(58)【調査した分野】(Int.Cl.,DB名)
入力側導電路と出力側導電路との間に配置される複数の電圧変換部を備え、各々の前記電圧変換部が、前記入力側導電路に接続される個別入力路と、駆動用のスイッチ素子のオンオフ動作により前記個別入力路に入力された電圧を変換する変換動作部と、前記変換動作部によって変換された電圧の出力経路となる個別出力路とを有し、且つ各々の前記電圧変換部において前記個別入力路又は前記個別出力路の少なくともいずれかの個別導電路に、当該個別導電路を通電状態と非通電状態とに切り替える保護用のスイッチ素子が設けられた構成をなす多相変換部と、
前記電圧変換部毎又は前記電圧変換部の組毎に、前記保護用のスイッチ素子をオフ動作させた状態で電圧変換動作を行わせる制御部と、
前記制御部が前記電圧変換部毎又は前記電圧変換部の組毎に前記保護用のスイッチ素子をオフ動作させた状態で行わせる電圧変換動作に基づいて、前記多相変換部を構成する複数の前記電圧変換部の中から前記保護用のスイッチ素子が異常である変換部又は前記保護用のスイッチ素子が異常である変換部を含む組を特定する異常特定部と、
を含むDCDCコンバータ。
【発明を実施するための形態】
【0012】
<実施例1>
以下、本発明を具体化した実施例1について説明する。
図1で示すDCDCコンバータ1は、例えば、車載用の降圧型DCDCコンバータとして構成されており、入力側導電路71に印加された直流電圧を降圧して出力側導電路72に出力する構成をなすものである。
【0013】
図1のDCDCコンバータ1には、入力側導電路71及び出力側導電路72を備えるとともに電源ラインとして機能する電源導電路70と、電源導電路70の電位よりも低い一定の基準電位(グラウンド電位)に保たれる基準導電路78とが設けられている。そして、入力側導電路71と出力側導電路72との間には、入力側導電路71に印加された入力電圧を降圧して出力電圧を生成する複数の電圧変換部4A,4Bが並列に設けられている。
【0014】
入力側導電路71は、相対的に高い電圧が印加される一次側(高圧側)の電源ラインとして構成され、一次側電源部61の高電位側の端子に導通するとともに、その一次側電源部61から所定の直流電圧(例えば、48V)が印加される構成をなす。この入力側導電路71は、後述する複数の個別入力路42A,42Bにそれぞれ接続されている。
【0015】
一次側電源部61は、例えば、リチウムイオン電池、或いは電気二重層キャパシタ等の蓄電手段によって構成され、第1の所定電圧を発生させるものである。一次側電源部61の高電位側の端子は例えば48Vに保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。
【0016】
出力側導電路72は、相対的に低い電圧が印加される二次側(低圧側)の電源ラインとして構成されている。この出力側導電路72は、例えば、二次側電源部62の高電位側の端子に導通するとともに、その二次側電源部62から一次側電源部61の出力電圧よりも小さい直流電圧(例えば12V)が印加される構成をなす。
【0017】
二次側電源部62は、例えば、鉛蓄電池等の蓄電手段によって構成され、一次側電源部61で発生する第1の所定電圧よりも低い第2の所定電圧を発生させるものである。例えば、二次側電源部62の高電位側の端子は12Vに保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。なお、
図1の例では、出力側導電路72に設けられた端子64が二次側電源部62の正極側の端子に接続される状態が、二次側電源部62の正規の接続状態である。
【0018】
基準導電路78は、グラウンドとして構成され、一定のグラウンド電位(0V)に保たれている。この基準導電路78には、一次側電源部61の低電位側の端子と二次側電源部62の低電位側の端子とが導通し、更に、後述するスイッチ素子32A,32Bのドレインが接続されている。
【0019】
入力側導電路71と出力側導電路72との間には、多相変換部4が設けられている。この多相変換部4は、入力側導電路71と出力側導電路72との間に並列に配置される複数の電圧変換部4A,4Bを備える。これら電圧変換部4A,4Bは、同期整流方式の降圧型コンバータとして機能する。
【0020】
電圧変換部4Aは、入力側導電路71に接続される個別入力路42A(個別導電路)と、駆動用のスイッチ素子5A,6Aのオンオフ動作により個別入力路42Aに入力された電圧を変換する変換動作部19Aと、変換動作部19Aによって変換された電圧の出力経路となる個別出力路52A(個別導電路)とを有する。そして、個別入力路42Aには、個別入力路42Aを通電状態と非通電状態とに切り替える保護用のスイッチ素子20Aが設けられている。また、個別出力路52Aには、逆流時に個別出力路52Aを通電状態と非通電状態とに切り替える保護用のスイッチ素子24Aが設けられている。
【0021】
電圧変換部4Aにおいて、ハイサイド側のスイッチ素子5Aのドレインには、入力側導電路71から分岐した個別入力路42Aが接続されている。このスイッチ素子5Aのドレインは、入力側コンデンサ8Aの一方側の電極に導通し、個別入力路42Aに介在するスイッチ素子20Aがオン状態のときには一次側電源部61の高電位側端子にも導通する。また、スイッチ素子5Aのソースには、ローサイド側のスイッチ素子6Aのドレイン及びコイル12Aの一端が接続されている。ローサイド側のスイッチ素子6Aのソースには、入力側コンデンサ8A及び出力側コンデンサ10Aの各電極が接続されている。また、コイル12Aの他端は、出力側コンデンサ10Aの一方の電極、及びスイッチ素子24Aのソースに接続されている。そして、スイッチ素子5Aのゲートには、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子5Aがオン状態とオフ状態とに切り替わるようになっている。ローサイド側のスイッチ素子6Aのゲートにも、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子6Aがオン状態とオフ状態とに切り替わるようになっている。
【0022】
