(58)【調査した分野】(Int.Cl.,DB名)
被膜破裂切開部に着座されるように構成されているエッジを前記レンズ部分が有し、前記エッジを取り囲み且つ前記水晶体嚢に対して残りの場所を提供する表面を与える外部部分を前記眼内レンズが更に備える、ことを特徴とする請求項1記載の眼内レンズ。
【発明を実施するための形態】
【0015】
本明細書に開示する技術及びシステムは、医療の現在の基準に勝る多くの利点を提供する。具体的には、水晶体嚢における迅速かつ正確な開口が、3次元パターン化レーザ切断を用いて可能にされ、眼内レンズの配置及び安定性を促進する。
【0016】
本明細書に説明する技術が可能にする別の処置は、前及び/又は後水晶体嚢における切開部の制御された形成に備えるものである。従来の処置は、真円又は完全に近い円の切断を必要とする。従来の手作業被膜破裂技術を用いて形成された開口部は、開口部を形成するのに、主として、水晶体嚢組織の機械的剪断特性及び水晶体嚢の制御不能な断裂に依存する。これらの従来の技術は、中心レンズ部分又は機械的切断器具を用いてアクセス可能な区域に制限され、かつ様々な限定された程度で裂け目の形成中に正確な解剖学的測定値を利用することに限定される。反対に、本明細書に説明する制御可能なパターン化レーザ技術を用いて、前及び/又は後嚢の実際上あらゆる位置に及び実際上あらゆる形状で切開部を作成することができる。「バッグ・イン・ザ・レンズ」手術では、定位置にIOLを嵌めるために、適合する切開部が前及び後嚢の両方で作られるべきである。本発明は、そのような切開部の適合を実施するのに独特に適している。
【0017】
更に、これらの被膜切開部は、位置及び回転の向きの両方において正確に位置決めする必要がある非対称IOLを収容するように調整するか又は適合させることができる。更に、本明細書に説明する制御可能なパターン化レーザ技術はまた、周囲の組織に対する影響を最小にしながら切開部又は開口部形成を可能にする利用可能な正確な水晶体嚢サイズ、測定値、及び他の寸法情報を有し、及び/又はそれらを利用する。
【0018】
本発明は、超高速(UF)光源4(例えば、フェムト秒レーザ)を含む
図1に示すシステム2のような患者の眼68に光学ビームを投影するか又は走査するシステムによって実施することができる。このシステムを用いて、ビームは、3次元X、Y、Zで患者の眼の中で走査することができる。この実施形態では、UF波長は、1010nmから1100nmで異なる場合があり、かつパルス幅は、100fsから10000fsで異なる場合がある。パルス繰返し周波数も、10kHzから250kHzで異なる場合がある。非ターゲット組織に対する意図しない損傷に関する安全限界は、繰返し数及びパルスエネルギに関する上限を規定すると同時に、閾値エネルギ、処置を完了する時間、及び安定性は、パルスエネルギ及び繰返し数に対して下限を規定する。眼68の中、並びに具体的には水晶体69及び眼の前嚢内の焦点スポットのピーク電力は、光学破壊を生成してプラズマ媒介アブレーション過程を開始するのに十分である。近赤外線波長は、生体組織中の線形光吸収及び散乱がこのスペクトル領域にわたって低下するので好ましい。例示的に、レーザ4は、100kHzの繰返し数及び10マイクロジュール範囲の個々のパルスエネルギで500fsパルスを生成する繰返しパルス式1035nm装置とすることができる。
【0019】
レーザ4は、入力及び出力装置302を通じて制御電子器械300によって制御されて光学ビーム6を作成する。制御電子器械300は、コンピュータ、マイクロコントローラ、その他とすることができる。この例では、全体のシステムは、コントローラ300、及び入力/出力装置IO302を通って移動されたデータによって制御される。グラフィカル・ユーザインタフェースGUI304を用いて、システム作動パラメータ、GUI304上のプロセスユーザ入力(UI)306、及び眼球構造の画像のようなディスプレイ収集情報を設定することができる。
【0020】
発生したUF光ビーム6は、半位相差板8及び直線偏光子10を通過して患者の眼68に向って進む。ビームの偏光状態は、望ましい量の光が、UFビーム6に対して可変減衰器として一緒に作用する半位相差板8及び直線偏光子10を通過するように調節することができる。更に、直線偏光子10の向きは、ビーム結合器34に入射する入射偏光状態を決め、それによってビーム結合器の処理機能を最適化する。
【0021】
UFビームは、シャッター12、絞り14、及びピックオフ装置16を通って進む。システム制御シャッター12は、処置及び安全上の理由に対してレーザのオン/オフ制御を保証する。絞りは、レーザビームに対して外側の有用な直径を設定し、ピックオフは、有用なビームの出力をモニタする。ピックオフ装置16は、部分反射鏡20及び検出器18を含む。パルスエネルギ、平均電力、又は組合せは、検出器18を用いて測定することができる。情報は、減衰のための半位相差板8へのフィードバックのために及びシャッター12が開いているか又は閉じているかを検証するために用いることができる。更に、シャッター12は、冗長状態検出をもたらすように位置センサを有することができる。
