(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1を含む従来のガスセンサにおいては、モニタ電極の膜厚とセンサ電極の膜厚との関係についての工夫はなされていない。すなわち、特定ガス成分の濃度の検出精度を向上させるためには、モニタ電極の膜厚とセンサ電極の膜厚とを適切に定めることが必要であることが分かった。
【0006】
本発明は、かかる課題に鑑みてなされたもので、残留酸素による影響を適切に補正して、特定ガス成分の検出精度を向上させることができるガスセンサを提供しようとして得られたものである。
【課題を解決するための手段】
【0007】
本発明の一態様は、酸素イオン伝導性を有する1つ又は複数の固体電解質板(2,20A,20B)と、
該固体電解質板に隣接して形成された被測定ガス室(101)と、
上記固体電解質板の表面に設けられ、上記被測定ガス室における被測定ガス(G)に晒されるポンプ電極(21)と、
上記固体電解質板の表面における、上記ポンプ電極に対する被測定ガスの流れの下流側の位置に、互いに隣接して設けられ、上記被測定ガス室における被測定ガスに晒されるモニタ電極(22)及びセンサ電極(23)と、
上記固体電解質板の表面に設けられ、基準ガス(A)に晒される1つ又は複数の基準電極(24,25)と、
上記固体電解質板に対向して配置され、該固体電解質板を加熱するヒータ(5)と、
上記ポンプ電極と上記基準電極との間に上記固体電解質板の一部(2A)を介して電圧が印加されるときに、上記被測定ガス室における被測定ガスの酸素濃度を調整するポンプセル(31)と、
上記モニタ電極と上記基準電極との間に上記固体電解質板の一部(2B)を介して流れる電流を検出して、上記ポンプ電極によって酸素濃度が調整された後の被測定ガスの残留酸素を検出するモニタセル(32)と、
上記センサ電極と上記基準電極との間に上記固体電解質板の一部(2C)を介して流れる電流を検出して、上記ポンプ電極によって酸素濃度が調整された後の被測定ガスの残留酸素及び特定ガス成分を検出するセンサセル(33)と、を備え、
上記モニタ電極及び上記センサ電極は、上記被測定ガス室の同一空間内に配置されており、
上記センサ電極の最大膜厚は上記モニタ電極の最大膜厚よりも大きく、かつ上記センサ電極の最大膜厚と上記モニタ電極の最大膜厚との差は4μm以上30μm以下である、ガスセンサにある。
本発明の他の態様は、酸素イオン伝導性を有する1つ又は複数の固体電解質板(2,20A,20B)と、
該固体電解質板に隣接して形成された被測定ガス室(101)と、
上記固体電解質板の表面に設けられ、上記被測定ガス室における被測定ガス(G)に晒されるポンプ電極(21)と、
上記固体電解質板の表面における、上記ポンプ電極に対する被測定ガスの流れの下流側の位置に、互いに隣接して設けられ、上記被測定ガス室における被測定ガスに晒されるモニタ電極(22)及びセンサ電極(23)と、
上記固体電解質板の表面に設けられ、基準ガス(A)に晒される1つ又は複数の基準電極(24,25)と、
上記固体電解質板に対向して配置され、該固体電解質板を加熱するヒータ(5)と、
上記ポンプ電極と上記基準電極との間に上記固体電解質板の一部(2A)を介して電圧が印加されるときに、上記被測定ガス室における被測定ガスの酸素濃度を調整するポンプセル(31)と、
上記モニタ電極と上記基準電極との間に上記固体電解質板の一部(2B)を介して流れる電流を検出して、上記ポンプ電極によって酸素濃度が調整された後の被測定ガスの残留酸素を検出するモニタセル(32)と、
上記センサ電極と上記基準電極との間に上記固体電解質板の一部(2C)を介して流れる電流を検出して、上記ポンプ電極によって酸素濃度が調整された後の被測定ガスの残留酸素及び特定ガス成分を検出するセンサセル(33)と、を備え、
上記モニタ電極の全体は、酸素を分解可能で特定ガス成分を分解しない金属成分を含むサーメット材料によって構成されており、
上記センサ電極の全体は、酸素及び特定ガス成分を分解可能な金属成分を含むサーメット材料によって構成されており、
上記センサ電極の最大膜厚(t2)は上記モニタ電極の最大膜厚(t1)よりも大きく、かつ上記センサ電極の最大膜厚と上記モニタ電極の最大膜厚との差は4μm以上30μm以下である、ガスセンサにある。