電圧変換部4Bは、電圧変換部4Aと同様に構成されている。この電圧変換部4Bは、入力側導電路71に接続される個別入力路42B(個別導電路)と、駆動用のスイッチ素子5B,6Bのオンオフ動作により個別入力路42Bに入力された電圧を変換する変換動作部19Bと、変換動作部19Aによって変換された電圧の出力経路となる個別出力路52B(個別導電路)とを有する。そして、個別入力路42Bには、個別入力路42Bを通電状態と非通電状態とに切り替える保護用のスイッチ素子20Bが設けられている。また、個別出力路52Bには、逆流時に個別出力路52Bを通電状態と非通電状態とに切り替える保護用のスイッチ素子24Bが設けられている。
【0023】
電圧変換部4Bにおいて、ハイサイド側のスイッチ素子5Bのドレインには、入力側導電路71から分岐した個別入力路42Bが接続されている。このスイッチ素子5Bのドレインは、入力側コンデンサ8Bの一方側の電極に導通し、個別入力路42Bに介在するスイッチ素子20Bがオン状態のときには一次側電源部61の高電位側端子にも導通する。また、スイッチ素子5Bのソースには、ローサイド側のスイッチ素子6Bのドレイン及びコイル12Bの一端が接続されている。ローサイド側のスイッチ素子6Bのソースには、入力側コンデンサ8B及び出力側コンデンサ10Bの各電極が接続されている。また、コイル12Bの他端は、出力側コンデンサ10Bの一方の電極、及びスイッチ素子24Bのソースに接続されている。そして、スイッチ素子5Bのゲートには、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子5Bがオン状態とオフ状態とに切り替わるようになっている。ローサイド側のスイッチ素子6Bのゲートにも、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子6Bがオン状態とオフ状態とに切り替わるようになっている。
【0024】
そして、スイッチ素子6A,6Bのソース、入力側コンデンサ8A,8Bの片側の各電極、出力側コンデンサ10A,10Bの片側の各電極は互いに導通しており、導電路76を介してスイッチ素子32A,32Bの各ソースに接続されている。スイッチ素子24A,24Bのドレインは互いに導通し、出力側導電路72に接続されている。
【0025】
このように構成される電圧変換部4A,4Bの各々は、同期整流方式の降圧型コンバータとして機能する。電圧変換部4Aは、ハイサイド側のスイッチ素子5Aのオン動作とオフ動作との切り替えを、ローサイド側のスイッチ素子6Aのオフ動作とオン動作との切替と同期させて行うことで、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する。具体的には、駆動部3により、スイッチ素子5A,6AのそれぞれのゲートにPWM信号が与えられ、スイッチ素子5Aをオン状態とし、スイッチ素子6Aをオフ状態とした第1状態と、スイッチ素子5Aをオフ状態とし、スイッチ素子6Aをオン状態とした第2状態とが交互に切り替えられる。そして、このような第1状態と第2状態との切り替えを繰り返すことで、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する。個別出力路52Aの出力電圧は、スイッチ素子5A,6Aのゲートに与えるPWM信号のデューティ比に応じて定まる。
【0026】
電圧変換部4Bも同様であり、ハイサイド側のスイッチ素子5Bのオン動作とオフ動作との切り替えを、ローサイド側のスイッチ素子6Bのオフ動作とオン動作との切替と同期させて行うことで、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する。具体的には、駆動部3により、スイッチ素子5B,6BのそれぞれのゲートにPWM信号が与えられ、スイッチ素子5Bをオン状態とし、スイッチ素子6Bをオフ状態とした第1状態と、スイッチ素子5Bをオフ状態とし、スイッチ素子6Bをオン状態とした第2状態とが交互に切り替えられる。そして、このような第1状態と第2状態との切り替えを繰り返すことで、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する。個別出力路52Bの出力電圧は、スイッチ素子5B,6Bのゲートに与えるPWM信号のデューティ比に応じて定まる。なお、両電圧変換部4A,4Bに与える駆動信号のタイミングは特に限定されず、例えば、電圧変換部4Aの動作と、電圧変換部4Bの動作とを、公知の制御方法によって位相をずらして行えばよい。
【0027】
更に、
図1のDCDCコンバータ1は、逆接続保護回路部30を備えており、二次側電源部62が逆接続された場合に導電路76の導通が遮断される構成とし、逆接続時の二次側への電流の流れ込みを防いでいる。この逆接続保護回路部30は、両電圧変換部4A,4Bと基準導電路78との間の導電路76に並列に配置される逆接続保護用のスイッチ素子32A,32Bと、スイッチ素子32A,32Bのゲート電位を出力側導電路72の電位に保つ導電路34とを備えている。スイッチ素子32A,32Bは、導電路76の導通を遮断するオフ状態と、その遮断を解除するオン状態とに切り替わる構成となっている。
【0028】
逆接続保護回路部30では、少なくとも二次側電源部62(低圧側の電源部)の端子が
図1のように正規の接続状態であることを条件としてスイッチ素子32A,32Bがオン状態になる。この場合、多相変換部4が動作していない状態では、スイッチ素子32A,32Bのゲート電位が二次側電源部62の正極電位(例えば12V)と略同電位になり、ゲート電位がソース電位よりも高い状態で維持されるため、スイッチ素子32A,32Bはオン状態で維持される。そして、ローサイド側のスイッチ素子6A,6Bのソース、入力側コンデンサ8A,8B、出力側コンデンサ10A,10Bは、いずれも基準導電路78と導通した状態で維持される。一方、二次側電源部62(低圧側の電源部)の端子が正負を逆にした逆接続状態である場合、スイッチ素子32A,32Bのゲート電位が二次側電源部62の負極の電位(例えば−12V)と略同電位になり、ゲート電位がソース電位よりも低い状態で維持される。このため、スイッチ素子32A,32Bはオフ状態で維持される。スイッチ素子32A,32Bがオフ状態であるときには、スイッチ素子6A,6Bのソース、入力側コンデンサ8A,8B、出力側コンデンサ10A,10Bは、いずれも基準導電路78と導通しない状態となる。更に、