【0022】
ビームは、ビーム直径、発散、循環性、及び乱視のようなビームパラメータを修正することができるビーム調整ステージ22を通過する。この例示的な例では、ビーム調整ステージ22は、意図するビームサイズ及び平行化を達成するために球形光学器械24及び26から成る2要素ビーム拡大望遠鏡を含む。本明細書には示されていないが、アナモルフィック又は他の光学システムを用いて望ましいビームパラメータを達成することができる。これらのビームパラメータを判断するのに用いる係数は、レーザの出力ビームパラメータ、システムの全体の倍率、及び治療位置における望ましい開口数(NA)を含む。更に、光学システム22を用いて、望ましい位置(例えば、以下に説明する2軸走査装置50間の中心位置)に絞り14を結像することができる。このようにして、絞り14を確実に通過する光の量が、走査システムを確実に通ることが保証される。ピックオフ装置16は、こうして使用可能光の信頼できる測定器である。
【0023】
調整ステージ22を出た後に、ビーム6は、折り畳み鏡28、30、及び32から反射する。これらの鏡は、アラインメント目的のために調節可能にすることができる。ビーム6は、次に、ビーム結合器34に入射する。ビーム結合器34は、UFビーム6を反射する(かつ以下に説明するOCT114及び照準202ビームの両方を透過する)。効率的なビーム結合器作動に対して、入射角は、好ましくは、45度未満に保持され、可能であればビームの偏光が固定される。UFビーム6に対して、直線偏光子10の向きは、固定偏光をもたらす。
【0024】
ビーム結合器34の後に、ビーム6は、z調節又はZ走査装置40へと続く。この例示的な例では、z調節は、2つのレンズ群42及び44(各レンズ群は、1つ又はそれよりも多くのレンズを含む)を有する「ガリレイ」望遠鏡を含む。レンズ群42は、望遠鏡の平行化位置の周りのz軸に沿って移動する。このようにして、患者の眼68のスポットの焦点位置は、図のようにz軸に沿って移動する。一般的に、レンズ42の運動と焦点の運動の間に固定直線関係がある。この場合には、z調節望遠鏡は、約2xビーム拡大率と、レンズ42の移動対焦点の移動の1:1の関係とを有する。代替的に、レンズ群44は、z軸に沿って移動し、z調節及び走査を移動させることができる。z調節は、眼68の治療のためのz走査装置である。それは、システムによって自動的かつ動的に制御することができ、独立であるように又は次に説明するX−Y走査装置と相互作用するように選択することができる。鏡36及び38は、光軸をz調節装置40の軸に整列させるために用いることができる。
【0025】
z軸装置40を通過した後に、ビーム6は、鏡46及び48によってx−y走査装置に向けられる。鏡46及び48は、アラインメント目的のために調節可能にすることができる。X−Y走査は、モータ、検流計、又はあらゆる他の公知の光移動装置を用いて直交方向に回転する制御電子器械300の制御下で、好ましくは、2つの鏡52及び54を用いて走査装置50によって達成される。鏡52及び54は、以下に説明する対物レンズ58及びコンタクトレンズ66の組合せのテレセントリック位置の近くに位置する。これらの鏡52/54を傾斜させることにより、これらがビーム6を反射するようにし、患者の眼68に位置するUF焦点の平面内に横方向変位を引き起こす。対物レンズ58は、図示のように、複合多要素レンズ要素とすることができ、レンズ60、62、及び64によって表すことができる。レンズ58の複雑性は、走査視野サイズ、焦点スポットサイズ、対物レンズ58の近位側及び遠位側の両方に対して利用可能な作動距離、並びに収差制御の量に依存することになる。15mmの直径の入力ビームサイズを有する10mmの視野にわたって10μmのスポットサイズを発生させる焦点距離60mmのf−シータレンズ58は、一例である。代替的に、スキャナ50によるX−Y走査は、入力及び出力装置302を通じて制御電子器械300によって制御することができる1つ又はそれよりも多くの移動可能光学器械(例えば、レンズ、回折格子)を用いることによって達成することができる。
【0026】
照準及び治療走査パターンは、コントローラ300の制御下でスキャナ50によって自動的に発生させることができる。そのようなパターンは、光の単一スポット、光の複数のスポット、光の連続パターン、光の複数の連続パターン、及び/又はこれらのあらゆる組合せから成るであろう。更に、照準パターンは(以下に説明する照準ビーム202を用いて)、治療パターン(光ビーム6を用いて)と同一である必要はなく、好ましくは、治療光が患者の安全性のために望ましいターゲット区域内だけに送出されることを保証するためにその境界を少なくとも形成する。これは、例えば、意図する治療パターンの輪郭を設ける照準パターンを有することによって行うことができる。このようにして、治療パターンの空間的範囲は、個々のスポット自体の正確な位置ではないにしても、ユーザに知らせることができ、従って、走査が、速度、効率、及び精度に対して最適化される。照準パターンも、ユーザに対してその可視性を更に高めるために点滅として認識されるようにすることができる。
