【実施例】
【0047】
(熱プレス用クッション材)
実施例では、
図2に示す本実施形態に係るクッション材1として、3層のゴム層4と、ゴム層4同士の間に介在する2層の中間層5と、が積層された積層体2と、積層体2の表面に積層される2層の表面層6とから構成されたクッション材1を用いた。
【0048】
ゴム層4で用いるゴム組成物として、フッ素ゴム組成物を使用した。また、中間層5で用いる多重織クロスとして、2重折りガラスクロスを使用した。また、表面層6で用いる耐熱性樹脂63を含浸させた織布60として、PTFE含浸ガラスクロスを使用した。ここで、PTFE含浸ガラスクロスとは、ガラス繊維にフッ素樹脂を含浸させたガラスクロスである。ガラス繊維のため、耐熱性に優れ、高強度、高弾性を有すると共に、フッ素樹脂が含浸されているため、耐熱性、低圧縮永久歪み性に優れた表面層6を構成することができる。本実施例では、繊維径、織り密度、PTFEの含浸量の異なる複数種類のガラスクロスを表面層6として使用した。これらを積層し、通常のプレス加硫装置に温度170℃で12分間、無圧状態で放置してゴム材料の架橋を行った。その後、そのままの温度で面圧を1.6MPaに高め、12分間これらを加硫し、織り密度、PTFEの含浸量の異なる複数種類のガラスクロスを表面層6とした実施例1〜6及び比較例1〜9のクッション材1を作製した。
【0049】
そして、実施例及び比較例のクッション材1について、それぞれ、表面層6に用いられるガラスクロスの繊維径、織り密度、PTFE含浸量、表面層6の表面粗さRaを測定した。ここで、ガラスクロスの繊維径は、ガラスクロス1枚からガラス繊維の写真を撮影し、短径と長径の平均値より、ガラス繊維1本の繊維径を算出し、算出した10本の繊維径から平均値を算出した。ガラスクロスの織り密度は、一辺5cmの試料の織り密度をJIS L 1096に準拠した方法により測定し、単位cmあたりの値を算出した。ガラスクロスのPTFE含浸量は、示差熱熱重量同時測定装置を用いて650℃昇温後の重量変化により測定した。表面層6の表面粗さは、表面性状測定機((株)ミツトヨ製SURF TEST500、標準スタイラス型番996133)を用いて、表面層を経糸方向に倣い速度2mm/sで40mmの範囲を計測し、表面粗さRa(JIS B 0031で規定された算術平均粗さ)を測定した。実施例及び比較例のクッション材1について、表面層6に用いられるガラスクロスの織り密度、PTFE含浸量、表面層6の表面粗さRaの測定結果を、表1に示す。
【0050】
そして、実施例及び比較例のクッション材1について、それぞれ、PTFEの除いたガラスクロスの空隙率を求めた。実施例及び比較例のクッション材1について、ガラスクロスの空隙率の計算結果を、表1に示す。尚、ガラスクロスの空隙率は、下記の手順に従って計算した。
・PTFE含浸ガラスクロスから一辺10cmの試料を切り出し、重量を測定する。
・測定した重量とPTFE含浸量の差より、ガラスクロスのみの重量を算出する。
・切り出した試料の面積に厚みを乗じて、ガラスクロスの体積を算出する。
・算出したガラスクロスの体積とガラス繊維の比重から、空隙率0%の場合の重量を算出する。
・算出したガラスクロスのみの重量と算出した空隙率0%の場合の重量からガラスクロスの占める割合を算出し、そこから空隙率を求める。
【0051】
また、実施例及び比較例のクッション材1について、それぞれ、クッション材1の気密性(通気度)、硬度を測定した。ここで、クッション材1の通気度は、JIS R 3420(2006年)に準拠した方法でフラジール試験機により測定した。また、クッション材1の硬度は、タイプA硬度計により測定した。実施例及び比較例のクッション材1について、通気度と硬度の測定結果を、表1に示す。
【0052】
[吸引搬送性、剥離性、柔軟性の評価試験]
次に、実施例及び比較例のクッション材1について、それぞれ、吸引搬送性、剥離性、柔軟性について評価を行う評価試験を実施した。
【0053】
(吸引搬送性の評価試験)