【発明の効果】
【0008】
上記ガスセンサにおいては、被測定ガスの残留酸素濃度を検出するために用いるモニタ電極の最大膜厚と、特定ガス成分濃度を検出するために用いるセンサ電極の最大膜厚との関係を規定している。具体的には、センサ電極の最大膜厚はモニタ電極の最大膜厚よりも大きい。モニタ電極及びセンサ電極には、ポンプ電極によって酸素濃度が調整された後の被測定ガスが接触する。そして、モニタ電極においては、被測定ガスにおける残留酸素が分解される一方、センサ電極においては、被測定ガスにおける残留酸素及び特定ガス成分が分解される。
【0009】
モニタ電極は、酸素を分解する成分を含有していればよいのに対して、センサ電極は、酸素を分解する成分の他に、特定ガス成分を分解する成分を含有している必要がある。これにより、センサ電極における、酸素を分解する成分は、モニタ電極における、酸素を分解する成分に比べて少なくなる。その結果、センサ電極の単位体積当たりの酸素分解能力は、モニタ電極の単位体積当たりの酸素分解能力よりも小さくなる。そして、モニタ電極による酸素の分解能力と、センサ電極による酸素の分解能力とを均衡させるためには、センサ電極の最大膜厚をモニタ電極の最大膜厚よりも大きくすることが有効である。こうして、モニタ電極による酸素の分解能力と、センサ電極による酸素の分解能力とを均衡させることによって、結果的に、ガスセンサによる特定ガス成分の検出精度を向上させることができる。
なお、ガスセンサにおいては、センサセルの出力からモニタセルの出力を差し引くことにより、特定ガス成分の検出に残留酸素が与える影響を補正することができる。
【0010】
また、センサ電極の最大膜厚とモニタ電極の最大膜厚との差は4μm以上30μm以下である。センサ電極の最大膜厚がモニタ電極の最大膜厚よりも大きくなり過ぎると、特定ガス成分に対するセンサ電極の感度が高くなる一方、残留酸素に対するセンサ電極の感度が、残留酸素に対するモニタ電極の感度よりも高くなり過ぎるおそれがある。そのため、センサ電極の最大膜厚とモニタ電極の最大膜厚との差は30μm以下とすることにより、残留酸素に対するセンサ電極の感度と、残留酸素に対するモニタ電極の感度との差が大幅に異なることを防止することができる。これにより、特定ガス成分の検出に残留酸素が与える影響の補正を適切に行って、結果的に、ガスセンサによる特定ガス成分の検出精度を向上させることができる。
一方、モニタ電極による酸素の分解能力と、センサ電極による酸素の分解能力とを均衡させるためには、センサ電極の最大膜厚は、モニタ電極の最大膜厚よりも4μm以上大きい必要がある。
【0011】
それ故、上記ガスセンサによれば、残留酸素による影響を適切に補正して、特定ガス成分の検出精度を向上させることができる。
【発明を実施するための形態】
【0013】
上述したガスセンサにかかる好ましい実施形態について、図面を参照して説明する。
ガスセンサ1は、
図1〜
図3に示すように、固体電解質板2、被測定ガス室101、ポンプ電極21、モニタ電極22、センサ電極23、基準電極24、ヒータ5、ポンプセル31と、モニタセル32及びセンサセル33を備える。
固体電解質板2は、酸素イオン伝導性を有するものである。被測定ガス室101は、固体電解質板2に隣接して形成されている。ポンプ電極21は、固体電解質板2の一方の表面である第1表面201に設けられており、被測定ガス室101における被測定ガスGに晒されている。モニタ電極22及びセンサ電極23は、固体電解質板2の第1表面201における、ポンプ電極21に対する被測定ガスGの流れFの下流側の位置に、互いに隣接して設けられており、被測定ガス室101における被測定ガスGに晒されている。
【0014】
基準電極24は、固体電解質板2の他方の表面である第2表面202に設けられており、基準ガスAに晒されている。ヒータ5は、固体電解質板2に対向して配置されており、固体電解質板2を加熱するものである。ポンプセル31は、ポンプ電極21と基準電極24との間に固体電解質板2の一部2Aを介して電圧が印加されるときに、被測定ガス室101における被測定ガスGの酸素濃度を調整するものである。モニタセル32は、モニタ電極22と基準電極24との間に固体電解質板2の一部2Bを介して流れる電流を検出して、ポンプ電極21によって酸素濃度が調整された後の被測定ガスGの残留酸素を検出するものである。センサセル33は、センサ電極23と基準電極24との間に固体電解質板2の一部2Cを介して流れる電流を検出して、ポンプ電極21によって酸素濃度が調整された後の被測定ガスGの残留酸素及び特定ガス成分を検出するものである。
