【実施例1】
【0036】
1.材料および方法
マウス、細胞株、プラスミド、組換えタンパク質、抗体および試薬
C57BL/6J および BALB/c ヌードマウスは、Japan Cleaより購入した。MerTK
−/− マウス(41)は、Jackson Laboratoryより購入した。全てのマウス実験は、京都大学医学研究科・医学部動物実験委員会により承認を受けた。
【0037】
ヒトKBM7細胞株 (16)は、Brent H. Cochran 博士(Tufts University School of Medicine) より提供され、10% FCSを含有するイスコフ改変ダルベッコ培地(IMDM)中で維持した。W3は、マウスT細胞リンパ腫細胞株(WR19L)にマウス(m)Fasを発現させた形質転換体であり(42)、W3-Ildmは、Fasと、カスパーゼ活性化DNA分解酵素の阻害分子(ICAD)のカスパーゼ耐性型とを発現するWR19L細胞誘導体である(43)。W3、W3-Ildm、およびヒトJurkat細胞は、10% FCS含有RPMI1640中で培養した。mTMEM16Fの構成的活性型を発現するW3-Ildm 形質転換体 (W3-D430G-L) は、既報である(20)。HEK293T細胞は、10% FCS含有DMEM中で培養した。一部の実験、特にホスファチジルセリン(PtdSer)露出の解析では、細胞培養用のFCSを100,000×gにて4℃で一晩遠心し、次いで、0.22-mm メンブレン (Millipore)を用いて濾過して、微小胞または細胞残屑を取り除いた。
【0038】
ジーントラップ用のベクター(pGT-GFP、pGT-GFP+1、およびpGT-GFP+2)は、既報である(17)。レトロウイルスベクター pMXs-puro (44) およびパッケージングプラスミドpGag-pol-IRESbsrは、北村俊雄博士(東京大学医科学研究所)より提供された。プラスミドpCMV-VSV-Gは、三好浩之博士(理化学研究所バイオリソースセンター)より提供された。pAdVAntage
(商標)、pX260、およびpX330 (19)は、それぞれ Life Technologies (Invitrogen) および Addgeneより購入した。組換えロイシンジッパー型ヒト FasL (FasL) (45)およびmMFG-E8のD89E変異体(21)を、COS7およびHEK293T細胞においてそれぞれ産生し、精製した。Cy5標識したAnnexin V およびFITC標識したウシ MFG-E8 (BLAC-FITC)は、それぞれBiovisionおよびHematologic Technologiesより購入した。pHrodo
(商標) スクシンイミジルエステル(pHrodo)および CellEvent
(商標) Caspase 3/7 Greenは、Life Technologiesより購入した。1−オレオイル−2−{6−[(7−ニトロ−2−1,3−ベンゾオキサジアゾール−4−イル)アミノ]ヘキサノイル}−sn−グリセロ−3−ホスホセリン (NBD-PS)、1−オレオイル−2−{6−[(7−ニトロ−2−1,3−ベンゾオキサジアゾール−4−イル)アミノ]ヘキサノイル}−sn−グリセロ−3−ホスホエタノールアミン (NBD-PE)、および1−オレオイル−2−{6−[(7−ニトロ−2−1,3−ベンゾオキサジアゾール−4−イル)アミノ]ヘキサノイル}−sn−グリセロ−3−ホスホコリン (NBD-PC) は、Avanti Polar Lipidsより購入した。
【0039】
mATP11Cに対するウサギ抗体は、Protein Purity Coに製造を委託した。簡単に説明すると、PYNDEPWYNQKTQKERET (アミノ酸317−334) (配列番号1)のN末端にシステイン残基1つを追加したペプチドを、m−マレイミド安息香酸−N−ヒドロキシスクシンイミドエステルを含むキーホールリンペットヘモシニアン(Pierce)に結合させ、それを用いてウサギを免疫した。抗体は、前記ペプチドを結合させたAF Amino-Toyopearl
(登録商標) ビーズ (AF-Amino-650, Tosoh Co) を用いて血清からアフィニティー精製した。マウスMac−1に対するAPC結合ラットmAb (クローン M1/70)は、BD PharMingenより得た。ラット抗マウスFas mAb (クローン OB−22)は、本発明者らの実験室にて標準プロトコールにより製造した。
【0040】
ハプロイド遺伝子スクリーニング
ハプロイド遺伝子スクリーニングは、実質的に既報のとおりに行った (17, 46)。簡単に説明すると、ジーントラップウイルスを製造するため、HEK293T細胞(2.4×10
7 細胞)に、Fugene6 (Promega)を用いて、pGT-GFP、pGT-GFP+1、およびpGT-GFP+2の混合物(36μg)を、pAdvantage(8.4μg)、pCMV-VSV-G(9.0μg)、およびpGag-pol-IRES-bsr(9.6μg)と組み合わせてトランスフェクトし、48時間インキュベートした。上清中のウイルスを、6,000×g にて16時間遠心して濃縮した。KBM7細胞(1×10
8)を24ウェルディッシュ(Corning)に1ウェル当たり1.5×10
6細胞で播種し、8μg/mlポリブレンの存在下、スピン感染法により、700×g、45分間にて、濃縮したウイルスを感染させた。感染は約80%の導入効率であって、4日間増殖させ、スクリーニングに使用した。
