【実施例1】
【0038】
そこで本実施形態では、圧縮機の高さ方向の寸法を横方向の寸法より小さくできる扁平形状の圧縮機を新たに考案し、この扁平形状の圧縮機を機械室に配置することで、機械室の高さを低くして最下部貯蔵室の収納容積の容量を増やすことに寄与させ、更に、断熱箱体の上方に配置された真空断熱材の総重量を、断熱箱体の下方に配置された真空断熱材の総重量より軽くすることで、冷蔵庫の重心を下方に移動させて冷蔵庫の転倒の恐れを抑制するものである。
【0039】
まず、圧縮機の高さ方向の寸法を横方向の寸法より小さくできる偏平圧縮機の構成について説明する。本実施形態の圧縮機は、圧縮要素が、シリンダ内においてピストンを径方向に往復動させることで冷媒を圧縮するクランクシャフトと、クランクシャフトを軸支する軸受とを備え、電動要素が、クランクシャフトに固定されるロータと、ロータに回転力を与えるステータとを備え、ピストンの高さ方向の中心からロータの高さ方向の中心までの長さを(S)とし、ロータの半径を(R)としたときに、「R/S≧0.8」とすることで、圧縮機の高さ方向の寸法を横方向の寸法より小さくするものである。
【0040】
図4に示すように、本実施形態で使用する密閉型の偏平圧縮機CMPは、圧縮要素20および電動要素30を密閉容器3内に配置して構成されたいわゆるレシプロ圧縮機である。圧縮要素20および電動要素30は、密閉容器3内において複数のコイルバネ9(弾性部材)を介して弾性的に支持されている。密閉容器3は、略上半分の外郭を構成する上ケース3mと略下半分の外郭を構成する下ケース3nとが溶接などで接合され、内部に圧縮要素20および電動要素30を収容する空間を有している。
【0041】
圧縮要素20は、シリンダ21と、このシリンダ21内においてピストン22を往復動させることで冷媒を圧縮するクランクシャフト23と、このクランクシャフト23を軸支するラジアル軸受25と、を備えている。ラジアル軸受25(軸受)は、シリンダ21およびフレーム24と一体に形成されている。クランクシャフト23は、スラスト軸受26を介してフレーム24に回転自在に支持されている。
【0042】
フレーム24は、略水平方向に延びるベース24aを有し、シリンダ21がベース24aの上部に位置している。また、フレーム24の略中央部には、鉛直方向下方に(下ケース3nの底面に向けて)延びる円筒形状のラジアル軸受25が形成されている。また、フレーム24は、シリンダ21の一部を構成している。
【0043】
シリンダ21は、クランクシャフト23の中心軸Oよりも径方向の外側の偏った位置に形成されている。また、シリンダ21の軸方向の外周側の端部にはヘッドカバー27が取り付けられ、反対側の端部にはピストン22が挿入されている。このように、シリンダ21とヘッドカバー27とピストン22とによって、圧縮室(シリンダ室)Q1が構成されている。なお、シリンダ21とヘッドカバー27との間には、冷媒を吸気する際に開く吸気弁、圧縮した冷媒を吐出する際に開く吐出弁を備えた弁開閉機構が設けられている。
【0044】
ラジアル軸受25は、クランクシャフト23が軸支されるすべり軸受によって構成されている。また、ラジアル軸受25は、フレーム24に形成された貫通孔24bによって構成されている。スラスト軸受26は、ベース24aの上面の貫通孔24bの周囲に円形溝状に形成された凹部24cに配置されている。
【0045】
コネクティングロッド22aの大径側の端部22bは、後記するクランクピン23aと連結され、コネクティングロッド22aの小径側の端部22cは、ピン22dを介してピストン22と連結されている。
【0046】
クランクシャフト23の上端部には、クランクピン23aが形成され、クランクピン23aがクランクシャフト23の回転中心軸Oから偏心した位置に形成されている。また、クランクシャフト23の下端部は、下ケース3nの近傍に位置している。クランクピン23aが回転中心軸Oに対して偏心回転することで、ピストン22がシリンダ21内を往復運動するようになっている。
【0047】
また、クランクシャフト23は、貫通孔24bの上方において、回転中心軸Oに対して直交する方向(水平方向)に延びるフランジ部23bを有している。なお、本実施形態では、フランジ部23bが、バランスウエイトと兼用する構造となっている。バランスウエイトは、圧縮要素20が駆動したときの振動を低減する機能を有している。これにより、圧縮要素20の高さ寸法を低減でき、密閉型の圧縮機CMPの小型化に寄与できる。