図1の構成では、二次側電源部62と出力側導電路72との間がオープン状態になった場合でも、スイッチ素子32A,32Bはオフ状態で維持されることになる。
【0029】
次に、通常動作中の異常検出について説明する。
DCDCコンバータ1には、出力側導電路72を流れる電流を検出するための電流検出経路80が構成されている。この電流検出経路80は、出力側導電路72を流れる電流を公知の方法で検出する経路であり、制御部2は、この電流検出経路80を介して入力された値によって出力側導電路72を流れる電流の値を把握している。なお、
図1では、電流検出経路80を簡略的に示しているが、電流検出経路80における具体的な電流検出回路は、公知の様々な電流検出回路を用いることができ、出力側導電路72を流れる電流の値Ioを制御部2が把握できる構成であればよい。
【0030】
そして、制御部2は、出力側導電路72に過電流が生じているか否かを判断している。具体的には、制御部2は、出力側導電路72を流れる電流値Ioを予め定められた閾値Itと比較し、Io≦Itであれば過電流状態ではないと判断し、Io>Itであれば過電流状態であると判断する。
【0031】
また、制御部2には、出力側導電路72の電圧が入力され、出力側導電路72に過電圧が生じているか否かをも判断している。具体的には、制御部2が検出した出力側導電路72の電圧値Voを予め定められた閾値Vtと比較し、Vo≦Vtであれば過電圧状態ではないと判断し、Vo>Vtであれば過電圧状態であると判断する。
【0032】
本構成では、制御部2が検出部の一例に相当し、少なくとも多相変換部4の動作中にIo>It又はVo>Vtのいずれかの状態を検出することで、多相変換部4での異常発生を検出する。
【0033】
制御部2は、過電流又は過電圧のいずれかの異常を検出した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じていると判断した場合、複数の電圧変換部4A,4Bの全ての電圧変換動作を停止させる。具体的には、制御部2から駆動部3に対してPWM信号の出力停止の指示が与えられ、駆動部3は、スイッチ素子5A,6A,5B,6BへのPWM信号の出力を停止する。更に、制御部2からスイッチ素子20A,20B、24A,24Bの全てのゲートに対しオフ信号が出力される。これにより、スイッチ素子20A,20B,24A,24Bが全てオフ状態に切り替わる。
【0034】
本構成では、制御部2が停止制御部の一例に相当し、多相変換部4の動作中に検出部によって多相変換部4での異常発生が検出された場合に多相変換部4における複数の電圧変換部4A,4Bの全ての動作を停止させるように機能する。
【0035】
このように、多相変換部4を構成する複数の電圧変換部4A,4Bの全ての動作を停止させた後、これら複数の電圧変換部4A,4Bの中から、電流及び電圧の少なくともいずれかが異常となる変換部を特定する。
【0036】
まず、制御部2は、一方の電圧変換部4Aのみを動作させ、他方の電圧変換部4Bの動作を停止させた状態で、電源導電路70に過電流又は過電圧のいずれかが生じているか否かを判断する。具体的には、電圧変換部4Aの保護用のスイッチ素子20A,24Aをオン状態に切り替え、駆動用のスイッチ素子5A,6Aのそれぞれに対し、上述した第1状態と第2状態とを切り替えるようにPWM信号を出力する。このような制御により、電圧変換部4Aは、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する電圧変換動作を行う。電圧変換部4Aが電圧変換動作を行っている間は、他方の電圧変換部4Bの駆動を停止させ、スイッチ素子5B,6Bをオフ状態で維持するとともに、保護用のスイッチ素子20B,24Bをオフ状態で維持する。制御部2は、このように電圧変換部4Aのみを駆動する制御を所定時間行い、この所定時間の間、出力側導電路72を流れる電流値Ioを閾値Itと比較するとともに、出力側導電路72の電圧値Voを閾値Vtと比較する。そして、Io>It又はVo>Vtのいずれかの状態が生じた場合には、電圧変換部4Aを異常であると判定する。逆に、電圧変換部4Aのみが駆動される所定時間の間、Io≦It及びVo≦Vtで維持された場合には電圧変換部4Aが正常であると判定する。
【0037】
次に、制御部2は、他方の電圧変換部4Bのみを動作させ、電圧変換部4Aの動作を停止させた状態で、電源導電路70に過電流又は過電圧のいずれかが生じているか否かを判断する。具体的には、電圧変換部4Bの保護用のスイッチ素子20B,24Bをオン状態に切り替え、駆動用のスイッチ素子5B,6Bのそれぞれに対し、上述した第1状態と第2状態とを切り替えるようにPWM信号を出力する。このような制御により、電圧変換部4Bは、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する電圧変換動作を行う。電圧変換部4Bが電圧変換動作を行っている間は、電圧変換部4Aの駆動を停止させ、スイッチ素子5A,6Aをオフ状態で維持するとともに、保護用のスイッチ素子20A,24Aをオフ状態で維持する。制御部2は、このように電圧変換部4Bのみを駆動する制御を所定時間行い、この所定時間の間、出力側導電路72を流れる電流値Ioを閾値Itと比較するとともに、出力側導電路72の電圧値Voを閾値Vtと比較する。そして、Io>It又はVo>Vtのいずれかの状態が生じた場合には、電圧変換部4Bを異常であると判定する。逆に、電圧変換部4Bのみが駆動される所定時間の間、Io≦It及びVo≦Vtで維持された場合には電圧変換部4Bが正常であると判定する。
【0038】
本構成では、制御部2が駆動異常特定部の一例に相当し、少なくとも停止制御部によって全ての電圧変換部4A,4Bの動作が停止された後、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、電流及び電圧の少なくともいずれかが異常となる変換部を特定するように機能する。
【0039】