【0015】
図5に示すように、センサ電極23の最大膜厚t2はモニタ電極22の最大膜厚t1よりも大きく、かつセンサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差は4μm以上30μm以下である。
なお、
図1、
図2等におけるモニタ電極22、センサ電極23等の図示は、概念的なものであり、モニタ電極22、センサ電極23等の実際の膜厚等を示すものではない。
【0016】
以下、本形態のガスセンサ1について、さらに詳説する。
ガスセンサ1は、車両における内燃機関の排気通路に配置されて用いられ、排気通路を流れる排ガスを被測定ガスGとして、排ガス中に含まれる特定ガス成分としてのNOx(窒素酸化物)の濃度を検出するものである。
図6に示すように、ガスセンサ1は、センサ素子を構成するものであり、長尺形状に形成されている。ガスセンサ1の長尺方向Lの基端側部分は、絶縁碍子12に保持されており、絶縁碍子12は、内燃機関に取り付けられるハウジング13に保持されている。また、ガスセンサ1の長尺方向Lの先端側部分には、被測定ガスGが流入する検知部11が設けられており、検知部11は、貫通孔141が設けられた保護カバー14によって覆われている。被測定ガス室101、ポンプ電極21、モニタ電極22、センサ電極23、基準電極24、ヒータ5、ポンプセル31、モニタセル32及びセンサセル33等は、検知部11に配置されている。
【0017】
本形態において、ガスセンサ1の長尺方向Lの先端側は、被測定ガス室101における被測定ガスGの流れFの上流側となり、ガスセンサ1の長尺方向Lの基端側は、被測定ガス室101における被測定ガスGの流れFの下流側となる。
【0018】
図1、
図2に示すように、固体電解質板2は、イットリア安定化ジルコニアによって構成されており、ガスセンサ1において1枚だけ配置されている。固体電解質板2の第1表面201には、被測定ガス室101を形成するための切欠き形状の第1絶縁板41を介して第2絶縁板42が積層されている。第1絶縁板41及び第2絶縁板42は、アルミナ等の絶縁物によって構成されている。第1絶縁板41は、固体電解質板2の第1表面201における、長尺方向Lの基端側部分及び幅方向Wの両側部分に設けられている。第1絶縁板41の長尺方向Lの先端側部分には、開口部が形成されており、この開口部には、多孔質体からなる拡散抵抗体44が配置されている。被測定ガス室101は、固体電解質板2の第1表面201と第2絶縁板42との間において、拡散抵抗体44と第1絶縁板41とによって四方が囲まれて形成されている。被測定ガスGは、拡散抵抗体44を経由して被測定ガス室101に流入する。
【0019】
図1、
図3に示すように、ポンプ電極21、モニタ電極22、センサ電極23及び基準電極24は、同じ固体電解質板2に設けられている。ポンプ電極21は、被測定ガス室101における、被測定ガスGの流れFの上流側の位置であって、モニタ電極22及びセンサ電極23に比べて拡散抵抗体44に近い位置に配置されている。モニタ電極22とセンサ電極23とは、同等の大きさに形成されており、ポンプ電極21から同等の位置に配置されている。そして、被測定ガス室101における、ポンプ電極21の配置位置を通過した後の被測定ガスGの流れFに対して、モニタ電極22とセンサ電極23との配置条件を同等にしている。
【0020】
また、
図5に示すように、固体電解質板2に配置されたモニタ電極22とセンサ電極23との間隔w1は、1.0mm以下とすることが好ましい。モニタ電極22とセンサ電極23との間隔w1を狭くすることにより、これらの電極22,23に接触する被測定ガスGの流量、成分等を同等にすることが容易になる。
【0021】