【0048】
また、クランクシャフト23には、軸方向の下端から上方に向けて凹形状の中繰り穴23cが形成され、クランクシャフト23内に中空部を有するように構成されている。また、クランクシャフト23には、中繰り穴23cの上端からフランジ部23bの上面に貫通する上部連通孔23dが形成されている。
【0049】
また、クランクシャフト23の外周面には、らせん溝23eがフランジ部23bの近傍まで形成されている。らせん溝23eの上端部は、クランクピン23aに形成された凹形状のピン部中繰り穴23fと、ピン部連通孔23gを介して連通している。
【0050】
クランクシャフト23の中空部には、固定軸部材28が挿入されている。固定軸部材28は、図示しない固定具によって、クランクシャフト23の回転時においても回転しないように固定されている。固定軸部材28の外周面には、固定軸らせん溝28aが形成されている。この固定軸らせん溝28aの壁面と中繰り穴23cの壁面とでらせん状の潤滑油通路が形成され、クランクシャフト23の回転による壁面移動に伴い、潤滑油が粘性の効果で壁面に引きずられて固定軸らせん溝28a内を上昇するようになっている。
【0051】
中繰り穴23cを上昇した潤滑油は、上部連通孔23dを通ってフランジ部23b上に吹き出して、スラスト軸受26を潤滑する。また、クランクシャフト23のらせん溝23eを上昇した潤滑油は、クランクシャフト23とラジアル軸受25との間を潤滑するとともに、ピン部連通孔23gを通って、クランクピン23aのピン部中繰り穴23fに向けて流れ込み、コネクティングロッド22aの周辺を潤滑する。なお、スラスト軸受26などを潤滑した潤滑油は、孔24s(
図4参照)を介して、密閉容器3の底に戻るように構成されている。
【0052】
電動要素30は、フレーム24の下側(ベース24aの下方)に配置され、ロータ31およびステータ32を含んで構成されている。
【0053】
ロータ31は、電磁鋼板を積層したロータコアを備えて構成され、クランクシャフト23の下部に圧入などによって固定されている。また、ロータ31は、半径(R)が厚み(T1:軸方向の高さ)よりも大きい扁平形状である。また、ロータ31の厚み(T1:軸方向の高さ)は、ラジアル軸受25の長さ(L:軸受長)の略半分程度に設定されている。
【0054】
ステータ32は、ロータ31の外周に配置され、円筒状のステータコアとこのステータコアの内周に形成された複数のスロットとからなる鉄心32aと、鉄心32aに絶縁体(図示せず)を介して巻回されたコイル32bとを備えて構成されている。また、鉄心32aは、
図7の縦断面視において、径方向の長さ(W)が厚み(T2:軸方向の高さ)よりも長い扁平形状である。コイル32bも、
図4の縦断面視において、径方向の長さが厚み(軸方向の高さ)よりも長い扁平形状である。また、鉄心32aの厚み(T2:軸方向の高さ)は、ロータ31の厚み(T1:軸方向の高さ)と同程度になるように構成されている。このように、ロータ31を扁平にした場合、ステータ32の径も広げて扁平形状にすることで、ロータ31を回転させるためのトルクをかせぐことができる。
【0055】
このようにして圧縮要素20および電動要素30が設けられたフレーム24は、密閉容器3内において複数のコイルバネ9、9を介して弾性支持されている。また、圧縮要素20および電動要素30は、運転時に振動したときに、密閉容器3の内壁面に接触しないように、所定のクリアランスCLが予め設定された状態で設計されている。
【0056】
コイルバネ9は、圧縮要素20の一部を構成するシリンダ21の側(圧縮機室側Q2、
図4の左側)と、シリンダ21の側とは反対側(反圧縮機室側Q3、
図4の右側)に設けられている。なお、本実施形態では、コイルバネ9が、圧縮室側と反圧縮室側のそれぞれにおいて、
図4の紙面に直交する方向の手前側と奥側に計4本設けられている(
図5参照)。なお、すべてのコイルバネ9は、いずれも同一の形状およびばね特性を有している。このように、コイルバネ9を単一種類にすることで、コイルバネ9が異種混在する場合の配置ミスを防止できる。ただし、コイルバネ9の本数は、4本に限定されるものではなく、3本であってもよく、5本以上であってもよい。
