(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。
【0012】
複数のファイバ穴を有するフェルールと、光ファイバの先にGRINレンズが融着接続されたレンズドファイバと、前記光ファイバを伝搬する光を透過可能な平板であって、前記フェルールの端面に取り付けられて、前記ファイバ穴に挿入された前記レンズドファイバの端面が突き当てられる平板と、を有し、前記フェルールの前記端面及び前記平板は、前記ファイバ穴に挿入された前記レンズドファイバの光軸に垂直な面に対して傾斜しており、前記レンズドファイバの端面と前記平板との間の隙間に屈折率整合剤が充填されていることを特徴とするファイバ付きフェルールが明らかとなる。このようなファイバ付きフェルールによれば、フェルールにレンズを設けずに、光損失を抑制できる。
【0013】
前記平板の外側の面には、反射防止膜が形成されていることが望ましい。これにより、反射減衰量を抑制できる。
【0014】
前記フェルールには、前記フェルールの前記端面から凹んだ凹所が形成されており、前記平板及び前記凹所で囲まれた空間に前記屈折率整合剤が充填されることが望ましい。これにより、屈折率整合剤の充填が容易になる。
【0015】
前記凹所の底面には、前記レンズドファイバを支持するためのファイバ溝が形成されていることが望ましい。これにより、レンズドファイバの端部が湾曲しにくくなる。
【0016】
前記凹所には、前記平板の内側の面と対向し、複数の前記ファイバ穴が開口するファイバ穴開口面が形成されており、前記ファイバ穴開口面から前記平板の側に突出し、前記平板の縁と接触する突出部が形成されていることが望ましい。これにより、平板の歪みを抑制できる。
【0017】
前記フェルールの端面には、複数の前記ファイバ穴の開口の上部を貫通するように形成された溝が形成されており、前記溝を構成する内壁面の少なくとも一部は、前記ファイバ穴よりも上側に位置していることが望ましい。これにより、レンズドファイバの端面に気泡が形成されにくくなる。
【0018】
前記平板の内側の面には、前記レンズドファイバの端面を突き当てると表面が変形する固形屈折率整合材が配置されていることが望ましい。これにより、レンズドファイバの端面に気泡が形成されにくくなる。
【0019】
前記固形屈折率整合材の両面が粘着性を有することが望ましい。これにより、平板及びレンズドファイバの端面から固形屈折率整合材が剥離しにくくなる。
【0020】
前記固形屈折率整合材のショアA硬度及び厚さが、ショアA硬度が0,厚さが30μmの点、ショアA硬度が70、厚さが30μmの点、ショアA硬度が70、厚さが50μmの点、ショアA硬度が0、厚さが150μmの点の4点で囲まれる範囲内であることが望ましい。これにより、固形屈折率整合材に突き当てられたレンズドファイバの端面に気泡が形成されにくくなる。
【0021】
アダプタと、前記アダプタの両側に挿入される2つの光コネクタとを有する光コネクタシステムであって、それぞれの前記光コネクタは、複数のファイバ穴を有するフェルールと、光ファイバの先にGRINレンズが融着接続されたレンズドファイバと、前記光ファイバを伝搬する光を透過可能な平板であって、前記フェルールの端面に取り付けられて、前記ファイバ穴に挿入された前記レンズドファイバの端面が突き当てられる平板と、を有し、前記フェルールの前記端面及び前記平板は、前記ファイバ穴に挿入された前記レンズドファイバの光軸に垂直な面に対して傾斜しており、前記レンズドファイバの端面と前記平板との間の隙間に屈折率整合剤が充填されており、前記アダプタは、内側に突出したスペーサを有し、前記アダプタの内部において前記フェルールが前記スペーサに接触することによって、前記フェルールの端面同士が所定の間隔で対向して配置されることを特徴とする光コネクタシステムが明らかとなる。このような光コネクタシステムによれば、フェルールにレンズを設けずに、光損失を抑制できる。
【0022】
===第1実施形態===
<レンズドファイバ1とフェルール10の端面について>
図1は、レンズドファイバ1とフェルール10の端面11の説明図である。なお、説明を分かりやすくするために、寸法や角度が誇張されて図示されている。
【0023】
レンズドファイバ1は、シングルモード光ファイバ2及びGRINレンズ3を有し、シングルモード光ファイバ2の先にGRINレンズ3が融着接続された光ファイバである。
【0024】
GRINレンズ3は、中心軸から外周に向かって徐々に屈折率が小さくなっている屈折率分布型レンズである。グレイデッドインデックス光ファイバも中心軸から外周に向かって徐々に屈折率が小さいので、GRINレンズ3としてグレイデッドインデックス光ファイバを用いることができる。また、GRINレンズ3は、コリメータレンズとして機能するように、所定長さになっている。具体的には、GRINレンズ3は、1周期分の定在波の長さであるピッチ長を(2n+1)/4倍した長さになっており(なお、nは0以上の整数)、ここでは、GRINレンズ3の長さは例えば590μmである。これにより、シングルモード光ファイバ2からGRINレンズ3に入射する光は、GRINレンズ3内で平行光に変換されて、GRINレンズ3から放射される。逆に、GRINレンズ3に入射する平行光は、GRINレンズ3内で収束されて、GRINレンズ3からシングルモード光ファイバ2に入射される。
