(58)【調査した分野】(Int.Cl.,DB名)
ガラス原料塊を浮遊させて保持した状態で、前記ガラス原料塊に複数のレーザー光線を照射することにより加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却することによりガラス材を得る工程を含み、
前記複数のレーザー光線は、第1のレーザー光線と、第2のレーザー光線とを含み、
前記第1のレーザー光線と前記第2のレーザー光線との成す角の大きさ(θ)が0°以上、180°未満であり、
前記第1のレーザー光線の前記ガラス原料塊の表面におけるスポットの中心の位置と、前記第2のレーザー光線の前記ガラス原料塊の表面におけるスポットの中心の位置とが相互に異なり、
前記第1のレーザー光線の前記ガラス原料塊の表面におけるスポットと、前記第2のレーザー光線の前記ガラス原料塊の表面におけるスポットとが重なっている、ガラス材の製造方法。
ガラス原料塊を浮遊させて保持した状態で、前記ガラス原料塊に、第1のレーザー光線と、第2のレーザー光線とを含む複数のレーザー光線を照射することにより加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却することによりガラス材を製造する装置であって、
前記複数のレーザー光線を出射するレーザー照射装置を備え、
前記第1のレーザー光線と前記第2のレーザー光線との成す角の大きさ(θ)が0°以上、180°未満であり、
前記第1のレーザー光線の前記ガラス原料塊の表面におけるスポットの中心の位置と、前記第2のレーザー光線の前記ガラス原料塊の表面におけるスポットの中心の位置とが相互に異なり、
前記第1のレーザー光線の前記ガラス原料塊の表面におけるスポットと、前記第2のレーザー光線の前記ガラス原料塊の表面におけるスポットとが重なっている、ガラス材の製造装置。
【発明の概要】
【発明が解決しようとする課題】
【0004】
無容器浮遊法の課題は、ガラス材の均質性の向上である。そこで、特許文献1では、複数のレーザーを用いてガラス原料塊の広い範囲にレーザーを照射することが開示されている。しかしながら、この方法においても、十分に均質なガラスを得ることは難しい。
【0005】
本発明の主な目的は、無容器浮遊法により、優れた均質性を有するガラス材を製造し得る方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明に係るガラス材の製造方法では、成形型の成形面の上方にガラス原料塊を浮遊させて保持した状態で、ガラス原料塊に複数のレーザー光線を照射することにより加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却することによりガラス材を得る。複数のレーザー光線は、第1のレーザー光線と、第2のレーザー光線とを含む。第1のレーザー光線と第2のレーザー光線との成す角の大きさ(θ)が0°以上、180°未満である。第1のレーザー光線のガラス原料塊の表面におけるスポットの中心の位置と、第2のレーザー光線のガラス原料塊の表面におけるスポットの中心の位置とが相互に異なる。
【0007】
本発明に係るガラス材の製造方法では、第1のレーザー光線のガラス原料塊の表面におけるスポットと、第2のレーザー光線のガラス原料塊の表面におけるスポットとが重なっていることが好ましい。
【0008】
本発明に係るガラス材の製造方法では、レーザー光線をガラス原料塊に対して斜め上方から照射してもよい。
【0009】
本発明に係るガラス材の製造方法では、成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、成形面の上方にガラス原料塊を浮遊させて保持してもよい。
【0010】
本発明に係るガラス材の製造方法では、各レーザー光線のガラス原料塊の表面におけるスポット径が、ガラス原料塊の直径の0.1倍〜1.2倍であることが好ましい。
【0011】
本発明に係るガラス材の製造装置は、成形型の成形面の上方にガラス原料塊を浮遊させて保持した状態で、ガラス原料塊に、第1のレーザー光線と、第2のレーザー光線とを含む複数のレーザー光線を照射することにより加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却することによりガラス材を製造する装置である。本発明に係るガラス材の製造装置は、複数のレーザー光線を出射するレーザー照射装置を備える。第1のレーザー光線と第2のレーザー光線との成す角の大きさ(θ)が0°以上、180°未満である。第1のレーザー光線のガラス原料塊の表面におけるスポットの中心の位置と、第2のレーザー光線のガラス原料塊の表面におけるスポットの中心の位置とが相互に異なる。
【発明の効果】
【0012】
本発明によれば、無容器浮遊法により、優れた均質性を有するガラス材を製造し得る方法を提供することができる。
【図面の簡単な説明】
【0013】
【
図1】第1の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図2】第1の実施形態における成形面の一部分の略図的平面図である。
【
図3】第1の実施形態に係るガラス材の製造装置の模式的平面図である。
【
図4】第2の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図5】第2の実施形態における成形面の一部分の略図的平面図である。
