【実施例】
【0026】
以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明方法を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。なお、実施例中で測定した特性値の評価方法を以下に示す。
【0027】
[BET比表面積、全細孔容積の測定方法]
サンプル約100mgを採取し、120℃で24時間真空乾燥した後、秤量した。自動比表面積装置ジェミニ2375(マイクロメリティックス社製)を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で徐々に高めながら40点測定し、前記サンプルの吸着等温線を作製した。自動比表面積装置ジェミニ2375に付属の解析ソフト(GEMINI−PCW version1.01)にて、BET条件で、表面積解析範囲を0.01〜0.15に設定して、BET比表面積[m
2/g]を求めた。また、相対圧0.95のデータより全細孔容積[cc/g]を求めた。
【0028】
[水分吸着量比の測定方法]
サンプル10gを採取し、80℃で72時間真空乾燥した後に、始点重量[g]を測定した。温度25℃±0.5℃の固定床流通式ガラスカラムにサンプルを均一に充填し、温度25℃、相対湿度40%の水蒸気/窒素の混合ガスを2L/minでカラム内に流通させた。30分毎にサンプル重量を測定し、30分間での重量変化が5mg以内になったところで終点とし、その時の重量を終点重量[g]とした。終点重量と始点重量の差を始点重量で割ることにより、温度25℃、相対湿度40%時の水分吸着量[mg/g]を算出した。カラム内に流通させる水蒸気/窒素の混合ガスを温度25℃、相対湿度90%に変え、上記と同様に測定し、温度25℃、相対湿度90%時の水分吸着量[mg/g]を算出し、さらに、温度25℃、相対湿度40%時の水分吸着量を温度25℃、相対湿度90%時の水分吸着量で割ることにより、水分吸着量比[−]を算出した。
【0029】
[シロキサン吸着/脱離の測定方法]
粒子直径355〜500μmに分級されたサンプルを、内径15mmφのガラス管中に、サンプル層の厚みが0.32cmになるように充填した。これに、オクタメチルシクロテトラシロキサン(環状シロキサンD4)15ppmを含有する温度25℃、湿度50%RHの空気を10L/minで連続的に流通させた。サンプルの入口側と出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を測定し、その比から除去率[%]を算出した。この除去率が5%以下になるまで流通、濃度測定を続けた。サンプルの入口側と出口側のガス濃度差、流通させた流量、および、測定時の温度から除去量を算出し、時間と除去量の曲線を時間で積分したものをサンプル重量で割ることにより、シロキサン吸着容量[mg/g]を算出した。
次に、この除去率が5%以下になるまで流通、濃度測定を続けたサンプルについて、シロキサンを含有しない温度25℃、湿度50%RHの空気を10L/minで連続的に流通させ、サンプルの出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を20分間測定した。サンプルの出口側のガス濃度、流通させた流量、および、測定時の温度から脱離量を求め、時間と脱離量の曲線を時間(20分間)で積分したものをサンプル重量で割ることにより、シロキサン脱離量[mg/g]を算出した。シロキサン吸着容量[mg/g]をシロキサン脱離量[mg/g]で割ることにより、低脱離性[−]を算出した。
【0030】
(実施例1)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水650mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0031】
(実施例2)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0032】
(実施例3)
硝酸(1.38)(ナカライテスク製)1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0033】
(実施例4)
硝酸(1.38)(ナカライテスク製)1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
濃硫酸(和光純薬工業製、分子量98、pKa=−3.00、溶解度200g以上)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmの硫酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0034】
(実施例5)
硝酸(1.38)(ナカライテスク製)1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
シュウ酸(和光純薬工業製、分子量90、pKa=1.23、溶解度10.2g)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのシュウ酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0035】
(実施例6)
硝酸(1.38)(ナカライテスク製)1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
ベンゼンヘキサカルボン酸(東京化成工業製、分子量342、pKa=1.40、溶解度10g以上)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのベンゼンヘキサカルボン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0036】
(実施例7)
硝酸(1.38)(ナカライテスク製)1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
リン酸(和光純薬工業製、分子量98、pKa=2.12、溶解度200g以上)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのリン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0037】
(実施例8)
硝酸(1.38)(ナカライテスク製)0.1gとイオン交換水12gを混合し硝酸水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に室温で4時間処理を行った。その後、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させることにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)50mgをイオン交換水420mgに溶解させ、その水溶液と親水化された活性炭450mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸10重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0038】
(実施例9)
次亜塩素酸ナトリウム溶液(和光純薬工業製)1.4gとイオン交換水1.4gを混合し次亜塩素酸ナトリウム水溶液を調製した。ヤシガラ系活性炭(BET比表面積:1880m
2/g、全細孔容積:0.83cc/g、粒径:355〜500μm)3gと調製した次亜塩素酸ナトリウム水溶液とを攪拌混合した。その後、80℃で終夜乾燥させることにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)50mgをイオン交換水420mgに溶解させ、その水溶液と親水化された活性炭450mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸10重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0039】
(比較例1)
石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)についてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0040】
(比較例2)
石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gについて0.1mol/L塩酸50ml中に投入し、12時間攪拌を行った。その後、ろ過し、100mlのイオン交換水で5回洗浄を行い、80℃で終夜乾燥させた。得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0041】
(比較例3)
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水650mgに溶解させ、その水溶液と石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0042】
(比較例4)
ナフィオン10%分散液DE1021(和光純薬工業製、分子量1000〜10000、pKa=−3.10)350mgをイオン交換水300mgを混合し、その混合溶液と石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのナフィオン5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0043】
実施例1〜9、比較例1〜4に関して、BET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った結果を表1に示す。表1より明らかなように、本発明である実施例1〜9は、水分吸着量比が0.10未満の場合(比較例1〜4)と比較して、低脱離性に優れることが分かる。
【0044】
【表1】
【0045】
(実施例10)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)2mgをイオン交換水1380mgに溶解させ、その水溶液と親水化された活性炭998mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸0.2重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0046】
(実施例11)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)20mgをイオン交換水1350mgに溶解させ、その水溶液と親水化された活性炭980mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸2重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0047】
(実施例12)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)100mgをイオン交換水1240mgに溶解させ、その水溶液と親水化された活性炭900mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸10重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0048】
(実施例13)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)150mgをイオン交換水1170mgに溶解させ、その水溶液と親水化された活性炭850mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸15重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0049】
(実施例14)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)200mgをイオン交換水1100mgに溶解させ、その水溶液と親水化された活性炭800mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸20重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0050】
(比較例5)
濃硝酸(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0051】
(比較例6)
硝酸(1.38)(ナカライテスク製)5gとイオン交換水12gを混合し硝酸水溶液を調製した。石炭系活性炭(BET比表面積:1460m
2/g、全細孔容積:0.92cc/g、粒径:355〜500μm)3gを調製した硝酸水溶液中に投入した後に100℃程度まで加熱し、4時間の還流処理を行った。室温まで冷却した後に、ろ過し、100mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。さらに、空気雰囲気下、350℃で4時間処理することにより親水化された活性炭が得られた。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)300mgをイオン交換水970mgに溶解させ、その水溶液と親水化された活性炭700mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸30重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った。
【0052】
実施例1、10〜14、比較例5〜6に関して、BET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行った結果を表2に示す。表2より明らかなように、本発明である実施例1、および、実施例10〜14は、酸性化合物が担持されていない場合(比較例5)、および、酸性化合物の担持量が20重量%よりも大きい場合(比較例6)と比較して、低脱離性に優れることが分かる。
【0053】
【表2】