(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
[セルスタック装置100]
図1は、セルスタック装置100の斜視図である。セルスタック装置100は、マニホールド200と、セルスタック250とを備える。
【0011】
[マニホールド200]
図2は、マニホールド200の斜視図である。マニホールド200は、「合金部材」の一例である。
【0012】
マニホールド200は、燃料ガス(例えば、水素など)を各燃料電池セル300に分配するように構成されている。マニホールド200は、中空状であり、内部空間を有している。マニホールド200の内部空間には、導入管204を介して燃料ガスが供給される。
【0013】
マニホールド200は、天板201と、容器202とを有する。天板201は、平板状に形成される。容器202は、コップ状に形成される。天板201は、容器202の上方開口を塞ぐように配置される。
【0014】
天板201は、接合材103(
図2では不図示、
図6参照)によって容器202に接合される。接合材103としては、例えば、結晶化ガラス、非晶質ガラス、ろう材、及びセラミックスなどが挙げられる。本実施形態において、結晶化ガラスとは、全体積に対する「結晶相が占める体積」の割合(結晶化度)が60%以上であり、全体積に対する「非晶質相及び不純物が占める体積」の割合が40%未満のガラスである。このような結晶化ガラスとしては、例えば、SiO
2−B
2O
3系、SiO
2−CaO系、又はSiO
2−MgO系が挙げられる。
【0015】
天板201には、複数の挿入孔203が形成されている。各挿入孔203は、燃料電池セル300の配列方向(z軸方向)に並べられる。各挿入孔203は、互いに間隔をあけて配置される。各挿入孔203は、マニホールド200の内部空間と外部に連通する。
【0016】
マニホールド200の詳細な構成については後述する。
【0017】
[セルスタック250]
図3は、セルスタック装置100の断面図である。セルスタック250は、複数の燃料電池セル300と、複数の集電部材301とを有する。
【0018】
各燃料電池セル300は、マニホールド200から延びている。詳細には、各燃料電池セル300は、マニホールド200の天板201から上方(x軸方向)に延びている。すなわち、各燃料電池セル300の長手方向(x軸方向)は、上方に延びている。各燃料電池セル300の長手方向(x軸方向)の長さは、100〜300mm程度とすることができるが、これに限られるものではない。
【0019】
各燃料電池セル300の基端部は、マニホールド200の挿入孔203に挿入される。各燃料電池セル300は、接合材101によって挿入孔203に固定される。燃料電池セル300は、挿入孔203に挿入された状態で、接合材101によってマニホールド200に固定されている。接合材101は、燃料電池セル300と挿入孔203の隙間に充填される。接合材101としては、例えば、結晶化ガラス、非晶質ガラス、ろう材、及びセラミックスなどが挙げられる。
【0020】
各燃料電池セル300は、長手方向(x軸方向)及び幅方向(y軸方向)に広がる板状に形成されている。各燃料電池セル300は、配列方向(z軸方向)に間隔をあけて配列されている。隣り合う2つの燃料電池セル300の間隔は特に制限されないが、1〜5mm程度とすることができる。
【0021】
各燃料電池セル300は、内部にガス流路11を有している。セルスタック装置100の運転中、マニホールド200から各ガス流路11に燃料ガス(水素など)が供給されるとともに、各燃料電池セル300の外周に酸化剤ガス(空気など)が供給される。
【0022】
隣接する2つの燃料電池セル300は、集電部材301によって電気的に接続されている。集電部材301は、接合材102を介して、隣接する2つの燃料電池セル300それぞれの基端側に接合される。接合材102は、例えば、(Mn,Co)
3O
4、(La,Sr)MnO
3、及び(La,Sr)(Co,Fe)O
3などから選ばれる少なくとも1種である。
【0023】
[燃料電池セル300]
図4は、燃料電池セル300の斜視図である。
図5は、
図4のQ−Q断面図である。
【0024】
燃料電池セル300は、支持基板10と、複数の発電素子部20と有する。
【0025】
(支持基板10)
支持基板10は、支持基板10の長手方向(x軸方向)に沿って延びる複数のガス流路11を内部に有している。各ガス流路11は、支持基板10の基端側から先端側に向かって延びている。各ガス流路11は、互いに実質的に平行に延びている。
【0026】
図5に示すように、支持基板10は、複数の第1凹部12を有する。本実施形態において、各第1凹部12は、支持基板10の両主面に形成されているが、一方の主面にだけ形成されていてもよい。各第1凹部12は支持基板10の長手方向において互いに間隔をあけて配置されている。
【0027】