【0025】
GRINレンズの先には、光信号を透過可能な平板30が配置されている。平板30は、レンズドファイバ1の端面が突き当てられた状態で、レンズドファイバ1の光軸に垂直な面に対して傾斜して配置されている。ここでは、平板30は、光軸に垂直な面に対して8度傾斜している。フェルール10の端面11がレンズドファイバ1の光軸に垂直な面に対して傾斜しているため、フェルール10の端面11に平板30を配置することによって、平板30がレンズドファイバ1の光軸に垂直な面に対して傾斜して配置されることになる。平板30の端面を傾斜させることにより、反射減衰量を低減させることができる。なお、GRINレンズ3の端面を傾斜させてしまうと、GRINレンズ3の長さが変わってしまうため、コリメータレンズとしての機能が損なわれてしまう。
【0026】
平板30とレンズドファイバ1の端面との間には、屈折率整合剤が充填されている。これは、レンズドファイバ1の端面が光軸に垂直であり、平板30は光軸に垂直な面に対して傾斜しているので、レンズドファイバ1の端面と平板30との間に隙間が生じるためである。屈折率整合剤の屈折率は、レンズドファイバ1や平板30の屈折率(ガラスの屈折率)と同程度に調整されている。言い換えると、屈折率整合剤の屈折率は、空気の屈折率よりも、レンズドファイバ10や平板30の屈折率と近くなるように調整されている。このため、屈折率整合剤を充填することによってフレネル反射を抑えることができる。
【0027】
次に、2本のレンズドファイバ1を伝搬する光信号の経路について説明する。ここでは、光信号が左側のレンズドファイバ1から右側のレンズドファイバ1に伝搬するものとして説明する。
【0028】
左側のレンズドファイバ1を伝搬した光信号は、屈折率整合剤及び平板30を介して、平板30の外側の傾斜面から右側に向かって出射する。平板30の傾斜面の外部が空気であるため、スネルの法則に従って光信号が屈折する(平板30の屈折率は、例えば1.46である)。この結果、左側の平板30から出射した光信号は、平板30の傾斜面の向く側(下向き)とは反対側の上向きに屈折する(ここでは、約3.9度だけ上方に屈折する)。
【0029】
光軸に対して上方に傾いて空気中を伝搬した光信号(平行光)は、右側の平板30の傾斜面に入射する。右側の平板30の傾斜面は、レンズドファイバ1の光軸に垂直な面に対して8度傾斜しており、左側の平板30と平行に配置されている。この結果、右側の平板30の傾斜面に入射した光信号は、屈折した後、平板30及び屈折率整合剤を介してレンズドファイバ1内を伝搬する。
【0030】
左右のレンズドファイバ1を光接続するためには、屈折した光信号が空気中を伝搬することを見込んで、レンズドファイバ1の光軸をずらして配置する必要がある。具体的には、GRINレンズ3の端面同士の間隔が900μmの場合、レンズドファイバ1の光軸のずれ量Gは約30μmとなる。フェルール10の位置決め部(位置決め穴13又は位置決めピン14)とファイバ穴15とのずれ量(=G/2:オフセット量)は、約15μmとなる。以下の説明では、左右のレンズドファイバ1を光接続するためのフェルール10の端面11同士の間隔(レンズドファイバ1の光軸方向の間隔)をLとする。
【0031】
本実施形態では、フェルール10にレンズを形成せずに済むため、フェルール10の製造が容易である。また、フェルール10間を伝搬する光信号のMFD(Mode Field Diameter)が大きいため、レンズドファイバ1の光軸ずれが多少生じても光損失を抑制できるとともに、レンズドファイバ1の端面に付着した塵埃による光損失も抑制できる。また、フェルール10の端面11同士を接触させずに済むとともに、レンズドファイバ1の端面同士も直接接触しないため、通常のMTフェルール同士のPC接続と比べると、フェルール10の端面11やレンズドファイバ1の端面が損傷しにくいという利点もある。また、平板30の傾斜面同士も直接接触しないため、反射防止処理された平板30の傾斜面のコーティングが損傷しにくいという利点もある。
【0032】
<フェルール10について>
図2は、フェルール10の説明図である。以下の説明では、2つの位置決め穴13の並ぶ方向を「左右方向」とする。また、位置決め穴13の軸方向を「前後方向」とし、相手側のフェルール10と対向する側を「前」とし、逆側を「後」とする。また、左右方向及び前後方向に垂直な方向を「上下方向」とし、接着剤充填窓16の設けられた側を「上」とし、逆側を「下」とする。
【0033】
フェルール10は、レンズドファイバ1の端部を保持する部材である。フェルール10の後側には、鍔部12が形成されている。鍔部12は、外周面から外側に突出した部位である。鍔部12を含むフェルール10は、樹脂により一体成型されている。フェルール10の内部において、複数のレンズドファイバ1の端部が保持されることになる。なお、本実施形態のフェルール10は、JIS C 5982(F13形多心光ファイバコネクタ:MPOコネクタ)で規定された傾斜端面を有するフェルールとほぼ同様の構成であり、位置決め穴13やファイバ穴15等の寸法や位置関係は、規格で規定された通りである。但し、ファイバ穴15の位置は、フェルール10の端面11を前側から見たときに、位置決め穴13に対して
