【実施例1】
【0016】
(1)有機物分解菌担持多孔体
含水率10%以下の孟宗竹を640℃で約2時間(予備加熱を含めると約5時間)かけて炭化した孟宗竹炭を有機物分解菌担持用多孔体として用いた。評価に供した孟宗竹炭は大きさ10〜15cmの小札状のものであり、細孔データは以下の通りである。また、細孔分布を
図2〜4に示す。
<1nm〜1mmの孔分布(水銀圧入法)(
図2のデータ)>
・(a)(孟宗竹)分布ピーク 0.1〜1.0μm
・(b)(廃木材)分布ピーク 0.1〜1.0μm(比較対象)
・(c)(コーンコブ)分布ピーク 10〜100μm(比較対象)
<メソ孔(DH法)(
図3のデータ)>
・積算細孔容積 0.0358 cm
3/g
・分布ピーク直径 2.43 nm
・積算細孔面積 32.04 cm
2/g
<マイクロ孔(HK法)(
図4のデータ)>
・積算細孔容積 0.154 cm
3/g
・分布ピーク直径 0.54 nm
<全ての孔(
図3、
図4のデータ)>
・比表面積 371.4 m
2/g
孟宗竹炭の特性に最も影響を与える要因として最大炭化温度を挙げることができる。この温度が600〜650℃の範囲内であれば有機物分解菌担持に関して特性に大きな差がないことが繰り返しの検証でわかっている。物理的な観点から、担持する有機物分解菌よりも大きな孔径の孔内には有機物分解菌の担持が可能である。微生物分解菌として硝化処理に用いられることが多いバチルス菌は一般に好気性の硝化菌であり、その大きさは(0.7〜0.8)×(2〜3)μmである。すなわち、2〜3μmより小さい孔径の孔内にバチルス菌を担持するのは物理的に困難であると考えられる。多孔質体に担持する有機物分解菌をバチルス菌とした場合、バチルス菌の大きさを基準として、バチルス菌よりも孔径が大きい領域を担持領域、バチルス菌よりも孔径が小さい領域を非担持領域として、両方の領域を有するものを用いることになる。ここで、バチルス菌よりも孔径が大きい、小さい、とはバチルス菌が実質的に孔内に侵入できるか否かを意味するものである。バチルス菌の大きさを考慮すると、20μm程度の孔径であれば容易に孔内に侵入が可能である。この孔径の多孔体にバチルス菌を担持した場合、菌と孔径の大きさの関係上、どの孔内も好気的な雰囲気であり、担持に適した領域だと考えられる(後述する脱窒化性能の検証試験で比較対象に用いた市販の微生物担体は、孔径が20μm前後であり、好気性微生物の担持に適している)。担持する微生物と同等程度未満の孔径の孔内は微生物が入っていけず、また、微生物によって外気が遮断され、嫌気的な雰囲気の領域となる。なお、硝化菌とはNH
4+をNO
2−に酸化する亜硝酸菌、NO
2−をNO
3−に酸化する硝酸菌がある。前者はNitrosomonas属、Nitorosococcus属、Nitrosospira属の、後者はNitrobacter属、Nitrospira属の細菌が挙げられる。本発明では担持する有機物分解菌としては前記硝化菌に限定されるものではない。
【0017】
(2)脱窒化性能の検証試験
前記(1)の竹炭の脱窒化性能の検証を行った。比較対象として市販の微生物担体(商品名:クラゲール(登録商標)(クラレアクア株式会社)(孔径約20μm前後))を用いた。
(ア)模擬排泄物
以下の材料を混合した後、20Lの密封容器中にて37℃で10ヶ月培養し、模擬排泄物とした。
<模擬排泄物原料>
・米糠 1200g
・糠床 50g
・ヨーグルト 150g(恵)(登録商標)(雪印メグミルク株式会社)
・純水 2320mL
(イ)馴養
上記模擬排泄物に微生物担体を入れないもの(試験区A)、竹炭200gを入れたもの(試験区B)、市販微生物担体を入れたもの(試験区C)の各試験区についてマグネチックスターラーによる攪拌、エアーポンプによる曝気の下、それぞれ3カ月間馴養した。
(ウ)結果(硝酸態窒素の経時変化)
上記(イ)の各試験区のpHを7〜8に調節し、溶存酸素(DO)が安定していることを確認してから以下の基質を入れ、pH、DO、亜硝酸態窒素(NO