支持基板10は、電子伝導性を有さない多孔質の材料によって構成される。支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)から構成され得る。或いは、支持基板10は、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY
2O
3(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl
2O
4(マグネシアアルミナスピネル)とから構成されてもよい。支持基板10の気孔率は、例えば、20〜60%程度である。
【0028】
(発電素子部20)
各発電素子部20は、支持基板10に支持されている。本実施形態において、各発電素子部20は、支持基板10の両主面に形成されているが、一方の主面にだけ形成されていてもよい。各発電素子部20は、支持基板10の長手方向において、互いに間隔をあけて配置されている。すなわち、本実施形態に係る燃料電池セル300は、いわゆる横縞型の燃料電池セルである。長手方向に隣り合う発電素子部20は、インターコネクタ31によって互いに電気的に接続されている。
【0029】
発電素子部20は、燃料極4、電解質5、空気極6及び反応防止膜7を有する。
【0030】
燃料極4は、電子伝導性を有する多孔質の材料から構成される焼成体である。燃料極4は、燃料極集電部41と燃料極活性部42とを有する。
【0031】
燃料極集電部41は、第1凹部12内に配置されている。詳細には、燃料極集電部41は、第1凹部12内に充填されており、第1凹部12と同様の外形を有する。燃料極集電部41は、第2凹部411及び第3凹部412を有している。第2凹部411内には、燃料極活性部42が配置されている。また、第3凹部412には、インターコネクタ31が配置されている。
【0032】
燃料極集電部41は、電子伝導性を有する。燃料極集電部41は、燃料極活性部42よりも高い電子伝導性を有していることが好ましい。燃料極集電部41は、酸素イオン伝導性を有していてもよいし、有していなくてもよい。
【0033】
燃料極集電部41は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極集電部41は、NiO(酸化ニッケル)とY
2O
3(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極集電部41の厚さ、及び第1凹部12の深さは、50〜500μm程度である。
【0034】
燃料極活性部42は、酸素イオン伝導性を有するとともに、電子伝導性を有する。燃料極活性部42は、燃料極集電部41よりも酸素イオン伝導性を有する物質の含有率が大きい。詳細には、燃料極活性部42における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合は、燃料極集電部41における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合よりも大きい。
【0035】
燃料極活性部42は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極活性部42は、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極活性部42の厚さは、5〜30μmである。
【0036】
電解質5は、燃料極4上を覆うように配置されている。詳細には、電解質5は、あるインターコネクタ31から隣のインターコネクタ31まで長手方向に延びている。すなわち、支持基板10の長手方向(x軸方向)において、電解質5とインターコネクタ31とが交互に連続して配置されている。電解質5は、支持基板10の両主面を覆うように構成されている。
【0037】
電解質5は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料から構成される焼成体である。電解質5は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、電解質5は、LSGM(ランタンガレート)から構成されてもよい。電解質5の厚さは、例えば、3〜50μm程度である。
【0038】
空気極6は、電子伝導性を有する多孔質の材料から構成される焼成体である。空気極6は、電解質5を基準にして、燃料極4と反対側に配置されている。空気極6は、空気極活性部61と空気極集電部62とを有している。
【0039】
空気極活性部61は、反応防止膜7上に配置されている。空気極活性部61は、酸素イオン伝導性を有するとともに、電子伝導性を有する。空気極活性部61は、空気極集電部62よりも酸素イオン伝導性を有する物質の含有率が大きい。詳細には、空気極活性部61おける、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合は、空気極集電部62における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合よりも大きい。
【0040】
空気極活性部61は、例えば、LSCF=(La,Sr)(Co,Fe)O