図1のG/2に相当する分だけ下側にずれている。
【0034】
フェルール10は、2本の位置決め穴13と、複数のファイバ穴15と、接着剤充填窓16とを有する。また、フェルール10は、端面11に取り付けられた平板30を有する。
【0035】
位置決め穴13は、位置決めピン14(
図3A参照)を挿入するための穴である。位置決め穴13及び位置決めピン14は、フェルール10の位置決めを行う位置決め部となる。位置決め穴13に位置決めピン14を挿入することによって、フェルール10同士が位置合わせされる。位置決め穴13は、前後方向にフェルール10を貫通しており、複数のファイバ穴15を左右から挟むように、左右方向に間隔を空けて形成されている。
【0036】
ファイバ穴15は、レンズドファイバ1の端部を挿入するための穴である。ファイバ穴15には、
図1に示すようにレンズドファイバ1が挿入されることになる。ファイバ穴15は、フェルール10の前側の端面11と接着剤充填窓16との間を貫通している。ファイバ穴15は前後方向に平行に形成されており、複数のファイバ穴15は左右方向に並んで配置されている。ここでは、12個のファイバ穴15が左右方向に一列に並んで配置されている。ファイバ穴15は、フェルール10の内部において光路を形成する部位となり、レンズドファイバ1の光軸と平行な穴となる。
【0037】
接着剤充填窓16は、接着剤を充填するための空洞部である。フェルール10の後側端面にはレンズドファイバ1を挿入するためのファイバ挿入口(不図示)が形成されており、このファイバ挿入口から挿入されたレンズドファイバ1は、接着剤充填窓16を横切って、ファイバ穴15に挿入されることになる。接着剤充填窓16から接着剤が充填されることによって、レンズドファイバ1がフェルール10に固定されることになる。
【0038】
フェルール10の前側の端面11では、位置決め穴13が開口しているとともに、複数のファイバ穴15が開口している。このフェルール10の前側の端面11に平板30が取り付けられている。位置決め穴13は平板30に塞がれないため、平板30の取り付け後も位置決め穴13に位置決めピン14を挿入可能である。これに対し、ファイバ穴15の開口は平板30に塞がれることになる。
【0039】
フェルール10の前側の端面11は、ファイバ穴15の軸方向に垂直な面に対して傾斜している。このため、フェルール10の前側の端面11は、ファイバ穴15に挿入されたレンズドファイバ1の光軸に垂直な面に対して傾斜することになる。また、レンズドファイバ1の端面は光軸に垂直であるため、フェルール10の前側の端面11は、ファイバ穴15に挿入されたレンズドファイバ1の端面に対して傾斜することになる。
【0040】
フェルール10の前側の端面11は、左右方向から見たときに、上下方向に対して傾斜している。より具体的には、フェルール10の前側の端面11は、フェルール10の上側(接着剤充填窓16の側)ほど前側になるように、上下方向に対して8度傾斜している。つまり、フェルール10の前側の端面11は、下側を向くように傾斜している。フェルール10の前側の端面11を傾斜させておくことによって、レンズドファイバ1の光軸に垂直な面に対して平板30を傾斜して配置することが容易になる。
【0041】
なお、端面11が、上側(接着剤充填窓16の側)ほど相手側のフェルールに向かうように傾斜していることに伴って、複数のファイバ穴15の中心位置が、位置決め穴13に対して下側(接着剤充填窓16の側とは反対側)にずれた位置になっている。すなわち、複数のファイバ穴15の中心位置(重心位置)は、フェルール10の端面11を前側から見たときに、位置決め穴13に対して
図1のG/2に相当する分だけ下側にずれている。これにより、
図1に示すように光信号が傾斜面で屈折しても、光接続が可能になる。
【0042】
平板30は、光ファイバ2を伝搬する光を透過可能な例えばガラス板である。平板30の内側(後側)の面は、レンズドファイバ1の端面の側を向いており、平板30の外側(前側)の面は、相手方のフェルール10の端面11に取り付けられた平板30と対向する。
【0043】
平板30の形状は、左右方向に長い板形状である。但し、平板30の形状は、この形状に限られるものではなく、例えば前後方向から見て台形状、菱形状などの他の形状でも良い。平板30の左右方向の寸法は、左右方向に並ぶ複数のファイバ穴15の開口を塞ぎつつ、位置決め穴13は塞がない程度の長さである。すなわち、平板30の左右方向の縁は、端に位置するファイバ穴15と位置決め穴13との間に位置する。
【0044】