【0057】
また、フレーム24は、シリンダ21よりも外周側(径方向外側)に延びる延出部24dを有している。この延出部24dは、ステータ32よりも外周側に延びている。また、延出部24dの下面には、コイルバネ9の上部に嵌合して保持する突起部24eが形成されている。
【0058】
また、フレーム24は、延出部24dとは反対側においても、延出部24dと同程度に延びる延出部24fを有している。この延出部24fも、ステータ32よりも外周側に延びている。また、延出部24fの下面には、コイルバネ9の上部に嵌合して保持する突起部24gが形成されている。
【0059】
密閉容器3の底面には、ステータ32の外周側において、密閉容器3内に突出するように盛り上がる段差部3aが形成されている。この段差部3aは、下ケース3nの底面の一部と側面の一部とが合わさって凹み形状となることで構成されている。また、段差部3aは、コイルバネ9の位置と対応する位置に設けられている。また、段差部3aの上端には、コイルバネ9の下部が嵌合して保持する突起部3bが形成されている。突起部3bは、ロータ31の下面31aよりも上方に位置している。なお、潤滑油の油面40は、潤滑油がロータ31と浸からないように、ロータ31の下面31aよりも下側に位置するように構成されている。
【0060】
また、各段差部3aの下部には、密閉容器3を弾性支持するゴム座10が設けられている。このゴム座10は、密閉容器3の下ケース3nに固定されたプレート11に支持されている。また、ゴム座10は、鉛直方向(上下方向)においてコイルバネ9と重なる位置に配置されている。
【0061】
図5は、
図4に示す密閉型の圧縮機の横断面図である。なお、
図5では、密閉型の圧縮機CMP内の冷媒の流れについて説明する。
【0062】
図5に示すように、冷蔵庫の冷却器から戻って、密閉容器3を貫通して接続された吸入パイプ3eから導入された冷媒は、吸入サイレンサ41の吸入口(不図示)から吸入された後、ヘッドカバー27などを介して圧縮室Q1(
図4参照)に導入される。また、圧縮室Q1においてピストン22によって圧縮された冷媒は、吐出室空間(不図示)を通って、フレーム24に形成された吐出サイレンサ42a、42bおよびパイプ3fを通って、吐出パイプ3gから冷却器に送られる。
【0063】
図6Aは、本実施形態になる密閉型の圧縮機の作用、効果を説明する模式図であり、
図6Bは、比較例になる従来の密閉型の圧縮機の作用、効果を説明する模式図である。
【0064】
図6Bに示す比較例では、フレーム24Bの上下に圧縮要素20Bと電動要素30Bが配置され、電動要素30Bがコイルバネ9B、9Bを介して密閉容器3B内に弾性支持されている。この場合、内部機構部(圧縮要素20Bおよび電動要素30B)の重心がコイルバネ9B、9Bの上端よりも上方に位置するため、運転時に両矢印方向に振動したときに、振れ角bが大きくなる。
【0065】
これに対して、
図6Aに示す本実施形態では、フレーム24の上部に圧縮要素20、下部に電動要素30が配置され、フレーム24がコイルバネ9、9を介して密閉容器3内に弾性支持されている。この場合、運転時の圧縮要素20と電動要素30がそれぞれ両矢印方向に振動するが、フレーム24の高さ位置(コイルバネ9、9の上端と同程度の位置)に重心が位置するため、振れ角a(<b)小さくなる。
【0066】
このように、密閉型の圧縮機CMPでは、フレーム24の上側に圧縮要素20、フレーム24の下側に電動要素30を配置して、フレーム24がコイルバネ9、9によって弾性支持されることで、内部機構部の振動を低減することが可能になる。さらに、コイルバネ9の位置を、シリンダ21の外周側に配置することで、内部機構部の振動をさらに効果的に抑えることができる。
【0067】
また、本実施形態では、比較例に比べて振動を低減して振れ角aを小さくできることで、内部機構部(圧縮要素20および電動要素30)と密閉容器3との間のクリアランスCL(
図4参照)を短くできる。その結果、密閉容器3を小さくでき、密閉型の圧縮機CMPの小型化を図ることが可能になる。
【0068】
また、各段差部3aの下部には、密閉容器3を弾性支持するゴム座10が設けられている(
図4参照)。このゴム座10は、密閉容器3の下ケース3nに固定されたプレート11に支持されている。また、ゴム座10は、鉛直方向(上下方向)においてコイルバネ9と重なる位置に配置されている。
