(58)【調査した分野】(Int.Cl.,DB名)
建設機械の複数の油圧アクチュエータを操作する複数の操作レバーの操作量に応じて操作信号を出力する操作量計測手段からの信号と、前記建設機械の姿勢に応じて姿勢信号を出力する姿勢計測手段からの信号とに基づいて、前記各油圧アクチュエータの各制御弁を駆動する駆動信号を、前記制御弁に供給するパイロット圧を増圧して前記各油圧アクチュエータを起動または増速する増圧比例電磁弁に出力する建設機械の駆動制御装置において、
予め設定されたオペレータのレバー操作と駆動許可対象との対応関係を表す駆動許可設定表を有し、該駆動許可設定表と前記操作信号とに基づいて前記各油圧アクチュエータの駆動を許可するか否かを判定するとともに、前記操作レバーが中立位置のときに前記油圧アクチュエータの駆動を不許可と判定する駆動許可判定手段と、
前記各油圧アクチュエータのうち前記駆動許可判定手段により駆動が許可された油圧アクチュエータに対しては、前記駆動信号で前記増圧比例電磁弁を通じて前記制御弁を駆動し、前記各油圧アクチュエータのうち前記駆動許可判定手段により駆動が許可されない油圧アクチュエータに対しては、異常な駆動信号があったとしても前記増圧比例電磁弁を通じて前記制御弁を駆動しないように、前記駆動信号を選択する駆動信号選択手段と、
前記各油圧アクチュエータの前記駆動信号と前記駆動許可判定手段で判定された駆動許可信号とに基づいて制御異常を検出する異常検出手段と、
前記異常検出手段により前記制御異常を検出したときに前記制御弁に対する前記パイロット圧を遮断する駆動信号停止手段と、を備えていることを特徴とする建設機械の駆動制御装置。
前記駆動許可判定手段は、前記各油圧アクチュエータのそれぞれに対して駆動を許可する1または複数のレバー操作を設定する駆動許可設定手段を備える構成としたことを特徴とする請求項1に記載の建設機械の駆動制御装置。
前記異常検出手段により前記制御異常を検出したときに異常を通知する異常通知手段をさらに備える構成としたことを特徴とする請求項1に記載の建設機械の駆動制御装置。
建設機械の複数の油圧アクチュエータを操作する複数の操作レバーの操作量に応じて操作信号を出力する操作量計測手段からの信号と、前記建設機械の姿勢に応じて姿勢信号を出力する姿勢計測手段からの信号とに基づいて、前記各油圧アクチュエータの各制御弁を駆動する駆動信号を、前記制御弁に供給するパイロット圧を増圧して前記各油圧アクチュエータを起動または増速する増圧比例電磁弁に出力する建設機械の駆動制御装置において、
予め設定されたオペレータのレバー操作と前記各制御弁を駆動する前記駆動信号の上限値との対応関係を表す上限値設定表を有し、該上限値設定表と前記操作信号とに基づいて前記各制御弁を駆動する前記駆動信号の上限値を決定するとともに、前記操作レバーが中立位置のときに前記駆動信号の上限値を0に決定する駆動信号上限決定手段と、
前記各油圧アクチュエータのうち前記駆動信号が前記駆動信号上限決定手段で決定された上限値以下である油圧アクチュエータに対しては、当該駆動信号で前記増圧比例電磁弁を通じて前記制御弁を駆動し、前記各油圧アクチュエータのうち前記駆動信号が前記駆動信号上限決定手段で決定された上限値を超える油圧アクチュエータに対しては、異常な駆動信号があったとしても前記上限値で前記増圧比例電磁弁を通じて前記制御弁を駆動するように、前記駆動信号を選択する駆動信号選択手段と、
前記各油圧アクチュエータの前記駆動信号と前記駆動信号上限決定手段で決定された前記駆動信号の上限値とに基づいて制御異常を検出する異常検出手段と、
前記異常検出手段により前記制御異常を検出したときに前記制御弁に対する前記パイロット圧を遮断する駆動信号停止手段と、を備えており、
前記駆動信号上限決定手段は、前記各操作レバーのうちのいずれかの操作レバーが操作されたときに、当該操作された操作レバーにより動作する油圧アクチュエータを含む前記各油圧アクチュエータのそれぞれに対して前記駆動信号の上限値を決定することを特徴とする建設機械の駆動制御装置。
前記駆動信号上限決定手段は、前記各油圧アクチュエータのそれぞれに対して各レバー操作の操作量に応じた前記駆動信号の上限値を決定する駆動信号上限値設定手段を備える構成としたことを特徴とする請求項4に記載の建設機械の駆動制御装置。
前記異常検出手段により前記制御異常を検出したときに異常を通知する異常通知手段をさらに備える構成としたことを特徴とする請求項4に記載の建設機械の駆動制御装置。
【発明を実施するための形態】
【0015】
以下、本発明に係る建設機械の駆動制御装置の実施の形態を、油圧ショベルに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。
【0016】
図1ないし
図12は、第1の実施の形態を示している。
図1において、建設機械の代表例である油圧ショベル1は、走行可能なクローラ式の下部走行体2と、該下部走行体2上に旋回装置3を介して旋回可能に搭載された上部旋回体4と、該上部旋回体4の前,後方向の前側に俯仰動可能に取付けられた作業装置5とを含んで構成されている。下部走行体2、旋回装置3および上部旋回体4は、油圧ショベル1の車体を構成しており、下部走行体2、旋回装置3、上部旋回体4および作業装置5は、機械(建設機械)を構成している。
【0017】
ここで、下部走行体2は、トラックフレーム2Aと、該トラックフレーム2Aの左,右両側に設けられた駆動輪2Bと、トラックフレーム2Aの左,右両側で駆動輪2Bに対して前,後方向の反対側に設けられた遊動輪2Cと、駆動輪2Bと遊動輪2Cとに巻回された履帯2D(いずれも左側のみ図示)とを含んで構成されている。左,右の駆動輪2Bは、それぞれ減速機構を介して左,右の走行油圧モータ2E(左側のみ図示)と接続されている。即ち、駆動輪2Bは、走行油圧モータ2Eによって回転駆動される。このとき、走行油圧モータ2Eは、車両となる油圧ショベル1を走行動作させる油圧アクチュエータを構成している。
【0018】
旋回装置3は、下部走行体2上に設けられている。旋回装置3は、例えば、旋回軸受と、減速機構(いずれも図示せず)と、旋回油圧モータ3Aとを含んで構成されている。旋回装置3は、上部旋回体4を下部走行体2に対して旋回させる。このとき、旋回油圧モータ3Aは、上部旋回体4を作業装置5と共に旋回動作させる油圧アクチュエータを構成している。
【0019】
作業装置5は、油圧ショベル1のフロントとなるショベル機構を構成している。作業装置5は、例えばブーム5A、アーム5B、作業具(アタッチメント)としてのバケット5Cと、これらを駆動するブームシリンダ5D、アームシリンダ5E、作業具シリンダとしてのバケットシリンダ5Fとを備えている。ブーム5A、アーム5B、バケット5Cは、互いにピン結合されている。作業装置5は、各シリンダ5D,5E,5Fを伸長または縮小することによって掘削作業を行うことができる。このとき、各シリンダ5D,5E,5Fは、作業装置5を掘削動作させる油圧アクチュエータを構成している。
【0020】
即ち、油圧シリンダからなるブームシリンダ5D、アームシリンダ5E、バケットシリンダ5F、および、油圧モータからなる左,右の走行油圧モータ2E、旋回油圧モータ3Aは、それぞれ圧油の供給に基づいて駆動(作動)する油圧アクチュエータ(油圧機器、油圧装置)となるものである。これら、複数の油圧アクチュエータ5D,5E,5F,2E,3Aは、下部走行体2、旋回装置3、上部旋回体4および作業装置5を含んで構成される機械(建設機械)に備えられている。
【0021】
上部旋回体4は、支持構造体をなし前,後方向の前側に作業装置5が取付けられた旋回フレーム6と、旋回フレーム6上に設けられたエンジン10、メインポンプ11、パイロットポンプ12、制御弁装置14等を収容する建屋カバー7と、作業装置5との重量バランスをとるカウンタウエイト8と、オペレータが搭乗するキャブ9とを備えている。
【0022】
ここで、エンジン10は、例えばディーゼルエンジン等の内燃機関を用いて構成されている。エンジン10の出力側には、油圧ポンプであるメインポンプ11および別の油圧ポンプであるパイロットポンプ12が機械的に接続されている。エンジン10は、ECUとも呼ばれるエンジンコントローラ10Aによって、燃料噴射量が制御されることにより、回転数(回転速度)および駆動力が制御される。エンジンコントローラ10Aは、後述するメインコントローラ32に接続されている。
【0023】
エンジン10の駆動力は、メインポンプ11およびパイロットポンプ12に伝達される。これにより、エンジン10は、メインポンプ11およびパイロットポンプ12を回転駆動するための原動機(回転源、駆動源)を構成している。なお、メインポンプ11およびパイロットポンプ12を駆動する原動機は、内燃機関となるエンジン単体で構成できる他、例えば、エンジンと電動モータ、または、電動モータ単体により構成してもよい。
【0024】
メインポンプ11は、エンジン10によって回転駆動される。メインポンプ11は、作動油を貯溜する作動油タンク13(
図2参照)と共にメインの油圧源を構成している。メインポンプ11は、例えば可変容量型の斜板式油圧ポンプ等により構成され、ポンプ容量を調整するレギュレータ(容量可変部、傾転アクチュエータ)11A(
図2参照)を有している。レギュレータ11Aは、メインコントローラ32(の車体制御部36)に接続されており、メインコントローラ32(の車体制御部36)により可変に制御される。即ち、メインポンプ11は、メインコントローラ32によってポンプ容量が調整される。メインポンプ11は、エンジン10によって回転駆動されることにより、制御弁装置14を介して各油圧アクチュエータ5D,5E,5F,2E,3Aに圧油を供給する。