【0027】
いずれかの好ましい眼科用レンズとすることができる任意的なコンタクトレンズ66を用いて、眼の位置を安定化させるのを助けながら光学ビーム6の焦点を患者の眼68に合わせるのに役立たせることができる。光学ビーム6の位置決め及び特徴、及び/又はビーム6が眼68上に形成する走査パターンは、ジョイスティックのような入力装置、又はあらゆる他の好ましいユーザ入力装置(例えば、GUI304)の使用によって更に制御され、患者及び/又は光学システムを位置決めすることができる。
【0028】
UFレーザ4及びコントローラ300を設定して、眼68のターゲット構造の表面を標的にし、かつビーム6が必要に応じて集束されて無意識に非ターゲット組織を損傷しないことを保証することができる。例えば、「光干渉断層撮影法(OCT)」、「Purkinje」画像、「Scheimpflug」画像、又は超音波のような本明細書に説明する画像診断法及び技術を用いて、2D及び3Dパターン形成を含むレーザ集束法に対してより高い正確性をもたらすようにレンズ及び水晶体嚢の位置を求めて厚みを測定することができる。レーザ集束法も、照準ビーム、「光干渉断層撮影法(OCT)」、「Purkinje」画像、「Scheimpflug」画像、超音波、又は他の公知の眼科用又は医用画像診断法及び/又はこれらの組合せの直接観察を含む1つ又はそれよりも多くの方法を用いて達成することができる。
図1の実施形態では、OCT装置100を説明したが、他の様式も本発明の範囲にある。眼のOCT走査は、前及び後水晶体嚢の軸線方向位置、白内障の核の境界、並びに前房の深度に関する情報を提供することになる。この情報は、次に、制御電子器械300内にロードされてその後のレーザ支援外科的処置をプログラムして制御するのに用いられる。この情報はまた、例えば、水晶体嚢を切断するために用いる焦点面の軸線方向上限及び下限、並びに水晶体皮質及と核の区分け、とりわけ水晶体嚢の厚みのような処置に関連する広範なパターンを判断するのに用いることができる。
【0029】
図1のOCT装置100は、ファイバー結合器104によって基準アーム106とサンプルアーム110とに分けられたブロードバンド又は掃引光源102を含む。基準アーム106は、好ましい分散及び経路長補償と共に基準反射を収容するモジュール108を含む。OCT装置100のサンプルアーム110は、残りのUFレーザシステムに対してインタフェースとして機能を果たす出力コネクタ112を有する。基準及びサンプルアーム106、110の両方からの戻り信号は、次に、時間領域の周波数又は単一ポイント検出技術のいずれかを使用する検出装置128に結合器104によって向けられる。
図1では、周波数領域技術は、920nmのOCT波長及び100nmの帯域幅で用いられる。
【0030】
コネクタ112を出ると、OCTビーム114は、レンズ116を用いて平行化される。平行化ビーム114のサイズは、レンズ116の焦点距離によって決定される。ビーム114のサイズは、眼の焦点における望ましいNAと眼68をもたらすビーム列の倍率とに依存する。一般的には、OCTビーム114は、焦点面のUFビーム6と同じ高さのNAを必要とせず、従って、OCTビーム114は、ビーム結合器34の位置においてUFビーム6よりも直径が小さい。その後の平行化レンズ116は、眼においてOCTビーム114の得られるNAを更に修正する絞り118である。絞り118の直径は、ターゲット組織に入射するOCT光及び戻り信号の強度を最適化するように選択される。能動的又は動的とすることができる偏光制御要素120を用いて、例えば、角膜複屈折の個々の差によって生じる場合がある偏光状態変化を補償する。鏡122及び124は、次に、OCTビーム114をビーム結合器126及び34に向けるのに用いられる。鏡122及び124は、アラインメント目的のために、特にビーム結合器34の後のUFビーム6に対してOCTビーム114の上に重ねるために調節可能にすることができる。同様に、ビーム結合器126を用いて、OCTビーム114を以下に説明する照準ビーム202と結合する。
【0031】
ビーム結合器34の後のUFビーム6と結合した状態で、OCTビーム114は、残りのシステムを通ってUFビーム6と同じ経路を辿る。このようにして、OCTビーム114は、UFビーム6の位置を示す。OCTビーム114は、z走査40及びx−y走査50装置、次に、対物レンズ58、コンタクトレンズ66を通過して眼68に入る。眼の内の構造体からの反射及び散乱は、光学システムを通ってコネクタ112へ、結合器104を通ってOCT検出器128まで元に戻る戻りビームを提供する。これらの戻り反射は、OCT信号を提供し、これらは、次に、UFビーム6の焦点位置のX、Y、Zにおける位置に関してシステムによって解釈される。
【0032】
OCT装置100は、その基準アームとサンプルアームの間の光路長の差を測定する原理に基づいて働く。従って、z調節40を通るOCTの通過は、光路長が、42の移動の関数として変化しないので、OCTシステム100のz範囲を広げない。OCTシステム100は、検出手法に関連している固有のz範囲を有し、かつ周波数領域検出の場合には、それは、具体的には、分光計及び基準アーム106の位置に関連している。