【0069】
このように段差部3aを形成して、段差部3aにコイルバネ9を配置することにより、コイルバネ9を潤滑油に浸からない高さに設置することが可能になるので、コイルバネ9が潤滑油内で振動する際に生じていた騒音を防止でき、密閉型の圧縮機CMPの静穏化を図ることが可能になる。また、ゴム座10を段差部3aの下部に配置することで、ゴム座10が密閉容器3の下ケース3nから下方に大きく出っ張るのを防止できるので、密閉型の圧縮機CMPの高さが高くなるのを抑制でき、密閉型の圧縮機CMPの小型化を図ることが可能になる。
【0070】
ところで、圧縮機室側Q2にはシリンダ21やピストン22などの重量物が配置されているため、反圧縮機室側Q3(圧縮機室側とは反対側)に比べて重量が重くなり、コイルバネ9に作用する荷重が大きくなる。この場合、コイルバネ9の種類を同じにし、かつ、双方のコイルバネ9の下端が当接する面の高さを同じにすると、圧縮機室側Q2の沈み込み量(縮み量)が多くなり、運転前の初期状態において内部機構部(20、30)が傾いた状態になる。また、密閉容器3と内部機構部との間には、運転時の振動(傾き)を考慮してクリアランス(余裕度)が設けられている。しかし、当接する面の高さを同じにすると、密閉容器3内に内部機構部が衝突する虞があるため、クリアランスを大きく確保する必要性が生じ、圧縮機が大型化する。
【0071】
そこで、本実施形態では、圧縮機室側Q2(シリンダ21側、
図7の左側)のコイルバネ9の下端が当接する当接面3cの高さは、反圧縮機室側Q3(
図4の右側)のコイルバネ9の下端が当接する当接面3dの高さよりも高くなるように構成したものである。なお、前記したように、すべてのコイルバネ9は、同一(形状および特性)の種類のもので構成されている。当接面3cの高さと当接面3dの高さの差分は、コイルバネ9で支持したときに、運転前の初期状態において内部機構部が水平状態となる値に設定される。
【0072】
このように、密閉型の圧縮機CMPでは、当接面3cの高さを当接面3dの高さよりも高くしておくことにより、運転前の初期状態において、内部機構部を水平な状態で支持することが可能になるので、運転時の内部機構部の傾きを小さく抑えることができる。その結果、密閉容器3と内部機構部との間におけるクリアランスCL(
図4参照)を小さく設定することが可能になり、密閉型の圧縮機CMPの小型化を実現することが可能になる。
【0073】
なお、上述した説明では、当接面3cの高さと当接面3dの高さとが異なる場合を例に挙げて説明したが、当接面3c、3dを同じ高さにして、フレーム24の延出部24d、24fの下面の高さについて、圧縮機室側Q2の延出部24dの高さ位置が反圧縮機室側Q3の延出部24fの高さ位置より高くなるようにしてもよい。
【0074】
図7は、[軸受内損失]と[軸受長/軸径]との関係を示すグラフである。なお、「軸受内損失」は、圧縮機を同一運転で運転し、圧縮機の入力(消費電力)の比較を行うことで得られる。ここでの同一運転条件とは、圧縮機の吸込み及び吐出流体の圧力、温度、圧縮機の回転速度や周囲温度等をいう。
【0075】
圧縮機の入力は、「冷媒を圧縮する際に必要となる理論的な動力」と、「熱流体損失」(冷媒の過熱やポンプの漏れに起因する損失)と、「モータ損失」(電力を回転力に変換する際の損失)と、「機械損失」(摺動部(軸受等)の摩擦力)とを加算することで得られる。軸受仕様のみを変更し、同一運転条件で得られた実験結果により、入力の小さいものが、より優れていると判断することができる。
【0076】
また、必要により、冷力も加味したCOP(冷力/入力)を用いて比較してもよい。また、「軸受長L」は、クランクシャフト23の周面(側面)を支持するラジアル軸受25の軸方向の長さであり(
図7参照)、「軸径D」は、クランクシャフト23の直径である(
図4参照)。
【0077】
ところで、圧縮機を小型化することは、特に製品(例えば、冷蔵庫)組み込み時のメリットが大きいが、高さの低い圧縮機を開発する場合において、以下の課題があった。
【0078】
圧縮機の高さを抑制するためには、軸受長さ(軸受長)を従来に比べて短縮する必要がある。しかしながら、軸受長と、軸径(クランクシャフト23の直径)と、の間では、最適とされる比率が存在している。一般的な軸受において、軸受長/軸径(以下、αとする)が、2.0以上の場合、軸受の設計としての潤滑が良好となることが知られている。