【0025】
パイロットポンプ12は、メインポンプ11と同様に、エンジン10によって回転駆動される。パイロットポンプ12は、例えば、固定容量型油圧ポンプとして構成され、作動油タンク13と共にパイロット油圧源を構成している。パイロットポンプ12は、キャブ9内に設けられた操作レバー装置15を介して、制御弁装置14にパイロット圧を供給する。
【0026】
制御弁装置14は、メインポンプ11が発生した圧油を各アクチュエータ5D,5E,5F,2E,3Aに分配する。このために、制御弁装置14は、メインポンプ11と各油圧アクチュエータ5D,5E,5F,2E,3Aとの間に設けられている。制御弁装置14は、複数の制御弁14A(
図2参照)により構成された制御弁群である。各制御弁14Aは、例えば6ポート3位置の方向制御弁により構成され、メインポンプ11から各油圧アクチュエータ5D,5E,5F,2E,3Aに供給する圧油を切換え制御する。
【0027】
この場合、制御弁装置14(各制御弁14A)は、操作レバー装置15により操作(切換え操作)される。このために、制御弁装置14の各制御弁14Aには、それぞれ一対の油圧パイロット部(図示せず)が設けられている。制御弁14Aの油圧パイロット部には、操作レバー装置15の操作に基づくパイロット圧(切換信号)が供給される。これにより、各制御弁14Aは、各油圧アクチュエータ5D,5E,5F,2E,3Aの駆動を制御する。
【0028】
キャブ9内には、オペレータが着席する運転席(図示せず)、オペレータが操作する複数の操作レバー装置15、オペレータに対して機械の各種情報を報知すると共に運転モード等を設定するモニタ・操作パネル装置16等が設けられている。また、キャブ9内には、メインポンプ11および制御弁装置14を制御すると共にエンジンコントローラ10Aに指令を与えるメインコントローラ32が設けられている。なお、
図1では、メインコントローラ32を上部旋回体4のキャブ9内に設ける構成としたが、例えば、メインコントローラ32を上部旋回体4のキャブ9外に設ける構成としてもよい。
【0029】
複数の操作レバー装置15は、走行用の操作レバー・ペダル装置や作業用の操作レバー装置等により構成されている。即ち、各操作レバー装置15は、例えば減圧弁型パイロット弁からなるパイロット操作弁(油圧式レバー装置)として構成され、オペレータによって操作される操作レバー15Aをそれぞれ有している。操作レバー15Aを含む操作レバー装置15は、各油圧アクチュエータ5D,5E,5F,2E,3Aを操作するものである。
【0030】
即ち、オペレータが操作レバー15Aを手動で傾転操作(レバー操作)すると、その操作量に比例したパイロット圧(切換油圧信号)が、操作レバー装置15から制御弁装置14を構成する各制御弁14A(の油圧パイロット部)に供給される。これにより、各制御弁14Aのスプールの位置が変位し、各油圧アクチュエータ5D,5E,5F,2E,3Aに供給・排出する圧油の方向および流量が制御され、作業装置5による掘削、下部走行体2の走行、上部旋回体4の旋回等を行うことができる。
【0031】
モニタ・操作パネル装置16は、オペレータに対して燃料残量、エンジン冷却水温度等の機械の状態を報知すると共に、油圧ショベル1の運転モード等の選択、設定等を行うためのものである。このために、モニタ・操作パネル装置16は、例えば、表示画面となる液晶モニタと、音を出力する音響装置と、オペレータの入力インターフェースとなる操作パネルとを含んで構成されている。モニタ・操作パネル装置16は、オペレータに対して異常を報知するときに、表示画面に異常がある旨や異常の内容等を表示し、および/または、音響装置から警報音、音声等の音を出力する。
【0032】
次に、油圧ショベル1を駆動する油圧回路21について、
図1に加え
図2も参照しつつ説明する。なお、
図2では、図面が複雑になることを避けるために、複数の油圧機器を代表的に1個の油圧機器で表している。具体的には、
図2では、制御弁装置14を構成する複数の制御弁14Aを1個の制御弁14Aで表し、複数の油圧アクチュエータ5D,5E,5F,2E,3Aを1個の油圧アクチュエータ(以下、油圧アクチュエータ22とする)で表し、複数の操作レバー装置15を1個の操作レバー装置15で表し、複数の減圧比例電磁弁23を1個の減圧比例電磁弁23で表し、複数の増圧比例電磁弁25を1個の増圧比例電磁弁25で表している。
【0033】
実際の油圧ショベル1の油圧回路21では、例えば、6個の油圧アクチュエータ22と、6個の制御弁14Aと、4個の操作レバー装置15(例えば、2個で合計4方向の操作に対応する作業用操作レバー装置と2個の走行用レバー・ペダル装置)と、4個または6個の減圧比例電磁弁23と、4個または6個の増圧比例電磁弁25とを備えている。また、
図2では、後述する複数の圧力センサ28および複数の別の圧力センサ29も、代表的にそれぞれ1個で表している。実際の油圧ショベル1の油圧回路21では、例えば、それぞれ4個または6個の圧力センサ28および別の圧力センサ29を備えている。
【0034】
図2に示すように、油圧ショベル1の油圧回路21は、エンジン10と、メインポンプ11と、複数の制御弁14Aと、複数の油圧アクチュエータ22と、パイロットポンプ12と、複数の操作レバー装置15と、複数の減圧比例電磁弁23と、複数の増圧比例電磁弁25と、複数の圧力センサ28と、複数の別の圧力センサ29と、遮断電磁弁30と、姿勢センサ31と、メインコントローラ32と、モニタ・操作パネル装置16とを備えている。
【0035】
減圧比例電磁弁23は、操作レバー装置15と制御弁14A(のパイロット部)との間に設けられている。即ち、減圧比例電磁弁23は、操作レバー装置15と制御弁14Aとの間を接続するパイロット管路24の途中に設けられている。減圧比例電磁弁23は、例えば、常開の比例電磁弁により構成され、メインコントローラ32(の領域制限制御部40)と接続されている。減圧比例電磁弁23は、メインコントローラ32の指令(駆動信号)に基づいて、制御弁14A(のパイロット部)に供給されるパイロット圧を減圧する。
【0036】
増圧比例電磁弁25は、パイロットポンプ12と制御弁14A(のパイロット部)との間に設けられている。即ち、増圧比例電磁弁25は、パイロットポンプ12と操作レバー装置15との間を接続するパイロット吐出管路26から分岐し、かつ、パイロット管路24のうち減圧比例電磁弁23と制御弁14Aとの間に接続されるパイロット分岐管路27の途中に設けられている。増圧比例電磁弁25は、例えば、常閉の比例電磁弁により構成され、メインコントローラ32(の駆動許容制御部44)と接続されている。増圧比例電磁弁25は、メインコントローラ32の指令(駆動信号)に基づいて、制御弁14A(のパイロット部)に供給されるパイロット圧を増圧する。
【0037】
圧力センサ28は、パイロット管路24のうち操作レバー装置15と減圧比例電磁弁23との間に設けられている。圧力センサ28は、メインコントローラ32(の車体制御部36、領域制限制御部40、および、駆動許容制御部44)に接続されている。圧力センサ28は、操作レバー装置15から出力されるパイロット圧37を検出し、そのパイロット圧37に対応する検出信号をメインコントローラ32に出力する。即ち、圧力センサ28は、各操作レバー15Aの操作量に応じた操作信号を出力する操作量計測手段を構成している。
【0038】
別の圧力センサ29は、パイロット管路24のうちパイロット分岐管路27との接続部と制御弁14A(のパイロット部)との間に設けられている。別の圧力センサ29は、メインコントローラ32(の駆動許容制御部44)に接続されている。別の圧力センサ29は、制御弁14Aのパイロット部に供給されるパイロット圧35を検出し、そのパイロット圧35に対応する検出信号をメインコントローラ32に出力する。
【0039】
遮断電磁弁30は、パイロット吐出管路26のうちパイロットポンプ12と操作レバー装置15との間、より具体的には、パイロット分岐管路27との分岐部とパイロットポンプ12との間に設けられている。遮断電磁弁30は、例えば、常開の電磁切換弁により構成され、メインコントローラ32(の駆動許容制御部44)と接続されている。遮断電磁弁30は、メインコントローラ32の指令に基づいて、パイロットポンプ12から操作レバー装置15および増圧比例電磁弁25に供給されるパイロット圧の元圧34を遮断する。
【0040】
姿勢センサ31は、油圧ショベル1の姿勢を検出(計測)するセンサ(複数のセンサからなるセンサ群)である。即ち、姿勢センサ31は、作業装置5および上部旋回体4を含む機械に設けられ、機械の姿勢を推定するための各種の状態量を検出(計測)するものである。姿勢センサ31は、例えば、上部旋回体4の傾斜を測定する傾斜角センサ、上部旋回体4の角度(例えば、旋回角度)を検出する角度センサ、作業装置5のブーム5Aの回転角度を検出するブーム用回転角度センサ、アーム5Bの回転角度を検出するアーム用回転角度センサ、バケット5Cの回転角度を検出するバケット用回転角度センサ等を含んで構成されている。これにより、姿勢センサ31は、機械の姿勢に応じた姿勢信号(検出信号)を出力する姿勢計測手段を構成している。
【0041】
なお、作業装置5の回転角度センサは、例えば、ポテンショメータ、傾斜角センサ、シリンダストロークセンサ、および/または、これらの組み合わせにより構成することができる。また、上部旋回体4の角度センサは、下部走行体2との相対角度を計測するものの他、汎地球測位航法衛星システム(GNSS)を用いて地球座標上の角度を計測するものにより構成してもよい。
【0042】