平板30の外側(前側)の面には、反射防止膜がコーティングされている。例えば、反射防止膜は、屈折率の異なる2種類の薄膜を積層したARコート膜である。平板に反射防止膜を形成することにより、透過損失や反射減衰量を低減させることができる。成膜装置が1度に処理できる容積には制約があるものの、成膜処理の対象物が平板30単体であるため、成膜装置に多数の平板30をセットすることが可能であり、低コストで平板30に反射防止膜を形成できる。なお、仮にレンズドファイバ1の端面にARコート処理を施す場合や、フェルールに取り付けた状態のレンズドファイバ1にARコート処理を施す場合等には、成膜装置のスループットが低減するため、反射防止膜のコーティングにコストがかかってしまう。
【0045】
図3A〜
図3Cは、光接続時の様子の説明図である。
図3Aは、光ファイバ付きフェルール10を有する光コネクタ21をアダプタ22の両側から挿入した光コネクタシステム20の説明図である。
図3B及び
図3Cは、アダプタ22内におけるフェルール10の位置関係の説明図である。光コネクタシステム20は、光ファイバ付きフェルール10を有する2つの光コネクタ21と、2つの光コネクタ21を両側から挿入可能なアダプタ22とを有する。
【0046】
図3Aに示すように、光コネクタ21がアダプタ22の両側から挿入されることによって、光コネクタ21のフェルール10の端面11同士が対向して配置されるとともに、端面11に取り付けられた平板30同士が対向して配置される。雄型光コネクタ21のフェルール10から位置決めピン14が突出しており、この位置決めピン14が雌型光コネクタ21のフェルール10の位置決め穴13に挿入されることによって、アダプタ22内でフェルール10同士が位置決めピン14に垂直な方向(左右方向及び上下方向)に位置合わせされることになる。なお、平板30が互いに平行になるように、フェルール10の上下の向きを逆転させて(接着剤充填窓16を逆向きにさせて)、フェルール10を対向させている。
【0047】
アダプタ22の内部には、内側に突出したスペーサ23が形成されている。スペーサ23の前後方向の寸法は、前述のフェルール10の端面11同士の間隔Lに相当する。フェルール10がスペーサ23に接触することによって、
図3B及び
図3Cに示すように、フェルール10の端面11同士が所定の間隔Lで対向して配置されるとともに、端面11に取り付けられた平板30同士が所定の間隔で対向して配置される。つまり、アダプタ22内でフェルール10がスペーサ23に接触することによって、フェルール10同士が前後方向に位置合わせされるとともに、平板30同士が前後方向に位置合わせされることになる。ここではフェルール10の前側の端面11(傾斜端面)がスペーサ23と接触しているが、フェルール10の鍔部12がスペーサ23と接触することによって、フェルール10の端面11を所定の間隔Lで対向させるようにしても良い。
【0048】
<光ファイバ付きフェルール10の製造方法>
図4は、光ファイバ付きフェルール10の製造方法のフロー図である。
【0049】
まず、レンズドファイバ1を作成する(S101)。具体的には、まずシングルモード光ファイバ2にグレイデッドインデックス光ファイバが融着接続され、融着接続されたグレイデッドインデックス光ファイバが所定の長さにカットされ、シングルモード光ファイバ2の先にGRINレンズ3が形成される。このときのGRINレンズ3の端面(カット面)は、レンズドファイバ1の光軸に対して垂直である。なお、融着接続された部位の外径が、ファイバ穴15(規格で規定された内径のファイバ穴15)に挿通可能なように、融着接続が行われている。このようなレンズドファイバ1が複数本準備される。
【0050】
次に、作業者は、前述のフェルール10を準備し、フェルール10の端面11に平板30を配置する(S102)。フェルール10の前側の端面11が傾斜しているため、端面11に平板30を押し当てて接触させると、平板30は、フェルール10のファイバ穴15の軸方向に垂直な面に対して傾斜して配置される。
【0051】
次に、作業者は、レンズドファイバ1と平板30をフェルール10に接着する(S103)。レンズドファイバ1と平板30がフェルール10に接着されたときには、レンズドファイバ1の端面が平板30に突き当てられて接触した状態になっている。レンズドファイバ1の端面が光軸に垂直であり、平板30は光軸に垂直な面に対して傾斜しているので、レンズドファイバ1の端面と平板30との間に隙間があるが、この隙間には屈折率整合剤となる接着剤が充填されている。フェルール10の端面11と平板30との隙間は僅かであるため、毛管現象を利用して、フェルール10の端面11と平板30との境界に接着剤を塗布することによって、接着剤(屈折率整合剤)を内部に浸透させている。ここでは屈折率整合剤として紫外線硬化型接着剤が用いられており、接着剤を内部に浸透させた後に平板30越しに紫外線を照射すると、接着剤が硬化し、レンズドファイバ1の端面が平板30に接着される。また、フェルール10の端面11と平板30との間にも紫外線硬化型接着剤が浸透しているため、平板30越しに紫外線を照射すると、フェルール10の端面11に平板30が接着される。なお、紫外線硬化型接着剤の代わりに、熱硬化型接着剤を用いても良い。また、作業者は、接着剤充填窓16から接着剤をフェルール10内部に充填することによって、レンズドファイバ1をフェルール10に固定する。