吸引搬送性の評価試験では、実施例及び比較例の各クッション材1を、自動積層装置(クッション材を吸着パッドで吸引して搬送し、積層する装置)などで吸引搬送して、クッション材1が落下しないかどうかに基づいて、吸引搬送性を評価した。吸引搬送性の評価は各クッション材について5回ずつ行い、吸引搬送した際に、5回全て搬送できた場合は◎、5回の内に搬送できたりできなかったりした場合には○、5回の内に1回も搬送できなかった場合は×の3段階で判定した。
【0054】
(剥離性の評価試験)
剥離性の評価試験では、実施例及び比較例の各クッション材1についてのサンプルを、ステンレス板で挟み、真空プレス試験機を用いて、4MPaまで加圧した後、1時間かけて230℃まで昇温して、230℃で1時間保持し、30分間かけて50℃まで冷却後、0MPaに減圧するという工程を1サイクルとして、この工程を100サイクル繰り返したときに、クッション材1が剥離するかどうかに基づいて、剥離性を評価した。剥離性の評価は3段階であり、クッション材1が熱プレス盤20に粘着していなければ〇、クッション材1がステンレス板に粘着していても人手により剥離することができれば△、クッション材1がステンレス板に粘着して人手によっても剥離することができなければ×とした。
【0055】
(柔軟性の評価試験)
柔軟性の評価試験では、実施例及び比較例の各クッション材1を使用した場合に、プレス対象物に反りが生じるかどうかに基づいて、プレス対象物の反りの有無を評価すると共に、プレス対象物の反りの程度に基づいて、柔軟性を評価した。柔軟性の評価は3段階であり、プレス対象物に反りが生じなければ〇、プレス対象物に反りが生じており、反りの程度が小さければ△、プレス対象物に反りが生じており、反りの程度が大きければ×とした。
【0056】
実施例及び比較例のクッション材1について、吸引搬送性、剥離性、柔軟性、プレス対象物の反りの評価結果を、表1に示す。
【0057】
【表1】
【0058】
表1の結果に基づいて、クッション材1の通気度と、吸引搬送性との関係を検討した。その結果、ガラスクロスの繊維径の最小値が300μm以上で、または、ガラスクロスの織り密度が経糸及び緯糸共に10本/cm以上で、且つ、PTFE含浸量が100g/m
2以上の実施例1〜6及び比較例3,6,7,9のクッション材1は、通気性が1.0cm
3/cm
2・s以下とほとんどなく、気密性に優れていたので、吸引搬送が可能であった。しかし、PTFE含浸量が100g/m
2未満である比較例1及び比較例2のクッション材1と、ガラスクロスの織り密度が経糸及び緯糸共に10本/cm未満である比較例4のクッション材1と、ガラスクロスの繊維径の最小値が300μm未満である比較例8のクッション材1は、通気性が高く、気密性が低かったので、吸引搬送することができなかった。これは、比較例4のクッション材1に用いられるガラスクロスの織り密度が経糸及び緯糸共に10本/cm未満と小さく、また、比較例8のクッション材1に用いられるガラスクロスの繊維径が300μm未満と小さく、空隙率が80%より大きいため、織糸の間に大きな隙間ができていると考えられる。また、比較例1と比較例2のクッション材1は、空隙率が80%以下であるが、PTFE含浸量が100g/m
2未満と小さく、織糸の内部への含浸及び織布の表面の付着が不十分であると考えられる。尚、比較例5のクッション材1は、PTFE含浸量が100g/m
2未満であるが、気密性が高く、通気性がなく、吸引搬送が可能であった。これは、比較例5のクッション材1は、PTFE含浸量が100g/m
2未満と小さく、織糸の内部への含浸及び織布の表面の付着が不十分であったとしても、比較例5のクッション材1に用いられるガラスクロスの織り密度が、経糸及び緯糸共に50本/cm以上と多く、織布の間が密になっているからであると考えられる。
【0059】