このような姿勢センサ31は、メインコントローラ32(の領域制限制御部40)に接続されている。メインコントローラ32(の領域制限制御部40)は、作業装置5が予め設定した空間領域を超えないように作業装置5を制御する機能、即ち、姿勢センサ31の計測データ(検出信号)とオペレータのレバー操作(例えば、圧力センサ28の検出信号)と基づいて、作業装置5を制御する領域制限制御機能を備えている。領域制限制御機能の用途としては、作業装置5のキャブ9への衝突の回避、掘削作業における掘り過ぎの防止、作業現場における機械上方の施設への衝突の回避等が挙げられる。
【0043】
次に、油圧ショベル1の領域制限制御機能を実現するためのシステム構成を説明する。
【0044】
エンジン10の駆動力は、メインポンプ11とパイロットポンプ12に伝達される。メインポンプ11は、各油圧アクチュエータ22を駆動(作動)する圧油33を発生する。パイロットポンプ12は、オペレータが操作レバー装置15の操作レバー15Aを通じて制御弁14Aを制御するパイロット圧の元圧34を発生させる。制御弁14Aは、操作レバー15Aの各々の操作量等で決まる(制御弁14A側の)パイロット圧35に応じて、油圧アクチュエータ22への圧油の吐出量および吐出方向を制御する。
【0045】
メインコントローラ32は、例えば、メモリ、UPU(演算装置)等を備えたマイクロコンピュータを含んで構成されている。メインコントローラ32は、車体制御部36と、領域制限制御部40と、駆動許容制御部44とを含んで構成されている。なお、車体制御部36は、メインコントローラ32に実装されるが、領域制限制御部40と駆動許容制御部44は、それぞれメインコントローラ32に実装してもよいし、メインコントローラ32とは別のコントローラに実装してもよい。
【0046】
車体制御部36は、各圧力センサ28で計測した(操作レバー15A側の)パイロット圧37の計測データ38から算出した操作レバー15Aの操作量、エンジン10の稼働状態(運転状態)、メインポンプ11の吐出圧、各油圧アクチュエータ22の負荷圧等に基づいて、エンジン10の回転数、メインポンプ11の流量(吐出量)等を制御する。このために、車体制御部36は、各圧力センサ28と、エンジン10(のエンジンコントローラ10A)と、メインポンプ11(のレギュレータ11A)と、各油圧アクチュエータ22(の圧力センサ(図示せず))とに接続されている。なお、車体制御部36は、メインポンプ11から各油圧アクチュエータ22への圧油分配を制御するために、パイロット圧35に対する要求減圧パイロット圧39を出力することもある。このために、車体制御部36は、領域制限制御部40と接続されている。要求減圧パイロット圧39は、各々の油圧アクチュエータ22に対応して出力される。
【0047】
さらに、領域制限制御機能を実現するシステムとして、減圧比例電磁弁23と、増圧比例電磁弁25と、遮断電磁弁30と、圧力センサ29と、領域制限制御部40と、駆動許容制御部44とを備えている。減圧比例電磁弁23は、パイロット圧35を減圧して油圧アクチュエータ22を減速または停止する電磁弁(減速比例電磁弁)である。増圧比例電磁弁25は、パイロット圧35を増圧して油圧アクチュエータ22を起動または増速する電磁弁(増速比例電磁弁)である。遮断電磁弁30は、パイロット圧の元圧34を遮断する電磁弁である。圧力センサ29は、制御弁14Aを制御するパイロット圧35を計測する。
【0048】
領域制限制御部40は、入力側が姿勢センサ31と各圧力センサ28と車体制御部36とに接続され、出力側が各減圧比例電磁弁23と駆動許容制御部44とに接続されている。領域制限制御部40は、各操作レバー15Aの操作量に応じた操作信号(パイロット圧37の信号)および姿勢センサ31の姿勢信号(姿勢に関する状態量の検出信号)に基づいて、各制御弁14Aを駆動する駆動信号(駆動電流42および要求増圧パイロット圧43)を出力する制御手段(領域制限制御手段)を構成している。即ち、領域制限制御部40は、油圧ショベル1の姿勢センサ31の計測データ41に基づいて機械の姿勢を推定すると共に、各圧力センサ28のパイロット圧37の計測データ38に基づいてオペレータによる操作レバー15Aの操作量を算出する。
【0049】
そして、領域制限制御部40は、機械が予め設定した空間領域から逸脱しないように、機械の姿勢、オペレータの操作、車体制御部36が出力する要求減圧パイロット圧39等に応じて、減圧比例電磁弁23の駆動電流42を減圧比例電磁弁23に出力し、所望の油圧アクチュエータ22を減速または停止する。または、領域制限制御部40は、機械が予め設定した空間領域から逸脱しないように、機械の姿勢、オペレータの操作、要求減圧パイロット圧39等に応じて、増圧比例電磁弁25を駆動して所望の油圧アクチュエータ22を起動または増速するために、要求増圧パイロット圧43を駆動許容制御部44に出力する。駆動電流42、および、要求増圧パイロット圧43は、各々の油圧アクチュエータ22に対応して出力される。
【0050】
駆動許容制御部(作動許容制御部)44は、入力側が各圧力センサ28と領域制限制御部40と各別の圧力センサ29とに接続され、出力側が各増圧比例電磁弁25とモニタ・操作パネル装置16と遮断電磁弁30とに接続されている。駆動許容制御部44は、パイロット圧37の計測データ38に基づいてオペレータによる操作レバー15Aの操作の有無を判別し、操作状況に応じて各油圧アクチュエータ22の駆動(作動)を許可するか否かを判定する。そして、駆動許容制御部44は、駆動を許可する油圧アクチュエータ22に対しては、領域制限制御部40から出力された要求増圧パイロット圧43に応じて、増圧比例電磁弁25の駆動電流45を増圧比例電磁弁25に出力する。これにより、所望の油圧アクチュエータ22を起動または増速する。駆動電流45は、各々の油圧アクチュエータ22に対応して出力される。
【0051】
一方、駆動許容制御部44は、駆動を許可しない油圧アクチュエータ22に対しては要求増圧パイロット圧43の値に拘わらず、駆動電流45を出力しない。これにより、領域制限制御部40の異常により誤った要求増圧パイロット圧43が出力されても、駆動許容制御部44により、駆動を許可しない油圧アクチュエータ22の増圧比例電磁弁25を駆動しないようにできる。さらに、駆動許容制御部44は、操作レバー15Aが中立位置のときに、全ての油圧アクチュエータ22の駆動を許可しないようにすることができる。これにより、オペレータは、操作レバー15Aを中立位置に戻すことにより、全ての増圧比例電磁弁25を駆動しないようにでき、油圧アクチュエータ22の不当な動作を停止することができる。
【0052】
また、駆動許容制御部44は、駆動を許可しない油圧アクチュエータ22に対して要求増圧パイロット圧43が出力された場合に、要求増圧パイロット圧43に異常がある旨の異常情報46を、モニタ・操作パネル装置16に出力することができる。これにより、異常をオペレータに報知することができる。また、駆動許容制御部44は、別の圧力センサ29により検出されるパイロット圧35と後述の増圧パイロット圧51とを比較し、パイロット圧35の異常を判定することができる。異常であると判定された場合に、駆動許容制御部44は、遮断電磁弁30を駆動(閉弁)する駆動電流47を遮断電磁弁30に出力する。これにより、パイロット圧の元圧34が遮断され、機械を停止させることができる。
【0053】
次に、駆動許容制御部44について、
図3ないし
図9を参照しつつ説明する。
【0054】
図3に示すように、駆動許容制御部44は、駆動許可判定部48と、パイロット圧選択部50と、電磁弁駆動部53と、パイロット圧異常検出部54と、異常通知部58とを備えている。駆動許可判定部48は、入力側が各圧力センサ28に接続され、出力側がパイロット圧選択部50に接続されている。駆動許可判定部48は、各操作レバー15Aの操作量に応じた操作信号に基づいて、各油圧アクチュエータ22の駆動を許可するか否かを判定(決定)して出力する駆動許可判定手段を構成している。即ち、駆動許可判定部48は、各圧力センサ28のパイロット圧センサ情報、即ち、パイロット圧37の計測データ38に基づいて、オペレータによる各操作レバー15Aの操作状況に応じた駆動を許可する油圧アクチュエータ22を判定する。そして、駆動許可判定部48は、その判定結果(油圧アクチュエータ22の駆動の許可、不許可)に対応する駆動許可信号49を、パイロット圧選択部50に出力する。
【0055】
パイロット圧選択部50は、入力側が領域制限制御部40と駆動許可判定部48に接続され、出力側が電磁弁駆動部53とパイロット圧異常検出部54と異常通知部58とに接続されている。パイロット圧選択部50は、駆動許可判定部48により駆動が許可された油圧アクチュエータ22に対しては駆動信号(要求増圧パイロット圧43)で制御弁14Aを駆動し、駆動が許可されない油圧アクチュエータ22に対しては制御弁14Aを駆動しないように、駆動信号(領域制限制御部40からの要求増圧パイロット圧43)を選択する駆動信号選択手段を構成している。
【0056】
即ち、パイロット圧選択部50は、領域制限制御部40からの要求増圧パイロット圧43のうち、駆動許可判定部48から出力された駆動許可信号49に応じた要求増圧パイロット圧43、即ち、駆動が許可された油圧アクチュエータ22の要求増圧パイロット圧43を、増圧パイロット圧51として選択する。そして、パイロット圧選択部50は、増圧パイロット圧51を、電磁弁駆動部53とパイロット圧異常検出部54とに出力する。
【0057】