【0052】
上記の作業により、光ファイバ付きフェルール10が製造される。なお、このように製造された光ファイバ付きフェルール10を
図1に示すように対向配置させて光接続させたとき、光損失を0.7dB程度、反射減衰量を60dB程度にすることが実現可能である。
【0053】
上記の第1実施形態の光コネクタシステム20(
図3A参照)では、2つのフェルール10が対向して配置されており、フェルール10がスペーサ23に接触することによって、平板30同士が所定の間隔で対向して配置されている。これにより、
図1に示すように、平板30同士が前後方向に位置合わせされ、2つのフェルール10のレンズドファイバ1を光接続することができる。これらのフェルール10は、レンズドファイバ1と平板30とを有しており、平板30は、ファイバ穴15に挿入されたレンズドファイバ1の端面が突き当てられた状態で、レンズドファイバ1の光軸に垂直な面に対して傾斜して配置されている。平板30が傾斜しているため、また、GRINレンズ3によって光信号のMFD(Mode Field Diameter)が大きいため、光損失を抑制できるとともに、フェルール10にレンズを形成せずに済むため、フェルール10の製造が容易である。また、平板30を傾斜して配置するだけなので、フェルール10の端面を斜めに研磨する工程が不要である。
【0054】
===第2実施形態===
第1実施形態では、フェルール10の端面11と平板30との境界に屈折率整合剤となる接着剤を塗布し、毛管現象によって接着剤を内部に浸透させていた。但し、屈折率整合剤の充填方法は、これに限られるものではない。
【0055】
図5Aは、第2実施形態のフェルール10の斜視図である。
図5Bは、第2実施形態における接着剤(屈折率整合剤)の充填時の様子の説明図である。
【0056】
第2実施形態のフェルール10の前側の端面11には、凹所17が形成されている。凹所17は、前側の端面11から凹んだ部位であり、屈折率整合剤となる接着剤を充填する空間を形成する部位となる。凹所17には、ファイバ穴開口面17A、底面17B及び側面17Cが形成される。
ファイバ穴開口面17Aは、凹所17における後側の内壁であり、フェルール10の端面11に対して後側に位置する。ファイバ穴開口面17Aは、平板30の内側の面と対向する面であり、ファイバ開口面には、複数のファイバ穴15が左右方向に並んで開口している。
底面17Bは、凹所17の底を構成する内壁である。ここでは、底面17Bにはファイバ溝が形成されており、ファイバ穴15に挿入されたレンズドファイバ1はファイバ溝の上で底面17Bから支持される(
図5B参照)。これにより、凹所17においてレンズドファイバ1の端部が湾曲せずに済む。
【0057】
第2実施形態では、作業者は、
図5Aに示すように、フェルール10の端面11に平板30を配置する(
図4のS102参照)。次に、作業者は、レンズドファイバ1と平板30をフェルール10に接着する(S103参照)。第2実施形態においても、レンズドファイバ1と平板30がフェルール10に接着されたときには、レンズドファイバ1の端面が平板30に突き当てられて接触した状態になっている。但し、第2実施形態では、作業者は、平板30及び凹所17で囲まれた空間に屈折率整合剤となる接着剤を充填することになる。すなわち、平板30、ファイバ穴開口面17A、底面17B及び側面17Cで囲まれた空間に屈折率整合剤となる接着剤が充填されることになる。第2実施形態によれば、凹所17に屈折率整合剤(接着剤)を充填するため、毛管現象を利用して接着剤を浸透させる場合と比べると、平板30とレンズドファイバ1の端面との間に屈折率整合剤を充填する時間を短縮できる。
【0058】
<第2実施形態の変形例>
図6は、第2実施形態の変形例のフェルール10の斜視図である。
図7は、第2実施形態の変形例のフェルール10の説明図である。なお、
図7では、説明のため、側面図におけるフェルール10を一部断面とし、ファイバ穴15にレンズドファイバ1を挿入した状態で示している。
【0059】
変形例のフェルール10は、2次元配置されたファイバ穴15を有している。ここでは、左右方向に12個に並ぶファイバ穴15の列が上下方向に4列で配置されている。複数の光ファイバ穴15が2次元配置された場合には、フェルール10の端面11を前側から見たときに、複数のファイバ穴15の中心位置(重心位置)が、位置決め穴13に対して
図1のG/2に相当する分だけ下側にずらすと良い。すなわち、端面11Aは、上側(接着剤充填窓16の側)ほど相手側のフェルールに向かうように傾斜しており、複数のファイバ穴15の中心位置は、位置決め穴13に対して下側(接着剤充填窓16の側とは反対側)にずれた位置にあると良い。
【0060】
変形例においても、フェルール10の前側の端面11に、凹所17が形成されている。凹所17には、ファイバ穴開口面17A、底面17B及び側面17Cが形成されているとともに、変形例では更に突出部17Dが形成されている。突出部17Dは、ファイバ穴開口面17Aの上縁から前側(平板30の側)に突出した部位であり、平板30の上縁と接触する部位である。平板30の左右縁と下縁は、フェルール10の端面11と接触するとともに、平板30の上縁は、突出部17Dと接触する。これにより、凹所17に充填した接着剤の収縮による平板30の歪みを抑制できる。特に、変形例では複数のファイバ穴15が2次元配置されているため、凹所17が深く形成されるため、接着剤の収縮による平板30への影響が大きくなるので、フェルール10に突出部17Dを形成することは特に有効である。