【0079】
これは、
図7の破線で示すように、軸が軸受内で平行に保たれる平行軸受が前提での理論となっている。一方、レシプロ圧縮機などの軸受では、クランクピンが偏心回転して運転状態により軸の傾きが生じることから、
図7の実線で示すように、α<2.5の場合において、αが増加するにつれて軸受内の損失が減少し、α≧2.5において、αが増加したとしても軸受内の損失が低い値に保たれる。このことから、α<2.5の範囲で前記した課題が生じることが実験的にも確認されている。
【0080】
ちなみに、
図7の実線において、α<2.0の場合は、軸受と軸の固体同士が接触する「金属接触」の領域であり、α≧2.5の場合は、潤滑膜(油膜)を挟んで軸受と軸の固体同士が接触する「流体潤滑」の領域であり、2.0≦α<2.5の場合は、潤滑膜の厚みが十分ではなく、軸受と軸が部分的に固体接触する「境界潤滑」の領域である。
【0081】
このような課題が生じる技術的な原因としては、軸受と軸の隙間は、経済的に実現可能な加工公差の範囲もあり、軸受長が短くなったとしても、極端に狭めることができず、軸受の設計上、現実的ではない。
【0082】
一方で、軸受長が短くなることで、同じ隙間を有しているとすると、軸が傾く角度が増加することから、結果として圧縮機の軸(クランクシャフト)の傾きが大きくなり、軸受内の損失が増加するとともに、軸受での摩擦係数が大きくなり、軸の円滑な回転を阻害し、振動が増加する傾向が確認されている。
【0083】
そこで、軸受の短縮化に伴い、軸が傾く範囲が増加することにより生じる問題であるので、軸の傾きを抑制することができれば課題を解決することができる。このため、本実施形態では、ロータ31の外径(2R)を、従来よりも大きくすることで、独楽(こま)に代表されるようなジャイロ効果を得て課題を解決するものである。
【0084】
図8は、「振動」と「ロータ半径/(ピストンの高さ中心−ロータの高さ中心)」との関係を示すグラフである。なお、「振動」は、圧縮機を同一運転で運転し、圧縮機の振動の比較を行うことで得られる。ここでの同一運転条件とは、圧縮機の吸込み及び吐出流体の圧力、温度、圧縮機の回転速度や周囲温度等をいう。一般には、圧縮機を冷凍サイクルに接続して運転する。また、組み込み対象製品である冷蔵庫や、製品での仕様を模擬した冷凍装置に接続して(いわゆる冷媒運転にて)検証してもよい。簡便な方法として、吸込みと吐出を大気開放した状態(いわゆる空気運転)で運転して検証してもよい。
【0085】
振動の測定は、運転中の圧縮機の外郭や取り付け脚近傍、あるいは製品との接続パイプ近傍、圧縮機を搭載する部品等、圧縮機の振動の影響がある部位に、振動測定手段を設置して測定できる。また、圧縮機のケース内の圧縮機構部に振動測定手段を設けて測定する方法でもよい。また、振動測定の評価方法については、ばねの伸縮に伴ういわゆる上下方向の振動に加え、前後左右方向に相当する圧縮機構部が傾く方向での振動で評価してもよく、さらにそれらを組み合わせた2次元乃至3次元の振動を合成したもので評価してもよい。
【0086】
また、「ロータ半径R」は、ロータ31の半径であり(
図4参照)、「ピストンの高さ中心H1」は、ピストン22の高さの二分の一の高さ位置であり(
図4参照)、「ロータの高さ中心H2」は、ロータ31の高さの二分の一の高さ位置である(
図4参照)。また、以下では、ロータ半径R/(ピストンの高さ中心H1−ロータの高さ中心H2)=R/Sをβとする。
【0087】
図8に示すように、α<2.5の場合とα≧2.5の場合とに分けることができる。α≧2.5の場合、
図8の「▲」で示す従来仕様の圧縮機では、β(=R/S)を0.5〜1.2まで変化させた場合でも、振動値に大きな変化が見られなかった。これは、軸受長L(
図4参照)が十分に長いことから、軸の傾きが生じ難く、ロータ31の径の違いの影響が小さいものであると考えられる。
【0088】
一方、α<2.5の場合、
図8の「●」で示す圧縮機では、軸受長が短くなったため、β=0.5のときに従来仕様の圧縮機よりも振動値が悪化している。また、βの値を0.5から1.2まで変化させると、ジャイロ効果が増加し、振動値が漸減することが分かる。また、β≧0.8では、従来の圧縮機に対して有意差を持って振動値を低減できることが確認された。
