(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6520336
(24)【登録日】2019年5月10日
(45)【発行日】2019年5月29日
(54)【発明の名称】電力変換装置の制御装置
(51)【国際特許分類】
H02M 7/48 20070101AFI20190520BHJP
【FI】
H02M7/48 F
【請求項の数】3
【全頁数】11
(21)【出願番号】特願2015-82924(P2015-82924)
(22)【出願日】2015年4月15日
(65)【公開番号】特開2016-208557(P2016-208557A)
(43)【公開日】2016年12月8日
【審査請求日】2018年2月14日
(73)【特許権者】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】100091281
【弁理士】
【氏名又は名称】森田 雄一
(72)【発明者】
【氏名】藤井 幹介
【審査官】
小林 秀和
(56)【参考文献】
【文献】
特開2013−055794(JP,A)
【文献】
特開平09−252581(JP,A)
【文献】
特開2013−255426(JP,A)
【文献】
特開平07−167480(JP,A)
【文献】
特開2000−184731(JP,A)
【文献】
特開2009−011028(JP,A)
【文献】
特開2009−247110(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/48
H02M 1/12
(57)【特許請求の範囲】
【請求項1】
入力電力を半導体スイッチング素子のオン・オフにより所望の形態に変換して出力し、かつ、出力部にフィルタ用のリアクトルを備えた電力変換装置の制御装置において、
前記半導体スイッチング素子をオン・オフする制御信号を生成するための所定周波数のキャリアを演算するキャリア演算器を備え、
前記キャリア演算器は、
前記リアクトルに流れる電流のリプル成分が大きくなる位相角におけるキャリア周波数(以下、高リプルキャリア周波数という)を、前記リプル成分が小さくなる位相角におけるキャリア周波数(以下、低リプルキャリア周波数という)よりも高く設定し、かつ、前記高リプルキャリア周波数と前記低リプルキャリア周波数とが交互に連続して発生するように前記キャリアを演算すると共に、前記電力変換装置の出力電圧の相数に応じてキャリア周波数の上限値と下限値とを変化させ、前記上限値と前記下限値との範囲内で前記高リプルキャリア周波数及び前記低リプルキャリア周波数を演算することを特徴とする電力変換装置の制御装置。
【請求項2】
請求項1に記載した電力変換装置の制御装置において、
前記電力変換装置が、交流側が電源系統に接続された整流器と、前記整流器の直流側に接続されたバッテリーと、前記バッテリーに直流側が接続され、かつ交流側に負荷が接続されたインバータと、を有する無停電電源装置であることを特徴とする電力変換装置の制御装置。
【請求項3】
請求項1または2に記載した電力変換装置の制御装置において、
前記電力変換装置は、複数台が互いに並列に接続されて使用されるものであり、前記キャリア演算器は、全ての前記電力変換装置のキャリア周波数を同期させるように前記キャリアを演算することを特徴とする電力変換装置の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、出力部にフィルタ用のリアクトルを備えた電力変換装置において、電力変換装置を構成する半導体スイッチング素子の制御信号を得るためのキャリアの生成手段を改良した制御装置に関するものである。
【背景技術】
【0002】
図5は、電力系統101と負荷109との間に2台の無停電電源装置100A,100Bを並列接続して構成した電力変換装置を示している。
無停電電源装置100A,100Bは何れも同一の構成であり、以下では、一方の無停電電源装置100Aについてその構成及び作用を説明する。
【0003】
無停電電源装置100Aは、整流器により電力系統101の交流電力を直流電力に変換してバッテリーを充電し、バッテリーの直流電力をインバータにより交流電力に変換して負荷109に供給する。
ここで、整流器は、入力フィルタを構成するコンデンサ102及びリアクトル103と、電力用の半導体スイッチング素子からなる整流器用変換器104と、を備え、インバータは、電力用の半導体スイッチング素子からなるインバータ用変換器106と、出力フィルタを構成するリアクトル107及びコンデンサ108と、を備えている。
