特許第6495679号(P6495679)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 帝人株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6495679
(24)【登録日】2019年3月15日
(45)【発行日】2019年4月3日
(54)【発明の名称】ポリアリーレンスルフィド樹脂組成物
(51)【国際特許分類】
   C08L 81/02 20060101AFI20190325BHJP
   C08K 3/32 20060101ALI20190325BHJP
【FI】
   C08L81/02
   C08K3/32
【請求項の数】6
【全頁数】12
(21)【出願番号】特願2015-26434(P2015-26434)
(22)【出願日】2015年2月13日
(65)【公開番号】特開2016-147987(P2016-147987A)
(43)【公開日】2016年8月18日
【審査請求日】2017年11月16日
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】100169085
【弁理士】
【氏名又は名称】為山 太郎
(72)【発明者】
【氏名】小嶋 和
【審査官】 武貞 亜弓
(56)【参考文献】
【文献】 特開平03−220265(JP,A)
【文献】 特開平03−012454(JP,A)
【文献】 特開平10−292114(JP,A)
【文献】 特開平02−105857(JP,A)
【文献】 特開平05−059278(JP,A)
【文献】 特開平11−335558(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00− 101/14
C08K 3/00− 13/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
(A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)充填剤(B成分)10〜300重量部および(C)亜リン酸亜鉛(C成分)0.01〜重量部を含有するポリアリーレンスルフィド樹脂組成物。
【請求項2】
A成分が、直鎖状または分岐状ポリアリーレンスルフィド樹脂であることを特徴とする請求項1記載のポリアリーレンスルフィド樹脂組成物。
【請求項3】
B成分が繊維状充填剤、板状充填剤および粒状充填剤からなる群より選ばれる少なくとも1種の充填剤であることを特徴とする請求項1または2記載のポリアリーレンスルフィド樹脂組成物。
【請求項4】
B成分が、ガラス繊維、炭素繊維、アラミド繊維、ウォラストナイト、マイカ、タルク、ガラスフレーク、炭酸カルシウムおよびガラスビーズからなる群より選ばれる少なくとも1種の充填剤であることを特徴とする請求項1〜3のいずれかに記載のポリアリーレンスルフィド樹脂組成物。
【請求項5】
B成分が、ガラス繊維、炭素繊維およびアラミド繊維からなる群より選ばれる少なくとも1種の充填剤であることを特徴とする請求項1〜4のいずれかに記載のポリアリーレンスルフィド樹脂組成物。
【請求項6】
請求項1〜5のいずれかに記載のポリアリーレンスルフィド樹脂組成物で成形された成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリアリーレンスルフィド樹脂が有する優れた機械強度を保持しつつ、成形加工時のバリ発生を抑制した樹脂組成物に関する。
【背景技術】
【0002】
ポリアリーレンスルフィド樹脂は、耐薬品性、耐熱性、機械的特性などに優れるエンジニアリングプラスチックである。このため、ポリアリーレンスルフィド樹脂は、電気電子部品、車両関連部品、航空機部品、住設機器部品として広く利用されている。しかしながら、ポリアリーレンスルフィド樹脂には成形加工時にバリが発生するという問題がある。
この問題を解決する手段として、特許文献1および特許文献2にはリン酸のアルカリ土類金属塩や芳香族基含有オリゴマーを使用してバリの発生を抑制する方法が開示されている。該方法においてはバリ発生を抑制する効果はあるが、抑制効果を十分発揮しようとした場合、添加剤の量を増やす必要があり、ポリアリーレンスルフィド樹脂の機械強度が低下するという問題が生じる。
【0003】
一方、ポリアリーレンスルフィド樹脂と亜リン酸金属塩を配合した組成物としては、例えば特許文献3および特許文献4が開示されている。特許文献3では亜リン酸金属塩が表面後加工における表面平滑性、密着性の向上に有効であることが開示されているものの、バリ特性については何ら記載されていない。また、特許文献4では無機リン系化合物の添加が環式ポリアリーレンスルフィド樹脂の熱安定性の改良に有効であることが開示されているものの、バリが低減されることについては何ら開示されておらず、また機械強度についても記載されていない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平3−12454号公報
【特許文献2】特開平10−292114号公報
【特許文献3】特開平5−59278号公報
【特許文献4】特開2013−10952号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の課題は、ポリアリーレンスルフィド樹脂が有する優れた機械強度を保持しつつ、重大な欠点であるバリ特性を改善することにある。