図1で用いるOCTシステム100の場合には、z範囲は、水性環境において約1−2mmである。この範囲を少なくとも4mmまで広げることは、OCTシステム100内の基準アームの経路長の調節を含む。z調節40のz走査を通る基準アーム内のOCTビーム114の通過は、OCT信号強度の最適化を可能にする。これは、OCTシステム100の基準アーム106内の経路を相応に増大させることによって拡大光路長に対応しながら、OCTビーム114の焦点をターゲット構造に合わせることによって達成される。
【0033】
浸漬指数、屈折、並びに有色及び単色の両方の色収差のような影響によるUF焦点装置に対するOCT測定の基本的な相違のために、UFビーム焦点位置に対してOCT信号を分析するのに注意が必要である。X、Y、Zの関数としての較正又は位置合わせ手順は、OCT信号情報をUF焦点位置に適合させるために、かつ絶対寸法量に関連付けるためにも行う必要がある。
【0034】
照準ビームの観察もUFレーザ焦点の指示に関してユーザを助けるのに用いることができる。更に、赤外線OCT及びUFビームの代わりに肉眼で見える照準ビームは、照準ビームが正確に赤外線ビームパラメータを表すならば、アラインメントに役に立つ場合がある。照準サブシステム200は、
図1に示す構成に使用される。照準ビーム202は、633nmの波長におけるヘリウムネオンレーザ作動のような照準ビーム光源201によって発生される。代替的に、630−650nm範囲のレーザダイオードを用いることができる。ヘリウムネオン633nmビームを用いる利点は、例えば、ビーム列の光学品質を測定するために、レーザ不均等経路干渉計(LUPI)として照準経路の使用を可能にすると考えられるその長い干渉長である。
【0035】
照準ビーム光源が照準ビーム202を発生させた状態で、照準ビーム202は、レンズ204を用いて平行化される。平行化ビームのサイズは、レンズ204の焦点距離によって決定される。照準ビーム202のサイズは、眼の焦点における望ましいNAと眼68をもたらすビーム列の倍率とに依存する。一般的には、照準ビーム202は、焦点面のUFビーム6と同じNAに近い必要があり、従って、照準ビーム202は、ビーム結合器34位置においてUFビームに類似の直径から成る。照準ビームは、眼のターゲット組織へのシステムアラインメント中にUFビーム6の代わりをするようになっているために、照準経路の多くは、上述のようなUF経路に似ている。照準ビーム202は、半位相差板206及び直線偏光子208を通って進む。照準ビーム202の偏光状態は、望ましい量の光が偏光子208を通過するように調節することができる。要素206及び208は、従って、照準ビーム202に対して可変減衰器として作用する。更に、偏光子208の向きは、ビーム結合器126及び34に入射する入射偏光状態を決め、それによって偏光状態を固定してビーム結合器の処理機能の最適化を可能にする。勿論、固体レーザが照準ビーム光源200として用いられる場合、駆動電流は、屈折力を調節するために変えることができる。
【0036】
照準ビーム202は、シャッター210及び絞り212を通って進む。システム制御シャッター210は、照準ビーム202のオン/オフ制御を提供する。絞り212は、照準ビーム202に対して外側の有用な直径を設定して適切に調節することができる。眼において照準ビーム202の出力を測定する較正処置を用いて、偏光子206の制御を通じて照準ビーム202の減衰を設定することができる。
【0037】
照準ビーム202は、次に、ビーム調整装置14を通過する。ビーム直径、発散、循環性、及び乱視のようなビームパラメータは、1つ又はそれよりも多くの公知のビーム調節光学器械を用いて修正することができる。光ファイバーから現れる照準ビーム202の場合には、ビーム調整装置214は、意図するビームサイズ及び平行化を達成するために2つの光学器械216及び218を有するビーム拡大望遠鏡を単に含むことができる。平行化の程度のような照準ビームパラメータを判断するために用いる最終因子は、眼68の位置においてUFビーム6及び照準ビーム202を適合させるために必要なものに依存する。色差は、ビーム調整装置214の適切な調節によって考慮することができる。更に、光学システム214を用いて、絞り14の共役位置のような望ましい位置に絞り212を結像する。
【0038】
照準ビーム202は、次に、ビーム結合器34の後のUFビーム6へのアラインメント位置合わせのために調節可能であることが好ましい折り畳み鏡222及び220から反射する。照準ビーム202は、次に、照準ビーム202がOCTビーム114と結合されるビーム結合器126に入射する。ビーム結合器126は、照準ビーム202を反射してOCTビーム114を透過し、これは、両波長範囲においてビーム結合機能の効率的作動を可能にする。代替的に、ビーム結合器126の透過及び反射機能は、逆にして、構成を反転することができる。ビーム結合器126の後で、OCTビーム114と共に照準ビーム202は、ビーム結合器34によってUFビーム6と結合される。