3(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、空気極活性部61は、LSF=(La,Sr)FeO
3(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O
3(ランタンニッケルフェライト)、又は、LSC=(La,Sr)CoO
3(ランタンストロンチウムコバルタイト)等から構成されてもよい。空気極活性部61は、LSCFから構成される第1層(内側層)とLSCから構成される第2層(外側層)との2層によって構成されてもよい。空気極活性部61の厚さは、例えば、10〜100μmである。
【0041】
空気極集電部62は、空気極活性部61上に配置されている。また、空気極集電部62は、空気極活性部61から、隣の発電素子部に向かって延びている。燃料極集電部41と空気極集電部62とは、発電領域から互いに反対側に延びている。発電領域とは、燃料極活性部42と電解質5と空気極活性部61とが重複する領域である。
【0042】
空気極集電部62は、電子伝導性を有する多孔質の材料から構成される焼成体である。空気極集電部62は、空気極活性部61よりも高い電子伝導性を有していることが好ましい。空気極集電部62は、酸素イオン伝導性を有していてもよいし、有していなくてもよい。
【0043】
空気極集電部62は、例えば、LSCF=(La,Sr)(Co,Fe)O
3(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、空気極集電部62は、LSC=(La,Sr)CoO
3(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、空気極集電部62は、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電部62の厚さは、例えば、50〜500μm程度である。
【0044】
反応防止膜7は、緻密な材料から構成される焼成体である。反応防止膜7は、電解質5と空気極活性部61との間に配置されている。反応防止膜7は、電解質5内のYSZと空気極6内のSrとが反応して電解質5と空気極6との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するために設けられている。
【0045】
反応防止膜7は、希土類元素を含むセリアを含んだ材料から構成されている。反応防止膜7は、例えば、GDC=(Ce,Gd)O
2(ガドリニウムドープセリア)から構成され得る。反応防止膜7の厚さは、例えば、3〜50μm程度である。
【0046】
インターコネクタ31は、支持基板10の長手方向(x軸方向)に隣り合う発電素子部20を電気的に接続するように構成されている。詳細には、一方の発電素子部20の空気極集電部62は、他方の発電素子部20に向かって延びている。また、他方の発電素子部20の燃料極集電部41は、一方の発電素子部20に向かって延びている。そして、インターコネクタ31は、一方の発電素子部20の空気極集電部62と、他方の発電素子部20の燃料極集電部41とを電気的に接続している。インターコネクタ31は、燃料極集電部41の第3凹部412内に配置されている。詳細には、インターコネクタ31は、第3凹部412内に埋設されている。
【0047】
インターコネクタ31は、電子伝導性を有する緻密な材料から構成される焼成体である。インターコネクタ31は、例えば、LaCrO
3(ランタンクロマイト)から構成され得る。或いは、インターコネクタ31は、(Sr,La)TiO
3(ストロンチウムチタネート)から構成されてもよい。インターコネクタ31の厚さは、例えば、10〜100μmである。
【0048】
[マニホールド200の詳細構成]
次に、マニホールド200の詳細構成について、図面を参照しながら説明する。
図6は、
図2のP−P断面図である。
図7は、
図6の領域Aの拡大図である。
【0049】
天板201と容器202は、接合材103によって接合されている。天板201と容器202の間には、燃料ガスが供給される内部空間S1が形成されている。
【0050】
天板201は、基材210と、酸化クロム膜211と、被覆膜212と、気孔213とを有する。容器202は、基材220と、酸化クロム膜221と、被覆膜222と、気孔223とを有する。
【0051】
天板201及び容器202は、それぞれ「合金部材」の一例である。基材210及び基材220は、それぞれ「基材」の一例である。酸化クロム膜211及び酸化クロム膜221は、それぞれ「酸化クロム膜」の一例である。被覆膜212及び被覆膜222は、それぞれ「被覆膜」の一例である。気孔213及び気孔223は、それぞれ「気孔」の一例である。
【0052】
容器202の構成は、天板201の構成と同様であるため、以下においては、
図7を参照しながら、天板201の構成について説明する。
【0053】
基材210は、板状に形成される。基材210は、平板状であってもよいし、曲板状であってもよい。基材210の厚みは特に制限されないが、例えば0.5〜4.0mmとすることができる。
【0054】