整流器用変換器104やインバータ用変換器106は、通常、単相フルブリッジ回路や三相フルブリッジ回路によって構成されている。
【0004】
図6は、整流器用変換器104及びインバータ用変換器106の制御装置を示すブロック図である。なお、
図6に示す制御装置において、交流部分については、電力系統101及び負荷109に対応する整流器用変換器104及びインバータ用変換器106の相数(単相または三相)に応じて、相ごとに設けられている。
【0005】
まず、整流器用変換器104の制御装置の構成及び動作を説明する。
バッテリー105の直流電圧Eを電圧検出器202により検出し、減算器207により、直流電圧目標値E
*と直流電圧検出値Eとの偏差を演算する。調節器208は、上記電圧偏差が零になるように動作し、その出力を乗算器209に入力する。また、電圧検出器201により交流入力電圧を検出し、その電圧検出値を乗算器209にて調節器208の出力に乗算することにより、入力電流指令値を求める。
【0006】
上記の入力電流指令値と電流検出器204からの入力電流検出値との偏差を、減算器210により演算する。調節器211は、上記電流偏差が零になるように動作し、その出力と入力電圧検出値とを加算器212にて加算することにより、整流器用電圧指令値λ
RECを演算する。
【0007】
一方、入力電圧検出値と制御装置内部の位相基準とが同期するように動作するPLL回路214を設け、その出力をキャリア演算器215に与える。キャリア演算器215は、PLL回路214の出力に基づき、入力電圧検出値に同期して周波数が変化するキャリアを演算する。このキャリアと前記電圧指令値λ
RECとを比較器213にて比較することにより、論理パルスPLS
Rを求める。更に、デッドタイム生成器216では、アーム短絡を保護するためのデッドタイムを論理パルスPLS
Rに付加してパルスPLS
RECを生成し、このパルスPLS
RECを整流器用変換器104の半導体スイッチング素子に対するオン・オフ信号として出力する。
【0008】
図7は、キャリア演算器215の構成を示すブロック図である。
キャリア演算器215では、発振器10が出力する固定周波数のパルスをアップダウンカウンタ20に入力する。また、
図6のPLL回路214の出力をキャリア周波数の上限値とし、符号反転部30を介した上限値の反転値をキャリア周波数の下限値として、アップダウンカウンタ20に入力する。アップダウンカウンタ20は、発振器10の出力パルスを上限値と下限値との間でカウントすることにより、
図7に示すような所定周波数のキャリアを演算する。
【0009】
次に、
図6におけるインバータ用変換器106の制御装置の構成及び動作を説明する。
PLL回路214によって演算した出力電圧目標値V
A*と、電圧検出器203による出力電圧検出値V
Aとの偏差を減算器217により求め、調節器(出力電圧調節器)218に入力する。調節器218は、上記電圧偏差が零になるように動作して、その出力を前記出力電圧目標値V
A*と共に加算器219に入力する。
【0010】
また、電流検出器205により検出した自己(
図5の無停電電源装置100A)の出力電流検出値I
Aと、並列接続された他装置(
図5の無停電電源装置100B)の出力電流検出値I
Bとを加算器220により加算し、負荷電流を演算する。この負荷電流を電流指令演算器222に入力し、装置1台当たりの出力電流指令値に変換する。この出力電流指令値と自己の出力電流検出値との偏差を減算器223により求め、調節器(負荷バランス調節器)224に入力する。
調節器224は、入力された電流偏差を零にするように動作し、その出力を前記加算器219に送る。
【0011】
加算器219では、出力電圧目標値V
A*と調節器218,224の出力とを加算し、インバータ用電圧指令値λ
INVを演算する。この電圧指令値λ
INVとキャリアとを比較器225にて比較することにより、論理パルスPLS
Iを求める。更に、デッドタイム生成器226により論理パルスPLS
Iにデッドタイムを付加してパルスPLS
INVを生成し、このパルスPLS
INVをインバータ用変換器106の半導体スイッチング素子に対するオン・オフ信号として出力する。
【0012】
なお、
図8は、
図6におけるインバータ変換器106側のキャリア、電圧指令値、論理パルス、及び、デッドタイムを設けた出力パルスの説明図であり、これらの各信号の関係は整流器用変換器104側についても同様である。
【0013】
上記のように固定周波数のキャリアにより動作する電力変換装置は、例えば特許文献1に記載されている。この特許文献1では、圧縮機用の誘導電動機を駆動する運転周波数可変の電圧型PWMインバータのキャリア周波数を、10[kHz]以上に固定している。