さらに、パイロット圧選択部50は、駆動が許可されない油圧アクチュエータ22の要求増圧パイロット圧43が0でない場合に、要求増圧パイロット圧43が異常である旨の要求増圧パイロット圧異常情報52を、異常通知部58に出力する。即ち、パイロット圧選択部50は、各油圧アクチュエータ22の駆動信号(要求増圧パイロット圧43)と駆動許可判定部48で判定された駆動許可信号49とに基づいて制御異常を検出する異常検出手段(要求増圧パイロット圧異常検出手段)も構成している。なお、パイロット圧選択部50で行われる
図10の処理については、後で説明する。
【0058】
電磁弁駆動部53は、入力側がパイロット圧選択部50に接続され、出力側が増圧比例電磁弁25に接続されている。電磁弁駆動部53は、パイロット圧選択部50からの増圧パイロット圧51に基づいて、増圧比例電磁弁25の駆動電流45を増圧比例電磁弁25に出力する。これにより、増圧比例電磁弁25が駆動電流45に応じて開弁し、駆動が許可された油圧アクチュエータ22の制御弁14Aのパイロット部に増圧パイロット圧51に対応するパイロット圧が供給される。
【0059】
パイロット圧異常検出部54は、入力側がパイロット圧選択部50と各別の圧力センサ29とに接続され、出力側が異常通知部58と遮断電磁弁30とに接続されている。パイロット圧異常検出部54は、各別の圧力センサ29のパイロット圧センサ情報55であるパイロット圧35の計測データとパイロット圧選択部50からの増圧パイロット圧51とを比較して、パイロット圧35の異常を検出する。パイロット圧異常検出部54は、パイロット圧35の異常を検出した場合は、パイロット圧35が異常である旨のパイロット圧異常情報56を異常通知部58に出力する。
【0060】
これと共に、パイロット圧異常検出部54は、パイロット圧(の元圧34)を遮断する指令信号(駆動電流47)となるパイロット圧遮断要求57を遮断電磁弁30に出力する。即ち、パイロット圧異常検出部54は、パイロット圧選択部50で選択された駆動信号(増圧パイロット圧51)と制御弁14Aに供給される実際の駆動信号(パイロット圧35)とに基づいて制御異常を検出する別の異常検出手段(パイロット圧異常検出手段)、および、異常を検出したときに制御弁14Aに対する駆動信号(パイロット圧)を遮断する駆動信号停止手段を構成している。なお、パイロット圧異常検出部54で行われる
図11の処理については、後で説明する。
【0061】
異常通知部58は、入力側がパイロット圧選択部50とパイロット圧異常検出部54とに接続され、出力側がモニタ・操作パネル装置16に接続されている。異常通知部58は、パイロット圧選択部50、および/または、パイロット圧異常検出部54により制御異常を検出したときに異常を通知する異常通知手段を構成している。即ち、異常通知部58は、パイロット圧選択部50からの要求増圧パイロット圧異常情報52、および/または、パイロット圧異常検出部54からのパイロット圧異常情報56に基づいて、異常がある旨および異常の内容に対応する異常情報46を、モニタ・操作パネル装置16に出力する。
【0062】
ここで、駆動許可判定部48は、オペレータのレバー操作毎に駆動を許可する油圧アクチュエータ22を予め設定することができる。
図5および
図8は、各々のレバー操作時に許可する油圧アクチュエータ22の動作の設定例をマトリクスで示した駆動許可設定表60,62である。駆動許可判定部48は、1または複数のレバー操作がなされた場合、駆動許可設定表60,62に基づいて、各油圧アクチュエータ22の動作がいずれかのレバー操作で許可されるかどうかを判定する。そして、駆動許可判定部48は、いずれのレバー操作もなされない場合、即ち、操作レバー15Aが中立位置のときは、全ての油圧アクチュエータ22の動作を不許可と判定し、この判定結果に対応する駆動許可信号49を駆動許可信号Enとして出力する。
【0063】
図5の駆動許可設定表60の設定は、
図4に示すように、掘削作業や均し作業において、バケット5Cが目標面61よりも下を掘り過ぎないように、アーム5Bまたはバケット5Cを操作しているときに、領域制限制御部40によってブーム5Aを上げ方向に動作させるものである。オペレータがアーム引きとバケット掘削の操作を行った場合、
図6に示すように、駆動許可判定部48は、アーム引きとバケット掘削に加えてブーム上げも許可する。これにより、オペレータによるブーム上げ操作がなくても、領域制限制御部40によるブーム上げ動作が可能になる。一方、領域制限制御部40が故障により誤った要求増圧パイロット圧43を出力しても、オペレータが操作レバー15Aを中立位置に戻すと、駆動許可判定部48の判定結果は全て不許可となる。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
【0064】
一方、
図8の駆動許可設定表62の設定は、
図7に示すように、バケット5Cが上部旋回体4や下部走行体2に衝突しないように干渉防止領域63を設けて、ブーム5A、アーム5B、バケット5Cを操作しているときに、領域制限制御部40によってアーム5Bを押し方向に動作させるものである。オペレータがブーム上げとバケット掘削の操作を行った場合、
図9に示すように、駆動許可判定部48は、ブーム上げとバケット掘削に加えてアーム押しも許可する。これにより、オペレータによるアーム押し操作がなくても、領域制限制御部40によるアーム押し動作が可能になる。一方、領域制限制御部40が故障により誤った要求増圧パイロット圧43を出力しても、オペレータが操作レバー15Aを中立位置に戻すと、駆動許可判定部48の判定結果は全て不許可となる。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
【0065】
このように、駆動許可判定部48は、
図5に示す駆動許可設定表60、および/または、
図8に示す駆動許可設定表62を備えている。駆動許可設定表60,62は、オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係を表したものである。そして、
図5の駆動許可設定表60、および/または、
図8の駆動許可設定表62は、各油圧アクチュエータ22のそれぞれに対して駆動を許可する1または複数のレバー操作を設定する駆動許可設定手段を構成している。なお、駆動許可設定手段は、オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係が設定されたものであればよく、
図5および
図8のような表(マトリクス)に限定するものではない。また、駆動許可設定表60,62は、
図5および
図8に限定されるものではなく、領域制限制御部40の制限制御に応じて各種の駆動許可設定表(オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係)を設定することができる。
【0066】
次に、
図10は、パイロット圧選択部50で行われる制御処理を示している。
図10の制御処理は、例えば、メインコントローラ32(パイロット圧選択部50)に通電している間、所定の制御周期で繰り返し実行される。なお、
図10(および、後述する
図11、
図18)に示す流れ図の各ステップは、それぞれ「S」という表記を用いて示す(例えば、ステップ1=S1)。
【0067】
パイロット圧選択部50の制御処理がスタートすると、パイロット圧選択部50は、S1で、領域制限制御部40から出力された要求増圧パイロット圧43、即ち、要求増圧パイロット圧Pcrを取得する。続く、S2では、駆動許可判定部48から出力された駆動許可判定結果に対応する駆動許可信号49、即ち、駆動許可信号Enを取得する。そして、S3では、駆動許可信号Enが「駆動許可」であるか否かを判定する。
【0068】
S3で「YES」、即ち、駆動許可信号Enが「駆動許可」であると判定された場合は、S4に進む。S4では、要求増圧パイロット圧Pcrを増圧パイロット圧Pcとする。即ち、電磁弁駆動部53およびパイロット圧異常検出部54に対して増圧パイロット圧51を、増圧パイロット圧Pc(=Pcr)として出力し、リターンする(リターンを介してスタートに戻りS1以降の処理を繰り返す)。
【0069】
一方、S3で「NO」、即ち、駆動許可信号Enが「駆動不許可」であると判定された場合は、S5に進む。S5では、要求増圧パイロット圧Pcrを0とする。即ち、電磁弁駆動部53およびパイロット圧異常検出部54に対して増圧パイロット圧51を、増圧パイロット圧Pc(=0)として出力する。続くS6では、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値であるか否かを判定する。
【0070】
S6で「YES」、即ち、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値であると判定された場合は、S7に進む。S7では、要求増圧パイロット圧Pcrが異常である旨の異常情報である要求増圧パイロット圧異常情報52を異常通知部58に出力し、リターンする。一方、S6で「NO」、即ち、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値でない(Pcr=0)と判定された場合は、S7を介することなくリターンする。これらの処理、即ち、パイロット圧選択部50で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。
【0071】
次に、
図11は、パイロット圧異常検出部54で行われる制御処理を示している。
図11の制御処理も、
図10の処理と同様に、例えば、メインコントローラ32(パイロット圧異常検出部54)に通電している間、所定の制御周期で繰り返し実行される。
