【実施例】
【0133】
以下に、実施例、比較例を用いて本発明を説明するが、本発明はこれらの実施例に限定されない。
【0134】
<試験1(バルーンの回転方向に関する検証試験)>
[薬剤溶出バルーンの作製]
〈実施例1〉
(1)コーティング溶液1の調製
【0135】
L−セリンエチルエステル塩酸塩(CAS No.26348−61−8)(56mg)およびパクリタキセル(CAS No.33069−62−4)(134.4mg)を量りとった。これに無水エタノール(1.2mL)、テトラヒドロフラン(1.6mL)、RO(Reverse Osmosis、逆浸透膜)処理水(以下、RO水とする)(0.4mL)をそれぞれ加えて溶解し、コーティング溶液1を調製した。
(2)バルーンへの薬剤コーティング
【0136】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液1を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0137】
具体的には、最先端に開口部を有するディスペンシングチューブ(ディスペンシングチューブの素材はポリエチレン)をバルーンカテーテルに対して横方向(水平方向)から移動させ、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このとき、ディスペンシングチューブの仮想位置が、バルーンの基準面(バルーンの軸心を通る水平面)から回転方向へ0度以上40度以下となるように、ディスペンシングチューブを位置決めした。そして、常時、バルーンの外表面にディスペンシングチューブの先端の側面を接触させながら、ディスペンシングチューブの先端開口部から薬剤を吐出させた。この状態で、薬剤の吐出方向に対して反対方向(逆方向)に、バルーンの軸心を中心としてバルーンカテーテルを回転させた。ディスペンシングチューブのバルーン軸心方向への移動速度及びバルーンの回転速度を調整し、回転開始とともに、薬剤を0.053μL/secで吐出し、コーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例2〉
(1)コーティング溶液2の調製
【0138】
L−セリンエチルエステル塩酸塩(70mg)およびパクリタキセル(180mg)を量りとった。これに無水エタノール(1.5mL)、アセトン(2.0mL)、テトラヒドロフラン(0.5mL)、RO水(1mL)をそれぞれ加えて溶解し、コーティング溶液2を調製した。
(2)バルーンへの薬剤コーティング
【0139】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液2を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0140】
具体的には、薬剤を0.088μL/secで吐出した以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例3〉
(1)コーティング溶液3の調製
【0141】
L−セリンエチルエステル塩酸塩(70mg)およびパクリタキセル(168mg)を量りとった。これに無水エタノール(1.5mL)、テトラヒドロフラン(1.5mL)、RO水(1mL)をそれぞれ加えて溶解し、コーティング溶液3を調製した。
(2)バルーンへの薬剤コーティング
【0142】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液3を、拡張したバルーンにコーティング溶液3の溶媒がゆっくりと揮発するようにコートした。
【0143】
具体的には、薬剤を0.101μL/secで吐出した以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例4〉
(1)コーティング溶液4の調製
【0144】
L−セリンエチルエステル塩酸塩(70mg)およびパクリタキセル(180mg)を量りとった。これに無水エタノール(1.75mL)、テトラヒドロフラン(1.5mL)、RO水(0.75mL)をそれぞれ加えて溶解し、コーティング溶液4を調製した。
(2)バルーンへの薬剤コーティング
【0145】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液4を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0146】
具体的には、薬剤を0.092μL/secで吐出した以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例5〉
(1)コーティング溶液5の調製
【0147】
L−アスパラギン酸ジメチルエステル塩酸塩(CAS No.32213−95−9)(37.8mg)およびパクリタキセル(81mg)を量りとった。これに無水エタノール(0.75mL)、テトラヒドロフラン(0.96mL)、RO水(0.27mL)をそれぞれ加えて溶解し、コーティング溶液5を調製した。
(2)バルーンへの薬剤コーティング
【0148】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液5を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0149】
具体的には、薬剤を0.055μL/secで吐出した以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例6〉
(1)コーティング溶液6の調製
【0150】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液6を調製した。
2)バルーンへの薬剤コーティング
【0151】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液6を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0152】
具体的には、薬剤を0.101μL/secで吐出した以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈比較例1〉