基準電極24は、ポンプ電極21、モニタ電極22及びセンサ電極23の全体に対向する位置に1つ設けられている。これ以外にも、基準電極24は、ポンプ電極21、モニタ電極22及びセンサ電極23のそれぞれに対向する位置に別々に3つ設けることもできる。
ポンプ電極21及びモニタ電極22は、酸素を分解可能で特定ガス成分を分解しない、Pt−Au合金等の金属成分、及びジルコニア成分を含むサーメット材料を用いて構成されている。センサ電極23は、酸素及び特定ガス成分を分解可能な、Pt−Rh合金等の金属成分、及びジルコニア成分を含むサーメット材料を用いて構成されている。基準電極24は、酸素を分解可能な、Pt等の金属成分、及びジルコニア成分を含むサーメット材料を用いて構成されている。
【0022】
図1、
図2、
図4に示すように、ヒータ5は、アルミナ等の2枚のセラミック基板51と、2枚のセラミック基板51の間に埋設された導体層52とを有している。ヒータ5は、基準ガスAとしての大気が導入される基準ガス室102を形成するための第3絶縁板43を介して、固体電解質板2の第2表面202に積層されている。第3絶縁板43は、アルミナ等の絶縁物によって構成されている。
第3絶縁板43は、ガスセンサ1の長尺方向Lの基端部に開口部を有する切欠き形状に形成されている。基準ガス室102は、固体電解質板2の第2表面202とセラミック基板51との間において、第3絶縁板43によって三方が囲まれて形成されている。基準ガスAは、ガスセンサ1の長尺方向Lの基端部から基準ガス室102に流入する。
【0023】
図4に示すように、ヒータ5の導体層52は、ガスセンサ1の外部における通電手段に接続される一対のリード部521と、一対のリード部521を繋ぎ、一対のリード部521に印加される電圧によって通電されるときに発熱する発熱部522とを有している。導体層52に通電が行われるときには、ジュール熱によって主に発熱部522が発熱する。そして、この発熱部522の発熱によって、ポンプ電極21、モニタ電極22及びセンサ電極23が所望の作動温度に昇温される。
発熱部522の抵抗値は、リード部521の抵抗値よりも大きい。発熱部522の抵抗値は、導体層52全体の抵抗値の50%以上を占めるようにすることができる。発熱部522は、ポンプ電極21、モニタ電極22及びセンサ電極23が配置された平面領域の略全体に対向する位置に設けられている。
【0024】
発熱部522のパターン配線を、リード部521のパターン配線よりも細くすることによって、発熱部522の抵抗値をリード部521の抵抗値よりも大きくすることができる。また、発熱部522の膜厚をリード部521の膜厚よりも小さくすること、発熱部522の構成材料をリード部521の構成材料よりも比抵抗の大きな材料とすること等によっても、発熱部522の抵抗値をリード部521の抵抗値よりも大きくすることができる。また、パターン配線の太さ、膜厚、構成材料等を変化させる手法を組み合わせて、発熱部522の抵抗値をリード部521の抵抗値よりも大きくすることもできる。
【0025】
図1に示すように、ポンプセル31は、ポンプ電極21と、基準電極24の一部と、ポンプ電極21と基準電極24の一部との間に挟まれた固体電解質板2の一部2Aとによって構成されている。ポンプ電極21と基準電極24との間には、これらの電極21,24の間に電圧を印加する電圧印加回路61が設けられている。電圧印加回路61によって、ポンプ電極21と基準電極24との間に電圧が印加されるときに、ポンプ電極21に接触する被測定ガスG中の酸素が分解されて、固体電解質板2を介して基準電極24へ酸素イオンが透過し、被測定ガス室101における被測定ガスG中の酸素が除去される。
【0026】
図2に示すように、モニタセル32は、モニタ電極22と、基準電極24の一部と、モニタ電極22と基準電極24の一部との間に挟まれた固体電解質板2の一部2Bとによって構成されている。モニタ電極22と基準電極24との間には、これらの電極22,24の間に所定の電圧を印加した状態で、これらの電極22,24の間に流れる電流を検出するモニタ用電流検出回路62が設けられている。モニタ電極22に接触する被測定ガスG中の残留酸素が分解されるときには、固体電解質板2を介して基準電極24へ酸素イオンが透過する。このとき、モニタ電極22と基準電極24との間に固体電解質板2の一部2Bを介して流れる電流が、モニタ用電流検出回路62によって検出される。