2−N)、硝酸態窒素(NO
3−N) を測定し、硝酸ナトリウム(NaNO
3)に含まれているNO
3−Nの経時変化を確認した。
<基質>
・Glucose 5.0000g
・NaNO
3 0.1252g
・MgSO
4 0.0085g
・CaCl
2 0.0052g
・KH
2PO
4 0.1573g
<水質測定>
・pH pHメーター(株式会社堀場製作所)
・溶存酸素 溶存酸素計(DO計) MonoLine Oxi 3310 IDS(セントラル科学株式会社)
・亜硝酸イオン濃度 RQフレックスプラス10(関東化学株式会社)
・硝酸イオン濃度 RQフレックスプラス10(関東化学株式会社)
<結果>
NO
3−N濃度に関しては、試験区Aが9時間、試験区Bが6時間、試験区Cが11時間で検出できなくなり、試験区Bにおいて最も早くNO
3−Nが消失することが確認された(
図5)。なお、DOに関して試験区Aでは0時間で8.28mg/L、9時間で8.03mg/L、試験区Bでは0時間で8.12mg/L、6時間で7.89mg/L、試験区Cでは0時間で7.84mg/L、11時間で7.79mg/Lであった。pHに関しては、試験区Aで0.3増加、試験区Bで0.5増加、試験区Cで0.05減少した。NO
2−N濃度に関しては試験区Bが0〜0.2mg/Lで、試験区A、Cが0mg/Lであった。
<考察>
脱窒化反応は、NO
3−→NO
2−→N
2の順に進行することからNO
3−の減少で脱窒化現象が起きていると考えられる。試験区Bが最も早くNO
3−Nが無くなったのは、竹炭の複雑な孔に微生物が付着することで非担持孔内の酸素を消費することで嫌気的雰囲気ができ、これが脱窒化に寄与した可能性があることを示唆するものである(
図6)。竹炭及び市販品に付着した微生物の様子を走査電子顕微鏡(SEM)により1000〜10000倍のスケールで観察したところ、竹炭では表面への付着が多く、竹炭を割って観察した内部には表面ほど多く付着していなかった。すなわち、内部ほど孔径が小さくなり、微生物にとって嫌気的な雰囲気になっていることを示唆するものである。一方、市販品では内部においても多くの微生物が付着しており、好気的な環境であることが示唆された(いずれも写真は省略)。なお、DO値から各試験区ともに十分に好気的であることが認められる。このように硝化菌を担持する担持体に、好気的雰囲気だけでなく嫌気的雰囲気(硝化菌よりも孔径が小さい硝化菌非担持領域)が存在することで、硝化反応だけでなく脱窒化反応が起こることが示唆された。さらに脱窒化反応は有機物分解菌よりも小さい孔径の孔内領域、あるいは孔径1μm以下の孔内領域が多いほど効果があると考えられる。なお、いずれの試験区においても最終的にNO
3−Nが無くなったのは、沈殿物(活性汚泥)中の脱窒化反応によるものである。
【0018】
(3)脱窒化性能の検証試験(補足試験)
上記(2)の検証試験では活性汚泥による脱窒化効果が微生物担体の効果を比較する上でのノイズとなったので、この活性汚泥を濾過によって取り除いた場合の効果を確認した(
図7)。NO
3−Nは試験区Bにおいてのみ減少し、無くなった。この結果から試験区Bにおいてのみ脱窒化反応が起こっていることが示唆された。本結果は上記考察を補強するものである。
【0019】
(4)汚水処理システム実証試験
<試験>
自然由来の硝化菌を担持した乾燥竹炭約50kgをトイレに連結した汚水処理システムに適用した場合の実証試験を行った。
試験期間:2017年1月から継続試験中
試験場所:松本工業株式会社ビル
装置:
図1(竹炭槽に本発明の竹炭を使用)(各槽の有効容量は汚水の経路順に第1槽が1.4m
3、第2槽が1.0m
3、第3槽が1.4m
3、第4槽が0.5m
3、竹炭槽が0.5m
3、オゾン槽が0.6m
3、処理水槽(貯留槽)が0.3m
3)
洗浄水:0.2m
3/人・日
エアー:80L/分
トイレ使用者:約7人/日