【
図6】第3の実施形態における成形面の一部分の略図的平面図である。
【
図7】第4の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図8】第5の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図9】第6の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図10】第7の実施形態に係るガラス材の製造装置の模式的断面図である。
【
図11】第8の実施形態に係るガラス材の製造装置の模式的平面図である。
【
図12】第9の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
【
図13】第10の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
【
図14】第11の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
【
図15】第12の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
【発明を実施するための形態】
【0014】
以下、本発明を実施した好ましい形態について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
【0015】
また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
【0016】
以下の実施形態では、通常のガラス材をはじめ、例えば、網目形成酸化物を含まないような、容器を用いた溶融法によってはガラス化しない組成を有するガラス材であっても好適に製造し得る。具体的には、例えば、チタン酸バリウム系ガラス材、ランタン−ニオブ複合酸化物系ガラス材、ランタン−ニオブ−アルミニウム複合酸化物系ガラス材、ランタン−ニオブ−タンタル複合酸化物系ガラス材、ランタン−タングステン複合酸化物系ガラス材等を好適に製造し得る。
【0017】
(第1の実施形態)
図1は、第1の実施形態に係るガラス材の製造装置1の模式的断面図である。
図1に示すように、ガラス材の製造装置1は、成形型10を有する。成形型10は、曲面の成形面10aを備える。具体的には、成形面10aは、球面状である。
【0018】
成形型10は、成形面10aに開口しているガス噴出孔10bを有する。
図2に示すように、本実施形態では、ガス噴出孔10bが複数設けられている。具体的には、複数のガス噴出孔10bは、成形面10aの中心から放射状に配列されている。
【0019】
なお、成形型10は、連続気泡を有する多孔質体により構成されていてもよい。その場合、ガス噴出孔10bは、連続気泡により構成される。
【0020】
ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。
【0021】
ガスの種類は、特に限定されない。ガスは、例えば、空気や酸素であってもよいし、窒素ガスやアルゴンガス、ヘリウムガス等の不活性ガスであってもよい。
【0022】
製造装置1を用いて、ガラス材を製造するに際しては、まず、ガラス原料塊12を成形面10a上に配置する。ガラス原料塊12は、例えば、ガラス材の原料粉末をプレス成形等により一体化したものであってもよい。ガラス原料塊12は、ガラス材の原料粉末をプレス成形等により一体化した後に焼結させた焼結体であってもよい。また、ガラス原料塊12は、目標ガラス組成と同等の組成を有する結晶の集合体であってもよい。
【0023】
ガラス原料塊12の形状は、特に限定されない。ガラス原料塊12は、例えば、レンズ状、球状、円柱状、多角柱状、直方体状、楕球状等であってもよい。
【0024】
次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12が成形面10aに接触していない状態で、ガラス原料塊12を空中で保持する。その状態で、レーザー照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下となるまで冷却する工程において、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラスまたはガラス材と成形面10aとが接触することを抑制することが好ましい。
【0025】
図1及び
図3に示すように、レーザー照射装置13は、第1のレーザー光源13aと、第2のレーザー光源13bとを有する。第1及び第2のレーザー光源13a、13bは、それぞれ、レーザー光線13A,13Bをガラス原料塊12に対して斜め上方から照射する。
【0026】
ところで、一般的には、複数のレーザー光線をガラス原料塊に照射する場合、ガラス原料塊表面における複数のレーザー光線のスポット中心を一致させる。これは、レーザー光線が成形面に直接入射し、成形面が不所望に加熱されないようにするためである。
【0027】
