして、前記造形ガラス品から前記外表面の少なくとも一領域を除去する工程をさらに含む、実施形態1から7のいずれかに記載の方法。
【0102】
実施形態9
前記造形ガラス品の前記外表面を前記試薬にさらす前記工程が、前記造形ガラス品の前記外表面の領域を選択的に前記試薬にさらして、前記造形ガラス品にパターンを形成する工程を含む、実施形態8に記載の方法。
【0103】
実施形態10
前記第1の層が前記第2の層と異なる色を有し、前記造形ガラス品に前記パターンを形成する前記工程が、前記外表面の前記選択的にさらされた領域に対応する前記第1の層または前記第2の層の内の一方の領域を剥き出しにする工程を含む、実施形態9に記載の方法。
【0104】
実施形態11
前記第1の層が前記第2の層と異なる表面属性を有し、前記造形ガラス品に前記パターンを形成する前記工程が、前記外表面の前記選択的にさらされた領域に対応する前記第1の層または前記第2の層の内の一方の領域を剥き出しにする工程を含む、実施形態9または10に記載の方法。
【0105】
実施形態12
前記表面属性が、濡れ性、微生物親和性、透過または反射における光学特性、導電度及びこれらの組合せからなる群から選ばれる、実施形態11に記載の方法。
【0106】
実施形態13
前記ガラスシートの実効108.2P温度が、高くとも約900℃、高くとも約875℃、または高くとも約750℃である、実施形態1から12のいずれかに記載の方法。
【0107】
実施形態14
(i)前記第1のガラス組成の軟化点と前記第2のガラス組成の軟化点が少なくとも約5℃異なる、または
(ii)前記第1のガラス組成の108.2P温度と前記第2のガラス組成の108.2P温度が少なくとも約5℃異なる、
の内の少なくとも一方である、実施形態1から13のいずれかに記載の方法。
【0108】
実施形態15
前記第1の層がコア層を含み、前記第2の層が前記コア層の第1の主表面に隣接する第1のクラッド層及び前記コア層の、前記第1の主表面と表裏をなす、第2の主表面に隣接する第2のクラッド層を含む、実施形態1から14のいずれかに記載の方法。
【0109】
実施形態16
造形ガラス品において、
第1のガラス組成を有する第1の層、及び
第2のガラス組成を有する第2の層、
を有し、
前記第1のガラス組成の軟化点が前記第2のガラス組成の軟化点より低く、前記造形ガラス品の実効108.2P温度が高くとも約900℃であり、前記第2のガラス組成の粘度が前記造形ガラス品の前記実効108.2P温度において低くとも約108.3Pである、
造形ガラス品。
【0110】
実施形態17
大きくとも約1nmの表面粗さ及び大きくとも約50nmの表面うねりをさらに有する、実施形態16に記載の造形ガラス品。
【0111】
実施形態18
前記第1のガラス組成が前記第2のガラス組成より大きい平均熱膨張係数(CTE)を有する、実施形態16または17に記載の造形ガラス品。
【0112】
実施形態19
前記第2の層が少なくとも約100MPaの圧縮応力を有する、実施形態16から18のいずれかに記載の造形ガラス品。
【0113】
実施形態20
前記造形ガラス品の実効108.2P温度が高くとも約875℃または高くとも約750℃である、実施形態16から19のいずれかに記載の造形ガラス品。
【0114】
実施形態21
前記第2のガラス組成の粘度が前記造形ガラス品の前記実効108.2P温度において低くとも約108.5Pである、実施形態16から20のいずれかに記載の造形ガラス品。
【0115】
実施形態22
(i)前記第1のガラス組成の軟化点と前記第2のガラス組成の軟化点が少なくとも約5℃異なる、または
(ii)前記第1のガラス組成の108.2P温度と前記第2のガラス組成の108.2P温度が少なくとも約5℃異なる、
の内の少なくとも一方である、実施形態16から21のいずれかに記載の造形ガラス品。
【0116】
実施形態23
前記第2のガラス組成の試薬内における分解率が前記第1のガラス組成の前記試薬内における分解率より大きい、実施形態16から22のいずれかに記載の造形ガラス品。
【0117】
実施形態24
前記第2のガラス組成の前記試薬内における前記分解率が、前記第1のガラス組成の前記試薬内における前記分解率より少なくとも10倍大きい、または前記第1のガラス組成の前記試薬内における前記分解率より少なくとも100倍大きい、実施形態23に記載の造形ガラス品。
【0118】
実施形態25
