【0003】
通常、リチウム金属電池は、
負極、および、電気絶縁性バリアまたは「セパレータ」によって分離され、電解質用液によって作動可能に連結されている
正極を備える。充電工程中、正電荷を有するリチウムイオンが、透過性セパレータを通って
正極から
負極へと移動し、Li金属へと還元される。放電中、Li金属は、正電荷を有するリチウムイオンへと酸化され、セパレータを通って、
負極から
正極上へと移動し、その一方で、電子は、外部負荷を通って、
負極から
正極へ移動し、電流を生じて該負荷に電力を供給する。充放電を繰り返す間に、リチウム樹枝状結晶が、
負極の表面上から成長し始める。苔状リチウムとも呼ばれる樹枝状のリチウム析出物が、最終的にセパレータを破壊して
正極に達し、それにより内部短絡が生じ、電池が使用不能となる。Li金属電池の充放電工程の間のリチウム樹枝状結晶形成は、本質的に避けることができない。したがって、電池のサイクル能、イオン伝導性、電圧、および比容量を維持しつつ、樹枝状結晶成長の影響を受けないリチウム電極電池システムが、依然として必要とされている。本新規技術は、これらの必要性に対処するものである。
[本発明1001]
負極に面する側面および正極に面する側面を有する、電気絶縁性バリア部材、ならびに
該電気絶縁性バリア部材の該負極に面する側面に接着された、機能化されたナノカーボン粒子の層
を備え、かつ
樹枝状結晶成長のシーディングのために、該機能化されたナノカーボン粒子が、イオン的に会合した金属カチオンで機能化されている、
電極セパレータ。
[本発明1002]
前記機能化されたナノカーボン粒子が、カーボンブラック、グラフェン、グラファイト、ナノグラファイト、アモルファスカーボン、およびそれらの組み合わせを含む群より選択される、本発明1001のセパレータ。
[本発明1003]
前記金属カチオンが、スルホネート、カルボキシレート、第三級アミン、ジアゾニウム塩、およびそれらの組み合わせを含む群より選択される官能基とイオン的に会合している、本発明1001のセパレータ。
[本発明1004]
前記電気絶縁性バリア部材が、金属塩を含有する有機電解質に対して透過性である、本発明1001のセパレータ。
[本発明1005]
前記金属が、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、およびそれらの組み合わせを含む群より選択される、本発明1004のセパレータ。
[本発明1006]
電解質媒体、
該電解質媒体中に位置付けられた正極、
該電解質媒体中に位置付けられ、かつ、該正極から間隔をおいて配置された、リチウム含有負極、
負極に面する側面および正極に面する側面を有し、該リチウム含有負極と該正極の間に配置された、セパレータ、ならびに
リチウムで機能化され、該セパレータの該負極に面する側面に作動可能に連結された、複数のナノカーボン粒子
を備え、
該セパレータが電気絶縁性かつ電解質透過性である、
リチウム金属バッテリ電池。
[本発明1007]
複数の樹枝状結晶が前記リチウム含有負極から前記セパレータに向かって伸び、かつ、複数の樹枝状結晶が、該セパレータの前記負極に面する側面から該リチウム含有負極に向かって伸びる、本発明1006のバッテリ電池。
[本発明1008]
前記複数の樹枝状結晶が、前記電解質媒体中において一体となり、かつ、およそゼロの電位差を有する、本発明1007のバッテリ電池。
[本発明1009]
前記複数の樹枝状結晶が二次リチウム金属層を画定する、本発明1008のバッテリ電池。
[本発明1010]
コイン型電池である、本発明1006のバッテリ電池。
[本発明1011]
再充電可能である、本発明1006のバッテリ電池。
[本発明1012]
対称型である、本発明1006のバッテリ電池。
[本発明1013]
リチウム、カルシウム、マグネシウム、ナトリウム、カリウム、およびそれらの組み合わせを含む群より選択される金属部分を有する、電極、
電解質透過性膜、ならびに
該電極と該膜の間に配置された金属樹枝状結晶シーディング物質
を備え、
該電極、該膜、および該金属樹枝状結晶シーディング物質が、電解質マトリックス中に位置付けられ、かつ
少なくとも1つの樹枝状結晶が、該電極から該電解質透過性膜へ向かって伸び、該樹枝状結晶シーディング物質から伸びる少なくとも1つの樹枝状結晶と一体となる、
バッテリの寿命を延ばすための装置。
[本発明1014]
前記金属樹枝状結晶シーディング物質が、金属で機能化された複数のカーボンナノ粒子であり、かつ、該金属が、リチウム、カルシウム、マグネシウム、ナトリウム、カリウム、およびそれらの組み合わせを含む群より選択される、本発明1013の装置。
[本発明1015]
前記電極から伸びる樹枝状結晶、および前記樹枝状結晶シーディング物質から伸びる樹枝状結晶が、一体となって二次金属部分を形成する、本発明1013の装置。
[本発明1016]
バッテリの寿命を延ばす方法であって、