【0089】
よって、本実施形態では、高さを抑制した扁平形状の圧縮機を実現する上で、不可避となる軸受長Lの抑制により生じ得る軸受の傾きを抑制して、低損失で、かつ信頼性の高い軸受を持つ圧縮機を実現できる。
【0090】
ところで、レシプロ圧縮機の軸は、条件により、やや傾いて摺動することが一般的である。このため、軸受と軸とが接触しないように、軸受長Lを確保する必要があり、小型化が困難であった。そこで、密閉型の圧縮機CMPでは、β(=R/S)≧0.8とすることで、扁平形状のロータ31によるジャイロ効果により、圧縮機運転中の軸(クランクシャフト23)の傾きを抑制することができ、軸受(ラジアル軸受25)と軸(クランクシャフト23)の角度を従来よりも平行に近づける効果を得ることができる。
【0091】
また、密閉型の圧縮機CMPでは、α(=L/D)<2.5として、軸受(ラジアル軸受25)の長さ(軸受長L)を大幅に短縮した場合において、従来の形状の(軸方向に長い)ロータを組み合わせると振動が増加するが、β≧0.8とすることで、振動が抑制され、より小型化が可能になる。
【0092】
以上のような構成によって、本実施形態では圧縮機CMPの高さ寸法を短くでき、しかもこれに付随して圧縮機の重量を軽くできるようになる。従来の圧縮機では重量が7〜8kgあったが、本実施形態では約6kg以下に抑えることが可能となった。
【0093】
そして、本実施形態では冷蔵庫に使用する圧縮機CMPの適切な仕様として、高さ寸法を約130mm以下とし、その重量を約6kg以下、望ましくは5kg以下としている。更に、圧縮機の高さ方向の寸法と横方向の寸法の比率である扁平率(高さ寸法/横寸法)を約70%以下としている。このような仕様の偏平圧縮機を冷蔵庫に使用すれば、機械室の前に位置する貯蔵室の収納容積を充分大きくすることができる。
【0094】
次に、圧縮機の高さ方向の寸法を横方向の寸法より小さくした扁平形状の圧縮機を機械室に配置して、機械室の上側と断熱仕切壁の間の空間領域を拡大して貯蔵室の収納容積の容量を増やすことに寄与させ、機械室の前に位置する貯蔵室の収納容積を増やすことができるようにした実施形態を
図9に基づき説明する。
【0095】
図9は、上述した高さ寸法を約130mm以下、重量を約6kg以下、扁平率を約70%以下とした扁平圧縮機を使用した場合の冷蔵庫を示している。尚、参照番号は
図1〜
図3で使用した参照番号を流用すると共に、必要に応じて新たな参照番号を付加して説明する。
【0096】
図9において、断熱箱体81の底面壁81bの上の領域には野菜室74が形成されており、野菜室74は断熱仕切壁84によって下部冷凍室73と熱的に遮蔽されている。下部冷凍室73の背面には冷却器80が配置され、冷却器80の下にラジアントヒータ104が配置されている。
【0097】
野菜室74の前側開口には野菜室扉74aが設けられている。この野菜室扉74aを引き出すと下側野菜収納容器105bが引き出され、この状態で更に上側野菜収納容器105uも使用者によって引き出すことができる。これらの下側野菜収納容器105bと上側野菜収納容器105uは野菜室74に収納されており、図示しない冷気吹出口から供給される冷気によって所定の温度に冷却されることは先に述べた通りである。
【0098】
断熱箱体81の背面壁81sの下側には、新たな高さ寸法に決められた機械室106が形成されており、この機械室106は野菜室74より背面側に位置している。機械室106内には、野菜室74の背面に沿って凝縮器(図示せず)、冷却ファン(図示せず)、及び新たな圧縮機CMPが順番に配置されている。
【0099】
この新たな圧縮機CMPは上述した扁平形状の圧縮機であり、その仕様は高さ寸法を約130mm以下、重量を約6kg以下、扁平率を約70%以下とした圧縮機である。
図9にある通り、圧縮機の横寸法(Wp)に対して高さ寸法(Tp)が小さく構成された扁平形状であるので、機械室106の高さ寸法もこれに合わせて小さくすることができる。尚、扁平率(Ob)は、「Ob=Tp/Wp×100」で表している。また、横寸法(Wp)、高さ寸法(Tp)は、横方向及び高さ方向の最大寸法でも良いし、平均寸法でも良いものである。
【0100】