【0027】
同図に示すように、センサセル33は、センサ電極23と、基準電極24の一部と、センサ電極23と基準電極24の一部との間に挟まれた固体電解質板2の一部2Cとによって構成されている。センサ電極23と基準電極24との間には、これらの電極23,24の間に所定の電圧を印加した状態で、これらの電極23,24の間に流れる電流を検出するセンサ用電流検出回路63が設けられている。センサ電極23に接触する被測定ガスG中の残留酸素及び特定ガス成分が分解されるときには、固体電解質板2を介して基準電極24へ酸素イオンが透過する。このとき、センサ電極23と基準電極24との間に固体電解質板2の一部2Cを介して流れる電流が、センサ用電流検出回路63によって検出される。
また、ガスセンサ1の動作を制御する制御部においては、センサセル33の電流の出力からモニタセル32の電流の出力が差し引かれることにより、被測定ガスGである排ガス中の残存酸素の影響が補正されて、特定ガス成分であるNOxの濃度が求められる。
【0028】
ガスセンサ1は、固体電解質板2を構成するジルコニアシート、各絶縁板41,42,43、拡散抵抗体44及びヒータ5を積層し、この積層体を焼成することによって形成される。このとき、ジルコニアシートの表面には、ポンプ電極21、モニタ電極22、センサ電極23及び基準電極24をそれぞれ構成する電極材料のペーストが平坦状に塗布される。ただし、各電極21,22,23,24における金属成分及びジルコニア成分は、完全に平坦状には分散せず、焼成後の各電極21,22,23,24の表面にはミクロ的な凹凸が生じている。そのため、モニタ電極22及びセンサ電極23の膜厚を明確にするために、モニタ電極22及びセンサ電極23の膜厚は最大膜厚t1、t2として示す。また、モニタ電極22及びセンサ電極23は、最大膜厚と最小膜厚との差が3μm以下となるように設定される。
【0029】
ここで、最大膜厚t1,t2とは、凹凸の表面形状を有する各電極22,23において、厚みが最も厚くなる部分の膜厚のことをいう。各電極22,23の表面には、気孔による陥没部分が多く形成されており、最大膜厚t1,t2は、陥没部分を除く部分の中から選ばれる。各電極22,23の端部221,231は、直角な形状ではなく、
図5に示すように、円弧形状(二点鎖線で示す。)等に形成されていることが多い。そのため、最大膜厚t1,t2は、各電極22,23を平面視したときの全ての端部221,231を除く中央部付近の膜厚として測定する。
また、各電極22,23の最大膜厚t1,t2は、光学顕微鏡又は電子顕微鏡を用いた観察によって測定することができる。各電極22,23の最大膜厚t1,t2は、例えば、イオンビーム加工等によって電極22,23を切断し、この断面面をSEM(走査電子顕微鏡法)等によって観察して測定することができる。
【0030】
本形態のセンサ電極23の最大膜厚t2は、5μm以上35μm以下であり、本形態のモニタ電極22の最大膜厚t1は、3μm以上20μm以下である。また、センサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差は5μm以上10μmとすることができる。
【0031】
本形態においては、モニタ電極22の最大膜厚t1の適切な範囲、センサ電極23の最大膜厚t2の適切な範囲、及びセンサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差の適切な範囲を確認した。また、以下の
図7〜
図11の試験については、ポンプ電極21及びモニタ電極22の金属成分は、Ptが99質量%、Auが1質量%のPt−Au合金とし、センサ電極23の金属成分は、Ptが50質量%、Rhが50質量%のPt−Rh合金とした。
【0032】
図7には、センサ電極23の最大膜厚t2(μm)とセンサセル33の出力電流(μA)との関係について試験を行った結果を示す。この試験においては、センサ電極23の最大膜厚t2が異なる複数のガスセンサ1を準備し、各ガスセンサ1におけるセンサセル33の出力電流を測定した。各ガスセンサ1の被測定ガス室101には、酸素の濃度が5%、一酸化窒素(NO)の濃度が2000ppm、残部が窒素である被測定ガスGを流入させた。センサセル33の出力電流は、各ガスセンサ1において、特定ガス成分としての一酸化窒素の濃度の検出を行ったときのセンサセル33の出力電流として示す。なお、モニタ電極22の最大膜厚t1は、10μmとした。