また、表1の結果に基づいて、表面層6の表面粗さRaと、吸引搬送性との関係について検討した。その結果、表面粗さRaが60μm以下の実施例1〜6及び比較例3,5,6,7,9のクッション材1は、吸引搬送が可能であった。特に、表面粗さRaが50μm以下である実施例5,6及び比較例3,5,6,7,9は、5回とも吸引搬送でき、◎と評価した。表面粗さRaが60μm以下であることにより、クッション材1の表面層と自動積層装置との間で高い気密性が十分に確保されたからであると考えられる。しかし、表面粗さRaが60μmより大きい比較例1,2,4,8のクッション材1は、吸引搬送することができなかった。これは、比較例1,2,4,8のクッション材1は、表面粗さRaが60μmより大きく、気密性が低いため、自動積層装置でクッション材1の表面層を吸引できなかったからであると考えられる。
【0060】
また、表1の結果に基づいて、表面層6の表面粗さRaと、剥離性との関係について検討した。その結果、ガラスクロスの空隙率が10%以上(即ち、ガラスクロスの最大値の繊維径が600μm以下、または、ガラスクロスの織り密度が経糸及び緯糸共に30本/cm以下)で、且つ、PTFE含浸量が200g/m
2以下であり、表面粗さRa20μm以上の実施例1〜6及び比較例1,2,4,8のクッション材1は、100サイクル繰り返し使用した場合でもステンレス板に粘着しなかった。しかし、PTFE含浸量が200g/m
2より多い比較例3のクッション材1、ガラスクロスの織り密度が経糸及び緯糸共に30本/cmより多い比較例5,6,7のクッション材1、ガラスクロスの繊維径の最大値が600μmより大きい比較例9のクッション材1は、表面粗さRa20μm未満であり、100サイクルもつことなく、ステンレス板に粘着してしまった。尚、比較例3,6,7,9のクッション材1はステンレス板に完全に粘着してしまい、剥がすことができなかったため、×と評価した。一方、比較例5のクッション材1は、ステンレス板に粘着していたが、力をかけて引っ張ると剥がすことができたため、△と評価した。これは、比較例5,6,7のクッション材1に用いられるガラスクロスの織り密度が経糸及び緯糸共に30本/cmより多く、また、比較例9のクッション材1に用いられるガラスクロスの繊維径が600μmより大きく、空隙率が10%未満と小さいため、織糸の間が密になりすぎていると考えられる。尚、比較例3のクッション材1は、空隙率が10%以上であるが、表面粗さRaが20μm未満であり、ステンレス板に粘着してしまった。これは、比較例3のクッション材1に用いられるガラスクロスのPTFE含浸量が200g/m
2より多く、織布60の表面に形成された凹凸がつぶれてしまっているからであると考えられる。
【0061】
また、表1の結果に基づいて、クッション材1の硬度と、クッション材1の柔軟性及びプレス対象物反りの有無との関係について検討した。その結果、ガラスクロスの空隙率が10%以上(即ち、ガラスクロスの繊維径の最大値が600μm以下、または、ガラスクロスの織り密度が経糸及び緯糸共に30本/cm以下で、且つ、PTFE含浸量が200g/m
2以下の実施例1〜6及び比較例1,2,4,8のクッション材1の硬度は、90度以下であり、そのクッション材1を使用してプレスを行っても、プレス対象物に反りは見られず、柔軟性が高いことがわかった。しかし、ガラスクロスの織り密度が30本/cmより多い比較例5,6,7のクッション材1、PTFE含浸量が200g/m
2より多い比較例3,7のクッション材1、ガラスクロスの繊維径の最大値が600μmより大きい比較例9のクッション材1の硬度は90度より大きく、そのクッション材1を使用してプレスを行った場合にはプレス対象物に反りが見られ、柔軟性が低いことがわかった。尚、比較例5,9のクッション材1を使用した場合は、プレス対象物の反りが見られたが、比較例3,6,7のクッション材1を使用した場合と比べると反りが小さかったため、柔軟性を△と評価した。これは、比較例5,6,7のクッション材1に用いられるガラスクロスの織り密度が経糸及び緯糸共に30本/cmより多く、また、比較例9のクッション材1に用いられる繊維径は600μmより大きく、空隙率が10%未満となっているため、ガラスクロスの織糸の間が密になりすぎていると考えられる。また、比較例3のクッション材1は、空隙率が10%以上であるが、PTFE含浸量が200g/m