【課題を解決するための手段】
【0006】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、ポリアリーレンスルフィド樹脂、充填剤および亜リン酸亜鉛からなる樹脂組成物が、目的とするバリ特性および機械強度に優れたポリアリーレン樹脂組成物となることを見出し、本発明に達成した。本発明によれば、上記課題は(A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)充填剤(B成分)10〜300重量部および(C)亜リン酸亜鉛(C成分)0.01〜10重量部を含有するポリアリーレンスルフィド樹脂組成物により達成される。
【0007】
以下、更に本発明の詳細について説明する。
(A成分:ポリアリーレンスルフィド樹脂)
本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィド樹脂と称される範疇に属するものであれば如何なるものを用いてもよい。
ポリアリーレンスルフィド樹脂としては、その構成単位として、例えばp−フェニレンスルフィド単位、m−フェニレンスルフィド単位、o−フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げることができ、その中でも、p−フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらに、ポリ(p−フェニレンスルフィド)がより好ましい。
【0008】
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総塩素含有量は、好ましくは500ppm以下、より好ましくは300ppm以下、さらに好ましくは50ppm以下である。総塩素含有量が500ppmを超える場合には、発生ガス量が増加しウエルド強度を低下させる場合がある。
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総ナトリウム含有量は、好ましくは39ppm以下、より好ましくは10ppm以下、さらに好ましくは8ppm以下である。39ppmを超える場合には、発生ガスの増加によるウエルド強度を低下させるだけではなく、高温高湿環境下において、ナトリウム金属と水分子の配位結合による樹脂の吸水量の増加によって耐湿熱性を低下させる場合がある。
【0009】
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は好ましくは2.7以上、より好ましくは2.8以上、さらに好ましくは2.9以上である。分散度が2.7未満の場合は、成形時のバリ発生が多くなる場合がある。なお、分散度(Mw/Mn)の上限は特に規定されないが、10以下であることが好ましい。ここで、重量平均分子量(Mw)および数平均分子量(Mn)はゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出された値である。なお、溶媒には1−クロロナフタレンを使用し、カラム温度は210℃とした。
【0010】
ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されるものではなく、既知の方法で重合されるが、特に好適な重合方法としては、米国登録特許第4,746,758号、第4,786,713号、特表2013−522385、特開2012−233210および特許5167276等に記載された製造方法が挙げられる。これらの製造方法は、ジヨードアリール化合物と固体硫黄を、極性溶媒なしに直接加熱して重合させる方法である。
【0011】
前記製造方法はヨウ化工程および重合工程を含む。該ヨウ化工程ではアリール化合物をヨードと反応させて、ジヨードアリール化合物を得る。続く重合工程で、重合停止剤を用いてジヨードアリール化合物を固体硫黄と重合反応させてポリアリーレンスルフィド樹脂を製造する。ヨードはこの工程で気体状で発生し、これを回収して再びヨウ化工程に用いられる。実質的にヨードは触媒である。
前記製造方法で用いられる代表的な固体硫黄としては、室温で8個の原子が連結されたシクロオクタ硫黄形態(S)が挙げられる。しかしながら重合反応に用いられる硫黄化合物は限定されるものではなく、常温で固体または液体であればいずれの形態でも使用し得る。
【0012】
前記製造方法で用いられる代表的なジヨードアリール化合物としては、ジヨードベンゼン、ジヨードナフタレン、ジヨードビフェニル、ジヨードビスフェノールおよびジヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられ、またアルキル基やスルホン基が結合していたり、酸素や窒素が導入されたりしているヨードアリール化合物の誘導体も使用される。ヨードアリール化合物はそのヨード原子の結合位置によって異なる異性体に分類され、これらの異性体のうち好ましい例は、p−ジヨードベンゼン、2,6−ジヨードナフタレン、及びp,p’−ジヨードビフェニルのようにヨードがアリール化合物の分子両端に対称的に位置する化合物である。該ヨードアリール化合物の含有量は前記固体硫黄100重量部に対し500〜10,000重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0013】