(1)コーティング溶液7の調製
【0153】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液6を調製した。
(2)バルーンへの薬剤コーティング
【0154】
拡張時サイズが直径3.0×長さ20mm(拡張部)のバルーンカテーテル(テルモ社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液7を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0155】
具体的には、薬剤を0.101μL/secで吐出し、薬剤の吐出方向に対して、同方向(順方向)に長軸を中心としてバルーンカテーテルを回転させた以外は、実施例1に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
【0156】
[薬剤溶出バルーンのコート層の走査型電子顕微鏡観察(SEM)]
【0157】
実施例1〜6(
図7〜
図17)、および比較例1(
図18)の薬剤溶出バルーンについて、乾燥後の薬剤溶出バルーンを適切な大きさに切断後、支持台にのせ、その上から白金蒸着を行った。これらの白金蒸着後のサンプルのコート層の表面および内部を走査型電子顕微鏡(SEM)で観察した。
[試験1の結果]
【0158】
吐出方向が回転方向と逆方向となる実施例1〜6のコート層では、SEM写真から、バルーン表面に対して周方向外側に突出した(倒立した)中空長尺体の形態型の結晶層が観察された。
【0159】
実施例1〜6は、
図7〜
図17に示すように、中空長尺体の形態型を含むコート層が形成され、約10μm長の中空長尺体の均一なパクリタキセル結晶が、バルーンの外表面に均一に形成されていることが観察された。それらの中空長尺体のパクリタキセルの結晶は長軸を有し、その長軸を有する長尺体(約10μm)がバルーンの外表面に対してほぼ直角方向となるように形成されていた。長尺体の径は、約2μmであった。また、長軸に直角な面における長尺体の断面は多角形であった。多角形として、例えば、4角形の多角形を有していた。さらに、これらのパクリタキセルのほぼ均一な中空長尺体結晶は、同様の形態型(構造および形状)にてバルーンの外表面全体に均一かつ密に(同程度の密度で)形成されていた。
【0160】
一方、吐出方向が回転方向と同方向となる比較例1は、
図18に示すSEM写真のように、同一平面に非晶質と結晶とが混在していた。
【0161】
<試験2(バルーンの構成材料に関する検証試験)>
[薬剤溶出バルーンの作製]
〈実施例7〉
(1)コーティング溶液8の調製
【0162】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液8を調製した。
(2)バルーンへの薬剤コーティング
【0163】
拡張時サイズが直径7.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液8を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0164】
具体的には、最先端に開口部を有するディスペンシングチューブ(外径0.61mm、内径0.28mm、ディスペンシングチューブの素材はポリエチレン)をバルーンカテーテルに対して横方向(水平方向)から移動させ、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。常時、バルーンの外表面にディスペンシングチューブの先端の側面を接触させながら、ディスペンシングチューブの先端開口部から薬剤を吐出させた。この状態で、薬剤の吐出方向に対して反対方向(逆方向)に、バルーンの軸心を中心としてバルーンカテーテルを回転させた。ディスペンシングチューブのバルーン軸心方向への移動速度及びバルーンの回転速度を調整し、回転開始とともに、薬剤を0.378μL/secで吐出し、コーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例8〉
(1)コーティング溶液9の調製
【0165】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液9を調製した。
(2)バルーンへの薬剤コーティング
【0166】
拡張時サイズが直径4.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液9を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0167】
具体的には、ディスペンシングチューブ(外径0.99mm、内径0.61mm、ディスペンシングチューブの素材はポリプロピレン)で薬剤を0.191μL/secで吐出した以外は、実施例7に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例9〉
【0168】
薬剤の吐出速度を0.240μL/secとした以外は、実施例8と同様の条件で、薬剤溶出バルーンを作製した。
〈比較例2〉
(1)コーティング溶液10の調製
【0169】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液10を調製した。
(2)バルーンへの薬剤コーティング
【0170】
拡張時サイズが直径7.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はPTFE)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液10を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0171】
具体的には、ディスペンシングチューブ(外径0.60mm、内径0.30mm、ディスペンシングチューブの素材はPTFE)で薬剤を0.335μL/secで吐出した以外は、実施例7に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈比較例3〉
(1)コーティング溶液11の調製