半径が約5mmより小さい少なくとも1つの曲げをさらに有する、実施形態16から24のいずれかに記載の造形ガラス品。
【0119】
実施形態26
前記第1のガラス組成または前記第2のガラス組成の内の少なくとも一方がイオン交換可能である、実施形態16から25のいずれかに記載の造形ガラス品。
【0120】
実施形態27
前記第2のガラス組成が、LiO、NaO、KO及びこれらの組合せからなる群から選ばれるアルカリ金属酸化物を含有する、実施形態26に記載の造形ガラス品。
【0121】
実施形態28
前記第2のガラス組成が、MgO、CaO、SrO、BaO及びこれらの組合せからなる群から選ばれるアルカリ土類酸化物を含有する、実施形態26または27に記載の造形ガラス品。
【0122】
実施形態29
前記第1のガラス組成が、LiO、NaO、KO及びこれらの組合せからなる群から選ばれるアルカリ金属酸化物を含有する、実施形態26から28のいずれかに記載の造形ガラス品。
【0123】
実施形態30
前記第1のガラス組成が、MgO、CaO、SrO、BaO及びこれらの組合せからなる群から選ばれるアルカリ土類酸化物を含有する、実施形態26から29のいずれかに記載の造形ガラス品。
【0124】
実施形態31
前記第1の層または前記第2の層の内の少なくとも一方がイオン交換可能である、実施形態16から30のいずれかに記載の造形ガラス品。
【0125】
実施形態32
前記第1の層または前記第2の層の内の少なくとも一方に陽イオン濃度勾配をさらに有する、実施形態31に記載の造形ガラス品。
【0126】
実施形態33
前記陽イオン濃度勾配がK勾配またはAg勾配の内の少なくとも一方を含む、実施形態32に記載の造形ガラス品。
【0127】
実施形態34
前記第2のガラス組成がアルカリ金属を実質的に含有していない、実施形態16から25のいずれかに記載の造形ガラス品。
【0128】
実施形態35
前記第1の層がコア層を含み、前記第2の層が前記コア層の第1の主表面に隣接する第1のクラッド層及び前記コア層の、前記第1の主表面と表裏をなす、第2の主表面に隣接する第2のクラッド層を含む、実施形態16から34のいずれかに記載の造形ガラス品。
【0129】
実施形態36
造形ガラス品において、
第1のガラス組成を有する第1の層、
第2のガラス組成を有する第2の層、
大きくとも約1nmの表面粗さ、及び
大きくとも約50nmの表面うねり、
を有する、造形ガラス品。
【0130】
実施形態37
前記第2の層が少なくとも約100MPaの圧縮応力を有する、実施形態36に記載の造形ガラス品。
【0131】
実施形態38
前記第1のガラス組成の軟化点が前記第2のガラス組成の軟化点より低く、前記造形ガラス品の実効108.2P温度が高くとも約900℃であり、前記第2のガラス組成の粘度が前記造形ガラス品の前記実効108.2P温度において低くとも約108.3Pである、実施形態36または37に記載の造形ガラス品。
【0132】
実施形態39
半径が約5mmより小さい少なくとも1つの曲げをさらに有する、実施形態36から38のいずれかに記載の造形ガラス品。
【0133】
実施形態40
実施形態16から39のいずれかに記載の造形ガラス品を含むカバーガラスを有するディスプレイ。
【0134】
実施形態41
前記カバーガラスが一体化されたカバーガラスとカラーフィルタを含む、実施形態40に記載のディスプレイ。
【0135】
実施形態42
前記カバーガラスが一体化されたタッチカバーガラスを含む、実施形態40または41に記載のディスプレイ。
【0136】
実施形態43
実施形態16から39のいずれかに記載の造形ガラス品を含む自動車用板ガラス。
【0137】
実施形態44
実施形態16から39のいずれかに記載の造形ガラス品を含む建築用パネル。
【符号の説明】
【0138】
100 ガラスシート
102 コア層
104,106 クラッド層
200 オーバーフローディストリビュータ
220 下部オーバーフローディストリビュータ
222,242 トラフ
224,244 ガラス組成
226,228 下部オーバーフローディストリビュータの外部形成面
230 ドローライン
240 上部オーバーフローディストリビュータ
246,248 上部オーバーフローディストリビュータの外部形成面
300,600 成形面
500 造形ガラス品
502 中央領域
504 湾曲リップ
602 突起
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18