前記製造方法で用いられる代表的な重合停止剤としては、モノヨードアリール化合物、ベンゾチアゾール類、ベンゾチアゾールスルフェンアミド類、チウラム類、ジチオカルバメート類、芳香族スルフィド化合物などが挙げられる。モノヨードアリール化合物のうち好ましい例としては、ヨードビフェニル、ヨードフェノール、ヨードアニリン、ヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾール類のうち好ましい例としては、2−メルカプトベンゾチアゾール、2,2’−ジチオビスベンゾチアゾールからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾールスルフェンアミド類のうち好ましい例としては、N−シクロヘキシルベンゾチアゾール2−スルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアゾールスルフェンアミド、2−モルホリノチオベンゾチアゾール、ベンゾチアゾールスルフェンアミド、ジベンゾチアゾールジスルファイド、N−ジシクロヘキシルベンゾチアゾール2−スルフェンアミドからなる群より選ばれる少なくとも1種が挙げられる。チウラム類のうち好ましい例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドからなる群より選ばれる少なくとも1種が挙げられる。ジチオカルバメート類のうち好ましい例としては、ジメチルジチオカルバメート酸亜鉛、ジエチルジチオカルバメート酸亜鉛からなる群より選ばれる少なくとも1種が挙げられる。芳香族スルフィド化合物のうち好ましい例としては、ジフェニルスルフィド、ジフェニルジスルフィド、ジフェニルエーテル、ビフェニル、ベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。重合停止剤の含有量は前記固体硫黄100重量部に対し1〜30重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0014】
前記製造方法においては必要に応じて重合反応触媒を重合工程で配合することができ、その代表的な重合反応触媒としては、各種ニトロベンゼン誘導体が挙げられ、これらの重合反応触媒のうち好ましい例としては、1,3−ジヨード−4−ニトロベンゼン、1−ヨード−4−ニトロベンゼン、2,6−ジヨード−4−ニトロフェノール、ヨードニトロベンゼン、2,6−ジヨード−4−ニトロアミンからなる群より選ばれる少なくとも1種が挙げられる。重合反応触媒の含有量は前記固体硫黄100重量部に対し0.01〜20重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0015】
該製造方法の反応条件の代表的な例は、温度180〜250℃および圧力50〜450Torr(6.7〜60kPa)の初期反応条件から、温度270〜350℃および圧力0.001〜20Torr(0.00013〜2.7kPa)の最終反応条件まで、温度を上昇させると共に圧力を降下させながら、1〜30時間進行させる。好ましくは前記初期反応条件は反応速度を考慮して、温度180℃以上、圧力450Torr(60kPa)以下とし、最終反応条件は高分子の熱分解を考慮して温度350℃以下、圧力20Torr(2.7kPa)以下が挙げられる。
但し、重合反応の条件は、反応器の構造設計および生産速度に依存し、当業者に知られているため、特に制限されない。反応条件は、当業者がプロセス条件を考慮して適宜設定することができる。
【0016】
(B成分:充填剤)
本発明で使用される充填剤は、繊維状、板状、粉末状、粒状などが挙げられる。具体的には例えば、ガラス繊維、炭素繊維、アラミド繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラステナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填剤が挙げられ、これらは中空であってもよく、さらにはこれら充填剤を2種類以上併用することも可能である。
【0017】
また、これら充填剤をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で、膨潤性の層状珪酸塩では有機化オニウムイオンで予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
【0018】
本発明の樹脂組成物に導電性を付与するために充填剤として、導電性フィラーが挙げられる。導電性フィラーは、通常樹脂の導電化に用いられる導電性フィラーであれば特に制限は無く、その具体例としては、金属粉、金属フレーク、金属リボン、金属繊維、金属酸化物、導電性物質で被覆された無機フィラー、カーボン粉末、黒鉛、炭素繊維、カーボンフレーク、鱗片状カーボンなどが挙げられる。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。金属繊維の金属種の具体例としては鉄、銅、ステンレス、アルミニウム、黄銅などが例示できる。かかる金属粉、金属フレーク、金属リボン、金属繊維はチタネート系、アルミ系、シラン系などの表面処理剤で表面処理を施されていてもよい。
【0019】
金属酸化物の具体例としてはSnO(アンチモンドープ)、In(アンチモンドープ)、ZnO(アルミニウムドープ)などが例示でき、これらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