断熱箱体81の底面壁81bは機械室106の形状に沿っておおよそ形成されているので、機械室106の上側の底面壁81bの床面からの高さは、従来の冷蔵庫の場合より低くなる。このため、機械室106の上側に位置している底面壁81bと下側断熱仕切壁84の間の機械室上部領域SPの高さ方向の長さ(Lp)を長くできる。
【0101】
また、凝縮水排水パイプ107をできるだけ断熱箱体81の背面側に寄せるために、凝縮水排水パイプ107は直管状に形成されている。従来の凝縮水排水パイプは屈曲形状であるため、この分だけ断熱箱体81の背面壁81sを厚くしていた。これに対して、本実施形態では直管状の凝縮水排水パイプ107としたため、断熱箱体81の背面壁81sを薄くすることが可能となる。したがって、機械室上部領域SPの奥行方向の長さ(Lh)を長くできる。尚、長さ(Lh)は機械室106の上側に位置する断熱箱体81の底面壁81bの奥行方向の長さである。本実施形態では、圧縮機CMPの野菜室74側前端面を起点とした奥行方向の長さとしている。
【0102】
また、下側断熱仕切壁84と背面壁81sは樋108によって接続されており、樋108の断面は、下側断熱仕切壁84側の屈曲部Dで下側斜め方向に向けて曲げられ、ほぼ直線状に延びて背面壁81sに接続されている。これによって後述する上側野菜収納容器105uの奥行端部105eをより長くすることができる。
【0103】
このように、本実施形態においては上述した仕様の扁平形状の圧縮機CMPを用いることによって、機械室上部領域SPの高さ方向の長さ(Lp)を長くできるので、野菜室74の収納容積を大きくすることができる。また、これに加えて機械室上部領域SPの奥行方向の長さ(Lh)を長くできるので、更に野菜室74の収納容積を大きくすることができるようになる。
【0104】
そして、これに伴って上側野菜収納容器105uの形状を、機械室上部領域SPによって拡大された野菜室74の形状に沿って形成することができるので、より多くの野菜を収納することができるようになる。もちろん、下側野菜収納容器105bの形状も必要に応じて変更できることはいうまでもない。また、上側野菜収納容器105uと下側野菜収納容器105bを一体化して、1個の野菜収納容器としても良いものである。この場合も、機械室上部領域SPによって拡大された野菜室74の形状に沿って野菜収納容器を形成すれば良いものである。
【0105】
次に本実施形態によって得られた新たな野菜室の各寸法関係について説明する。
【0106】
図9に示しているように、機械室106の底面からの天井までの高さである機械室高さ(Lm)と、機械室106の上側に位置する断熱箱体81の底面壁81Bの上面から下側断熱仕切壁84の底面までの機械室上部領域SPの高さ(Lp)は、「Lm<Lp」の関係を有している。これによって、上側野菜収納容器105uの高さ寸法(深さ)を大きくでき、更に機械室上部領域SPに向けて、上側野菜収納容器105uの奥行端部105eを伸ばすことができるので、上側野菜収納容器105uの収納容積を大きくすることができる。
【0107】
また、機械室上部領域SPが断熱箱体81の背面壁81s側に向けて拡大されているので、上側野菜収納容器105uの奥行端部105eを、圧縮機CMPの野菜室側前端面より長さ(Gp1)だけ奥側に延ばすことができ、上側野菜収納容器105uの収納容積を更に大きくすることができる。
【0108】
同様の理由で、上側野菜収納容器105uの奥行端部105eを、樋108の屈曲部より長さ(Gp2)だけ奥側に延ばすことができ、上側野菜収納容器105uの収納容積を大きくすることができる。尚、屈曲部Dから樋108がほぼ直線的に傾斜しているので、樋108の傾斜面と奥行端部105eの上端縁とが干渉せずに、奥行端部105eを更に奥側に延ばすことができる。
【0109】
また、野菜室74は+3℃〜+7℃の温度帯に維持されるので、冷え過ぎないように電熱ヒーターが設けられており、この電熱ヒーターは下側断熱仕切壁84の野菜室74側に設けられることがある。したがって、電熱ヒーターの熱が冷凍室73側に流れて冷凍室73の温度が上昇する恐れがある。
【0110】
これに対して、本実施形態では機械室上部領域SPが断熱箱体81の背面壁81s側に拡大しているので、この拡大された側に電熱ヒーターを寄せて配置することができる。これによって、下部冷凍室73と電熱ヒーターとの間の距離が長くとれ、電熱ヒーターの熱が下部冷凍室73側に流れる割合を少なくでき、下部冷凍室73の温度が上昇するのを抑制することができる。