このような制御により、電圧変換部4A,4Bのいずれかが異常である判定された場合、制御部2は、その異常と判定された変換部の動作を中止し、所定の異常情報を、通信インタフェース90を介して上位システムに通知する。そして、制御部2は、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、異常と判定された変換部を除いた残余の変換部に電圧変換動作を行わせる。例えば、電圧変換部4Aが異常と判定され、電圧変換部4Bが正常と判定された場合、制御部2は、電圧変換部4Aが異常であることを示す情報を、通信インタフェース90を介して上位システムに通知する。そして、異常と判定された電圧変換部4Aの動作を中止し、電圧変換部4Aを除いた残余の電圧変換部4Bのみに電圧変換動作を行わせるように、多相変換部4の動作を再開する。なお、全ての電圧変換部4A,4Bが異常と判定された場合、多相変換部4自体の動作を停止する。
【0040】
本構成では、制御部2が動作制御部の一例に相当し、駆動異常特定部によって電流及び電圧の少なくともいずれかが異常となる変換部が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、駆動異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせるように機能する。また、制御部2は、通知部の一例に相当し、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行うように機能する。
【0041】
次に、保護用のスイッチング素子の検査処理について説明する。
図1で示すように、制御部2には、図示しないイグニッションスイッチからのイグニッション信号が入力されるようになっている。イグニッションスイッチがオン状態であるときにはオン状態を示すイグニッション信号(オン信号)が制御部2に入力され、イグニッションスイッチがオフ状態であるときにはオフ状態を示すイグニッション信号(オフ信号)が制御部2に入力されるようになっている。そして、制御部2は、イグニッション信号がオフ信号からオン信号に切り替わる毎に
図2で示す検査処理を行う。具体的には、イグニッション信号がオフ信号からオン信号に切り替わった後、入力側導電路71に接続された図示しない発電機が動作する前に、一次側電源部61から供給される電力を利用して
図2の検査処理を行うようにしてもよい。或いは、イグニッション信号がオフ信号からオン信号に切り替わった後、入力側導電路71に接続された図示しない発電機が動作した後に、
図2の検査処理を行うようにしてもよい。
【0042】
図2で示す検査処理では、最大相数Nmax(
図1の例ではNmax=2)の多相変換部4において、相毎に保護用のスイッチ素子の検査を行う。まず、S1にてN=1とする。なお、Nは、S2〜S12の処理で検査対象となっている相を示す値である。
図1の構成では、N=1のときには、検査対象が第1相である電圧変換部4Aとなる。
【0043】
S2では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオフ動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオン動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、第1相の電圧変換部4Aにおいて、入力側の保護用のスイッチ素子20Aをオフ動作させ、出力側の保護用のスイッチ素子24Aをオン動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作は、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。
【0044】
そして、S2の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S3)。この閾値電圧V2は、二次側電源部62からの出力電圧(例えば12V)よりも大きく、上述の電圧V1(仮にスイッチ素子20A,24Aがいずれも導通していた場合に、S2の電圧変換動作において個別出力路52Aに対して出力されるべき電圧)よりも小さい値である。このように閾値電圧V2が設定され、S2での電圧変換動作中には、N相の入力側の保護用のスイッチ素子(第1スイッチ素子)をオフ動作させているため、このスイッチ素子が正常にオフされていれば出力側導電路72に印加される電圧は二次側電源部62からの出力電圧程度となり、閾値電圧V2未満となるはずである。従って、S2での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上となった場合、S3にてYesに進み、N相の入力側の保護用スイッチ素子(第1スイッチ素子)がショート故障していると判定する(S4)。例えば、N=1のときには、電圧変換部4Aの入力側のスイッチ素子20Aがショート故障していると判定する。
【0045】
S2の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満である場合、S3にてNoに進みS5の処理を行う。S5では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオン動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオン動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、スイッチ素子20Aをオン動作させ、スイッチ素子24Aをオン動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作も、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。
【0046】