【0061】
===第3実施形態===
図8Aは、第3実施形態のフェルール10の斜視図である。
図8Bは、第3実施形態における接着剤(屈折率整合剤)の充填時の様子の説明図である。
【0062】
第3実施形態のフェルール10の前側の端面には、溝18が形成されている。溝18は、複数のファイバ穴15の開口の上部を貫通するように左右方向に沿って形成されている。
図8Bに示すように、溝18は、断面V字状に形成されており、下面18A及び斜面18Bを有する。下面18Aは、複数のファイバ穴15の開口の中心付近に位置している。斜面18Bは、溝18を構成する内壁面であり、少なくとも一部がファイバ穴15よりも上側に位置する。斜面18Bの下縁(後縁)は下面18Aの後縁に位置しており、上縁(前縁:フェルール10の端面11における縁)はファイバ穴15よりも上側に位置している。
【0063】
溝18の端部は、平板30よりも外側に露出している。ここでは、溝18の左右端が平板30よりも上側に露出するように、溝18の左右端がフェルール10の上面に達するまで延びて形成されている。これにより、フェルール10の端面11と平板30との境界に溝18による隙間18Cが形成され、この隙間18Cから接着剤を充填できる。
【0064】
第3実施形態では、作業者は、
図8Aに示すように、フェルール10の端面11に平板30を配置する(
図4のS102参照)。次に、作業者は、レンズドファイバ1と平板30をフェルール10に接着する(S103参照)。第3実施形態においても、レンズドファイバ1と平板30がフェルール10に接着されたときには、レンズドファイバ1の端面が平板30に突き当てられて接触した状態になっている。但し、第3実施形態では、作業者は、フェルール10の端面11と平板30との境界における溝18による2つの隙間18Cの一方から接着剤を充填する。接着剤は、溝18に沿って内部に流れ込み、内部に充填されることになる。このとき、内部に気泡が形成されたとしても、その気泡はファイバ穴15よりも上側に移動するため、レンズドファイバ1の端面に気泡が形成されることを抑制できる。
【0065】
<第3実施形態の変形例>
図9は、第3実施形態の変形例のフェルール10の説明図である。
図10Aは、第3実施形態の変形例における接着剤(屈折率整合剤)の充填時の様子の説明図である。
【0066】
変形例のフェルール10は、2次元配置されたファイバ穴15を有している。ここでは、左右方向に12個に並ぶファイバ穴15の列が上下方向に4列で配置されている。複数の光ファイバ穴15が2次元配置された場合には、フェルール10の端面11を前側から見たときに、複数のファイバ穴15の中心位置(重心位置)が、位置決め穴13に対して
図1のG/2に相当する分だけ下側にずらすと良い。
【0067】
変形例においても、左右方向に並ぶ複数のファイバ穴15の開口の上部を貫通するように、溝18が左右方向に沿って形成されている。変形例では、左右方向に並ぶファイバ穴15の列が上下方向に4列で配置されているため、溝18も上下方向に4列形成されている。溝18の左右端は、フェルール10の側面に達するまで延びて形成されている。これにより、フェルール10の端面11と平板30との境界に溝18による隙間18Cが形成され、この隙間18Cから接着剤を充填できる。4列の溝18のそれぞれに隙間18Cが形成されるため、それぞれの溝18に接着剤を流し続けることができる。なお、仮に4列の溝18の左右端の隙間18Cを共通化させてしまうと(共通化させた隙間18Cから接着剤を分岐させて4列の溝18に接着剤を流し込むと)、接着剤の流れにくい溝18が発生してしまう。このため、4列の溝18のそれぞれに隙間18Cが形成されていることが望ましい。
【0068】
図10Bは、第3実施形態の変形例のフェルール10を有する光コネクタシステムにおける光接続時の説明図である。変形例においても、フェルール10がスペーサ23に接触することによって、フェルール10の端面11同士が所定の間隔Lで対向して配置される。
【0069】
変形例では、溝18の左右端が、フェルール10の側面に達するまで延びて形成されている。このため、仮に溝18の形成された部位でスペーサ23がフェルール10の端面11と接触すると、スペーサ23ががたつくおそれがあり、この場合、フェルール10同士の前後方向の位置関係や、平板30同士の前後方向の位置関係がずれるおそれがある。そこで、変形例では、溝18の形成された部位に接触しないように、スペーサ23に凹部23Aが形成されている。これにより、フェルール10同士の前後方向の位置や、平板30同士の前後方向の位置を、精度良く合わせることができる。
【0070】
===第4実施形態===