【0014】
しかし、固定周波数のキャリアを用いる電力変換装置では、キャリア周波数(スイッチング周波数)成分が電圧に重畳されるため、例えば出力側の各相(ここでは、整流器用変換器104及びインバータ用変換器106を三相としている)のリアクトルに、
図9に示すような高調波を含む電流が流れる。
図10は、このリアクトル電流を高速フーリエ変換(FFT)により解析して得た周波数スペクトルである。
図10から明らかなように、リアクトル電流はキャリア周波数の整数倍(
図10における破線を参照)付近のスペクトルを持つため、キャリア周波数が10[kHz]以下、例えば5[kHz]等の中容量または大容量の電力変換装置では、
図10のピーク部分p’に起因して、リアクトルから耳障りな磁歪音が発生する。
【0015】
上記の磁歪音を低減させる対策として、例えば特許文献2には、キャリア周波数をランダムに変化させる技術が開示されている。
図11は、キャリア周波数をランダムに変化させた時(ランダム変調時)の周波数スぺクトルの概念図であり、ランダム変調によってスペクトルのピーク値を低下させることができる。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開平7−167480号公報(段落[0009]、
図8等)
【特許文献2】特開2000−184731号公報(段落[0011],[0012],[0024]〜[0041]、
図4,
図6,
図14等)
【発明の概要】
【発明が解決しようとする課題】
【0017】
図9に示したリアクトル電流のリプル成分は、キャリア周波数を固定した場合、例えばU相の位相角0°,90°,180°,270°で大きくなる。また、U相の位相角を基準とすると、V相では30°,120°,210°,300°、W相では60°,150°,240°,330°でリプル成分が大きくなる。なお、
図9では、三相全体においてリプル成分が大きくなる位相角を一点鎖線により表してある。
【0018】
更に、上記リプル成分を含むリアクトル電流をFFTにより解析すると、
図10に示したように、キャリア周波数の整数倍付近にスペクトルが集中する。本来的には、特許文献2に記載されているようなランダム変調を行ってリプル成分を抑制すると共に、スペクトルを拡散すれば、磁歪音の低減が期待できる。
しかし、キャリア周波数をランダムに変化させればスペクトルを拡散することができるが、意図しない周波数でリプル成分が増大する場合があり、これによって装置の効率や信頼性を低下させる恐れがある。
【0019】
また、
図5に示した無停電電源装置100A,100Bの並列接続システムのように、複数台の電力変換装置の出力側を、絶縁トランスを介さずに直接接続する場合、各変換装置のキャリアが同期していないと、次のような問題が生じる。
すなわち、キャリアが同期していない場合には、装置100A側の整流器用変換器104→インバータ用変換器106→装置100A,100B同士の並列接続部(負荷109との接続部)→装置100B側のインバータ用変換器→整流器用変換器→装置100A,100B同士の並列接続部(電力系統101との接続部)という経路でコモンモード循環電流が流れる。このため、運転損失が増加すると共に、コモンモードインピーダンスの大きさによっては、循環電流が過大になって電力変換装置が破損する恐れもある。
【0020】
そこで、本発明の解決課題は、リアクトル電流のリプル成分を平準化して周波数スペクトルを複数の周波数に拡散すると共に、そのピーク値を低下させることによって磁歪音を抑制可能とした制御装置を提供することにある。
また、本発明の他の解決課題は、複数台の電力変換装置を並列に接続して使用する場合にも、循環電流を発生させずに負荷への電力供給を可能とした制御装置を提供することにある。
【課題を解決するための手段】
【0021】
上記課題を解決するため、請求項1に係る発明は、入力電力を半導体スイッチング素子のオン・オフにより所望の形態に変換して出力し、かつ、出力部にフィルタ用のリアクトルを備えた電力変換装置の制御装置に
おいて、
前記半導体スイッチング素子をオン・オフする制御信号を生成するための所定周波数のキャリアを演算するキャリア演算器を備え、
前記キャリア演算器は、
前記リアクトルに流れる電流のリプル成分が大きくなる位相角におけるキャリア周波数(以下、高リプルキャリア周波数という)を、前記リプル成分が小さくなる位相角におけるキャリア周波数(以下、低リプルキャリア周波数という)よりも高く設定し、かつ、前記高リプルキャリア周波数と前記低リプルキャリア周波数とが交互に連続して発生するように前記キャリアを演算する