そして、S5の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S6)。S5の電圧変換動作は、仮にスイッチ素子20A,24Aがいずれも導通していた場合に個別出力路52Aに対して閾値電圧V2よりも高い電圧V1が出力されるデューティ比で行われる。そして、S5では、N相の入力側及び出力側の保護用のスイッチ素子(第1、第2スイッチ素子)をいずれもオン動作させているため、これらスイッチ素子が正常にオン状態となれば出力側導電路72に印加される電圧は閾値電圧V2以上となるはずである。従って、S5での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満であった場合、S6にてNoに進み、N相の入力側の保護用スイッチ素子(第1スイッチ素子)又は出力側の保護用スイッチ素子(第2スイッチ素子)のいずれかがオープン故障していると判定する(S7)。例えば、N=1のときには、電圧変換部4Aのスイッチ素子20A,24Aのいずれかがオープン故障していると判定する。
【0047】
S5の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上である場合、S6にてYesに進みS8の処理を行う。S8では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオン動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオフ動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、スイッチ素子20Aをオン動作させ、スイッチ素子24Aをオフ動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作も、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。
【0048】
そして、S8の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S9)。S8での電圧変換動作中には、N相の出力側の保護用のスイッチ素子(第2スイッチ素子)をオフ動作させているため、このスイッチ素子が正常にオフされていれば出力側導電路72に印加される電圧は二次側電源部62からの出力電圧程度となり、閾値電圧V2未満となるはずである。従って、S8での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上となった場合、S9にてYesに進み、N相の出力側の保護用スイッチ素子(第2スイッチ素子)がショート故障していると判定する(S10)。例えば、N=1のときには、電圧変換部4Aの出力側のスイッチ素子24Aがショート故障していると判定する。
【0049】
S8の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満である場合、S9にてNoに進み、N相の電圧変換部における入力側及び出力側の両保護用スイッチ素子が正常であると判定する(S11)。例えば、N=1である場合、スイッチ素子20A、24Aがいずれも正常であると判定する。
【0050】
S11の後には、Nが最大相数Nmax(
図1の例では2)に達しているか否かを判断し(S12)、達していない場合には、S12にてNoに進んでNに1を加算し(S13)、新たなNでS2以降の処理を再び行う。例えば、S13でNが2となった場合、S2に戻り、第2相の電圧変換部4Bを対象としてS2〜S12の処理を行う。そして、全ての相に対してS2〜S12の処理が終了し、最終的にS12においてNがNmaxに達したと判断された場合には、
図2の検査処理を終了する。
【0051】
本構成では、
図2の処理を実行する制御部2が保護異常特定部の一例に相当し、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、少なくとも、保護用のスイッチ素子が異常である変換部を特定するように機能する。
【0052】
図2で示す検査処理において、いずれかの変換部の保護用スイッチ素子が異常であると判定された場合には、制御部2は、その異常と判定された変換部の動作を中止し、所定の異常情報を、通信インタフェース90を介して上位システムに通知する。そして、制御部2は、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、異常と判定された変換部を除いた残余の変換部に電圧変換動作を行わせる。例えば、
図2の検査処理において電圧変換部4Bを構成するスイッチ素子20B,24Bのいずれかが異常と判定され、電圧変換部4Aを構成するスイッチ素子20A,24Aが正常と判定された場合、制御部2は、電圧変換部4Bが異常であることを示す情報を、通信インタフェース90を介して上位システムに通知する。そして、異常と判定された電圧変換部4Bの動作を中止し、電圧変換部4Bを除いた残余の電圧変換部4Aのみに電圧変換動作を行わせるように、多相変換部4の動作を開始する。なお、全ての電圧変換部4A,4Bが異常と判定された場合、多相変換部4自体の動作を停止する。
【0053】
本構成では、制御部2が動作制御部の一例に相当し、保護異常特定部によって保護用のスイッチ素子が異常である変換部が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、保護異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせるように機能する。そして、制御部2は、通知部の一例に相当し、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行うように機能する。
【0054】
以上のように、本構成に係るDCDCコンバータ1は、各相に個別に保護用のスイッチ素子が設けられているため、各相の異常時には、保護用のスイッチ素子によって適正に保護が図られやすくなる。特に、電圧変換部4A,4Bの各々において、入力側と出力側のいずれにも保護用のスイッチ素子が設けられているため、各電圧変換部を保護する際に、入力側の個別入力路と出力側の個別出力路をそれぞれオフ状態に切り替えることができる。これにより、入力側から電圧変換部へ電流が流入することを防ぐ保護動作と、出力側から電圧変換部へ電流が逆流することを防ぐ保護動作とを行い得る構成となる。
【0055】