【0172】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液11を調製した。
(2)バルーンへの薬剤コーティング
【0173】
拡張時サイズが直径4.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液11を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0174】
具体的には、ディスペンシングチューブ(外径0.304mm、内径0.152mm、ディスペンシングチューブの素材はPTFE)で薬剤を0.145μL/secで吐出し、薬剤の吐出方向に対して同方向(順方向)に、バルーンの軸心を中心としてバルーンカテーテルを回転させた以外は、実施例7に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈比較例4〉
(1)コーティング溶液12の調製
【0175】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液12を調製した。
(2)バルーンへの薬剤コーティング
【0176】
拡張時サイズが直径7.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液12を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0177】
具体的には、ディスペンシングチューブ(外径0.90mm、内径0.51mm、ディスペンシングチューブの素材はオールテフロン(登録商標))で薬剤を0.378μL/secで吐出した以外は、実施例7に記載の方法と同様にコーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
【0178】
[薬剤溶出バルーンの薬剤コート層のレーザー顕微鏡観察]
【0179】
実施例7〜9(
図19〜24)、並びに比較例2〜4(
図25〜30)の薬剤溶出バルーンについて、表面の写真を撮影した後、コート層表面をレーザー顕微鏡で観察した。
[試験2の結果]
【0180】
構成材料が(フッ素を含まない)ポリオレフィン(ポリエチレンまたはポリプロピレン)であるディスペンシングチューブを用いた実施例7および実施例8では、コート層がバルーンをムラなく均一に覆い、バルーンがほぼ全域で露出していないことが観察された。
【0181】
実施例7および8では、
図19および21に示す写真のように、バルーンの外表面の先端部から基端部に亘ってムラなく均一にコートされたコート層が観察された。そして、実施例7のバルーンの中央部P1のレーザー顕微鏡像である
図20、実施例8のバルーンの中央部P2のレーザー顕微鏡像である
図22から、バルーン上のコート層の水不溶性薬剤が、中空長尺体結晶を含む形態型で形成されていることが観察された。
【0182】
また、ディスペンシングチューブの構成材料がポリオレフィン(ポリプロピレン)である実施例9では、
図23に示す写真、およびバルーンの中央部P3のレーザー顕微鏡像である
図24から、実施例8に対して吐出速度を変更するのみで、バルーンの外表面が部分的に露出するように形成された不均一なコート層が観察された。これにより、ディスペンシングチューブの構成材料がポリオレフィン(ポリプロピレン)であれば、バルーンの外表面にコート層を均一に形成できるのみならず、不均一に形成することも可能であることが確認された。
【0183】
一方、構成材料がフッ素系樹脂である比較例2〜4では、
図25〜30に示すように、バルーンの外表面の先端部から基端部に亘って、塗りムラが多くコート層が不均一にコートされて、バルーンが露出した部位が観察された。塗りムラは、バルーンの軸心方向に沿ってコート層が並ぶように縞模様で形成された。コート層の水不溶性薬剤の結晶は、比較例2のバルーンの中央部P4のレーザー顕微鏡像である
図26、比較例3のバルーンの中央部P5のレーザー顕微鏡像である
図28、並びに、比較例4のバルーンの中央部P6のレーザー顕微鏡像である
図30から、多くがバルーンの表面に沿うように寝た状態で形成されていることが観察された。
【0184】
<試験3(ディスペンシングチューブとバルーンの接触位置に関する検証試験)>
[薬剤溶出バルーンの作製]
〈実施例10〉
(1)コーティング溶液13の調製
【0185】
L−セリンエチルエステル塩酸塩(140mg)およびパクリタキセル(336mg)を量りとった。これに無水エタノール(3.0mL)、アセトン(4.0mL)、テトラヒドロフラン(1.0mL)、RO水(2mL)をそれぞれ加えて溶解し、コーティング溶液13を調製した。
(2)バルーンへの薬剤コーティング
【0186】
拡張時サイズが直径7.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm
2となるように、コーティング溶液13を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0187】
具体的には、最先端に開口部を有するディスペンシングチューブ(外径0.61mm、内径0.28mm、長さ6mm、ディスペンシングチューブの素材はポリエチレン)をバルーンの外表面の基準位置(基準面からバルーンの回転方向側へ0度)に撓まないように接触させ、この位置から鉛直方向(Y軸方向)および水平方向(Z軸方向)へ移動させることなしに、吐出する位置とした。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。この後、常時、バルーンの外表面にディスペンシングチューブの先端の側面を接触させながら、ディスペンシングチューブの先端開口部から薬剤を吐出させた。この状態で、薬剤の吐出方向に対して反対方向(逆方向)に、バルーンの軸心を中心としてバルーンカテーテルを回転させた。ディスペンシングチューブのバルーン軸心方向への移動速度及びバルーンの回転速度を調整し、回転開始とともに、薬剤を0.378μL/secで吐出し、コーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例11〉