【0039】
眼68上又は内にターゲット組織を結像するための装置は、撮像システム71として
図1に概略的に示されている。撮像システムは、ターゲット組織の画像を作成するためのカメラ74及び照明光源86を含む。撮像システム71は、所定構造の周り又はその内部を中心にしたパターンを提供するために、システムコントローラ300によって用いることができる画像を収集する。観察のための照明光源86は、一般的には、ブロードバンド及びインコヒーレントである。例えば、光源86は、図示のように複数のLEDを含むことができる。観察光源86の波長は、好ましくは、700nmから750nmの範囲内であるが、UFビーム6及び照準ビーム202に対して観察光をビーム経路と結合するビーム結合器56(ビーム結合器56は、OCT及びUF波長を透過しながら観察波長を反射する)によって達成されるいずれかのものとすることができる。ビーム結合器56は、照準ビーム202が、ビームカメラ74で見ることができるように、部分的に照準波長を透過することができる。光源86の前の光学偏光要素84は、直線偏光子、4分の1位相差板、半位相差板、又はあらゆる組合せとすることができ、かつ信号を最適化するのに用いられる。近赤外線波長によって発生するような疑似色画像も許容可能である。
【0040】
光源86からの照明光は、UF及び照準ビーム6、202と同じ対物レンズ58及びコンタクトレンズ66を用いて眼に向って下方に向けられる。眼68の様々な構造体から反射して散乱した光は、同じレンズ58及び66によって収集されてビーム結合器56に向けて後方に向けられる。そこで、戻り光は、ビーム結合器及び鏡82を通じて観察経路内の後方、並びにカメラ74の方向に向けられる。カメラ74は、例えば、これに限定されるものではないが、適切な大きさにされたフォーマットのあらゆるシリコンベース検出器アレイとすることができる。ビデオレンズ76は、カメラの検出器アレイ上に画像を形成すると同時に、光学器械80及び78は、偏光制御及び波長フィルタリングをそれぞれ提供する。絞り又は虹彩81は、画像NAの制御、従って、焦点深度及び被写界深度を提供する。小さな絞りは、患者ドッキング手順を助ける大きな被写界深度の利点をもたらす。代替的に、照明及びカメラ経路は、切り換えることができる。更に、照準光源200は、直接見ることはできないが撮像システム71を用いて取り込んで表示することができる赤外線を放出するように作ることができる。
【0041】
粗調節位置合わせは、コンタクトレンズ66が角膜と接触状態になる時に、ターゲット構造体がシステムのX、Y走査の取り込み範囲にあるように、通常は必要である。従って、ドッキング手順が好ましく、これは、好ましくは、システムが接触条件(すなわち、患者の眼68とコンタクトレンズ66の間の接触)に近づく時に患者の運動を考慮に入れる。観察システム71は、コンタクトレンズ66が眼68と接触する前に、患者の眼68及び他の顕著な特徴を見ることができるほど焦点深度が十分大きいように構成される。
【0042】
好ましくは、運動制御システム70は、全体の制御システム2に組み込まれて、患者、システム2、又はその要素、又はその両方を移動させて、コンタクトレンズ66と眼68の間に正確かつ信頼できる接触を達成することができる。更に、真空吸引サブシステム及びフランジは、システム2に組み込むことができて、眼68を安定化させるのに用いることができる。コンタクトレンズ66を通じたシステム2への眼68のアラインメントは、撮像システム71の出力をモニタしながら達成することができ、IO302を通じて制御電子器械300によって電子的に撮像システム71によって生成された画像を分析することによって手動で又は自動的に実施することができる。力及び/又は圧力センサフィードバックも、接触を識別すると同時に真空サブシステムを開始するのに用いることができる。
【0043】
代替のビーム結合構成は、
図2の代替的な実施形態に示されている。例えば、
図1の受動的ビーム結合器34は、
図2の能動的結合器140と交換することができる。能動的ビーム結合器34は、図示のように検流走査鏡のような移動又は動的制御要素とすることができる。能動的結合器140は、UFビーム6又は結合照準のいずれか及びOCTビーム202、114をスキャナ50及び最後には眼68に1つずつ向けるために、その角度の向きを変化させる。能動的結合技術の利点は、それが、受動的ビーム結合器を用いて同様の波長範囲又は偏光状態を有するビームを結合させる難しさを回避することである。この機能は、能動的ビーム結合器140の位置許容誤差による時間的に同時のビーム、並びに場合によっては低い精度及び正確性を有する機能に対するトレードオフである。
【0044】
別の代替的な実施形態が
図3に示されており、それは、
図1のそれと類似しているが、OCT100に対して代替の手法を利用する。
図3では、OCT101は、基準アーム106が基準アーム132に置換されていることを除いて