【0033】
同図に示すように、センサ電極23の最大膜厚t2が5μm以上の範囲においては、センサセル33の出力電流に大きな変化がないことが分かる。この範囲においては、一酸化窒素が完全に分解され、拡散抵抗体44による被測定ガス室101への被測定ガスGの導入が律速になっているためである。また、センサ電極23の最大膜厚t2が5μmよりも小さくなるに連れて、センサセル33の出力電流が減少していくことが分かる。この理由は、センサ電極23の最大膜厚t2が小さくなることによってセンサ電極23の表面積が減少し、センサ電極23と一酸化窒素との反応点(接触頻度)が不足して、被測定ガス室101に導入された一酸化窒素を分解しきれていないためであると考える。
センサ電極23を用いたセンサセル33においては、被測定ガス室101に導入された特定ガス成分を完全に分解するときの限界電流を検出する必要がある。そのため、センサ電極23の最大膜厚t2は5μm以上であることが好ましい。
【0034】
図8には、センサ電極23の最大膜厚t2(μm)とセンサセル33の応答時間(s)との関係について試験を行った結果を示す。この試験においては、センサ電極23の最大膜厚t2が異なる複数のガスセンサ1を準備し、各ガスセンサ1におけるセンサセル33の応答時間を測定した。各ガスセンサ1の被測定ガス室101には、まず、酸素の濃度が5%、一酸化窒素(NO)の濃度が500ppm、残部が窒素である被測定ガスGを流入させた。次に、被測定ガスGを、酸素の濃度が5%、一酸化窒素の濃度が0ppm、残部が窒素である被測定ガスGに切り替えた際の10−90%応答時間を測定した。また、モニタ電極22の最大膜厚t1は、10μmとした。
【0035】
同図に示すように、センサ電極23の最大膜厚t2が35μm以下の範囲においては、センサセル33の応答時間に大きな変化がないことが分かる。この範囲においては、センサ電極23に吸着した一酸化窒素が迅速に分解されているためである。また、センサ電極23の最大膜厚t2が35μmよりも大きくなるに連れて、センサセル33の応答時間が増加していくことが分かる。この理由は、センサ電極23の最大膜厚t2が大きくなることによって、多孔質体であるセンサ電極23の表面積が増加し、センサ電極23に吸着される一酸化窒素の量が増加して、センサ電極23から一酸化窒素が離脱するための時間が長くなるためであると考える。
センサ電極23を用いたセンサセル33の応答時間を短く維持する必要性から、センサ電極23の最大膜厚t2は35μm以下であることが好ましい。
【0036】
図9には、モニタ電極22の最大膜厚t1(μm)とセンサセル33の応答時間(s)との関係について試験を行った結果を示す。この試験においては、モニタ電極22の最大膜厚t1が異なる複数のガスセンサ1を準備し、各ガスセンサ1におけるセンサセル33の応答時間を測定した。各ガスセンサ1の被測定ガス室101には、まず、酸素の濃度が5%、一酸化窒素(NO)の濃度が500ppm、残部が窒素である被測定ガスGを流入させた。次に、被測定ガスGを、酸素の濃度が5%、一酸化窒素の濃度が0ppm、残部が窒素である被測定ガスGに切り替えた際の10−90%応答時間を測定した。また、センサ電極23の最大膜厚t2は、10μmとした。
【0037】
同図に示すように、モニタ電極22の最大膜厚t1が20μm以下の範囲においては、センサセル33の応答時間に大きな変化がないことが分かる。この範囲においては、モニタ電極22に一酸化窒素が滞留又は吸着しにくいためである。また、モニタ電極22の最大膜厚t1が20μmよりも大きくなるに連れて、センサセル33の応答時間が増加していくことが分かる。この理由は次のように考える。すなわち、モニタ電極22の最大膜厚t1が大きくなることによって、多孔質体であるモニタ電極22の表面積が増加し、モニタ電極22に吸着、あるいはモニタ電極22の多孔質孔の部分に滞留する一酸化窒素の量が増加する。そして、モニタ電極22から拡散した一酸化窒素がセンサ電極23に到達し、この一酸化窒素がセンサ電極23において分解されるためであると考える。