更に、本構成のDCDCコンバータ1は、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、保護用のスイッチ素子が異常である変換部を特定する保護異常特定部が設けられている。よって、保護用のスイッチ素子に異常が生じている変換部を特定することができる。そして、動作制御部は、保護用のスイッチ素子が異常である変換部が特定された場合、特定された変換部除いた残余の変換部に電圧変換動作を行わせる構成となっている。よって、保護用のスイッチ素子に異常が生じている範囲の動作を停止して保護を図りつつ、残余の変換部によって動作を継続することができる。特に、異常状態の保護用のスイッチ素子が継続して使用されることを防ぐことができるため、多相変換部4での電圧変換動作時にいずれかの相の保護用のスイッチ素子をオフ動作させることが必要となった時に、その保護用のスイッチ素子が故障によってオフ動作できなくなる事態を防ぐことができる。
【0056】
特に、入力側及び出力側の少なくともいずれかの保護用のスイッチ素子に異常が生じている変換部が特定された場合に、その特定された範囲の動作を停止させ、残余の変化部によって動作を継続する構成となっている。このようにすれば、多相変換部4を構成する複数の電圧変換部4A,4Bにおいて、入力側及び出力側のいずれにも異常が生じていな変換部のみが使用されることになり、使用される変換部は、入力側及び出力側のいずれについても、保護が必要な局面で確実に保護動作がなされ易くなる。
【0057】
また、保護異常特定部は、少なくともイグニッションスイッチがオフからオンに切り替わった場合に、多相変換部4を構成する複数の電圧変換部4A,4Bを検出対象として保護用のスイッチ素子が異常である変換部を特定する構成となっている。この構成によれば、イグニッションスイッチがオフからオンに切り替わった後、始動後の初期段階でより速やかに保護用のスイッチ素子に異常が生じている範囲を特定することができる。
【0058】
また、本構成のDCDCコンバータ1は停止制御部が設けられているため、多相変換部4の動作中に異常が発生した場合、一旦、全ての電圧変換部の動作を停止させて早急な保護を図ることができる。特に、停止制御部は、多相変換部4の動作中に検出部によって多相変換部4での異常発生が検出された場合に、全ての電圧変換部4A,4Bにそれぞれ設けられた保護用のスイッチ素子をオフ状態に切り替える制御を行う構成となっている。この構成によれば、いずれかの電圧変換部の駆動用のスイッチ素子に短絡等の故障が生じている場合であっても、各々の電圧変換部にそれぞれ設けられた保護用のスイッチ素子のオフ動作によって各電圧変換部を確実に停止させることができる。
【0059】
本構成では、多相変換部4の動作中に異常が発生した場合、停止制御部が全ての電圧変換部の動作を停止させた後に、駆動異常特定部が異常範囲の特定を行うようになっているため、多相変換部4がより保護された状態で異常範囲の特定がなされる。そして、動作制御部は、駆動異常特定部によって異常範囲の特定がなされた場合、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、駆動異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせる構成となっている。よって、異常範囲の動作を確実に停止し続けて保護を図りつつ、残余の変換部によって動作を継続することができる。
【0060】
本構成のDCDCコンバータ1は、出力側導電路72に二次側電源部62(蓄電部)が接続されている。この構成によれば、多相変換部4の動作中に異常が発生し、一旦、全ての電圧変換部4A,4Bの動作を停止させても、出力側導電路72には、二次側電源部62(蓄電部)から電圧が継続的に出力されることになる。よって、多相変換部4の動作中に異常が発生した場合に全ての電圧変換部4A,4Bを停止可能としつつ、その停止中であっても出力側導電路72への電力供給を継続し得る構成となる。
【0061】
本構成のDCDCコンバータ1は、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行う通知部を有する。この構成によれば、複数の電圧変換部4A,4Bの一部の電圧変換動作が制限される場合に、外部装置がその状態を把握することができ、外部装置において、そのような制限に応じた処理を行うことが可能となる。
【0062】
<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上述した実施例における一次側電源部61や二次側電源部62の具体例はあくまで一例であり、蓄電手段の種類や発生電圧は上述した例に限定されず、様々に変更することができる。
(2)
図1の例では、入力側導電路や出力側導電路に接続される発電機や負荷などは省略して示したが、様々な装置や電子部品を入力側導電路や出力側導電路に接続することができる。
(3)実施例1では、ローサイド側にスイッチ素子6A,6Bを設けた構成を例示したが、これらの素子をダイオードに変更した構成であってもよい。
(4)
図1で示す制御部2は、出力側導電路72を流れる電流の向きが多相変換部4側から二次側電源部62側に向かう第1の向きであるか、二次側電源部62側から多相変換部4側へ向かう第2の向きであるかを判定し得る構成であってもよい。そして、制御部2は、出力側導電路72を流れる電流の向きが上述した「第2の向き」であることを検出した場合(即ち、電流方向が逆流状態であると判定した場合)に、保護用のスイッチ素子24A,24Bをいずれもオフ状態に切り替える構成であってもよい。或いは、制御部2は、出力側導電路72を流れる電流の向きが上述した「第2の向き」であることを検出した場合、全ての電圧変換部4A,4Bの動作を一旦停止させた後、各々の変換部を個別に動作させて異常が生じている変換部を特定する構成であってもよい。そして、異常が生じている変換部が特定された場合、その変換部を除いた残余の変換部のみに電圧変換動作を行わせるように動作を再開する構成であってもよい。
(5)実施例1では、2つの電圧変換部4A,4Bが並列に接続された2相構造のDCDCコンバータ1を例示したが、3以上の電圧変換部が並列に接続された3相以上の構造であってもよい。例えば、
図3のような4層構造のDCDCコンバータ201であってもよい。