第1実施形態〜第3実施形態では、流体状の屈折率整合剤(接着剤)をレンズドファイバ1と平板30との隙間に充填していた。但し、この場合、レンズドファイバ1の端面に気泡が形成されるおそれがある。これに対し、第4実施形態では、柔らかい固形状の屈折率整合剤(固形屈折率整合材)を平板30に配置し、柔らかい固形屈折率整合材にレンズドファイバ1を突き当てることによって、レンズドファイバ1の端面に気泡が形成されることを抑制する。
【0071】
図11は、第4実施形態の光ファイバ付きフェルール10の製造方法のフロー図である。
【0072】
まず、レンズドファイバを作成する(S201)。S201の処理は、
図4のS101の処理と同様である。
【0073】
次に、作業者は、固形屈折率整合材をフェルール10と平板30との間に配置する(S202)。固形屈折率整合材は、光透過性のシート状の部材であり、固形の屈折率整合剤である。固形屈折率整合材の屈折率は、前述の接着剤(屈折率整合剤)とほぼ同様である。固形屈折率整合材の材質としては、例えばアクリル系、エポキシ系、ビニル系、シリコーン系、ゴム系、ウレタン系、メタクリル系、ナイロン系、ビスフェノール系、ジオール系、ポリイミド系、フッ素化エポキシ系、フッ素化アクリル系などの高分子材料を挙げることができる。
【0074】
固形屈折率整合材は、平板30の後側の面に配置される。つまり、固形屈折率整合材は、レンズドファイバ1が突き当てられる面に配置される。このため、固形屈折率整合材は、ファイバ穴15の開口と対向する。例えば、
図6の平板30の凹所17の側の面においてファイバ穴15と対向する領域に、シート状(フィルム状)の固形屈折率整合材が貼り付けられる。なお、シート状の固形屈折率整合材を平板30に貼り付けるのではなく、液状の屈折率整合剤を平板30に塗布した後に固化させることによって、平板30に固形屈折率整合材を配置させても良い。
【0075】
固形屈折率整合材は、レンズドファイバ1の端面が突き当てられたときに表面が変形する程度の硬度を有している。これにより、レンズドファイバ1の端面に気泡が形成されることを抑制できる。
【0076】
図12は、固形屈折率整合材のシートの硬度と厚さの関係の説明図である。横軸は固形屈折率整合材の厚さを示し、縦軸はショアA硬度(HSA)を示している。固形屈折率整合材としては、図中の領域RDのものを好適に使用できる。なお、図中の領域RCと領域RDは、点P1(HSA70、厚さ50μm)と、点P2(HSA0、厚さ150μm)とを結ぶ直線で区分されている。
【0077】
領域RA(ショアA硬度が70よりも大きい領域)では、硬度が高すぎるため、レンズドファイバ1が突き当てられたときの固形屈折率整合材の表面の追従性が低い。このため、レンズドファイバ1の端面に隙間(気泡)が発生しやすくなる。但し、領域RAの固形屈折率整合材を用いた場合であっても、固形屈折率整合材が無い場合と比べれば、レンズドファイバ1の端面の気泡を抑制できる。
【0078】
領域RB(ショアA硬度が70以下、且つ、厚さが30μmよりも小さい領域)では、固形屈折率整合材が薄すぎるため、レンズドファイバ1の端面が粗い場合や、複数本のレンズドファイバ1の端面が揃っていない場合等があると、レンズドファイバ1の端面に隙間(気泡)が発生しやすくなる。但し、領域RBの固形屈折率整合材を用いた場合であっても、固形屈折率整合材が無い場合と比べれば、レンズドファイバ1の端面の気泡を抑制できる。
【0079】
領域RC(ショアA硬度が70以下、且つ、点P1と点P2とを結ぶ直線よりも厚さが大きい領域)では、レンズドファイバ1の端面と平板30の面との距離が大きくなり過ぎてしまい、適切でない。但し、領域RCの固形屈折率整合材を用いた場合であっても、固形屈折率整合材が無い場合と比べれば、レンズドファイバ1の端面の気泡を抑制できる。
【0080】
上記の通り、領域RD(ショアA硬度が70以下、且つ、厚さが30μm以上の領域のうち、点P1と点P2を結ぶ直線を含め、当該直線よりも厚さが小さい領域)が適切な領域となる。すなわち、固形屈折率整合材として、図中の(HSA0、厚さ30μm)、(HSA70、厚さ30μm)、(HSA70、厚さ50μm)、(HSA0、厚さ150μm)の4点に囲まれる範囲内にあるものを用いることが望ましい。
【0081】
固形屈折率整合材の両面は、粘着性を有していることが望ましい。これにより、固形屈折率整合材が平板30から剥離しにくくなるとともに、固形屈折率整合材にレンズドファイバ1の端面が突き当てられた後、固形屈折率整合材とレンズドファイバの端面とが剥離しにくくなる。このような固形屈折率整合材としては、高分子材料からなる粘着材をフィルム状にしたものを用いることができ、耐環境性や粘着性の面からは一般的にシリコーン系、アクリル系のものを用いることができる。
【0082】