2より多く、織布60自体がPTFEにより硬くなってしまっていると考えられる。
【0062】
尚、実施例及び比較例のクッション材1の各試料を用いた場合、プレス対象物に反り以外で外観や物性などに変化がないか確認を行ったが、違いは見られなかった。
【0063】
[吸引搬送性、剥離性、柔軟性の評価試験についての考察]
上述の吸引搬送性、剥離性、柔軟性の評価試験より、以下のことが明らかになった。
【0064】
吸引搬送性の評価試験の結果より、ガラスクロスの繊維径の最小値が300μm以上、または、織り密度が経糸及び緯糸共に10本/cm以上で、且つ、PTFE含浸量が100g/m
2以上のクッション材1が、クッション材1の通気度が1.0cm
3/cm
2・s以下であり、吸引搬送性に優れていることが確認できた。また、ガラスクロスの空隙率が80%を超えると、吸引搬送性を備えないことが確認できた。
【0065】
そして、吸引搬送性の評価試験の結果より、表面層6の表面粗さRaが60μm以下であることが、吸引搬送性に優れていることが確認できた。更に、表面層6の表面粗さRaが50μm以下であることが、特に、吸引搬送性に優れていることが確認できた。
【0066】
また、剥離性の評価試験の結果より、ガラスクロスの繊維径の最大値が600μm以下、または、ガラスクロスの織り密度が経糸及び緯糸共に30本/cm以下で、且つ、PTFE含浸量が200g/m
2以下のクッション材1が表面層6の表面粗さRaが20μm以上であり、剥離性に優れていることが確認できた。また、ガラスクロスの空隙率が10%未満であると、剥離性を満足しないことが確認できた。
【0067】
更に、柔軟性の評価試験の結果より、ガラスクロスの繊維径の最大値が600μm以下、または、ガラスクロスの織り密度が経糸及び緯糸共に30本/cm以下で、且つ、PTFE含浸量が200g/m
2以下のクッション材1が、クッション材の硬度が90度以下であり、プレス対象物に反りは見られず、柔軟性が高いことが確認できた。また、ガラスクロスの空隙率が10%未満であると、プレス対象物に反りが生じることが確認できた。
【0068】
以上より、吸引搬送が可能であり、プレス盤等との剥離性が良好で、且つ、プレス対象物の反りを生じさせないためには、クッション材1の通気度が1.0cm
3/cm
2・s以下であり、表面層6の表面粗さRaが20μm以上60μm以下であり、クッション材1の硬度が90度以下であるように、クッション材1を形成すればよい。従って、ガラスクロスの空隙率が10〜80%(即ち、ガラスクロスの繊維径が300〜600μmであり、且つ、ガラスクロスの織り密度が経糸及び緯糸共に10〜30本/cm)で、且つ、PTFE含浸量が100〜200g/m
2となるように、クッション材1を形成すればよいことが明らかとなった。
【0069】
[表面粗さRaを変化させた場合の吸引搬送性と剥離性の評価試験]
更に、実施例1のクッション材1を基準として、実施例1で表面層6の表面粗さRaを実験的に変化させて、実施例7〜10の4種類のクッション材1を作製した。そして、実施例1及び実施例7〜10のクッション材1について、表面層6の表面粗さRaと吸引搬送性との相関関係を検証した。尚、実施例7〜10のクッション材1については、まず、実施例1の表面層6として用いたものと同様のガラスクロスに対して、プレス盤に挟んで圧縮するプレス時間を変えて、表面粗さの異なる4種類のガラスクロスを作製した。この4種類のガラスクロスの表面粗さは、実施例1のクッション材1よりも表面層6の表面粗さRaが小さくなるように変量させた。その後、この4種類のガラスクロスを表面層6として、実施例7〜10のクッション材1を、実施例1と同様に作製した。尚、実施例7〜10のクッション材1の表面層6の表面粗さは、クッション材1の作製後に、表面性状測定機((株)ミツトヨ製SURF TEST500、標準スタイラス型番996133)を用いて、表面層6を経糸方向に倣い速度2mm/sで40mmの範囲を計測し、表面粗さRa(JIS B 0031で規定された算術平均粗さ)を測定した。
【0070】
(吸引搬送性の評価試験)