センサ電極23を用いたセンサセル33の応答時間を短く維持する必要性から、モニタ電極22の最大膜厚t1は20μm以下であることが好ましい。
【0038】
図10には、モニタ電極22の最大膜厚t1(μm)とモニタセル32のインピーダンス(Ω)との関係について試験を行った結果を示す。この試験においては、モニタ電極22の最大膜厚t1が異なる複数のガスセンサ1を準備し、各ガスセンサ1におけるモニタセル32のインピーダンスを測定した。モニタセル32のインピーダンスは、周波数が10kHzのときの値として示す。モニタセル32のインピーダンスは、モニタ電極22の内部抵抗、固体電解質板2の内部抵抗、モニタ電極22と固体電解質板2との間の界面抵抗等の和として表される。
【0039】
同図に示すように、モニタ電極22の最大膜厚t1が3μm以上の範囲においては、センサセル33のインピーダンスに大きな変化がないことが分かる。また、モニタ電極22の最大膜厚t1が3μmよりも小さくなるに連れて、センサセル33のインピーダンスが増加していくことが分かる。モニタ電極22の最大膜厚t1が小さくなることによって、モニタ電極22の内部抵抗等が増加したためである。
センサセル33のインピーダンスが大きい場合には、モニタセル32における残留酸素の分解が遅延し、その結果、モニタセル32の検出精度が悪化することになる。そのため、モニタ電極22の最大膜厚t1は3μm以上であることが好ましい。
【0040】
図11には、センサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差(電極膜厚差という。)と、ガスセンサ1の検出誤差(%)との関係について試験を行った結果を示す。この試験においては、電極膜厚差が異なる複数のガスセンサ1を準備し、各ガスセンサ1の被測定ガス室101には、酸素の濃度が5%、一酸化窒素(NO)の濃度が100ppm、残部が窒素である被測定ガスGを流入させ、各ガスセンサ1を用いて一酸化窒素の濃度を検出した。そして、実際の(100ppmの)一酸化窒素の濃度に対する、ガスセンサ1によって検出した一酸化窒素の濃度の誤差を検出誤差として示す。
【0041】
同図に示すように、電極膜厚差が4〜30μmの範囲においては、ガスセンサ1に大きな検出誤差が生じていないことが分かる。
また、電極膜厚差が30μmよりも大きくなるに連れて、正の検出誤差が増加していくことが分かる。この理由は次のように考える。すなわち、各電極22,23の最大膜厚t1,t2が大きいほど、各電極22,23と被測定ガス室101内の残留酸素(酸素分子)との接触機会が増え、残留酸素に対する各電極22,23の感度が高くなる。そして、電極膜厚差が30μmよりも大きくなると、残留酸素に対するモニタ電極22の感度に比べて、残留酸素に対するセンサ電極23の感度が高くなり過ぎて、正の検出誤差が大きくなると考える。ここで、正の検出誤差は、実際の一酸化窒素の濃度に対して、ガスセンサ1によって検出した一酸化窒素の濃度が高くなってしまう誤差のことを示す。
【0042】
一方、電極膜厚差が4μmよりも小さくなるに連れて、負の検出誤差が増加していくことが分かる。この理由は、残留酸素に対するモニタ電極22の感度は確保しやすい一方、残留酸素に対するセンサ電極23の感度を十分に確保できなくなるためであると考える。ここで、負の検出誤差は、実際の一酸化窒素の濃度に対して、ガスセンサ1によって検出した一酸化窒素の濃度が低くなってしまう誤差のことを示す。
また、上記結果より、センサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差は4μm以上であることが好ましいといえる。この理由は次のように考える。すなわち、各電極22,23を構成する成分のうち、残留酸素(酸素分子)に対する活性が高い成分はPtである。
【0043】