しかしながら、本発明者らが鋭意研究した結果、ガラス原料塊表面における複数のレーザー光線のスポット中心を一致させた場合、ガラス原料塊の融解にむらが生じやすいことが見出された。その原因としては、以下の理由が考えられる。すなわち、レーザー光線の強度は、スポット中心において最も高くなり、スポットの外側に向かって低くなる。このため、ガラス原料塊表面における複数のレーザー光線のスポット中心を一致させた場合、ガラス原料塊のスポット中心が位置する部分が他の部分よりもより強く加熱される。その結果、ガラス原料塊のスポット中心が位置する部分が過熱状態になる一方、ガラス原料塊のスポット中心から離れた部分に位置する部分が融解しにくい。従って、ガラス原料塊の融解にむらが生じるものと考えられる。また、ガラス原料塊のスポット中心が位置する部分が強く加熱されると、ガラス原料が揮発しやすくなり、所望のガラス組成が得られない場合がある。
【0028】
一方、本実施形態では、
図1に示すように、レーザー光線13Aとレーザー光線13Bとの成す角の大きさ(θ)を、0°以上、180°未満とする。かつ、
図3に示すように、第1のレーザー光線13Aのガラス原料塊12の表面におけるスポットS1の中心C1の位置と、第2のレーザー光線13Bのガラス原料塊12の表面におけるスポットS2の中心C2の位置とが相互に異なるように第1及び第2のレーザー光線13A,13Bを照射する。この場合、第1のレーザー光線13Aの照射により最も強度が高くなるスポットS1の中心C1の位置と、第2のレーザー光線13Bの照射により最も強度が高くなるスポットS2の中心C2の位置とが異なる。よって、ガラス原料塊12の表面の広範囲にレーザー光線を照射することができ、かつ、ガラス原料塊12の表面のレーザー光線が照射された部分におけるレーザー光の強度むらを小さくすることができる。また、ガラス原料塊12に、融解の起点となる部分が複数生じる。従って、ガラス原料塊12をより均質に融解させることができる。ガラス原料塊12の一部分が過熱されにくいため、原料の不所望な揮発を抑制することができる。ガラス原料塊12の一部分が十分に加熱されず、未溶が生じることを抑制することができる。その結果、優れた均質性を有するガラス材を製造することができる。
【0029】
ガラス原料塊12をより高い均質性で融解させる観点からは、第1のレーザー光線13Aのガラス原料塊12の表面におけるスポットS1と、第2のレーザー光線13Bのガラス原料塊12の表面におけるスポットS2との少なくとも一部が重なるように、第1及び第2のレーザー光線13A,13Bを照射することが好ましい。そうすることにより、第1のスポットS1と第2のスポットS2とが重なる位置において、ガラス原料塊12の融解を促進することができる。
【0030】
なお、第1のレーザー光線と第2のレーザー光線とを真逆から照射し、θを180°とすることも考えられる。しかしながら、この場合は、第1のレーザー光線が第2のレーザー光源に照射されたり、第2のレーザー光線が第1のレーザー光源に照射されたりし、レーザー光源が損傷する虞がある。また、ガラス原料塊12の表面で第1のレーザー光線のスポットと第2のレーザー光線のスポットとが重なりにくい。従って、θは、180°未満であることが好ましい。θは、より好ましくは、50°〜150°であり、さらに好ましくは、60°〜120°である。
【0031】
スポットS1,S2の直径(スポット径)は、ガラス原料塊12の直径の0.1倍〜1.2倍であることが好ましく、0.4倍〜1.1倍であることがより好ましく、0.5倍〜1倍であることがさらに好ましい。スポット径がガラス原料塊12の直径に対して小さすぎると、ガラス原料塊12の全体を均一に加熱しにくくなる場合がある。スポット径がガラス原料塊12の直径に対して大きすぎると、成形面10aにレーザー光線13A,13Bが照射されやすくなったり、スポットS1とスポットS2とが重なる面積が大きくなりすぎる場合がある。スポットS1は、スポットS2の中心C2と重なっていないことが好ましい。スポットS2は、スポットS1の中心C1と重なっていないことが好ましい。
【0032】
なお、本実施形態では、第1及び第2のレーザー光線13A,13Bをガラス原料塊12に照射する例について説明した。但し、本発明は、これに限定されない。例えば、ガラス原料塊に3本以上のレーザー光線を照射してもよい。ガラス原料塊に照射するレーザー光線の本数は、2本〜5本であることが好ましく、2本〜4本であることがより好ましい。
【0033】
各レーザースポットの面積のうち、ガラス原料塊に照射されている部分の面積の割合は50%以上、70%以上、90%以上、特に100%であることが好ましい。当該割合が低すぎると、ガラス原料塊に対して付与されるエネルギーが低下して、ガラス原料塊の融解が不十分になる場合がある。また、レーザー光が成形面に照射されて、成形面が損傷する恐れがある。なお、各レーザースポットの合計面積(のべ面積)のうち、ガラス原料塊に照射されている部分の合計面積(のべ面積)の割合も上記範囲を満たすことが好ましい。
【0034】
本実施形態では、成形型10の成形面10aに開口するガス噴出孔10bからガスを噴出させることにより、成形面10aの上方にガラス原料塊を浮遊させて保持する例について説明した。但し、本発明は、これに限定されない。例えば、磁場、静電場、音波等を利用してガラス原料塊を浮遊保持してもよい。
【0035】
(第2及び第3の実施形態)
図4及は、第2の実施形態に係るガラス材の製造装置の模式的断面図である。
図5は、第2の実施形態に係るガラス材の製造装置の模式的平面図である。また、