次に、作業者は、レンズドファイバ1と平板30をフェルール10に接着する(S203)。第4実施形態では、レンズドファイバ1と平板30がフェルール10に接着されたときには、レンズドファイバ1の端面が固形屈折率整合剤を介して平板30に突き当てられて接触した状態になっている。レンズドファイバ1の端面を平板30の固形屈折率整合材に突き当てて接触させたとき、レンズドファイバ1の端面が光軸に垂直であり、平板30は光軸に垂直な面に対して傾斜しているが、固形屈折率整合材の表面がレンズドファイバ1の端面に沿って変形することによって、レンズドファイバ1の端面と平板30との間の隙間に固形屈折率整合材が充填される。なお、作業者は、例えば凹所17に接着剤を充填することによって、レンズドファイバ1と平板30をフェルール10に接着する。また、接着剤充填窓16に接着剤を充填することによって、レンズドファイバ1をフェルール10に固定する。これにより、光ファイバ付きフェルール10が製造される。
【0083】
上記の第4実施形態によれば、平板30に配置された柔らかい固形屈折率整合材にレンズドファイバ1を突き当てることによって、レンズドファイバ1の端面に気泡が形成されることを抑制できる。
【0084】
===第5実施形態===
図13Aは、第5実施形態のフェルール10の説明図である。第5実施形態においても、前述の実施形態と同様に、フェルール10の前側の端面11は、レンズドファイバ1の光軸に垂直な面(ファイバ穴15の軸方向に垂直な面)に対して傾斜している。また、端面11に取り付けられた平板30も、レンズドファイバ1の光軸に垂直な面に対して傾斜して配置されている。
【0085】
第5実施形態では、フェルール10の前側の端面11は、上からから見たときに(2つの位置決め穴15の並ぶ左右方向及び位置決め穴15の軸方向である前後方向に垂直な方向(上下方向)から見たときに)、左右方向に対して8度傾斜している。このため、端面11に取り付けられた平板30も、上からから見たときに、左右方向に対して8度傾斜している。
【0086】
図13Bは、第5実施形態のフェルール10の光接続時の様子の説明図である。第5実施形態においても、フェルール10の端面11同士が対向して配置されるとともに、平板30同士が対向して配置される。位置決めピン14がフェルール10の位置決め穴13に挿入されることによって、不図示のアダプタ内でフェルール10同士が位置決めピン14に垂直な方向(左右方向及び上下方向)に位置合わせされることになる。
【0087】
なお、フェルール10の傾斜した端面11が互いに平行になるように、第5実施形態では、フェルール10の上下の向きを同じにさせて(接着剤充填窓16を同じ向きにさせて)、フェルール10を対向させている。このため、第5実施形態では、ファイバ穴15の上下方向の位置は、位置決め穴13の上下方向の位置と同じである(但し、第5実施形態では、複数のファイバ穴15は、一方の位置決め穴13の側に
図1のG/2に相当する分だけ左右方向にずれている)。
【0088】
第5実施形態においても、フェルール10がスペーサ23に接触することによって、フェルール10の端面11同士が所定の間隔Lで対向して配置されるとともに、平板30同士が所定の間隔で対向して配置される。つまり、フェルール10がスペーサ23に接触することによって、フェルール10同士が前後方向に位置合わせされるとともに、平板30同士が前後方向に位置合わせされることになる。
【0089】
===第6実施形態===
図14Aは、第6実施形態のフェルール10の説明図である。
第6実施形態では、フェルール10の前側の端面11は、位置決め穴13の軸方向(前後方向)に垂直な面になっており、傾斜していない。但し、第6実施形態では、ファイバ穴15の軸方向が、位置決め穴13の軸方向に対して8度傾斜している。このため、レンズドファイバ1をファイバ穴15に挿入すると、フェルール10の前側の端面11は、レンズドファイバ1の光軸に垂直な面に対して傾斜することになる。また、端面11に取り付けられた平板30も、レンズドファイバ1の光軸に垂直な面に対して傾斜して配置されることになる。
【0090】
図14Bは、第6実施形態のフェルール10の光接続時の様子の説明図である。第6実施形態においても、フェルール10の端面11同士が対向して配置されるとともに、平板30同士が対向して配置される。位置決めピン14がフェルール10の位置決め穴13に挿入されることによって、不図示のアダプタ内でフェルール10同士が位置決めピン14に垂直な方向(左右方向及び上下方向)に位置合わせされることになる。なお、対向するフェルール10のファイバ穴15が互いに平行になるように、第6実施形態では、フェルール10の上下の向きを同じにさせて(接着剤充填窓16を同じ向きにさせて)、フェルール10を対向させている。
【0091】
第6実施形態においても、フェルール10がスペーサ23に接触することによって、フェルール10の端面11同士が所定の間隔L(前後方向の間隔ではなく、レンズドファイバ1の光軸方向の間隔)で対向して配置されるとともに、平板30同士が所定の間隔で対向して配置される。つまり、フェルール10がスペーサ23に接触することによって、フェルール10同士が前後方向に位置合わせされるとともに、平板30同士が前後方向に位置合わせされることになる。なお、第6実施形態では、スペーサ23の前後方向の厚さは、Lよりも若干薄くなる。
【0092】
===その他===
上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。