基材210は、Cr(クロム)以外の金属元素を主成分とし、かつ、Crを含有する合金材料によって構成される。このような金属材料としては、Fe−Cr系合金鋼(ステンレス鋼など)やNi−Cr系合金鋼などを用いることができる。Fe−Cr系合金鋼は、Feを主成分元素として含有する。Ni−Cr系合金鋼は、Niを主成分元素として含有する。本明細書において、主成分元素とは、基材210を構成する全成分100質量%のうち、50質量%以上を占める元素をいう。この比率は、基材210の断面においてSEMのEDX(Energy Dispersive X−ray Spectroscopy:エネルギー分散型X線分光法)を用いた元素分析によって求められる。基材210におけるCrの含有率は特に制限されないが、4〜30質量%とすることができる。
【0055】
基材210は、Ti(チタン)やAl(アルミニウム)を含有していてもよい。基材210におけるTiの含有率は特に制限されないが、0.01〜1.0at.%とすることができる。基材210におけるAlの含有率は特に制限されないが、0.01〜0.4at.%とすることができる。基材210は、TiをTiO
2(チタニア)として含有していてもよいし、AlをAl
2O
3(アルミナ)として含有していてもよい。
【0056】
基材210は、界面領域210aと内部領域210bとを含む。界面領域210aは、基材210のうち、基材210と酸化クロム膜211との界面S2から30μm以内の領域である。内部領域210bは、界面S2から30μm超離れた領域である。
【0057】
基材210は、界面領域210aに形成された気孔213を有する。これによって、基材210と被覆膜212との熱膨張係数が異なることに起因して、被覆膜213が酸化クロム膜211とともに剥離してしまうことを抑制できる。具体的には、基材210の界面領域210aに気孔213を配置することによって界面領域210aの柔軟性が向上して、界面領域210aを被覆膜212の膨張又は収縮に追従させることができる。そのため、基材210と被覆膜212との熱膨張係数差に応じて基材210と酸化クロム膜211との界面S2に生じる応力を緩和させることができる。その結果、被覆膜213が酸化クロム膜211とともに基材210から剥離することを抑制できる。
【0058】
また、基材210は、気孔213の内表面上に配置される金属酸化物214を有する。金属酸化物214は、気孔213の内表面のうち少なくとも一部を覆っている。これによって、酸化クロム膜211の一部が基材210の内部に延びるように成長する現象(以下、異常酸化現象という。)が発生したとしても、金属酸化物214の形態を維持できるため、その結果として気孔213の形状を維持することができる。従って、気孔213による応力緩和効果を長期間に亘って得ることができる。
【0059】
なお、異常酸化現象とは、例えば、被覆膜213に微小な欠陥が存在する場合や、基材210と被覆膜212との熱膨張係数差に起因する微小なクラックが酸化クロム膜211に発生した場合に、基材210の酸化が局所的に促進されることによって生じる現象である。異常酸化現象が発生した場合、気孔213が金属酸化物214で保護されていなければ、基材210のうち気孔213周辺が酸化されて体積膨張することによって、気孔213が縮小或いは消滅してしまう。
【0060】
金属酸化物214は、例えば、単一の金属元素の酸化物(FeO、Fe
2O
3、Fe
3O
4、Cr
2O
3、CaO、Al
2O
3、MnO、Mn
3O
4、SiO
2、Al
2O
3、TiO
2)、および複数の金属元素からなる複酸化物((Fe,Cr)
3O
4,(Mn,Cr)
3O
4)などによって構成することができるが、これに制限されない。
【0061】
金属酸化物214は、基材210の主成分元素より平衡酸素圧の低い元素(以下、「低平衡酸素圧元素」という。)の酸化物であることが好ましい。低平衡酸素圧元素は、基材210の主成分元素よりも酸素との親和性が高いため、基材210内部でより安定した酸化物形態を維持することができる。
【0062】
低平衡酸素圧元素としては、例えば、Ti、Al、Ca、Si、Mn、Crなどが挙げられるが、これに限られない。低平衡酸素圧元素の酸化物としては、TiO
2、Al
2O
3、CaO、SiO
2、酸化マンガン(例えば、MnO、Mn
3O
4)、(Mn,Cr)
3O
4、及び酸化クロム(例えば、CrO、Cr
2O
3)などから選択される少なくとも1種が挙げられるが、これに限られない。
【0063】
金属酸化物214における金属の含有率は、全構成元素のうち酸素を除く元素の総和に対する各元素のモル比をカチオン比と定義した場合、カチオン比で0.3以上が好ましい。これによって、異常酸化現象による気孔213の縮小を抑制することができる。金属酸化物214における金属の含有率は、カチオン比で0.4以上がより好ましく、0.5以上が特に好ましい。
【0064】
金属酸化物214における金属の含有率は、気孔213の内表面上に配置された金属酸化物214から無作為に選出した10箇所において、STEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)のEDXを用いて金属の含有率をカチオン比で測定し、10箇所における測定値を算術平均することによって得られる。