導電性物質で被覆された無機フィラーにおける導電性物質の具体例としてはアルミニウム、ニッケル、銀、カーボン、SnO(アンチモンドープ)、In(アンチモンドープ)などが例示できる。また被覆される無機フィラーとしては、マイカ、ガラスビーズ、ガラス繊維、炭素繊維、チタン酸カリウムウィスカー、硫酸バリウム、酸化亜鉛、酸化チタン、ホウ酸アルミニウムウィスカー、酸化亜鉛系ウィスカー、チタン酸系ウィスカー、炭化珪素ウィスカーなどが例示できる。被覆方法としては真空蒸着法、スパッタリング法、無電解メッキ法、焼き付け法などが挙げられる。またこれらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
【0020】
カーボン粉末はその原料、製造法からアセチレンブラック、ガスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラックなどに分類される。本発明で用いることのできるカーボン粉末は、その原料、製造法は特に限定されないが、アセチレンブラック、ファーネスブラックが特に好適に用いられる。
B成分の含有量は、A成分100重量部に対し、10〜300重量部であり、好ましくは15〜200重量部、より好ましくは20〜150重量部である。B成分の含有量が10重量部未満では強度が劣り、300重量部を超えると、混練押出時にストランド切れやサージングなどが起こり生産性が低下するという問題が生ずる。
【0021】
(C成分:亜リン酸亜鉛)
本発明の樹脂組成物はC成分として亜リン酸亜鉛を含有することにより機械強度を保持しつつバリを低減することができる。なお、この効果は亜鉛以外の亜リン酸金属塩では発現しない。亜リン酸亜鉛としては、主成分が下記一般式(1)で表される二塩基酸の亜鉛塩が挙げられる。
【0022】
【化1】
[上記一般式(1)において、xは0〜20の整数、yは1〜5の整数である。]
【0023】
また亜リン酸亜鉛の平均粒子径は、好ましくは0.5〜20μmの範囲であり、より好ましくは1〜15μm、さらに好ましくは2〜10μmである。粒子径が0.5μm未満では凝集などにより、バリ抑制効果を得るための結晶化剤としての効果が不十分である場合があり、20μmを超えると樹脂中の均一分散がしにくいため機械強度の低下が起こる場合がある。
亜リン酸亜鉛の市販品としては、例えばキクチカラー(株)社製のLFボウセイ ZP−600等が挙げられる。
C成分の含有量はA成分100重量部に対し、0.01〜10重量部であり、好ましくは0.05〜5重量部、さらに好ましくは0.1〜3重量部である。B成分の含有量が0.01重量部未満ではバリ抑制効果が十分でなく、10重量部を超えると、曲げ強度が低下するという問題が生ずる。
【0024】
(その他の添加剤について)
本発明における樹脂組成物は本発明の効果を損なわない範囲で、エラストマー成分を含むことができる。好適なエラストマー成分としては、アクリロニトリル・ブタジエン・スチレン系共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)およびシリコーン・アクリル複合ゴム系グラフト共重合体などのコア−シェルグラフト共重合体樹脂、あるいはシリコーン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。
【0025】
本発明における樹脂組成物は本発明の効果を損なわない範囲で、他の熱可塑性樹脂を含むことができる。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、芳香族ポリエステル樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、などのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。
【0026】
本発明における樹脂組成物中には本発明の効果を損なわない範囲で、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン等)、亜リン酸亜鉛を除く結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p−オキシ安息香酸オクチル、N−ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、リン酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)、他の重合体を添加することができる。
【0027】
(樹脂組成物の製造)
本発明の樹脂組成物は上記各成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは二軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第二供給口より、溶融混合された他の成分中に供給することが好ましい。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
【0028】
二軸押出機に使用するスクリューは、輸送用順フライトピースの間に多種多様な形状のスクリュピースを挿入して複雑に組合せ、一体化して一本のスクリューとして構成されており、順フライトピース、順ニーディングピース、逆ニーディングピース、逆フライトピースなどのスクリュピースを処理対象原材料の特性を考慮して、適宜の順序および位置に配置して組み合わせたものなどを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