吸引搬送性を簡易的に評価するために、アスピレータ(アルバック製MDA−015)に吸引評価用の吸着パッド(型式PCG−30)を装着した簡易吸引装置を使用して、簡易吸引試験を行った。そして、先ず、吸引力の基準を明確にするため、この簡易吸引装置を表面粗さRaが5μm以下のステンレス製平板に吸着させて、真空計が0.02MPaになる様、簡易吸引装置の吸引力を調整した。続けて、実施例1及び実施例7〜10の各クッション材1の簡易吸引試験を実施し、真空計の値を記録し、吸引力の指標とした。
【0071】
そして、吸引搬送性の評価試験として、実施例1及び実施例7〜10の各クッション材1を、自動積層装置(クッション材を吸着パッドで吸引して搬送し、積層する装置)などで吸引搬送して、クッション材1が落下しないかどうかに基づいて、吸引搬送性を評価した。吸引搬送性の評価は各クッション材について5回ずつ行い、吸引搬送した際に、5回全て搬送できた場合は◎、5回の内に搬送できたりできなかったりした場合には○、5回の内に1回も搬送できなかった場合は×の3段階で判定した。
【0072】
(剥離性の評価試験)
剥離性の評価試験では、実施例1及び実施例7〜10の各クッション材1についてのサンプルを、ステンレス板で挟み、真空プレス試験機を用いて、4MPaまで加圧した後、1時間かけて230℃まで昇温して、230℃で1時間保持し、30分間かけて50℃まで冷却後、0MPaに減圧するという工程を1サイクルとして、この工程を100サイクル繰り返したときに、クッション材1が剥離するかどうかに基づいて、剥離性を評価した。剥離性の評価は3段階であり、クッション材1が熱プレス盤20に粘着していなければ〇、クッション材1がステンレス板に粘着していても人手により剥離することができれば△、クッション材1がステンレス板に粘着して人手によっても剥離することができなければ×とした。
【0073】
実施例1及び実施例7〜10のクッション材1について、簡易吸引試験、吸引搬送性、剥離性の評価結果を、表2に示す。
【0074】
【表2】
【0075】
表2の結果に基づいて、表面層6の表面粗さRaを変化させた場合の表面層6の表面粗さRaと吸引搬送性との相関関係を検討した。その結果、表面粗さRaが50μm以下となる実施例9、10が、表面粗さRaが50μm〜60μmである実施例1、7、8と比較して、吸引搬送性がより優れていた。
【0076】
また、表2の結果に基づいて、表面層6の表面粗さRaを変化させた場合の表面層6の表面粗さRaと剥離性との相関関係を検討した。その結果、表面粗さRaが20μm以上である実施例7〜10は、実施例1と同様に、剥離性に優れていた。
【0077】
[表面粗さRaを変化させた場合の吸引搬送性と剥離性の評価試験についての考察]
上述の表面層6の表面粗さRaを変化させた場合の吸引搬送性と剥離性の評価試験より、以下のことが明らかになった。
【0078】
剥離性の評価試験の結果より、上述の表1に示す剥離性の評価試験の結果と同様に、表面層6の表面粗さRaを20μm以上とすると、剥離性に問題ないことが確認できた。
【0079】
また、吸引搬送性の評価試験の結果より、表面層6の表面粗さRaが60μm以下であると、吸引搬送性を備えることが分かる。更に、表面層6の表面粗さRaを50μm以下に仕上げることにより、表面層と吸引搬送装置の吸着パッドとの間で高い気密性が十分に確保され、安定した吸引搬送が実現でき、優れた吸引搬送性を備えることがわかる。
【0080】
以上から、剥離性と吸引搬送性とを両立させ得るためには表面層6の表面粗さRaが20〜60μm、特に、表面層6の表面粗さRaが20〜50μmであることがより好ましい範囲であることが明らかとなった。
【0081】
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態及び実施例に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態及び実施例の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。