【0072】
パイロット圧異常検出部54の制御処理がスタートすると、パイロット圧異常検出部54は、S11で、パイロット圧選択部50から出力された増圧パイロット圧51、即ち、増圧パイロット圧Pcを記憶し、リターンする(リターンを介してスタートに戻りS11の処理を繰り返す)。また、このS11の処理と並行して、S21以降の処理も行う。
【0073】
S21では、現時点よりも時間Tdだけ過去に記憶していた増圧パイロット圧Pcdを読み出す。なお、時間Tdは、増圧パイロット圧Pcが決まってからそれに応じたパイロット圧35が発生するまでの時間と、その発生したパイロット圧35を別の圧力センサ29で計測してからその計測結果(パイロット圧センサ情報55)であるパイロット圧Prを、パイロット圧異常検出部54が取得するまでの時間の和である。即ち、増圧パイロット圧Pcdは、パイロット圧異常検出部54が取得するパイロット圧Prに対応する過去の増圧パイロット圧Pcに相当する。
【0074】
S21に続くS22では、パイロット圧異常検出部54は、別の圧力センサ29から実際のパイロット圧Prを取得し、S1で読み出した増圧パイロット圧Pcdと比較する。即ち、続くS23で、実際のパイロット圧Prと増圧パイロット圧Pcdとの差が予め定めた異常判定差閾値となるdPce未満であるか否かを判定する。S23で「YES」、即ち、実際のパイロット圧Prと増圧パイロット圧Pcdとの差がdPce未満であると判定された場合は、パイロット圧35は正しいと判断できる。そこで、S24に進み、エラーカウンタECをクリアし、リターンする(リターンを介してスタートに戻りS21以降の処理を繰り返す)。なお、閾値dPceは、例えば、その値以上となるとパイロット圧35の異常が発生している可能性が高いと判定できる値として設定することができる。閾値dPceは、異常の判定を精度よく行うことができるように、例えば、予め実験、計算、シミュレーション等により求めておく。
【0075】
一方、S23で「NO」、即ち、実際のパイロット圧Prと増圧パイロット圧Pcdとの差がdPce以上であると判定された場合は、パイロット圧35は誤っていると判断できる。そこで、S25に進み、エラーカウンタECをインクリメントする。そして、続くS26では、エラーカウンタECが予め定めた異常判定回数閾値となるRC以上であるか否かを判定する。
【0076】
S26で「YES」、即ち、エラーカウンタECがRC以上であると判定された場合は、S27に進み、パイロット圧の元圧34を遮断する指令信号となるパイロット圧遮断要求57、即ち、パイロット圧遮断要求DesPiを遮断電磁弁30に出力する。これにより、遮断電磁弁30を閉位置(遮断位置)にし、機械を停止する。続くS28では、パイロット圧35が異常である旨のパイロット圧異常情報56を異常通知部58に出力する。これにより、異常通知部58は、異常がある旨および異常の内容に対応する異常情報46をモニタ・操作パネル装置16に出力し、オペレータに対して異常を報知することができる。S28で、パイロット圧異常情報56を出力したら、リターンする。なお、閾値RCは、例えば、その値以上になると機械を停止した方が好ましいと判定できる値として設定することができる。閾値RCは、機械の停止を適切に行うことができるように、例えば、予め実験、計算、シミュレーション等により求めておく。
【0077】
一方、S26で「NO」、即ち、エラーカウンタECがRC未満であると判定された場合は、S27およびS28を介することなくリターンする。これらの処理、即ち、パイロット圧異常検出部54で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。即ち、パイロット圧遮断要求DesPiおよび遮断電磁弁30は、各々の油圧アクチュエータ22毎に設けることができる。この場合には、異常に該当する油圧アクチュエータ22の動作のみを停止させることができる。一方、遮断電磁弁30を設けず、かつ、S27を省略する構成としてもよい。この場合は、モニタ・操作パネル装置16による異常の報知に基づいて、オペレータがキーオフすることにより、機械を停止することができる。
【0078】
本実施の形態による油圧ショベル1は上述の如き構成を有するもので、次に、その動作について説明する。
【0079】
キャブ9に搭乗したオペレータがエンジン10を起動させると、エンジン10によってメインポンプ11およびパイロットポンプ12が駆動される。これにより、メインポンプ11から吐出した圧油は、キャブ9内に設けられた操作レバー装置15の操作レバー15Aの操作(例えば、作業用の操作レバーのレバー操作、走行用の操作レバー・ペダルのレバー操作、ペダル操作)に応じて、各油圧アクチュエータ22(即ち、左,右の走行油圧モータ2E、旋回油圧モータ3A、作業装置5のブームシリンダ5D,アームシリンダ5E,バケットシリンダ5F)に供給される。これにより、油圧ショベル1は、下部走行体2による走行動作、上部旋回体4の旋回動作、作業装置5による掘削動作等を行うことができる。
【0080】
ここで、
図12は、操作レバー15Aが操作されたときの駆動許容制御部44による基本動作を示している。T1の時点で、オペレータの操作レバー15Aの操作が開始され、この操作によってパイロット圧37が発生する。T2の時点で、駆動許容制御部44の駆動許可判定部48は、パイロット圧センサ情報(であるパイロット圧37の計測データ38)に基づいて、オペレータによる各操作レバー15Aの操作状況に応じた各油圧アクチュエータ22の駆動許可信号Enを出力する。そして、T2の時点からT6の時点まで、駆動許容制御部44のパイロット圧選択部50は、駆動許可信号Enが「駆動許可」であるため、領域制限制御部40からの要求増圧パイロット圧Pcrを、増圧パイロット圧Pcとして出力する。このとき、駆動許容制御部44の電磁弁駆動部53は、増圧パイロット圧Pcに基づいて、増圧比例電磁弁25に駆動電流45を出力する。これにより、領域制限制御部40による油圧アクチュエータの動作が可能になる。
【0081】
一方、T4の時点から領域制限制御部40の故障により誤った要求増圧パイロット圧Pcrが出力されると、例えば、この故障による動きに違和感を持ったオペレータが、T5の時点で全ての操作レバー15Aを中立位置に戻し始める。この場合、T6の時点で、駆動許容制御部44の駆動許可判定部48は、全ての油圧アクチュエータ22の駆動許可信号ENを「駆動不許可」とする。この結果、駆動許容制御部44のパイロット圧選択部50は、全ての増圧パイロット圧Pcを0とするので、駆動許容制御部44の電磁弁駆動部53による増圧比例電磁弁25の駆動が停止する。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
【0082】
かくして、第1の実施の形態では、駆動許可判定部48は、操作レバー15Aの操作状態に応じて各油圧アクチュエータ22の駆動を許可するか否かを判定する。そして、駆動が許可された場合は、パイロット圧選択部50は、領域制限制御部40が出力した駆動信号(要求増圧パイロット圧43)で制御弁14Aを駆動する。一方、パイロット圧選択部50は、駆動が許可されない場合は、領域制限制御部40から駆動信号(要求増圧パイロット圧43)が出力されても、制御弁14Aを駆動しないよう駆動信号を選択する。このため、オペレータが操作レバー15Aを操作したときに、当該操作レバー15Aに対応する油圧アクチュエータ22の駆動だけでなく、作業装置5が予め定めた空間的領域から逸脱しないように機械を動作させるために必要な油圧アクチュエータ22の駆動も許可することができる。これと共に、オペレータが操作レバー15Aを中立位置にした場合は、領域制限制御部40が誤って駆動信号(要求増圧パイロット圧43)を出力しても、油圧アクチュエータ22の駆動を許可しないので、機械を停止することができる。
【0083】
第1の実施の形態では、駆動許可設定手段に対応する
図5の駆動許可設定表60および
図8の駆動許可設定表62によって、油圧アクチュエータ22のそれぞれに対して駆動を許可する1または複数のレバー操作を任意に設定できる。このため、作業装置5の構成に適した駆動許可、作業装置5の逸脱を防止する空間的領域に適した駆動許可を設定することができる。
【0084】
第1の実施の形態では、要求増圧パイロット圧異常検出手段としてのパイロット圧異常検出部54と異常通知部58とを備えている。このため、各油圧アクチュエータ22の駆動信号(要求増圧パイロット圧43)と駆動許可判定部48が出力する駆動許可信号49とに基づいて、制御異常の検出および通知を行うことができる。これにより、オペレータに機械の修理を促すことができる。
【0085】
次に、
図13ないし
図19は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、操作レバー装置を電気レバー装置により構成すると共に、パイロット圧上限決定部を備える構成としたことにある。なお、第2の実施の形態では、上述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0086】
複数の操作レバー装置71は、それぞれ電気式の操作レバー装置として構成され、オペレータによって操作される操作レバー71Aを有している。ここで、操作レバー装置71は、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)を出力する操作量計測手段を構成している。操作レバー装置71は、出力側がメインコントローラ32の車体制御部73および駆動許容制御部77に接続されている。操作レバー装置71は、オペレータが操作レバー