図1のOCT100と同じである。この自由空間OCT基準アーム132は、レンズ116の後にビームスプリッタ130含むことによって達成される。基準ビーム132は、次に、偏光制御要素134を通って、次に、基準戻りモジュール136上に進む。基準戻りモジュール136は、適切な分散、並びに経路長調節及び補償要素を含んで、サンプル信号との干渉に対して適切な基準信号を発生させる。OCT101のサンプルアームは、ここで、ビームスプリッタ130の後に生じる。この自由空間構成の潜在的利点は、基準及びサンプルアームの別々の偏光制御及び維持を含む。OCT101のファイバーベースのビームスプリッタ104も、ファイバーベースの循環機と置換することができる。代替的に、OCT検出器128及びビームスプリッタ130の両方は、基準アーム136とは対照的に互いに移動することができる。
【0045】
図4は、OCTビーム114及びUFビーム6を結合するための別の代替的な実施形態を示している。
図4では、OCT156は(これは、OCT100又は101の構成のいずれかを含むことができる)、そのOCTビーム154がビーム結合器152を用いてz走査40の後にUFビーム6に連結されるように構成される。このようにして、OCTビーム154は、z調節を使用しないようにされる。これは、OCT156が、場合によってはより容易にビームに折り畳まれることを可能にして、より安定な作動のために経路長を短縮する。このOCT構成は、
図1に対して示したように最適信号戻り強度を犠牲にしている。米国特許第5、748、898号、米国特許第5、748、352号、米国特許第5、459、570号、米国特許第6、111、645号、及び米国特許第6、053、613号(これらは、本明細書において引用により組み込まれている)に説明したように、時間及び周波数領域手法、単一及び二重ビーム法、掃引源、その他を含むOCT干渉計の構成に対する多くの可能性が存在する。
【0046】
図5から9は、上述の走査システム2を用いて実施することができる本発明の実施形態の異なる態様を示している。
図5に示すように、被膜破裂切開部400は(これは、システム2を用いて作成することができる)、乱視矯正眼内レンズ(IOL)に対して調整される。そのような乱視矯正IOLは、眼68の被膜402内の正しい位置に配置するだけでなく、正しい回転/クロッキング角度で配向することも必要である。従って、これらは、球形IOLと異なって固有の回転非対称性を有する。この例で示す切開部400は、楕円形であるが、他の形状も有用である。切開部400を連続的に又は区分的に作って、患者の眼68の水晶体嚢装置の構造的一体性を大体において維持することができる。そのような不完全な切開部400は、穿孔切開部として考えることができ、かつ被膜破裂を不注意に延ばすそれらの可能性を最小にするために徐々に除去するように作ることができる。いずれにしても、切開部400は、封入された切開部であり、これは、本発明の開示の目的に対しては、それが同じ位置で始まって終わり、かつそこにある一定の量の組織を囲むことを意味する。封入切開部の最も簡単な例は、丸い組織片が切開部によって囲まれる円形切開部である。従って、これにより、封入治療パターンは(すなわち、封入切開部を形成するためにシステム2によって発生した)、同じく同じ位置で始まって終わり、それによって囲まれる空間を形成するものであることになる。
【0047】
封入切開部400の1つの重要な特徴は、それが、その内側に置かれることになるIOLを配向するための位置合わせ特徴部を含むことである。図示の楕円形切開部400に対して、その楕円形状は、手作業のCCCの望ましい円形結果と異なり、その固有の回転非対称によってIOLの正確な配置を考慮するその位置合わせ特徴である。切開部400の楕円形主軸404及び短軸406が示されている。主軸404及び短軸406は、等しくない。切開部400は、患者の眼68に対してあらゆる回転角度で作ることができるが、この例では、水平位置に沿って位置するその主軸404を有する虹彩の平面内にあるように示されている。切開部400は、IOL上の1つ又はそれよりも多くの補完的位置合わせ特徴部と嵌合するように意図されている。システム2の測距サブシステム(例えば、OCT100サブシステム)を用いて、切開すべき被膜402の表面を精密に形成することができる。これは、名目上ターゲット被膜402自体の近くにレーザパルスを分離する機能を果たすことができ、従って、必要なエネルギ及び治療時間を最小にして患者の安全性及び全体の効率を相応に増大させる。
【0048】