図3のDCDCコンバータ201は、電圧変換部4A,4Bに加えて、電圧変換部4C,4Dを並列に設けた点が
図1のDCDCコンバータ1と異なっており、それ以外は、
図1のDCDCコンバータ1と同様である。電圧変換部4C,4Dの各々は、電圧変換部4A,4Bの各々と同一の構成となっている。
(6)実施例1では、多相変換部4の動作中に異常が発生した場合、停止制御部に相当する制御部2が全ての電圧変換部の動作を停止した後、駆動異常特定部に相当する制御部2が多相変換部4を構成する複数の電圧変換部の中から、異常である変換部を特定していたが、駆動異常特定部に相当する制御部2は、異常である変換部を含む組を特定する構成であってもよい。以下では、その一例を示す。
例えば、
図3のようなDCDCコンバータ201では、出力側導電路72に上述した過電流又は過電圧のいずれかが生じた場合、即ち、上述したように、Io>It又はVo>Vtのいずれかの状態が生じている場合、停止制御部に相当する制御部2が、一旦全ての電圧変換部4A,4B,4C,4Dの動作を停止し、その後、制御部2によって異常範囲の特定処理を行うことになる。制御部2は、この特定処理の際に、まず、電圧変換部4A,4Bの組に電圧変換動作を行わせるとともに電圧変換部4C,4Dの組の電圧変換動作を停止させる第1制御を行う。この第1制御の際に、出力側導電路72において過電流又は過電圧が発生した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じている場合、電圧変換部4A,4Bの組が、「異常である変換部を含む組」として特定される。逆に、第1制御の際に、出力側導電路72において過電流及び過電圧が発生しなかった場合、電圧変換部4A,4Bの組が、「正常である変換部のみの組」として特定される。
そして、第1制御の後には、電圧変換部4A,4Bの組の電圧変換動作を停止させるとともに電圧変換部4C,4Dの組の電圧変換動作を行わせる第2制御を行う。この第2制御の際に、出力側導電路72において過電流又は過電圧が発生した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じている場合、電圧変換部4C,4Dの組が、「異常である変換部を含む組」として特定される。逆に、第2制御の際に、出力側導電路72において過電流及び過電圧が発生しなかった場合、電圧変換部4C,4Dの組が、「正常である変換部のみの組」として特定される。制御部2は、このようにして「異常である変換部を含む組」を特定した後、「異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように多相変換部4の電圧変換動作を再開する。
この構成では、制御部2が駆動異常特定部の一例に相当し、停止制御部によって全ての電圧変換部の動作が停止された後、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dの中から、「異常である変換部を含む組」を特定するように機能する。そして、制御部2は、動作制御部の一例に相当し、駆動異常特定部によって「異常である変換部を含む組」が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dのうち、駆動異常特定部によって特定された「異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように機能する。
(7)実施例1では、
図2の検査処理において「保護用のスイッチ素子が異常である変換部」を特定していたが、「保護用のスイッチ素子が異常である変換部を含む組」を特定するようにしてもよい。具体的には、以下のように検査処理を行うことができる。
例えば、
図3のようなDCDCコンバータ201の検査処理を行う場合、まず、第1の検査動作を行う。この第1の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側の保護用のスイッチ素子(
図1で示すスイッチ素子20A,20Bと同様の素子)をいずれもオフ動作させ、出力側の保護用のスイッチ素子(
図1で示すスイッチ素子24A,24Bと同様の素子)をいずれもオン動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。このときの電圧変換部4A,4Bの電圧変換動作は、仮に全ての保護用のスイッチ素子(
図1で示すスイッチ素子20A,20B,24A,24Bと同様の素子)がいずれも導通していた場合に、出力側導電路72に対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧V2以上となる場合、電圧変換部4A,4Bのいずれかの入力側の保護用のスイッチ素子がショート故障であると判定する。なお、閾値電圧V2は、二次側電源部62からの出力電圧(例えば12V)よりも大きく、上述の電圧V1(仮に電圧変換部4A,4Bの保護用のスイッチ素子がいずれも導通していた場合に、上述の電圧変換動作において出力側導電路72に対して出力されるべき電圧)よりも小さい値である。
次いで、第2の検査動作を行う。この第2の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側の保護用のスイッチ素子をいずれもオン動作させ、出力側の保護用のスイッチ素子をいずれもオフ動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。第2の検査動作でのデューティ比の設定は第1の検査動作と同様であり、閾値電圧も第1の検査動作と同様である。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧V2以上となる場合、電圧変換部4A,4Bのいずれかの出力側の保護用のスイッチ素子がショート故障であると判定する。
次いで、第3の検査動作を行う。この第3の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側及び出力側の保護用のスイッチ素子を全てオン動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。第3の検査動作でのデューティ比の設定は第1の検査動作と同様であり、閾値電圧も第1の検査動作と同様である。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧未満となる場合、電圧変換部4A,4Bのいずれかの保護用のスイッチ素子がオープン故障であると判定する。