【0188】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ0.6mm移動させた後、水平方向(Z軸方向)へ2.0mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ21.8度の位置であった。
【0189】
また、ディスペンシングチューブのバルーン外表面に対する接触長さL(理論値、
図39を参照)は、3.2mmであった。
〈実施例12〉
【0190】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.5mm移動させた後、水平方向(Z軸方向)へ0.9mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ30.0度の位置であった。
【0191】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、1.0mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は、1mNであった。荷重は、ディスペンシングチューブをプッシュプルゲージに取り付けて、ディスペンシングチューブに作用する反力を計測した。なお、荷重の計測方法は、他の実施例および比較例においても同様である。
〈実施例13〉
【0192】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ0.4mm移動させた後、水平方向(Z軸方向)へ2.7mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ26.6度の位置であった。
【0193】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、4.0mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は、24mNであった。
〈実施例14〉
【0194】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.0mm移動させた後、水平方向(Z軸方向)へ2.0mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ33.7度の位置であった。
【0195】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、2.8mmであった。
〈実施例15〉
【0196】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.7mm移動させた後、水平方向(Z軸方向)へ1.4mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ39.0度の位置であった。
【0197】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、1.5mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は、3mNであった。
〈実施例16〉
【0198】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ0.2mm移動させた後、水平方向(Z軸方向)へ0.6mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ3.9度の位置であった。
【0199】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、1.9mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は、7mNであった。
〈実施例17〉
【0200】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ0.2mm移動させた後、水平方向(Z軸方向)へ1.3mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ5.2度の位置であった。
【0201】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、2.8mmであり、接触によりバルーン外表面にかかる荷重は、15mNであった。
〈実施例18〉
【0202】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.2mm移動させた後、水平方向(Z軸方向)へ0.8mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ24.0度の位置であった。
【0203】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、1.2mmであった。
〈実施例19〉
【0204】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.1mm移動させた後、水平方向(Z軸方向)へ1.5mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ28.8度の位置であった。
【0205】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、2.2mmであった。
〈実施例20〉
【0206】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.1mm移動させた後、水平方向(Z軸方向)へ1.6mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ30.1度の位置であった。
【0207】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、2.3mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は、9mNであった。
〈実施例21〉