図6に示すように、IOL408は、光を集束させるのに用いる光学器械部分410と、IOL408を位置決めするのに用いる触覚部416とを含む。光学器械410は、楕円形状周囲側壁又はエッジ412、すなわち、楕円形状切開部400と嵌合する補完的位置合わせ特徴部を含む回転非対称(その光軸の周りで)レンズである。この例では、楕円形状エッジ412は、主軸418及び短軸420を含む。主軸418及び短軸420は、等しくない。眼内レンズIOL408は、患者の眼68の被膜402内の適切な向き及び位置に眼内レンズ408の光学器械410を固定するために触覚部要素416を保持して被膜402に対して残りの場所を提供する機能を果たす表面414を更に含む。表面414は、楕円形として示されているが、楕円形である必要はない。触覚部416は、保持力を被膜402の前方部分に向って印加することによって安定性をもたらし、切開部400に眼内レンズ408のエッジ412を着座させる機能を果たすことができる。触覚部416は、あらゆる向きに配備することができる。眼内レンズ408の光学器械410の円筒形矯正の向きは、その主軸418又はその短軸420のいずれかと一致するように作ることができる。このようにして、眼内レンズIOL408及び光学器械410は、標準化された方法で製造することができ、かつ切開部400の回転の向き、並びに光学器械410の球形及び円筒形屈折力は、変化させるようにして、患者の眼68の個々の光学的処方に適するようにすることができる。
【0049】
図7は、嵌合する位置合わせ特徴部エッジ412及び切開部400が係合して被膜402内に取り付けられ、かつ表面414上で静止した状態で、眼内レンズ408の適切な中間配置を示している。主軸404及び主軸418は、同じ長さのものではない。主軸406及び短軸420も、同じ長さではない。これは、被膜402が被膜破裂切開の後に幾分収縮する場合があるという事実に適合させるために行われる。これらの軸の長さ間の差は、被膜破402が収縮することを可能にし、依然として切開部400を通じて被膜402内に眼内レンズ408を一層良く着座させることを意図している。これらの差は、適度な収縮を可能にするように制限すべきであるが、眼内レンズ408の有意な回転を可能にするほど制限すべきではない。これらの長さの差に対する標準値は、例えば、100μmから500μmに及ぶ場合がある。
【0050】
図8は、
図6及び7に示した同じ眼内レンズ408の側面図を示している。この概略図では、エッジ412は、眼内レンズ408の表面424と同じ光学器械410の側面に示されている。眼内レンズ408の表面422は、エッジ412と切開部400の間の嵌合の一体性を維持する機能を果たす。エッジ412は、
図6及び7に描かれた代替の図においては、表面422の投影として見られる。光学器械410の光軸411が示されている。触覚部416は、この図において視線に沿って置かれている。
【0051】
図9は、
図8のレンズ構成の側面図であるが、表示面426が両方向に湾曲していない(すなわち、円筒形レンズとして成形された)ことを示すために90度回転されている。光学器械410のこの円筒形又は円環光学システムは、患者の乱視に対して円筒形矯正を提供する。触覚部416は、この図において視線に対して垂直である。
【0052】
図10は、
図6の例の非対称性に類似しているが、切開部400が、それ以外は丸い切開部400から延びるノッチとして形成された位置合わせ特徴部428を含むことが異なる代替的な実施形態を示している。位置合わせ特徴部428は、眼内レンズ410上に適合する位置合わせ特徴部(すなわち、突起部)の位置を決める手段を提供する機能を果たす。光学器械410を含むIOL408の補完的位置合わせ特徴部430が、
図11に示されている。位置合わせ特徴部428の形状は、例示目的だけのために半円として示されている。代替的に、
図15に示すような涙滴形状は、エッジ412及び切開部400に対して鋭いエッジを含む可能性はあまりなく、従って、被膜破裂の不注意な伸展が少ない傾向にある。多くの同様の補完的形状が可能であり、かつ本発明の範囲である。
図1に記載した短いパルスレーザシステムの利点は、それが、プラズマ媒介アブレーション過程を通じて、伸展しそうにない滑らかな切開部400を提供することができることである。
【0053】
図11では、位置合わせ特徴部430は、切開部400の位置合わせ特徴部428と嵌合することが意図されている。これは、正しく光学器械410の位置を決めて、その回転的一体性を維持する機能を果たす。ここで、更に、エッジ412及び表面414は、患者の眼68の被膜402に対して機械的安定性及び適切な配向を保証する特徴を提供する。非対称主軸404及び418の
図6の説明と同様に、位置合わせ特徴部430は、個々の処方に適するように任意の回転の向きで配置することができる。触覚部416は、上述のようにあらゆる向きに配備することができる。
【0054】
図12は、
図7に示すものと同様に、嵌合特徴部エッジ412が係合した切開部400を通じて被膜402内に取り付けられた状態の眼内レンズ408の適正な中間配置を示している。
【0055】
図13は、被膜破裂切開部400とは別で明確に異なる位置合わせ切開部432(システム2によって発生した治療光の位置合わせパターンで形成された)を追加した
図6及び10のものと類似した代替的な実施形態を示している。上述のように、位置合わせ切開部432は、眼内レンズ408上の適合位置合わせ特徴部の位置を決めるための手段を提供する機能を果たす。
【0056】
図14は、位置合わせ切開部432に及び眼内レンズ408上の光学器械410から離れて支柱436の上に位置する柱434を有する