このような判定を行った結果、ショート故障及びオープン故障のいずれかが検出された場合には、1相目と2相目の電圧変換部4A,4Bを「保護用のスイッチ素子が異常である変換部を含む組」と判定し、ショート故障及びオープン故障のいずれも検出されなかった場合には、1相目と2相目の電圧変換部4A,4Bを「正常である変換部の組」と判定する。このような方法により、1相目と2相目の電圧変換部4A,4Bの組が、「保護用のスイッチ素子が異常である変換部を含む組」であるのか、そうでないのかを特定することができる。そして、同様の方法で、3相目と4相目の電圧変換部4C,4Dに対して上述した第1〜第3の検査動作を行えば、3相目と4相目の電圧変換部4C,4Dの組が、「保護用のスイッチ素子が異常である変換部を含む組」であるのか、そうでないのかを特定することができる。この例では、制御部2が、保護異常特定部の一例に相当し、「保護用のスイッチ素子が異常である変換部を含む組」を特定するように機能する。
そして、制御部2は、動作制御部の一例に相当し、保護異常特定部によって「保護用のスイッチ素子が異常である変換部を含む組」が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dのうち、駆動異常特定部によって特定された「保護用のスイッチ素子が異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように、多相変換部4を動作させる。
(8)実施例1では、イグニッション信号がオフ信号からオン信号に切り替わる毎に、
図2で示す検査処理を行う構成であったが、これ以外のタイミングで検査処理を行ってもよい。例えば、多相変換部4の通常動作中に、多相変換部4において過電流、過電圧、逆流、過熱等の異常が発生したタイミングで、
図2の検査処理を行ってもよい。
(9)実施例1では、イグニッションスイッチがオフからオンに切り替わった場合に、多相変換部4を構成する複数の電圧変換部4A,4Bの全てを検出対象とし、
図2のような流れで「保護用のスイッチ素子が異常である変換部」を検出したが、イグニッションスイッチがオフからオンに切り替わる毎に、検出対象の変換部又は検出対象の変換部の組を切り替える構成であってもよい。例えば、イグニッションスイッチがオフからオンに切り替わったある時期では、一方の電圧変換部4Aのみを検査対象として、
図2のS2〜S11の処理を行い、S4,S7,S10にて異常と判定された場合には、電圧変換部4Aの動作を中止して電圧変換部4Bのみを動作させ、S11にて正常と判定された場合には、電圧変換部4A,4Bの両方を動作させるようにする。
その次に、イグニッションスイッチがオフからオンに切り替わった時期では、前回検査を行った電圧変換部4Aを検査対象とせずに電圧変換部4Bのみを検査対象とし、
図2のS2〜S11の処理を行うようにする。そして、S4,S7,S10にて異常と判定された場合には、電圧変換部4Bの動作を中止し、前回の検査で電圧変換部4Aが正常であると判定されている場合には電圧変換部4Aを動作させて電圧変換を行う。前回の検査で電圧変換部4Aが異常であると判定されている場合には多相変換部4自体の動作を中止する。逆に、S11にて正常と判定された場合、前回の検査で電圧変換部4Aが正常であると判定されている場合には電圧変換部4A,4Bの両方を動作させる。前回の検査で電圧変換部4Aが異常であると判定されている場合には、電圧変換部4Aの動作の中止を継続して電圧変換部4Bのみを動作させる。
そして、その次に、イグニッションスイッチがオフからオンに切り替わった時期では、前回検査を行った電圧変換部4Bを検査対象とせずに電圧変換部4Aのみを検査対象として、
図2のS2〜S11の処理を行うようにする。このように、イグニッションスイッチがオフからオンに切り替わる毎に、検査対象となる変換部を代えて「保護用のスイッチ素子が異常である変換部」であるか否かを検査する。
このようにすれば、イグニッションスイッチの1回のオン動作に伴うチェック時間を抑えることができる。また、複数回のイグニッションスイッチのオン動作によって複数の電圧変換部を網羅的にチェックすることができるため、いずれかの電圧変換部が長期間チェックされないような事態を防ぐことができる。
(10)実施例1の構成において、二次側電源部62(蓄電部)が所定の正常状態であることを検出する蓄電状態検出部が設けられていてもよい。蓄電状態検出部は、制御部2によって実現されてもよく、別途バッテリセンサなどを設けてもよい。
例えば、制御部2が蓄電状態検出部として機能する場合、多相変換部4が動作していない時期の出力側導電路72の電圧が所定電圧以上である場合に、二次側電源部62(蓄電部)が所定の正常状態であると判定し、そうでない場合に二次側電源部62(蓄電部)が異常状態であると判定するように構成されていればよい。このような構成では、多相変換部4の通常動作中に過電流又は過電圧が検出された場合、即ち、Io>It又はVo>Vtとなった場合、二次側電源部62(蓄電部)が所定の正常状態であると判定されている場合に限って、多相変換部4における全ての電圧変換部4A,4Bの動作を停止させ、その後に、上述した「異常である変換部」の特定処理を行うようにすればよい。
このように、蓄電部が所定の正常状態であることを条件として多相変換部の全ての電圧変換部の動作を停止させる構成とすれば、多相変換部の動作停止時に蓄電部の異常によって出力側導電路への電力供給が途絶えてしまう事態をより確実に防ぐことができる。
或いは、二次側電源部62(蓄電部)が上述した「所定の正常状態」であると判定された場合に限って、多相変換部4の通常動作が行われるようにしてもよい。このような構成では、多相変換部4の通常動作中に過電流又は過電圧が検出された場合に、多相変換部4における全ての電圧変換部4A,4Bの動作を停止させても、蓄電部から出力側導電路へと電力供給がなされる可能性が高くなる。