【0111】
以上は、圧縮機の高さ方向の寸法を横方向の寸法より小さくできる扁平形状の圧縮機を新たに考案し、この扁平形状の圧縮機を機械室に配置することで、機械室の高さを低くして最下部貯蔵室の収納容積の容量を増やすことに寄与させることについて説明した。
【0112】
次に、圧縮機が小形、軽量化されたことに伴って冷蔵庫の重心が上方に移動するのを抑制する構成について説明する。この構成の基本的な考え方は、断熱箱体の上方に配置された真空断熱材の総重量を、断熱箱体の下方に配置された真空断熱材の総重量より軽くすることで、冷蔵庫の重心を下方に移動させて冷蔵庫の転倒の恐れを抑制するものである。
【0113】
図10は、冷蔵庫の上方の重量を軽くする第1の例を示したものである。
図10において、図面は冷蔵庫の各面を平面上に展開したものであり、参照番号WBは底面部、参照番号WRは背面部、参照番号WSLは左側面部、参照番号WSRは右側面部、参照番号WFは正面部、及び参照番号WCは天面部を示している。
【0114】
冷蔵庫の機械室106内には、上述した扁平圧縮機CMPが配置されており、この機械室106や偏平圧縮機CMPの寸法関係は
図9に示している通りである。ここで、偏平圧縮機CMPは、高さ寸法を約130mm以下、重量を約6kg以下、扁平率を約70%以下としたものである。
【0115】
図10においては、底面部WB、背面部WR、左側面部WSL、右側面部WSR、天面部WCには真空断熱材82が設けられている。また、正面部WFを構成する野菜室扉74a、下部冷凍室扉73aにも真空断熱材82が設けられている。一方、製氷室扉71a、上部冷凍室扉72a、冷蔵室扉70a、70bには真空断熱材82が設けられていないものである。
【0116】
真空断熱材82は、芯材とこの芯材を被覆するガスバリヤ層を有する外包材から構成してある。芯材は、無機系繊維材料の積層体が用いられ、内部に合成ゼオライト等のガス吸着材が収納されている。外包材は真空断熱材の両面を形成するように同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状に形成されている。そして、この真空断熱材82の厚さは全面においてほぼ均一な厚さに決められている。
【0117】
この
図10においては、基本的には冷蔵室扉70a、70bが存在する冷蔵室70の下側境界線C-Cより上側の領域にある真空断熱材82の総重量を低減するようにしている。尚、
図10では製氷室扉71a、上部冷凍室扉72aにも真空断熱材82を設けず冷蔵庫の上方の重量を軽減している。
【0118】
ここで、本実施形態では、基本的に、冷蔵庫の上方とは冷蔵室70の下側境界線C-Cより上側の領域を意味し、冷蔵庫の下方とは冷蔵室70の下側境界線C-Cより下側の領域を意味している。これは、開閉扉側の真空断熱材が開閉扉毎に分割されていること、冷蔵室扉70a、70bが、冷蔵庫の高さ方向の半分弱程度の長さを有していることから決められている。ただ、これに限らず、冷蔵庫の上半分を上方、下半分を下方としても良く、この場合、これに合わせて、真空断熱材82を分割しておくと良いものである。
【0119】
このように、
図10においては、少なくとも冷蔵室扉70a、70bに真空断熱材を設けないようにして、断熱箱体の上方に配置された真空断熱材82の総重量を、断熱箱体の下方に配置された真空断熱材の総重量より小さくすることで、小形、軽量化された偏平圧縮機を採用することによって生じる重心の上方への移動を抑制することができる。これによって冷蔵庫の転倒の恐れを少なくすることができる。
【0120】
ただ、冷蔵庫の上方の重さを軽減するため、冷蔵庫の上方の全ての真空断熱材82を省くと断熱性能が大きく低下する恐れがあるので、必要最小限に留めておくことが必要である。
【0121】
また、
図10においては、冷蔵室扉70a、70bの真空断熱材82を省き、冷蔵室扉70a、70bを軽くしている。このため、冷蔵室扉70a、70bを開いた時、真空断熱材82を備えている場合は、重心が手前側に移動して、転倒しやすくなる。これに対して、
図10の場合は、冷蔵室扉70a、70bの真空断熱材82が省かれて軽くなっているので、重心が手前側に移動する割合が軽減されて、転倒する恐れを少なくすることができる。