71Aを手動で傾転操作(レバー操作)すると、そのレバー操作量72に対応する電気信号(操作信号)が、操作レバー装置71からメインコントローラ32の車体制御部73および駆動許容制御部77に出力される。
【0087】
なお、操作レバー装置71を電気式の操作レバー装置としたことに伴って、パイロットポンプ12と制御弁14Aとの間を接続するパイロット管路92の途中には、パイロットポンプ12側から順に、遮断電磁弁30と比例電磁弁25と別の圧力センサ29とが設けられている。
【0088】
車体制御部73は、操作レバー
71Aのレバー操作量72、エンジン10の稼働状態(運転状態)、メインポンプ11の吐出圧、各油圧アクチュエータ22の負荷圧等に基づいて、エンジン10の回転数、メインポンプ11の流量(吐出量)等を制御する。このために、車体制御部73は、操作レバー装置71と、エンジン10と、メインポンプ11と、各油圧アクチュエータ22と接続されている。また、車体制御部73の出力側は、領域制限制御部75に接続されている。車体制御部73は、各油圧アクチュエータ22を動作させるパイロット圧35に対応する目標パイロット圧74を領域制限制御部75に出力する。目標パイロット圧74は、各々の油圧アクチュエータ22に対応して出力される。
【0089】
領域制限制御部75は、入力側が姿勢センサ31と車体制御部73とに接続され、出力側が駆動許容制御部77に接続されている。領域制限制御部75は、車体制御部73と共に、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)および姿勢センサ31の姿勢信号(姿勢に関する状態量の検出信号)に基づいて、各制御弁14Aを駆動する駆動信号(要求パイロット圧76)を出力する制御手段(領域制限制御手段)を構成している。即ち、領域制限制御部75は、油圧ショベル1の姿勢センサ31の計測データ41に基づいて機械の姿勢を推定すると共に、車体制御部73が出力する目標パイロット圧74に基づいて機械の姿勢の変化を予想する。
【0090】
そして、領域制限制御部75は、機械が予め設定した空間領域から逸脱するおそれがない場合は、目標パイロット圧74を要求パイロット圧76として駆動許容制御部77に出力する。一方、領域制限制御部75は、機械が予め設定した空間領域から逸脱するおそれがある場合は、逸脱しないように目標パイロット圧74を調整してその調整した目標パイロット圧74を要求パイロット圧76として駆動許容制御部77に出力する。要求パイロット圧76は、各々の油圧アクチュエータ22に対応して出力される。
【0091】
駆動許容制御部(作動許容制御部)77は、入力側が操作レバー装置71と領域制限制御部75と各別の圧力センサ29とに接続され、出力側が各比例電磁弁25とモニタ・操作パネル装置16と遮断電磁弁30とに接続されている。駆動許容制御部77は、操作レバー71Aのレバー操作量72に基づいてオペレータによる各操作レバー71Aの操作量を認識し、レバー操作量72に応じて各油圧アクチュエータ22を動作させるパイロット圧35の上限値となるパイロット圧上限値を決定(判定)する。そして、駆動許容制御部77は、各油圧アクチュエータ22の動作に対応する要求パイロット圧76がパイロット圧上限値以下の場合は、要求パイロット圧76に応じて比例電磁弁25を駆動する駆動電流45を比例電磁弁25に出力する。一方、駆動許容制御部77は、要求パイロット圧76がパイロット圧上限値よりも高い場合は、パイロット圧上限値に応じて比例電磁弁25を駆動する駆動電流45を比例電磁弁25に出力する。
【0092】
これにより、車体制御部73または領域制限制御部75の異常により領域制限制御部75から誤った要求パイロット圧76が出力されても、各油圧アクチュエータ22の動作は、オペレータのレバー操作量72に応じて決定されるパイロット圧上限値に応じた速度に抑えられる。さらに、駆動許容制御部77は、操作レバー71Aが中立位置のときに、全ての油圧アクチュエータ22の駆動を許可しないように、パイロット圧上限値を0にすることができる。これにより、オペレータは、操作レバー71Aを中立位置に戻すとパイロット圧上限値が0になり、油圧アクチュエータ22の不当な動作を停止することができる。
【0093】
さらに、駆動許容制御部77は、領域制限制御部75からパイロット圧上限値よりも高い要求パイロット圧76が出力された場合は、要求パイロット圧76に異常がある旨の異常情報46を、モニタ・操作パネル装置16に出力することができる。これにより、異常をオペレータに報知することができる。また、駆動許容制御部77は、別の圧力センサ29により検出されるパイロット圧35と後述のパイロット圧81とを比較し、パイロット圧35の異常を判定することができる。異常であると判定された場合に、駆動許容制御部77は、遮断電磁弁30を駆動(閉弁)する駆動電流47を遮断電磁弁30に出力することができる。これにより、パイロット圧の元圧34が遮断され、機械を停止させることができる。
【0094】
次に、駆動許容制御部77について、
図14ないし
図17を参照しつつ説明する。
【0095】
図14に示すように、駆動許容制御部77は、パイロット圧上限決定部78と、パイロット圧選択部80と、電磁弁駆動部83と、パイロット圧異常検出部84と、異常通知部88とを備えている。パイロット圧上限決定部78は、入力側が操作レバー装置71に接続され、出力側がパイロット圧選択部80に接続されている。パイロット圧上限決定部78は、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)に基づいて各油圧アクチュエータ22の制御弁14Aを駆動する駆動信号(要求パイロット圧76)の上限値(パイロット圧上限値)を決定(判定)して出力する駆動信号上限決定手段を構成している。即ち、パイロット圧上限決定部78は、レバー操作量72に基づいてオペレータによる各操作レバー71Aの操作状況に応じた各油圧アクチュエータ22のパイロット圧上限値を決定する。そして、パイロット圧上限決定部78は、パイロット圧選択部50に各油圧アクチュエータ22のパイロット圧上限値79を出力する。
【0096】
パイロット圧選択部80は、入力側が領域制限制御部75とパイロット圧上限決定部78に接続され、出力側が電磁弁駆動部83とパイロット圧異常検出部84と異常通知部88とに接続されている。パイロット圧選択部80は、駆動信号(領域制限制御部75からの要求パイロット圧76)がパイロット圧上限決定部78で決定されたパイロット圧上限値79以下である油圧アクチュエータ22に対しては当該駆動信号(要求パイロット圧76)で制御弁14Aを駆動し、駆動信号(要求パイロット圧76)がパイロット圧上限決定部78で決定されたパイロット圧上限値79を超える油圧アクチュエータ22に対してはパイロット圧上限値79で制御弁14Aを駆動するように、駆動信号(要求パイロット圧76)を選択する駆動信号選択手段を構成している。
【0097】
即ち、パイロット圧選択部80は、パイロット圧上限値79に応じて、各油圧アクチュエータ22の要求パイロット圧76またはパイロット圧上限値79のいずれかをパイロット圧81として選択する。そして、パイロット圧選択部80は、パイロット圧81を、電磁弁駆動部83とパイロット圧異常検出部84とに出力する。
【0098】
さらに、パイロット圧選択部80は、要求パイロット圧76がパイロット圧上限値79を超える場合に、要求パイロット圧76が異常である旨の要求パイロット圧異常情報82を、異常通知部88に出力する。即ち、パイロット圧選択部80は、各油圧アクチュエータ22の駆動信号(要求パイロット圧76)とパイロット圧上限決定部78で決定された駆動信号の上限値(パイロット圧上限値79)とに基づいて制御異常を検出する異常検出手段(要求パイロット圧異常検出手段)を構成している。なお、パイロット圧選択部80で行われる
図18の処理については、後で説明する。
【0099】
電磁弁駆動部83は、入力側がパイロット圧選択部80に接続され、出力側が比例電磁弁25に接続されている。電磁弁駆動部83は、パイロット圧選択部80からのパイロット圧81に基づいて、比例電磁弁25の駆動電流45を比例電磁弁25に出力する。これにより、比例電磁弁25が駆動電流45に応じて開弁し、制御弁14Aのパイロット部にパイロット圧81に対応するパイロット圧35が供給される。
【0100】
パイロット圧異常検出部84は、入力側がパイロット圧選択部80と各別の圧力センサ29とに接続され、出力側が異常通知部88と遮断電磁弁30とに接続されている。パイロット圧異常検出部84は、各別の圧力センサ29のパイロット圧センサ情報85であるパイロット圧35の計測データとパイロット圧選択部80からのパイロット圧81とを比較して、パイロット圧35の異常を検出する。パイロット圧異常検出部84は、パイロット圧35の異常を検出した場合は、パイロット圧35が異常である旨のパイロット圧異常情報86を異常通知部88に出力する。
【0101】
これと共に、パイロット圧異常検出部84は、パイロット圧(の元圧34)を遮断する指令信号となるパイロット圧遮断要求87を遮断電磁弁30に出力する。即ち、パイロット圧異常検出部84は、パイロット圧選択部80で選択された駆動信号(パイロット圧81)と制御弁14Aに供給される実際の駆動信号(パイロット圧35)とに基づいて制御異常を検出する別の異常検出手段(パイロット圧異常検出手段)、および、異常を検出したときに制御弁14Aに対する駆動信号(パイロット圧)を遮断する駆動信号停止手段を構成している。なお、パイロット圧異常検出部84で行われる処理は、第1の実施の形態のパイロット圧異常検出部54で行われる