【0208】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.2mm移動させた後、水平方向(Z軸方向)へ1.9mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ36.9度の位置であった。
【0209】
また、ディスペンシングチューブのバルーン外表面に対する接触長さLは、2.6mmであった。
〈実施例22〉
(1)コーティング溶液14の調製
【0210】
L−セリンエチルエステル塩酸塩(560mg)およびパクリタキセル(1344mg)を量りとった。これに無水エタノール(11.0mL)、アセトン(16.0mL)テトラヒドロフラン(4.0mL)、RO水(9.0mL)をそれぞれ加えて溶解し、コーティング溶液14を調製した。
(2)バルーンへの薬剤コーティング
【0211】
拡張時サイズが直径7.0×長さ200mm(拡張部)のバルーンカテーテル(Kaneka社製、バルーン(拡張部)の素材はナイロンエラストマー)を準備した。パクリタキセル量が約3μg/mm2となるように、コーティング溶液14を、拡張したバルーンにコーティング溶液の溶媒がゆっくりと揮発するようにコートした。
【0212】
具体的には、最先端に開口部を有するディスペンシングチューブ(外径1.50mm、内径1.00mm、長さ10mm、ディスペンシングチューブの素材はポリエチレン)をバルーンの外表面の仮想位置に接触させて作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ0.5mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブがバルーン外表面に接触する長さは1.9mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は42mNであった。この後、常時、バルーンの外表面にディスペンシングチューブの先端の側面を接触させながら、ディスペンシングチューブの先端開口部から薬剤を吐出させた。この状態で、薬剤の吐出方向に対して反対方向(逆方向)に、バルーンの軸心を中心としてバルーンカテーテルを回転させた。ディスペンシングチューブのバルーン軸心方向への移動速度及びバルーンの回転速度を調整し、回転開始とともに、薬剤を0.7122μL/secで吐出し、コーティングした。この後、コーティング後のバルーンを乾燥させ、薬剤溶出バルーンを作製した。
〈実施例23〉
【0213】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例22と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ0.9mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブのバルーン外表面に対する接触長さLは2.5mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は72mNであった。
〈実施例24〉
【0214】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例22と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ1.5mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブのバルーン外表面に対する接触長さLは3.2mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は117mNであった。
〈実施例25〉
【0215】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例22と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ2.4mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブのバルーン外表面に対する接触長さLは4.1mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は158mNであった。
〈比較例5〉
【0216】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.7mm移動させた後、水平方向(Z軸方向)へ2.1mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ50.5度の位置であった。
〈比較例6〉
【0217】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.4mm移動させた後、水平方向(Z軸方向)へ2.4mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ51.8度の位置であった。
〈比較例7〉
【0218】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.8mm移動させた後、水平方向(Z軸方向)へ1.7mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ45.0度の位置であった。
〈比較例8〉
【0219】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例10と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から鉛直方向(Y軸方向)上側へ1.1mm移動させた後、水平方向(Z軸方向)へ2.4mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ45.0度の位置であった。
〈比較例9〉
【0220】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例22と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ3.0mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブのバルーン外表面に対する接触長さLは4.6mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は182mNであった。