汚水処理システムは一次処理槽(バチルス菌を担持したクラゲール(登録商標)を充填した第1、第2担体槽、活性汚泥槽、沈殿槽)(第1槽は、当初、微生物担体を充填しない好気槽としていたが、第2槽の浮遊担体が第1槽にも拡散したため途中から第1、第2槽を担体槽とした)、二次的な微生物処理を行う竹炭槽、微生物処理後にオゾン殺菌処理を行うオゾン槽、洗浄水量の調整を行う処理水槽から構成される。また、一次処理槽の第1、第2担体槽、活性汚泥槽、竹炭槽にはエアーポンプを通じて常時曝気する構成である(沈殿槽は脱窒化強化のために途中から嫌気的状態に変更)。この竹炭槽に本発明に係る硝化菌担持竹炭を用いた。
<結果>
本汚水処理システムにより1年以上試験を行い、汚水を再生利用できることがわかった。また、当初、竹炭槽では硝化反応促進を目的として設けていたのに対し、硝化反応と脱窒化反応の両方の反応が起こっていることが見出された。そこで(記載が前後するが)上記(2)(3)の脱窒化検証試験等を通じて硝化菌の担持と脱窒効果を得るための硝化菌担持の条件等を明らかにした。また、竹炭槽の曝気を停止し、嫌気的状態とすることでも脱窒槽として十分な機能を有することを確認した。なお、竹炭槽に充填した竹炭の性能等に劣化は確認されなかった。また、官能的に竹炭槽からの臭気も認められなかった。
<考察>
本実施例では汚水処理システムの一次処理後の汚水を完全に硝化するため追加的に竹炭槽を設けたところ、硝化反応だけでなく脱窒化反応も同時に起こっていることが見出された。これは好気的な竹炭表面や硝化菌よりも孔径が大きい孔内においては硝化反応が起こり、孔径がより小さい嫌気的な孔内において脱窒化反応が起こっている可能性を示唆するものである。評価を重ねたところ、1μm以下の孔径領域を有する硝化菌担持竹炭に硝化、脱窒化性能が確認された。また、当該竹炭のマイクロ細孔分布のピークは0.2〜1.0nmにあることが確認された。すなわち、これらの範囲の孔径を有することが脱窒化反応に直接又は間接的に影響している可能性が示唆される。また、本実施例では竹炭を用いたが、一般的に竹炭表面にはプロトン(H
+)が豊富であることから硝化菌による脱窒化(還元反応)に加えて竹炭からプロトンが供与される還元反応も脱窒化に寄与している可能性が考えられる。一次処理後の汚水を上記のように好気的雰囲気下で処理する利点として、嫌気的処理では大きな問題となる臭気を抑えることできることが挙げられる。また、硝化菌担持体として竹炭そのものには量的変化がないことから半永久的に使用し続けることができることが挙げられる。今回の実証試験では官能的に臭気の発生、竹炭の減少ともに認められず、竹炭の有用性についても確認された。このように本発明の硝化菌担持竹炭はトイレに連結した汚水処理システムとして利用できることが示唆された。本実施例では硝化菌担持竹炭を二次的処理に用いるにとどまるが、本発明に係る硝化菌担持多孔体を一次処理に用いても効果を示すものと考えられる。
【0020】
上記結果から硝化菌を担持した竹炭を汚水処理システムに組み込み、汚水を再生利用できることが確認された。また、硝化と脱窒化の両方の効果を有する硝化菌担持体を汚水処理システムにおいて汚水の状態等に応じた利用が可能である。例えば、同一槽内において、汚水の硝化が進んだ状態になったらエアーを制限することでより嫌気的な環境とし、脱窒化に反応をシフトさせる等、状況に応じた処理を行うことができる。また、汚水中の成分を検出する検出器の検出値とエアー制御を連動させることで硝化、脱窒化を自動的に行うことが可能になる。例えば、脱窒化反応が進行すると処理水のpHが上昇することが経験的にわかっており、pH計を検出器として反応の進行状況に応じてエアー制御することが挙げられる。検出器としてはpH計に限らず、溶存酸素計でもよいし、その他の特定成分の検出を目的としたものであってもよい。また、エアーを制限して嫌気的雰囲気にしても竹炭の脱臭効果によって周囲の環境に臭気の拡散を防止できることが確認されており、脱窒化と脱臭を両立することができる。