図11の処理と、「増圧パイロット圧Pc」が「パイロット圧Pc」となる点で相違する以外、同様である。
【0102】
異常通知部88は、入力側がパイロット圧選択部80とパイロット圧異常検出部84とに接続され、出力側がモニタ・操作パネル装置16に接続されている。異常通知部88は、パイロット圧選択部80、および/または、パイロット圧異常検出部84により制御異常を検出したときに異常を通知する異常通知手段を構成している。即ち、異常通知部88は、パイロット圧選択部80からの要求パイロット圧異常情報82、および/または、パイロット圧異常検出部84からのパイロット圧異常情報86に基づいて、異常がある旨および異常の内容に対応する異常情報46を、モニタ・操作パネル装置16に出力する。
【0103】
ここで、パイロット圧上限決定部78は、オペレータのレバー操作毎に各油圧アクチュエータ22の動作を許容するパイロット圧上限値を予め設定することができる。
図15は、各々のレバー操作毎に各油圧アクチュエータ22の動作を許容するパイロット圧上限値の例をマトリクスで示したパイロット圧上限値設定表90である。
図15中の「0」は、パイロット圧上限値が0であることを示しており、油圧アクチュエータ22を動作させない。
図15中の「Ca」と「Cb」は、
図17に示すように、レバー操作量に応じてパイロット圧の上限値がそれぞれ変わる。
図17に示すように、レバー操作量が0からv1までは、CaもCbも不感帯となっている。v1からv2までは、CaもCbも、レバー操作量の増加に応じてパイロット圧上限値が増加(例えば、比例増加)する。そして、v2でパイロット圧上限値の最大値、即ち、CaはPpa2に達し、CbはPpb2に達する。
【0104】
パイロット圧上限決定部78は、1または複数のレバー操作がなされた場合、パイロット圧上限値設定表90に基づいて、各油圧アクチュエータ22の動作毎のレバー操作に対応するパイロット圧上限値の中から最も大きい値をパイロット圧上限値79として出力する。
【0105】
オペレータがアーム引きとバケット掘削の操作を行った場合、
図16に示すように、パイロット圧上限決定部78は、アーム引きとバケット掘削のそれぞれのレバー操作量に応じて各油圧アクチュエータのパイロット圧上限値79を決定する。具体的には、アーム引き操作量がV3、バケット掘削操作量がv4とすると、アーム引きのパイロット圧上限値は、
図17の「Ca」からPpa3となり、バケット掘削のパイロット圧上限値は、
図17の「Ca」からPpa4となる。一方、ブーム上げのパイロット圧上限値は、
図17の「Ca」と「Cb」とからPpa3とPpb4のうち最も大きい値であるPpa3となる。さらに、他の操作のパイロット圧上限値は0となる。
【0106】
これにより、オペレータによるブーム上げ操作がなくても、領域制限制御部75によるブーム上げに対応する油圧アクチュエータ22の動作が可能になる。また、領域制限制御部75が故障により誤った要求パイロット圧76を出力しても、不当なブーム上げ動作をオペレータのレバー操作量に応じた速度に抑えることができる。さらに、オペレータは、操作レバー71Aを中立位置に戻すことにより、不当なブーム上げ動作を停止することができる。
【0107】
このように、パイロット圧上限決定部78は、
図15に示すパイロット圧上限値設定表90、および、
図17に示すレバー操作量とパイロット圧上限値との特性線
図91とを備えている。パイロット圧上限値設定表90は、オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係を表したものである。レバー操作量とパイロット圧上限値との特性線
図91は、レバー操作量とパイロット圧上限値との対応関係を表したものである。そして、
図15のパイロット圧上限値設定表90は、各油圧アクチュエータ22のそれぞれに対して各レバー操作の操作量に応じた駆動信号(パイロット圧)の上限値を決定する駆動信号上限値設定手段を構成している。
【0108】
なお、駆動信号上限値設定手段は、オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係が設定されたものであればよく、
図15のような表(マトリクス)に限定するものではない。また、パイロット圧上限値設定表90、および、レバー操作量とパイロット圧上限値との特性線
図91は、
図15および
図17に限定されるものではなく、領域制限制御部75の制限制御に応じて各種の駆動信号上限値設定表(オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係)および特性線図(レバー操作量とパイロット圧上限値との対応関係)を設定することができる。
【0109】
次に、
図18は、パイロット圧選択部80で行われる制御処理を示している。
図18の制御処理は、例えば、メインコントローラ32(パイロット圧選択部80)に通電している間、所定の制御周期で繰り返し実行される。
【0110】
パイロット圧選択部80の制御処理がスタートすると、パイロット圧選択部80は、S31で、領域制限制御部75から出力された要求パイロット圧76、即ち、要求パイロット圧Pcrを取得する。続く、S32では、パイロット圧上限決定部78から出力された上限値決定結果に対応するパイロット圧上限値79、即ち、パイロット圧上限値Ppを取得する。そして、S33では、要求パイロット圧Pcrがパイロット圧上限値Pp以下であるか否かを判定する。
【0111】
S33で「YES」、即ち、要求パイロット圧Pcrがパイロット圧上限値Pp以下であると判定された場合は、S34に進む。S34では、要求パイロット圧Pcrをパイロット圧Pcとする。即ち、電磁弁駆動部83およびパイロット圧異常検出部84に対してパイロット圧81を、パイロット圧Pc(=Pcr)として出力し、リターンする(リターンを介してスタートに戻りS31以降の処理を繰り返す)。
【0112】
一方、S33で「NO」、即ち、要求パイロット圧Pcrがパイロット圧上限値Ppよりも大きいと判定された場合は、S35に進む。S35では、要求パイロット圧Pcrをパイロット圧上限値Ppとする。即ち、電磁弁駆動部83およびパイロット圧異常検出部84に対してパイロット圧81を、パイロット圧Pc(=Pp)として出力する。続くS6では、要求パイロット圧Pcrが異常である旨の異常情報である要求パイロット圧異常情報82を異常通知部88に出力し、リターンする。これらの処理、即ち、パイロット圧選択部80で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。
【0113】
ここで、
図19は、操作レバー71Aが操作されたときの駆動許容制御部77による基本動作を示している。T1の時点で、オペレータの操作レバー71Aの操作が開始される。T2の時点から、駆動許容制御部77のパイロット圧上限決定部78から出力されるパイロット圧上限値Ppが、操作レバー71Aの操作量の増大に伴って増大する。そして、T2の時点からT5の時点では、領域制限制御部75からの要求パイロット圧Pcrがパイロット圧上限値Pp以下であるため、駆動許容制御部77のパイロット圧選択部80は、領域制限制御部75からの要求パイロット圧Pcrを、パイロット圧pcとして出力する。このとき、駆動許容制御部77の電磁弁駆動部83は、パイロット圧Pcに基づいて、比例電磁弁25に駆動電流45を出力する。これにより、車体制御部73や領域制限制御部75による油圧アクチュエータ22の動作が可能になる。
【0114】
一方、T4の時点から車体制御部73または領域制限制御部75の故障により誤った要求パイロット圧Pcrが出力され、T5の時点から要求パイロット圧Pcrがパイロット圧上限値Ppよりも大きくなると、駆動許容制御部77のパイロット圧選択部80は、パイロット圧上限値Ppをパイロット圧pcとして出力する。これにより、T5からT6の時点で、レバー操作量に応じたパイロット圧pcに抑えることができる。さらに、オペレータがT6の時点で操作レバー71Aを中立位置に戻し始めると、T7の時点で、駆動許容制御部77のパイロット圧上限決定部78のパイロット圧上限値Ppが0になる。この結果、駆動許容制御部77のパイロット圧選択部
80は、パイロット圧Pcを0とするので、駆動許容制御部77の電磁弁駆動部83による比例電磁弁25の駆動が停止する。これにより、不当な油圧アクチュエータ22の動作を減速、停止することができる。
【0115】
第2の実施の形態は、上述のようなパイロット圧上限決定部78によりパイロット圧pcをパイロット圧上限値Pp以下に規制するもので、その基本的作用については、上述した第1の実施の形態によるものと格別差異はない。
【0116】
特に、第2の実施の形態では、パイロット圧上限決定部78は、操作レバー71Aの操作量に応じて各油圧アクチュエータ22の制御弁14Aを駆動する駆動信号(要求パイロット圧76)の上限値を決定する。そして、パイロット圧選択部80は、駆動信号(要求パイロット圧76)が上限値以下である油圧アクチュエータ22に対しては、領域制限制御部75が出力した当該駆動信号(要求パイロット圧76)で制御弁14Aを駆動する。一方、パイロット圧選択部80は、駆動信号(要求パイロット圧76)が上限値を超える油圧アクチュエータ22に対しては、上限値(パイロット圧上限値79)で制御弁14Aを駆動するように駆動信号(要求パイロット圧76)を選択する。このため、オペレータが操作レバー71Aを操作したときに、当該操作レバー71Aに対応する油圧アクチュエータ22の駆動だけでなく、作業装置5が予め定めた空間的領域から逸脱しないように機械を動作させるために必要な油圧アクチュエータ22の駆動も許可することができる。これと共に、領域制限制御部75から誤った駆動信号(要求パイロット圧76)が出力されても、オペレータによるレバー操作量72に応じた駆動信号、即ち、パイロット圧上限値79に抑えられるため、機械の速度変化を抑えることができる。さらに、オペレータが操作レバー71Aを中立位置にした場合は、領域制限制御部75から誤った駆動信号(要求パイロット圧76)が出力されても、駆動信号がパイロット圧上限値79の0に抑えられる。これにより、油圧アクチュエータ22の駆動が許可されなくなり、機械を停止することができる。