(a)金属含有電極と電解質透過性セパレータ膜の間に配置された電解質液中に樹枝状結晶シーディング物質を位置付ける段階;
(b)リチウム樹枝状結晶シーディング物質からリチウム含有電極へ向かって金属樹枝状結晶を成長させる段階;および
(c)該金属含有電極から伸びる金属樹枝状結晶を、該金属樹枝状結晶シーディング物質から伸びる金属樹枝状結晶と接触させる段階
を含み、該電解質が金属イオンを含有する、方法。
[本発明1017]
前記リチウム含有電極から伸びるリチウム樹枝状結晶と前記リチウム樹枝状結晶シーディング物質から伸びるリチウム樹枝状結晶の間の接触が、接触している該リチウム樹枝状結晶の長軸に沿った成長を実質的に停止させる、本発明1016の方法。
[本発明1018]
(d)前記リチウム含有電極から伸びるリチウム樹枝状結晶を、前記リチウム樹枝状結晶シーディング物質から伸びるリチウム樹枝状結晶と絡み合わせる段階;および
(e)絡み合った該リチウム樹枝状結晶からリチウム層を形成させる段階
をさらに含む、本発明1016の方法。
[本発明1019]
樹枝状結晶シーディングセパレータ物質を製造する方法であって、
(a)カーボンセパレータ表面を特定する段階;
(b)化学的に結合したアニオンを含有する構造により該カーボンセパレータ表面を機能化する段階;
(c)機能化された該カーボンセパレータ表面に中性金属塩を導入する段階;
(d)該中性塩を反応させて、金属カチオンおよびアニオンを得る段階;ならびに
(e)該金属カチオンを該化学的に結合したアニオンに誘引する段階
を含む、方法。
[本発明1020]
前記金属が、リチウム、カルシウム、マグネシウム、ナトリウム、カリウム、およびそれらの組み合わせを含む群より選択される、本発明1019の方法。
[本発明1021]
前記金属カチオンが、前記化学的に結合したアニオンに弱く結合している、本発明1020の方法。
[本発明1022]
バッテリ電池における金属樹枝状結晶成長を制御するための方法であって、
(a)電解質膜のための所望のポロシメトリー値を決定する段階;
(b)該ポロシメトリー値を有する該電解質膜を供給する段階;
(c)樹枝状結晶シーディング物質を該電解質膜上にグラフト化する段階;
(d)金属電極から該電解質膜を介した金属カチオン勾配を導入する段階;
(e)該金属カチオンの一部を、該電解質膜の電極に面する表面上に固定する段階;ならびに
(f)電極の膜に面する側面においておよび膜の電極に面する側面において、指向的な樹枝状結晶成長を促進する段階
を含む、方法。
[本発明1023]
前記電極の樹枝状結晶が前記電解質膜の樹枝状結晶と一体となるまで、該膜の面内方向における樹枝状結晶成長を防止する段階をさらに含む、本発明1022の方法。
[本発明1024]
前記電解質膜が選択的透過性である、本発明1022の方法。
[本発明1025]
前記電解質膜が、機能化されたナノカーボン粒子の層を含む、本発明1024の方法。
[本発明1026]
電解質ポリマー膜を製造するための方法であって、
微粒子カーボン供給源を複数の溶媒と混合して、懸濁液を形成させる段階;
透過性膜への懸濁カーボン粒子の接着に影響を及ぼす結合要素を特定する段階;
該結合要素を該透過性膜に適用して接着性膜を画定する段階;
該懸濁液を該接着性膜に適用する段階;および
該懸濁液の間に界面を形成させる段階
を含む、方法。
[本発明1027]
前記懸濁液が、複数の機能化されたナノカーボン粒子である、本発明1026の方法。
[本発明1028]
カーボン物質が、カーボンブラック、グラフェン、グラファイト、ナノグラファイト、およびそれらの組み合わせを含む群より選択される、本発明1026の方法。
[本発明1029]
前記結合要素および前記電解質ポリマー膜が、実質的に同じ化学組成を有する、本発明1026の方法。
[本発明1030]
前記懸濁液の適用が、ホットプレス、吹き付け、マシンブレードコーティング、刷毛塗り、およびそれらの組み合わせを含む群より選択される技術によって達成される、本発明1026の方法。
[本発明1031]
前記懸濁液が均一に分散している、本発明1026の方法。
[本発明1032]
前記結合要素によって前記懸濁液の接着を維持する段階をさらに含む、本発明1026の方法。
[本発明1033]
電気化学電池における金属樹枝状結晶成長を制御するための方法であって、
(a)電解質透過性かつ電気絶縁性の膜を非反応性金属コーティングでコーティングする段階;
(b)該非反応性金属コーティングを機能化して、機能化された非反応性金属コーティングを得る段階;
(c)電極と該機能化された非反応性金属コーティングの間に電解質溶液を位置付ける段階;
(d)金属電極から該電解質透過性かつ電気絶縁性の膜を介した金属カチオン勾配を導入する段階;
(e)該金属カチオンの一部を該機能化された非反応性金属コーティング上に固定する段階;ならびに
(f)該電極からおよび該膜から該電解質溶液を通る指向的な樹枝状結晶成長を促進する段階
を含む、方法。