と共に、前記電力変換装置の出力電圧の相数に応じてキャリア周波数の上限値と下限値とを変化させ、前記上限値と前記下限値との範囲内で前記高リプルキャリア周波数及び前記低リプルキャリア周波数を演算することを特徴とする。
【0022】
請求項2に係る発明は、請求項1に記載した電力変換装置の制御装置において、前記
電力変換装置が、交流側が電源系統に接続された整流器と、前記整流器の直流側に接続されたバッテリーと、前記バッテリーに直流側が接続され、かつ交流側に負荷が接続されたインバータと、を有する無停電電源装置であることを特徴とする。
【0023】
請求項3に係る発明は、請求項1または2に記載した電力変換装置の制御装置において、前記電力変換装置
は、複数台が互いに並列に接続されて使用されるものであり、前記キャリア演算器は、全ての前記電力変換装置のキャリア周波数を同期させるように前記キャリアを演算することを特徴とする。
【発明の効果】
【0025】
本発明によれば、リアクトル電流のリプル成分を位相角の全範囲にわたり平準化してリアクトル電流の周波数スペクトルを複数の周波数に拡散し、スペクトルのピーク値を低下させることによって不快な磁歪音を低減することができる。
また、複数台の電力変換装置を並列に接続して使用する場合に、共通の位相基準信号に基づいてキャリア周波数を変化させることにより、各変換装置のキャリアを同期させて循環電流の発生を防止し、変換装置の破損等を防止することも可能である。
【図面の簡単な説明】
【0026】
【
図1】本発明の実施形態におけるキャリア演算器の構成を示すブロック図である。
【
図2】本発明の実施形態におけるU相電圧指令値及びキャリア周波数上限値のパターンの説明図である。
【
図3】本発明の実施形態におけるリアクトル電流の波形図である。
【
図4】
図3のリアクトル電流の周波数スペクトルを示す図である。
【
図5】並列接続された2台の無停電電源装置を有する電力変換装置のブロック図である。
【
図6】
図5における整流器用変換器及びインバータ用変換器の制御装置を示すブロック図である。
【
図7】
図6におけるキャリア演算器の構成を示すブロック図である。
【
図8】
図6のインバータ用変換器側のキャリア、電圧指令値、論理パルス、及び出力パルスの説明図である。
【
図9】キャリア周波数が固定されている場合のリアクトル電流の波形図である。
【
図10】
図9のリアクトル電流の周波数スペクトルを示す図である。
【
図11】ランダム変調時のリアクトル電流の周波数スぺクトルを示す概念図である。
【発明を実施するための形態】
【0027】
以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態の制御装置におけるキャリア演算器250の構成を示すブロック図である。なお、制御装置の全体的な構成は
図6と同様であり、
図6におけるキャリア演算器215を
図1のキャリア演算器250に置き換えることにより、本発明の制御装置が構成されている。
また、制御対象である電力変換装置は、
図6に示したように、整流器用変換器104と、この変換器104にバッテリー105を介して接続されたインバータ用変換器106とからなり、交流−直流−交流変換が可能な無停電電源装置を構成している。
【0028】
図1において、PLL回路214から出力される位相基準信号は正弦波演算器50に入力されている。正弦波演算器50では、
図6のインバータ用変換器106が三相である場合には、
図9の30[°]間隔の一点鎖線から明らかなように、kが12,24,……等の12の倍数である正弦波sinkθを演算する。また、インバータ用変換器106が単相である場合には、位相角が90[°],270[°]でリプル成分が増大するため、kが2,4,6,……等の2の倍数である正弦波sinkθを演算して出力する。
次に、減算器60によりsinkθから0.5を減算し、その結果にゲイン70を乗算した値を加算器80に入力する。ここで、ゲイン70は、リアクトルによる磁歪音の大きさや制御性能に応じて任意に設定することができる。
【0029】
加算器80では、上記ゲイン70の乗算結果と、PLL回路214から出力される第1の周波数上限値とを加算し、第2の周波数上限値を求める。ここで、第1の周波数上限値は、
図7により説明した従来の周波数上限値、すなわち、キャリア周波数を固定する場合の周波数上限値である。
図1のキャリア演算器250内におけるa部は、第1,第2の周波数上限値を概念的に示したものである。
【0030】
第2の周波数上限値を、キャリア周波数の補正後の上限値としてアップダウンカウンタ20に入力し、また、符号反転部30を介した第2の周波数下限値を、キャリア周波数の補正後の下限値としてアップダウンカウンタ20に入力する。