〈比較例10〉
【0221】
ディスペンシングチューブのバルーンに対する接触位置以外は実施例22と同様の条件として、薬剤溶出バルーンを作製した。ディスペンシングチューブをバルーンに接触させる際には、ディスペンシングチューブの先端をバルーンの外表面の基準位置に撓まないように接触させ、この位置から水平方向(Z軸方向)へ3.4mm移動させて、ディスペンシングチューブの先端の側面の一部がバルーンの外表面に沿って接触するように配置した。このときのディスペンシングチューブの先端部の仮想位置は、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度の位置であった。また、ディスペンシングチューブのバルーン外表面に対する接触長さLは4.9mmであり、ディスペンシングチューブの接触によりバルーン外表面にかかる荷重は190mNであった。
【0222】
[ディスペンシングチューブの離脱の観察]
【0223】
実施例10〜21、比較例5〜8において、薬剤のコーティングの際に、吐出方向がバルーンの回転方向に対して逆方向となるようにディスペンシングチューブがバルーンに対して接触した状態から、吐出方向がバルーンの回転方向と同方向となるようにディスペンシングチューブがバルーンから離脱するか否かを観察した。また、実施例10〜15、比較例5の薬剤溶出バルーンについて、表面の写真を撮影した。
【0224】
また、実施例22〜25、比較例9、10において、薬剤のコーティングの際に、吐出方向がバルーンの回転方向に対して逆方向となるようにディスペンシングチューブがバルーンに対して接触した状態から、吐出方向がバルーンの回転方向と同方向となるようにディスペンシングチューブがバルーンから離脱するか否かを観察した。また、実施例22〜25の薬剤溶出バルーンについて、表面の写真を撮影した。
[試験3の結果]
【0225】
表1および
図31に、ディスペンシングチューブがバルーンから離脱するか否かを観察した結果を、
図32〜38に、実施例10〜15、比較例5の薬剤溶出バルーンの表面の写真を示す。
【0226】
また、表2および
図40に、実施例22〜25、比較例9、10において、ディスペンシングチューブがバルーンから離脱するか否かを観察した結果を、
図41〜48に、実施例22〜25の薬剤溶出バルーンの表面の写真を示す。
【0227】
【表1】
【0228】
【表2】
【0229】
ディスペンシングチューブの先端部の仮想位置が、バルーンの軸心を中心として基準面からバルーンの回転方向側へ0度以上40度以下である実施例10〜21では、表1および
図31に示すように、ディスペンシングチューブのバルーンに対する接触位置が良好に維持されることが観察された。また、
図32〜37に示す実施例10〜15の写真から、バルーンの外表面全体に均一でムラのないコート層が観察された。
【0230】
これに対し、ディスペンシングチューブの先端部の仮想位置が、バルーンの軸心を中心として基準面からバルーンの回転方向側へ40度を超えている比較例5〜8では、表1および
図31から、ディスペンシングチューブのバルーンに対する接触位置が維持されず、途中で、ディスペンシングチューブの先端部が、吐出方向がバルーンの回転方向と同方向となる位置へ移動した。ディスペンシングチューブの移動は、比較例5においては、
図38に示すP7の位置で発生し、この位置において、完成したコート層にムラ(不均一性)が観察された。
【0231】
外径0.61mm、内径0.28mm、ポリエチレン製のディスペンシングチューブを用いた実施例10〜21では、表1に示すように、チューブの接触長さが4.0mm以下の場合に、ディスペンシングチューブのバルーンに対する接触位置が良好に維持されることが観察された。したがって、実施例10〜21によれば、チューブの接触長さは、好ましくは0〜4.0mmであり、より好ましくは1.0〜4.0mmである。
【0232】
また、実施例10〜21では、バルーンにかかる荷重が24mN以下の場合に、ディスペンシングチューブのバルーンに対する接触位置が良好に維持されることが観察された。したがって、実施例10〜21によれば、バルーンにかかる荷重は、好ましくは0〜24mNであり、より好ましくは1〜24mNである。
【0233】
表2および
図38に示すように、外径1.50mm、内径1.00mm、ポリエチレン製のディスペンシングチューブを用いた実施例22〜25、比較例9、10では、接触長さが4.1mm以下である実施例22〜25において、ディスペンシングチューブのバルーンに対する接触位置が良好に維持されることが観察された。これに対し、接触長さが4.6mm以上となる比較例9、比較例10において、ディスペンシングチューブのバルーンに対する接触位置が維持されず、途中で、ディスペンシングチューブの先端部が、吐出方向がバルーンの回転方向と同方向となる位置へ移動した。したがって、実施例22〜25によれば、チューブの接触長さは、好ましくは0〜4.1mmであり、より好ましくは1.9〜4.1mmである。
【0234】
また、実施例22〜25では、表1に示すように、バルーンにかかる荷重が158mN以下の場合に、ディスペンシングチューブのバルーンに対する接触位置が良好に維持されることが観察された。したがって、実施例22〜25によれば、バルーンにかかる荷重は、好ましくは0〜158mNであり、より好ましくは42〜158mNである。
【0235】
また、
図41、43、45および47に示す実施例22〜25の写真から、バルーンの外表面全体に均一でムラのないコート層が観察された。実施例22〜25のコート層では、
図42、44、46および48に示すSEM写真から、バルーン表面に対して周方向外側に突出した中空長尺体の形態型の結晶層が観察された。
【0236】
なお、本出願は、2014年4月1日に出願された日本特許出願番号2014−075326号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。