本試験においては、モニタ電極22の金属成分は、Ptが99質量%、Auが1質量%とし、センサ電極23の金属成分は、Ptが50質量%、Rhが50質量%としている。そして、モニタ電極22におけるPtの含有量は、センサ電極23におけるPtの含有量に比べて多い。そのため、センサ電極23の最大膜厚t2がモニタ電極22の最大膜厚t1よりも大きいことによって、残留酸素に対する各電極22,23の感度を均衡させることができると考える。それ故、センサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差は4μm以上とすることが好ましい。
【0044】
以上から、センサ電極23の最大膜厚t2は、モニタ電極22の最大膜厚t1よりも4〜30μmの範囲内で大きくすることが必要である。また、検出誤差をより小さくする観点より、センサ電極23の最大膜厚t2は、モニタ電極22の最大膜厚t1よりも5〜10μmの範囲内で大きいことがより好ましいといえる。
【0045】
上述したように、モニタ電極22は、酸素を分解するPtを含有していればよいのに対して、センサ電極23は、酸素を分解するPtの他に、特定ガス成分を分解するRh等を含有している必要がある。これにより、センサ電極23における、酸素を分解する成分は、モニタ電極22における、酸素を分解する成分に比べて少なくなる。その結果、センサ電極23の単位体積当たりの酸素分解能力は、モニタ電極22の単位体積当たりの酸素分解能力に比べて小さくなる。そして、モニタ電極22による酸素の分解能力と、センサ電極23による酸素の分解能力とを均衡させるためには、センサ電極23の最大膜厚t2をモニタ電極22の最大膜厚t1よりも大きくすることが有効である。こうして、センサ電極23の最大膜厚t2をモニタ電極22の最大膜厚t1よりも大きくして、結果的に、ガスセンサ1による特定ガス成分の検出精度を向上させることができる。
【0046】
また、センサ電極23の最大膜厚t2がモニタ電極22の最大膜厚t1よりも大きくなり過ぎると、特定ガス成分に対するセンサ電極23の感度が高くなる一方、残留酸素に対するセンサ電極23の感度が、残留酸素に対するモニタ電極22の感度よりも高くなり過ぎるおそれがある。そのため、センサ電極23の最大膜厚t2とモニタ電極22の最大膜厚t1との差は30μm以下とすることにより、残留酸素に対するセンサ電極23の感度と、残留酸素に対するモニタ電極22の感度との差が大幅に異なることを防止することができる。これにより、特定ガス成分の検出に残留酸素が与える影響の補正を適切に行って、結果的に、ガスセンサ1による特定ガス成分の検出精度を向上させることができる。
一方、モニタ電極22による酸素の分解能力と、センサ電極23による酸素の分解能力とを均衡させるためには、センサ電極23の最大膜厚t2は、モニタ電極22の最大膜厚t1よりも4μm以上大きい必要がある。
【0047】
それ故、本形態のガスセンサ1によれば、残留酸素による影響を適切に補正して、特定ガス成分の検出精度を向上させることができる。
【0048】
ガスセンサ1は、上述した構造のものに限られず、ポンプセル31、モニタセル32及びセンサセル33等が形成された別の構造とすることもできる。
例えば、
図12、
図13に示すように、ポンプ電極21と、モニタ電極22及びセンサ電極23とは、別々の固体電解質板20A,20Bに設けることもできる。この場合には、ガスセンサ1は、ポンプ電極21が設けられた第1の固体電解質板20Aと、モニタ電極22及びセンサ電極23が設けられた第2の固体電解質板20Bとを有している。第1の固体電解質板20Aには、第1絶縁板41及び拡散抵抗体44を介して第2の固体電解質板20Bが積層されており、第2の固体電解質板20Bにおけるモニタ電極22及びセンサ電極23を設けた表面とは反対側の表面には、他の基準電極25が設けられている。また、第2の固体電解質板20Bには、他の基準ガス室103を形成するための第4絶縁板45及び第5絶縁板46が積層されており、他の基準電極25は、他の基準ガス室103に配置されている。
【0049】
この場合においても、上記実施形態と同様に、モニタ電極22の最大膜厚t1とセンサ電極23の最大膜厚t2とを設定することができる。
また、本発明は、上記実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態に適用することが可能である。