【0117】
第2の実施の形態では、駆動信号上限設定手段に対応する
図15のパイロット圧上限値設定表90によって、油圧アクチュエータ22のそれぞれに対して各レバー操作の操作量に応じた駆動信号の上限値(パイロット圧上限値79)を設定できる。このため、作業装置5の構成に適した駆動信号の上限値、作業装置5の逸脱を防止する空間的領域に適した駆動信号の上限値を設定することができる。
【0118】
第2の実施の形態では、要求パイロット圧異常検出手段としてのパイロット圧選択部80および異常通知部88を備えている。このため、各油圧アクチュエータ22の駆動信号(要求パイロット圧76)とパイロット圧上限決定部78が出力する駆動信号の上限値(パイロット圧上限値79)とに基づいて、制御異常の検出および通知を行うことができる。これにより、オペレータに機械の修理を促すことができる。
【0119】
なお、上述した第1の実施の形態では、車体制御部36と領域制限制御部40と駆動許容制御部44とを一つのメインコントローラ32に実装した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、領域制限制御部40と駆動許容制御部44とを、車体制御部36を実装したメインコントローラ32とは別のコントローラに実装する構成としてもよい。また、車体制御部36と領域制限制御部40と駆動許容制御部44とを、それぞれ別のコントローラに実装する構成としてもよい。このことは、第2の実施の形態についても同様である。
【0120】
上述した第1の実施の形態では、領域制限制御部40で行われる制御として、目標面61よりも下を掘り過ぎないようにブーム5Aを上げ方向に動作させた場合、および、干渉防止領域63にバケット5Cが入らないようにアーム5Bを押し方向に動作させる場合を例に挙げて説明した。しかし、本発明はこれに限らず、制御手段(領域制限制御手段)は、上記以外にも、例えば、作業現場における機械上方の施設への衝突の回避等、機械が予め設定した空間領域から逸脱しないようにするための各種の制御を行う構成とすることができる。このことは、第2の実施の形態についても同様である。
【0121】
上述した第1の実施の形態では、操作レバー15Aを用いて油圧アクチュエータ22を操作する構成とした場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、操作ペダル、操作スティック等の各種の操作具により油圧アクチュエータを操作する構成とすることができる。即ち、操作レバーは、各種の操作具を含むものである。このことは、第2の実施の形態についても同様である。
【0122】
上述した第1の実施の形態では、制御弁14Aを駆動する駆動信号をパイロット圧(油圧)とした場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、制御弁を電磁弁とするとともに駆動信号を電気信号とする等、油圧以外にも各種の駆動信号を用いることができる。このことは、第2の実施の形態についても同様である。
【0123】
上述した第1の実施の形態では、旋回装置3の駆動源を旋回油圧モータ3Aにより構成した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、旋回装置の駆動源を油圧モータ(旋回油圧モータ)と電動モータ(旋回電動モータ)により構成してもよい。また、旋回装置の駆動源を電動モータ(旋回電動モータ)のみにより構成してもよい。このことは、第2の実施の形態についても同様である。
【0124】
上述した各実施の形態では、建設機械として、油圧ショベル1を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば、ホイールローダ等の各種の建設機械に広く適用することができる。さらに、各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
【0125】
以上の実施の形態によれば、制御手段が正常であるか否かに拘わらず、操作レバーを中立位置にすることで機械を停止することができ、かつ、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
【0126】
(1).即ち、実施の形態によれば、駆動許可判定手段と、駆動信号選択手段とを備える構成としている。そして、駆動信号選択手段は、駆動許可判定手段により駆動が許可されない油圧アクチュエータに対しては制御弁を駆動しないように、駆動信号を選択する。この場合に、駆動許可判定手段は、操作レバーが中立位置のときは、全ての油圧アクチュエータの駆動を許可しないようにできる。これにより、オペレータが操作レバーを中立位置にすると、仮に異常な駆動信号があったとしても、駆動信号選択手段は、制御弁を駆動しないように駆動信号を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、操作レバーを中立位置にすることで、機械を停止することができる。
【0127】
一方、駆動許可判定手段は、操作レバーが中立位置から操作されているときは、そのレバー操作に対して作業装置が予め定めた空間的領域から逸脱しないように制御するために必要な油圧アクチュエータの駆動を許可するようにできる。これにより、仮に異常な駆動信号(例えば、作業装置が予め定めた空間的領域から逸脱しないように制御する駆動信号以外の駆動信号)があったとしても、駆動信号選択手段は、異常な駆動信号を選択せずに、駆動許可判定手段により駆動が許可された油圧アクチュエータに対する駆動信号を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
【0128】
(2).実施の形態によれば、駆動許可判定手段は、駆動許可設定手段を備える構成としている。この場合に、駆動許可設定手段は、レバー操作とそのレバー操作に対して駆動を許可するアクチュエータの動作との対応関係として設定することができる。即ち、駆動許可設定手段は、作業装置の構成に適した駆動許可、および/または、作業装置の逸脱を防止する空間的領域に適した駆動許可を設定することができる。これにより、駆動許可判定手段は、各油圧アクチュエータの駆動を許可するか否かの判定を適正に、かつ、安定して行うことができる。
【0129】
(3).実施の形態によれば、異常検出手段と、異常通知手段とをさらに備える構成としている。これにより、オペレータに異常を通知すること、さらには、機械を自動的に停止することができる。この結果、オペレータに機械の修理を促すことができる。
【0130】
(4).実施の形態によれば、駆動信号上限決定手段と、駆動信号選択手段とを備える構成としている。そして、駆動信号選択手段は、駆動信号が駆動信号上限決定手段で決定された上限値を超える油圧アクチュエータに対しては上限値で制御弁を駆動するように、駆動信号を選択する。この場合に、駆動信号上限決定手段は、操作レバーが中立位置のときは、全ての油圧アクチュエータに対する駆動信号の上限値を0にできる。これにより、オペレータが操作レバーを中立位置にすると、仮に異常な駆動信号があったとしても、駆動信号選択手段は、駆動信号を上限値である0を選択する。これにより、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、操作レバーを中立位置にすることで、機械を停止することができる。
【0131】
一方、駆動信号上限決定手段は、操作レバーが中立位置から操作されているときは、そのレバー操作に対して作業装置が予め定めた空間的領域から逸脱しないように制御するために必要な油圧アクチュエータを駆動できるように駆動信号の上限値を決定できる。これにより、仮に異常な駆動信号(例えば、作業装置が予め定めた空間的領域から逸脱しないように制御する駆動信号の上限値を超える駆動信号)があったとしても、駆動信号選択手段は、駆動信号上限決定手段により決定された駆動信号の上限値を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
【0132】
(5).実施の形態によれば、駆動信号上限決定手段は、駆動信号上限値設定手段を備える構成としている。この場合に、駆動信号上限値設定手段は、レバー操作とそのレバー操作に対して駆動を許可するアクチュエータに対する駆動信号の上限値との対応関係として設定することができる。即ち、駆動信号上限決定手段は、作業装置の構成に適した駆動信号の上限値、および/または、作業装置の逸脱を防止する空間的領域に適した駆動信号の上限値を設定することができる。これにより、駆動信号上限決定手段は、各油圧アクチュエータに対する上限値の決定を適正に、かつ、安定して行うことができる。
【0133】
(6).実施の形態によれば、異常検出手段と、異常通知手段とをさらに備える構成としている。これにより、オペレータに異常を通知すること、さらには、機械を自動的に停止することができる。この結果、オペレータに機械の修理を促すことができる。