アップダウンカウンタ20は、発振器10の出力パルスを第2の周波数上限値と第2の周波数下限値との範囲内でカウントする。
【0031】
この実施形態では、例えばインバータ用変換器106が三相である場合には、
図2のパターンAに示すように、リアクトル電流のリプル成分が増大する30[°]間隔の位相角において第2の周波数上限値を大きく、すなわち第2の周波数下限値との差を大きくしてキャリア周波数を高くし(便宜的に、このキャリア周波数を高リプルキャリア周波数という)、それ以外の位相角では、第2の周波数上限値を小さく、すなわち第2の周波数下限値との差を小さくしてキャリア周波数を低くする(このキャリア周波数を低リプルキャリア周波数という)ようなパターンを得ることができる。なお、
図2では、パターンAに対比させて、インバータ用変換器106の電圧指令値の一例としてのU相電圧指令値λ
Uを表示してある。
図1に示したアップダウンカウンタ20の出力であるキャリアの模式的波形図において、「M」は周波数及び周期が中程度の範囲、「H」は周波数が高く周期が短い範囲、「L」は周波数が低く周期が長い範囲であり、このようなキャリア周波数の変化(M→H→M→L→M)は、例えば
図2におけるb部によって実現される。
【0032】
これにより、リアクトル電流のリプル成分が大きくなる位相角、例えばU相については位相角0°,90°,180°,270°、V相については30°,120°,210°,300°(U相の位相角を基準)、W相については60°,150°,240°,330°(同じくU相の位相角を基準)においてキャリア周波数をそれぞれ高くして高リプルキャリア周波数とし、それ以外の範囲ではキャリア周波数を低くして低リプルキャリア周波数とすることができ、リアクトル電流のリプル成分を各相の位相角の全範囲にわたって平準化することができる。
【0033】
このため、各相のリアクトル電流の波形は
図3のようになり、このリアクトル電流をFFTにより解析して得た周波数スペクトルは
図4のようになる。
図3のようにリアクトル電流のリプル成分が平準化された結果、
図4によれば、スペクトルのピーク部分pを
図10のピーク部分p’よりも低減することができ、リアクトルから発生する不快な磁歪音を従来よりも抑制することができる。特に、
図4では5[kHz]前後のスペクトルのピーク部分pが
図10のピーク部分p’に比べて低下しているので、キャリア周波数が可聴領域となる中容量または大容量の電力変換装置において有効な対策となる。
【0034】
なお、キャリア周波数の上限値(第2の周波数上限値)を変化させるパターンは、前述したパターンA以外に、
図2のパターンBやパターンCを選択しても良い。
パターンBは、周波数上限値が直線的に増減するパターンであり、このようなパターンは
図1の正弦波演算器50におけるsin12θの代わりに一次関数を用いれば容易に演算可能である。
また、パターンCは、各相のリアクトル電流のリプル成分が増大する位相角の前後のみ高くしたパターンであり、このようなパターンはPLL回路214による位相基準信号に基づいて容易に演算可能である。
【0035】
更に、上記実施形態では、単独の無停電電源装置の制御装置について説明したが、
図5に示すように複数台、例えば2台の無停電電源装置100A,100Bを並列に接続して使用する場合には、PLL回路による共通の位相基準信号に基づいてキャリア周波数を変化させることにより、各変換装置のキャリアを同期させて循環電流の発生を防止し、変換装置の破損等の事故を防ぐことができる。
【産業上の利用可能性】
【0036】
本発明は、キャリア周波数が可聴領域となる中容量または大容量の電力変換装置であって、無停電電源装置に限らず、少なくとも出力部にフィルタ用のリアクトルを有する電力変換装置の制御装置として利用可能である。
【符号の説明】
【0037】
10:発振器
20:アップダウンカウンタ
30:符号反転部
40:PLL回路
50:正弦波演算器
60:減算器
70:ゲイン
80:加算器
100A,100B:無停電電源装置
101:電力系統
102,108:コンデンサ
103,107:リアクトル
104:整流器用変換器
105:バッテリー
106:インバータ用変換器
109:負荷
201,202,203:電圧検出器
204,205:電流検出器
207,210,217,223:減算器
208,211,218,224:調節器
209:乗算器
212,219,220:加算器
213:比較器
214:PLL回路
215,250:キャリア演算器
216,226:デッドタイム生成器
221:負荷電流演算器
222:電流指令演算器