【課題を解決するための手段】
【0014】
[加工方法について]
上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備える。
【0015】
ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。
【0016】
また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。
【0017】
また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。
【0018】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。
【0019】
また、加工部材が、Al
2O
3から構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiO
2を主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。
【0020】
また、加工部材が、SiO
2を主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。
【0021】
また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。
【0022】
また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。
【0023】
また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
【0024】
また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
【0025】
また、加工部材と、被加工物との接触部位にN
2ガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0026】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。
【0027】
なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO
2、ZrO
2、Al
2O
3、TiO
2、Fe
2O
3、MgO、CaO,Na
2O、K
2O、CeO
2等の金属酸化物、SiC、SiN、Al
2O
3等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Si
3N
4セラミックス、AIN、ガラス等の硬脆材料等が挙げられる。
【0028】
また、上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、前記加工部材は、アルミナセラミックスまたはSiO
2を主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。
【0029】
ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。
【0030】
また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。
【0031】
また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。
【0032】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。
【0033】
また、加工部材が、アルミナセラミックスまたはSiO
2を主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。
【0034】
また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。
【0035】
また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
2GaN+3H
2O⇔Ga
2O
3+2NH
3
また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
【0036】
[加工装置について]
また、上記の目的を達成するために、本発明に係る加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備える。
【0037】
ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。
【0038】
また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。
【0039】
また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。
【0040】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。
【0041】
また、加工部材が、Al
2O
3から構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiO
2を主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。
【0042】
また、加工部材が、SiO
2を主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。
【0043】
また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。
【0044】
また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。
【0045】
また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
【0046】
また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
【0047】
また、加工部材と、被加工物との接触部位にN
2ガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0048】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物を物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。
【0049】
なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO
2、ZrO
2、Al
2O
3、TiO
2、Fe
2O
3、MgO、CaO,Na
2O、K
2O、CeO
2等の無機酸化物、SiC、SiN、Al
2O
3等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Si
3N
4セラミックス、AIN、ガラス等の硬脆材料等が挙げられる。
【0050】
また、上記の目的を達成するために、本発明の加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備え、加工部材は、アルミナセラミックスまたはSiO
2を主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。
【0051】
ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。
【0052】
また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。
【0053】
また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。
【0054】
本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。
【0055】
また、加工部材が、アルミナセラミックスまたはSiO
2を主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。
【0056】
また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。
【0057】
また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
2GaN+3H
2O⇔Ga
2O
3+2NH
3
また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
【0058】
[加工方法について]
上記の目的を達成するために、本発明の加工方法は、加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御すると共に、前記加工部材と前記被加工物を接触させた状態で相対的に変位させる工程を備える。
【0059】
ここで、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御することによって、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
【0060】
本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。
【0061】
また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。
【0062】
また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。
【0063】
また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオン及び陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。
【0064】
また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0065】
また、加工部材の表面に紫外光若しくはプラズマを照射して同加工部材の表面を清浄化かつ親水化処理する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0066】
また、加工部材及び被加工物の接触部位にN
2ガスを供給する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0067】
本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給することによって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。そのため、一般的な紫外光光源に比べて、陽イオン、若しくは、陰イオンの少なくとも一方を供給するだけで安定した加工が可能となる。
【0068】
なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO
2、ZrO
2、Al
2O
3、TiO
2、Fe
2O
3、MgO、CaO,Na
2O、K
2O、CeO
2等の無機酸化物、SiC、SiN、Al
2O
3等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Si
3N
4セラミックス、AIN、ガラス等の硬脆材料等が挙げられる。
【0069】
[加工装置について]
また、上記の目的を達成するために、本発明に係る加工装置は、加工部材と、該加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部と、所定の被加工物を保持する保持機構と、前記加工部材と前記被加工物を接触させた状態で、前記加工部材と同被加工物を相対的に変位させる駆動部とを備える。
【0070】
ここで、加工部材と、加工部材、若しくは、加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を安定化させるものとなる。
【0071】
また、加工部材と、所定の被加工物を保持する保持機構と、加工部材と被加工物を接触させた状態で、加工部材と被加工物を相対的に変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を安定化させた上で、被加工物の表面を物理・化学的に加工することができる。
【0072】
本発明では、帯電処理部で加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給し、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。
【0073】
また、加工部材、若しくは、被加工物の少なくとも一方を加湿する加湿処理部を備える場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0074】
また、加工部材の表面を親水化処理する清浄化かつ親水化処理部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0075】
また、加工部材及び被加工物の接触部位にN
2ガスを供給するN
2ガス供給部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。
【0076】
本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。また、既存の加工装置の紫外光光源を帯電装置等に置き換えるだけでよいため、加工システムを容易に構築できるものとなっている。