図6は、第3の実施形態に係るガラス材の製造装置の模式的断面図である。第1の実施形態では、レーザー光線13A,13Bをガラス原料塊12に対して斜め上方から照射する例について説明した。但し、本発明は、これに限定されない。
【0036】
例えば、
図4及び
図5に示すように、レーザー光線13A,13Bをガラス原料塊12に対して水平に照射してもよい。その場合、
図6に示すように、3本のレーザー光線13A,13B,13Cをガラス原料塊12に対して照射してもよい。3本以上のレーザー光線をガラス原料塊12に対して照射する場合、隣り合うレーザー光線の成す角の大きさは、全て実質的に同じであることが好ましい。従って、3本のレーザー光線13A,13B,13Cをガラス原料塊12に対して照射する場合は、隣り合うレーザー光線の成す角の大きさは約120°であることが好ましい。
【0037】
(第4の実施形態)
図7は、第4の実施形態に係るガラス材の製造装置の模式的断面図である。
図7に示すように、第1及び第2のレーザー光線13A,13Bをガラス原料塊12に対して斜め上方から照射すると共に、第3及び第4のレーザー光線13D,13Eをガラス原料塊12に対して水平に照射してもよい。
【0038】
(第5の実施形態)
図8は、第5の実施形態に係るガラス材の製造装置の模式的断面図である。
【0039】
第1〜第4の実施形態では、複数のガス噴出孔10bが成形面10aに開口している例について説明した。但し、本発明は、この構成に限定されない。例えば、
図8に示すガラス材の製造装置のように、成形面10aの中央に開口しているひとつのガス噴出孔10bが設けられていてもよい。
【0040】
(第6の実施形態)
図9は、第6の実施形態に係るガラス材の製造装置の模式的断面図である。
【0041】
第1〜第5の実施形態では、ひとつのレーザー光源からひとつのレーザー光線を出射する例について説明した。但し、本発明は、これに限定されない。例えば、ひとつのレーザー光源からのレーザー光線をビームスプリッター20を用いてスプリットし、複数のレーザー光線13A,13Bを形成してもよい。
【0042】
(第7の実施形態)
図10は、第7の実施形態に係るガラス材の製造装置の模式的断面図である。
図10に示すように、レーザー光線13Aとレーザー光線13Bとが平行となるように、レーザー光線13Aとレーザー光線13Bとをガラス原料塊に照射してもよい。
【0043】
(第8の実施形態)
図11は、第8の実施形態に係るガラス材の製造装置の模式的平面図である。
図11に示すように、3本以上のレーザー光線をガラス原料塊12に照射してもよい。具体的には、本実施形態では、3本のレーザー光線をガラス原料塊12に照射する。この場合、スポットS1、スポットS2及びスポットS3は、重なっていてもよいし、重なっていなくてもよい。本実施形態では、ガラス原料塊12の中央部においてスポットS1、スポットS2及びスポットS3のすべてが重なるように、3本のレーザー光線を照射する。
【0044】
本実施形態のように、3本以上のレーザー光線をガラス原料塊12に照射することにより、ガラス原料塊12に生じる温度むらをより小さくすることができる。
【0045】
(第9の実施形態)
図12は、第9の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。第9の実施形態では、ガラス原料塊12の周縁部にレーザー光線のスポットS1,S2を形成する。ガラス原料塊12の周縁部は、浮遊ガスにより冷却されやすいため、ガラス原料塊12の周縁部にレーザー光線を照射することにより、ガラス原料塊12に温度むらが生じることを抑制することができる。
【0046】
(第10の実施形態)
図13は、第10の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
図13に示すように、第10の実施形態では、ガラス原料塊12の中央部に4本のレーザー光線を照射し、スポットS1,S2,S3,S4を形成する。このように、ガラス原料塊12の中央部に集中してレーザー光線を照射することにより、ガラス原料塊12が融解する速度を高めることができる。
【0047】
(第11の実施形態)
図14は、第11の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。
図14に示すように、第11の実施形態では、ガラス原料塊12の実質的に全体をカバーするスポットS1が形成されるようにレーザー光線を照射することにより、ガラス原料塊12の実質的に全体を加熱しつつ、別のレーザー光線を照射してスポットS2を形成することによりガラス原料塊12を融解させる。このようにすることにより、ガラス原料塊12に温度むらが生じることを抑制することができる。なお、第11の実施形態においては、スポットS1を形成するためのレーザー光線の出力よりもスポットS2を形成するためのレーザー光線の出力が高いことが好ましい。
【0048】
(第12の実施形態)
図15は、第12の実施形態におけるガラス材とレーザー光線のスポットとの関係を表す模式的平面図である。第12の実施形態においても、第11の実施形態と同様に、レーザー光線を照射してスポットS1,S3を形成してガラス原料塊12を全体的に加熱すると共に、別のレーザー光線を照射してスポットS2,S4を形成することでガラス原料塊12を融解させる。このようにすることによっても、ガラス原料塊12に温度むらが生じることを抑制することができる。