【0065】
金属酸化物214は、金属酸化物を1種だけ含有していてもよいし、2種以上含有していてもよい。金属酸化物214が金属酸化物を2種以上含有している場合、各金属酸化物どうしが混ざり合った混合体を構成していてもよい。
【0066】
金属酸化物214は、金属酸化物214は、気孔213の内表面上に分散して配置された粒子の形態で存在してもよいし、実質的に膜を形成していてもよい。従って、金属酸化物214は、気孔213の内表面の全面を覆っていてもよいし、気孔213の内表面の一部のみを覆っていてもよい。金属酸化物214が気孔213の内表面の一部のみを覆っている場合であっても、金属酸化物214が存在しない場合に比べて、気孔213の形状を維持する効果が得られる。金属酸化物214が膜を形成している場合、金属酸化物214の厚みは特に制限されないが、例えば、0.1〜5μmとすることができる。
【0067】
図7に示すように、基材210は、気孔213を複数有することが好ましい。これによって、界面S2に生じる応力を広い範囲で緩和させることができるため、被覆膜213が酸化クロム膜211とともに基材210から剥離することをより抑制できる。基材210が複数の気孔213を有する場合、各気孔213の内表面のうち少なくとも一部が金属酸化物214によって覆われていることがより好ましい。これによって、各気孔213の形状を維持することができる。
【0068】
基材210が複数の気孔213を有する場合、各気孔213の間隔は特に制限されず、一定間隔でなくてよい。
図7では、基材210の厚み方向に気孔213が1個ずつ配置されているが、厚み方向に2個以上の気孔213が配置されていてもよい。また、気孔213は、界面S2と接していてもよいし、界面S2から離れていてもよい。
【0069】
基材210が複数の気孔213を有する場合、気孔213の平均円相当径は、0.5μm以上20μm以下であることが好ましい。気孔213の平均円相当径を0.5μm以上とすることによって、界面領域210aの柔軟性を十分に向上させて、界面S2に発生する応力を十分に緩和させることができる。また、気孔213の平均円相当径を20μm以下とすることによって、各気孔213の周辺に局所的な変形が生じることを抑制できるため、被覆膜212が酸化クロム膜211とともに基材210から剥離してしまうことをより抑制できる。
【0070】
気孔213の円相当径とは、厚み方向における界面領域210aの断面をFE−SEM(Field Emission − Scanning Electron Microscope:電界放射型走査型電子顕微鏡)で1000−20000倍に拡大した画像において、各気孔213と同じ面積を有する円の直径である。平均円相当径とは、上述したFE−SEM画像上において無作為に選出した10個の気孔213の円相当径を算術平均した値である。平均円相当径を求める場合には、10箇所のFE−SEM画像から気孔径0.1μmを超える10個の気孔213を無作為に選出するものとする。
【0071】
気孔213の平均アスペクト比は、3以下であることが好ましい。これによって、気孔213をより変形しやすくすることができる。
【0072】
気孔213のアスペクト比とは、気孔213の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、上述したFE−SEM画像上において、平行な2本の直線間の距離が最大になるように気孔213を挟んだときの当該2本の直線間の距離である。最小フェレー径は、上述したFE−SEM画像上において、平行な2本の直線間の距離が最小になるように気孔213を挟んだときの当該2本の直線間の距離である。平均アスペクト比とは、平均円相当径の測定対象とした10個の気孔213のアスペクト比を算術平均した値である。
【0073】
面方向における気孔213の存在個数は、5個/mm以上であることが好ましい。これによって、界面領域210aの柔軟性をより向上させることで界面S2に生じる応力をより緩和させることができるため、酸化クロム膜211及び被覆膜212に軽微な欠陥が生じることを抑制できる。また、面方向における気孔213の存在個数は、100個/mm以下であることがより好ましい。これによって、気孔213どうしが連結してしまうことを抑制できるため、気孔213の形状をより制御し易くなる。
【0074】
気孔213の存在個数とは、単位長さ当たりに配置された気孔213の個数である。気孔213の存在個数は、上述したFE−SEM画像上において、気孔213の全数を界面S2の全長で除した値である。気孔213の全数を数える場合、FE−SEM画像に一部分だけで写っている気孔213も1個として数える。
【0075】
なお、
図7では、内部領域210bに気孔213が形成されていないが、内部領域210bにも気孔213が形成されていてもよい。
【0076】