図11のものと類似した代替的な実施形態を示している。柱434及び支柱436は、触覚部416間の法線から離れて傾いているように示されている。多くのそのような類似の補完的構成が可能であり、かつ本発明の範囲にある。
【0057】
IOL408も、周方向フランジによって被膜破裂切開部と嵌合することができる。被膜破裂切開部400の形状は、
図15に概略的に示すように、円筒形矯正を達成するようにIOL408を向けるように作ることができる。
図15の乱視切開部400は、
図5、10、及び13のそれと類似しているが、それが、エッジ412及び表面414ではなく眼内レンズ408上のフランジと嵌合するように意図されることが追加されている。
【0058】
図16は、切開部400と嵌合するようにフランジ438を利用する眼内レンズ408を示している。図示のように、眼内レンズ408は、光学器械410及びフランジ438から成る。このフランジ438は、図示のように、周方向とすることができるが、そうである必要はない。それは、単に光学器械410の上に置かれ、被膜402内に眼内レンズ408を嵌合して保持する同じ目的を果たすことができる。フランジ438は、切開部400内に被膜402を着座させるように溝440を収容している。回転非対称溝440は、個々の乱視処方に対して正しい回転の向きで切開部400内に眼内レンズ408を正確に位置決めして保持する機能を果たす。この光学矯正は、光学器械410を用いて達成される。代替的に、溝440は、フランジ438が眼内レンズ438の上に重なる時にフランジ438と光学器械410の間に作成することができる(図示のように、フランジ438内ではなく)。そのような眼内レンズ408は、「バッグ・イン・ザ・レンズ」手術で用いることができる。
【0059】
図17及び18は、
図16のそれと同じ構成であるが、溝440をより良好に示すために異なる視覚的観点から示している。溝440は、図示のように連続的に又はフランジ438に切り込まれたノッチを設けることによって非連続的に切開部400に係合するように作ることができる。そのようなノッチは、切開部400を通じて被膜402とフランジ438の係合を更に容易に開始する機能を果たすことができる。代替的に、フランジ438は、そのエッジと溝440の間の深度がその円周に沿って変化するように作ることができる。従って、浅い深度の領域は、切開部400を通じて眼内レンズ408を被膜402と更に容易に係合するための開始点として用いることができる。
【0060】
図19は、
図16のそれと類似した代替的な実施形態を示すが、ここでは、光学器械410は、フランジ438内で回転するように作ることができる。光学器械410の回転を揃えるために、角度アラインメントマーク444が、フランジ438上に表示され、補完的アラインメントマーク446が、光学器械410上に表示される。このようにして、眼内レンズ408及び光学器械410は、標準化された方法で製造することができ、光学器械410をその周囲のフランジ438に対して回転させて個々の処方に適する乱視矯正を提供することができる。アラインメントマーク444は、22.5°の間隔で示されているが、そうでない場合もある。アラインメントマーク444及び446は、それらのホスト要素の材料にエッチングすることができ、又は代替的にこれらに刻み込むこともできる。
【0061】
図20は、
図14及び19のそれと類似した1つの更に別の代替的な実施形態を示しており、ここでは、光学器械410は、リング448内で回転するように作ることができる。この例示的な例では、柱434及び支柱436は、光学器械410に一体化され、かつアラインメントマーク446を収容する。リング448は、前と同様に触覚部416及び表面414を含むが、ここではアラインメントマーク444も含む。光学器械410の支柱436上のアラインメントマーク446は、乱視矯正光学器械410の回転的配向を容易にする。このようにして、切開部400を通じて患者の眼の被膜402内の眼内レンズ408の最終的配向は、あらゆる向きに行うことができる。多くのそのような類似の補完的構成が可能であり、かつ本発明の範囲内である。
【0062】
本発明は、本明細書に上述して図示した実施形態に限定されることなく、特許請求の範囲に属するいかなる及び全ての変形を包含することは理解されるものとする。例えば、本明細書における本発明への参照は、いかなる特許請求の範囲又は特許請求の範囲の条項の範囲を限定するように意図したものではなく、特許請求の範囲の1つ又はそれよりも多くによって含むことができる1つ又はそれよりも多くの特徴を単に参照するに過ぎない。
図1、3、及び4に示すスキャナ50の下流の全ての光学要素は、ビーム6、114、及び202をターゲット組織へ送出するための光学要素の送出システムを形成する。おそらく、システムの望ましい特徴に応じて、示した光学要素の一部又はその殆どさえも送出システムでは省略することができ、システムは、依然として走査ビームをターゲット組織へ確実に送出する。突起位置合わせ特徴部は、窪み(すなわち、ノッチ)で置換することができると考えられ、逆も同じである。