【0029】
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.5mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜4mmである。
【0030】
(成形品について)
本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出し成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。
【発明の効果】
【0031】
本発明のポリアリーレンスルフィド樹脂組成物は、機械強度および低バリに優れた特性を併せ持つことから、各種機能部品等の用途に好適であり、その奏する産業上の効果は格別である。
【発明を実施するための形態】
【0032】
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
【実施例】
【0033】
ポリアリーレンスルフィド樹脂組成物の評価
(1)曲げ強さ
ISO178(測定条件23℃)に準拠して測定した。なお、試験片は、射出成形機(東芝機械工業(株)製 IS150EN)によりシリンダー温度320℃、金型温度130℃で成形した。この数値が大きいほど樹脂組成物の機械強度が優れていることを意味する。
【0034】
(2)バリ特性
前記(1)と同条件で成形したISO527に準拠した試験片の中央付近から5〜6mg切り出し、測定サンプルとした。測定にはTAインスツルメント・ジャパン(株)製の熱分析システム DSC−2910を用い、室温から20℃/分の速度で昇温し、330℃で3分間保持した後、20℃/分の速度で降温し、降温の際に認められる結晶化ピーク温度を測定した。一般に降温結晶化ピーク温度が高いほど結晶化が速く進行し、低バリに優れていることを意味する。なお、結晶化ピーク温度は220℃以上であることが好ましい。
【0035】
[実施例1〜18、比較例1〜6]
ポリアリーレンスルフィド樹脂、充填剤および亜リン酸亜鉛を表1および表2記載の各配合量で、ベント式二軸押出機を用いて溶融混練してペレットを得た。ベント式二軸押出機は(株)日本製鋼所製:TEX−30XSST(完全かみ合い、同方向回転)を使用した。押出条件は吐出量16kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口からダイス部分まで320℃とした。なお、充填剤は上記押出機のサイドフィーダーを使用し第二供給口から供給し、ポリアリーレンスルフィド樹脂および亜リン酸亜鉛は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(東芝機械(株)製 IS150EN)を用いて、シリンダー温度320℃、金型温度130℃にて評価用の試験片を成形した。各評価結果を表1および表2に示した。
【0036】
表1および表2中の記号表記の各成分は下記の通りである。
(A成分)
PPS−1:以下の製造方法で得られたポリフェニレンスルフィド樹脂
[製造方法]
パラジヨードベンゼン300.00g及び硫黄27.00gに、重合停止剤としてジフェニルジスルフィド0.60g(最終的に重合されたPPSの重量に基づいて0.65重量%の含量)を投入して180℃に加熱して完全にそれらを溶融及び混合した後、温度を220℃に昇温し、且つ、圧力を200Torrに降圧した。得られた混合物を、最終温度及び圧力が夫々320℃及び1Torrとなるように温度及び圧力を段階的に変化させつつ、8時間重合反応させてポリフェニレンスルフィド樹脂を製造した。総塩素含有量は20ppm以下(検出限界以下)、総ナトリウム含有量は7ppmであった。
PPS−2:ポリフェニレンスルフィド樹脂(DIC(株)製 DIC−PPS MA−510、総塩素含有量2200ppm、総ナトリウム含有量160ppm)
(B成分)
B−1:炭素繊維(東邦テナックス(株)製:HT C432 6mm、長径7μm、カット長6mm、ウレタン系集束剤)
B−2:ニッケルコート炭素繊維(東邦テナックス(株)製:HT C903 6mm、長径7μm、カット長6mm、エポキシ・ウレタン系集束剤)
B−3:円形断面チョップドガラス繊維(日本電気硝子(株)製:T−760H、長径10.5μm、カット長3mm、エポキシ・ウレタン系集束剤)
B−4:扁平断面チョップドガラス繊維(日東紡(株)製:CSG 3PA−830、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
B−5:全芳香族アラミド繊維(帝人(株)製:パラ系アラミド繊維 T322EH、長径12μm、カット長3mm、ポリエステル系集束剤)
B−6:全芳香族アラミド繊維(帝人(株)製:メタ系アラミド繊維 ST2.2、長径12μm、カット長1mm、集束剤無)
B−7:全芳香族アラミド繊維(帝人(株)製:ポリパラフェニレンテレフタルアミド 1488、長径12μm、カット長6mm、ポリエステル系集束剤)
B−8:炭酸カルシウム(三共製粉(株)製:エスカロン2300)
B−9:マイカ((株)ヤマグチマイカ製:41PUS)
(C成分)
C−1:亜リン酸亜鉛(キクチカラー(株)製:ZP−600、式(1)においてx=0、y=1である二塩基酸の亜鉛塩)
C−2:亜リン酸カルシウム(キクチカラー(株)製:CP−200B)
C−3:亜リン酸マグネシウム(キクチカラー(株)製:MGPA)
【0037】
【表1】
【0038】
【表2】