酸化クロム膜211は、基材210上に形成される。酸化クロム膜211は、基材210の少なくとも一部を覆う。酸化クロム膜211は、基材210の少なくとも一部を覆っていればよいが、基材210の略全面を覆っていてもよい。酸化クロム膜211は、酸化クロムを主成分として含有する。本実施形態において、組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが70重量%以上を占めることを意味する。酸化クロム膜211の厚みは特に制限されないが、例えば0.1〜20μmとすることができる。
【0077】
被覆膜212は、酸化クロム膜211の少なくとも一部を覆う。詳細には、被覆膜212は、酸化クロム膜211のうちセルスタック装置100の運転中に酸化剤ガスと接触する領域の少なくとも一部を覆う。被覆膜212は、酸化クロム膜211のうち酸化剤ガスと接触する領域の全面を覆っていることが好ましい。被覆膜212の厚みは特に制限されないが、例えば1〜200μmとすることができる。
【0078】
被覆膜212は、基材210からCrが揮発することを抑制する。これにより、各燃料電池セル300の電極(本実施形態では、空気極6)がCr被毒によって劣化することを抑制することができる。
【0079】
被覆膜212は、セラミックス材料によって構成することができ、適用箇所に応じて適宜好適な材料を選択することができる。導電性を求められる集電部材の被覆膜に適用するセラミックス材料としては、LaおよびSrを含有するペロブスカイト形複合酸化物やMn,Co,Ni,Fe,Cu等の遷移金属から構成されるスピネル型複合酸化物が挙げられる。一方、絶縁性を求められる燃料マニホールドの被覆膜に適用するセラミックス材料としては、アルミナ、シリカ、ジルコニア、結晶化ガラスなどが挙げられる。ただし、被覆膜212は、Crの揮発を抑制できればよく、被覆膜212の構成材料は上記セラミックス材料には限られない。
【0080】
[マニホールド200の製造方法]
マニホールド200の製造方法について、図面を参照しながら説明する。なお、容器202の製造方法は、天板201の製造方法と同様であるため、以下においては、天板201の製造方法について説明する。
【0081】
まず、
図8に示すように、基材210の表面に複数の凹部213aを形成する。例えばショットピーニング、サンドブラストを用いることによって、所定の内部形状を有する凹部213aを効率的に形成することができる。この際、各凹部213aの個数及びサイズを適宜調整する。
【0082】
次に、
図9に示すように、金属酸化物をターゲットとするスパッタによって、各凹部213aの内表面に金属酸化物214を形成する。スパッタには、株式会社SCREENファインテックソリューションズ社製のVS−R400Gを用いることができる。
【0083】
次に、
図10に示すように、基材210の表面上でローラーを転がすことによって、各凹部213aの開口を塞いで、気孔213を形成する。この際、各凹部213aの開口を完全に塞いでもよいが、開口を開けたままにしてもよい。
【0084】
次に、
図11に示すように、基材210を大気雰囲気で熱処理(800〜900℃、5〜20時間)することによって、基材210の表面上に酸化クロム膜211を形成する。
【0085】
次に、
図12に示すように、酸化クロム膜211上に絶縁性のセラミックス材料スラリーを塗布して、熱処理(800〜1000℃、1〜20時間)することによって、被覆膜212を形成する。
【0086】
(他の実施形態)
本発明は以上の実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
【0087】
上記実施形態では、本発明に係る合金部材をマニホールド200に適用することとしたが、これに限られるものではない。本発明に係る合金部材は、セルスタック装置100及びセルスタック250の一部を構成する部材として用いることができる。例えば、本発明に係る合金部材は、燃料電池セル300と接続される集電部材301に好適に用いることができる。
【0088】
上記実施形態において、セルスタック250は、横縞型の燃料電池を有することとしたが、いわゆる縦縞型の燃料電池を有していてもよい。縦縞型の燃料電池は、導電性の支持基板と、支持基板の一主面上に配置される発電部(燃料極、固体電解質層及び空気極)と、支持基板の他主面上に配置されるインターコネクタとを備える。
【0089】
上記実施形態では、本発明にかかる合金部材を電気化学セルの一例である燃料電池のセルスタックに適用した場合について説明したが、本発明にかかる合金部材は、水蒸気から水素と酸素を生成する電解セルを含む電気化学セルのセルスタックに適用可能である。
【解決手段】天板201は、クロムを含有する合金材料によって構成される基材210と、基材210の少なくとも一部を覆う酸化クロム膜211と、酸化クロム膜211の少なくとも一部を覆う被覆膜212とを備える。基材210は、酸化クロム膜211との界面S2から30μm以内の界面領域210aに形成された気孔213と、気孔213の内表面のうち少なくとも一部を覆う金属酸化物214とを有する。金属酸化物214は、金属酸化物を含有する。