【0041】
細胞膜中のアミノリン脂質の輸送能を欠失する細胞を、FACSソートを2回繰り返すことにより濃縮した。簡単に説明すると、6×10
7個の変異KBM7細胞をPBSで洗浄し、室温にて40分間、2 mM CaCl
2 および 1 mM MgCl
2を含むHank’s balanced salt solution (HBSS)中にて、1.5μM NBD-PSとインキュベートした。細胞を遠心により回収し、脂肪酸不含有BSA (Sigma-Aldrich)(5 mg/ml)を含むHBSS中に懸濁し、細胞表面上のNBD-PSを取り除いた。細胞を、FACSAria II システム (BD Biosciences)を用いて4℃でフローサイトメトリーに供し、NBD-PSの取り込み効率のよくない1%程度の細胞を回収した。回収した細胞を10% FCS含有IMDM中で1-2週間増殖させ、上記と同様に二度目のソーティングにかけた。得られた細胞は、NBD-PSの取り込みが減少しており、これを低フリッピング(Low-Flipping、LF)細胞と命名した。
【0042】
ジーントラップ挿入部位のマッピング
プロウイルス挿入部位に隣接する宿主配列を同定するため、インバースPCRを行い、その後、既報のとおりディープシークエンシング(deep sequencing)した(17, 46)。簡単に説明すると、ゲノムDNAを、QIAamp DNA Mini Kit (Qiagen)を用いて2×10
6 のLF細胞から単離し、DNA(4μg)をNlaIIIで消化した。消化したDNAを、Wizard SV GelおよびPCR clean-up column (Promega)を用いて精製し、DNA(1.0μg)を、300μlの容量でT4 DNA リガーゼ (Takara Bio)を用いてライゲーションした。このDNAを上記のとおり精製し、ジーントラップベクターの内部配列に相補的な外向き(outward−facing)プライマー (5’−
AATGATACGGCGACCACCGAGATCTACACATCTGATGGTTCTCTAGCTTGCC−3’(配列番号2)および5’−
CAAGCAGAAGACGGCATACGAGATACCCAGGTTAAGATCAAGGTC−3’ (配列番号3); ディープシークエンシングのためのアダプター配列を下線で示す)を用いてPCRした。PCR産物を、Wizard SV GelおよびPCR clean-up columnにより精製し、MiSeq シークエンサー (Illumina)にてプライマー (5’− CTAGCTTGCCAAACCTACAGGTGGGGTCTTTCA−3’ (配列番号4)) を用いて配列決定した。
【0043】
FASTQ データファイルにおける45塩基対の配列を、Burrows-Wheeler Aligner ソフトウェアを用いてヒトゲノム (UCSC human genome 19; hg19)にマッピングした。Carette ら(17)に用いられる基準を用いて、特異的挿入部位を同定した。すなわち、45塩基対の配列中にミスマッチを含む配列を除き、また、いくつかの挿入が1または2塩基対離れてアラインされたときは、1つのみを保持した。所定の挿入についての近接インデックスは、この所定の挿入と上流および下流の2つの近傍の挿入との平均距離から計算される逆数と定義した。
【0044】
ジーントラップ変異を含むKBM7クローンの単離
ジーントラップ挿入を有する細胞株を得るため、LF細胞を限界希釈した。ゲノムDNAを各クローンからQIAamp DNA Mini Kitを用いて単離し、NlaIIIで消化し、Wizard SV GelおよびPCR clean-up columnを用いて精製した。このDNAをT4 DNAリガーゼを用いてライゲーションし、上記のとおり精製し、ジーントラップベクターの内部配列に相補的な外向きプライマー(5’− CTGCAGCATCGTTCTGTGTT−3’ (配列番号5)および 5’− TCTCCAAATCTCGGTGGAAC−3’ (配列番号6)) を用いてPCRした。増幅したPCR産物を、プライマー(5’−CTCGGTGGAACCTCCAAAT−3’ (配列番号7))を用いて、DNAシークエンサー (ABI PRISM 3100 Genetic Analyzer, Life Technologies)により直接配列決定した。ATP11CまたはCDC50Aに変異を有するクローンを、それぞれATP11C
GT および CDC50A
GTと命名した。
【0045】
遺伝子編集
CRISPR−Cas システム (19)を用いて、W3およびW3-Ildm細胞におけるmCDC50AおよびATP11C遺伝子の編集を行った。mCDC50A (TMEM30A) (ID: MGI 106402) および mATP11C (ID: MGI 1859661) 遺伝子における好適な標的配列を、UCSC のZhangの研究室でのCRISPR デザインツール (http://www.genome−engineering.org/crispr/?page_id=41) を用いて設計した。相補的オリゴヌクレオチド(CDC50A: 5’− AAAC
CATCGGCCTCATCTTCATCCCCATCGGCATGT−3’ (配列番号8)および 5’− TAAAAC
ATGCCGATGGGGATGAAGATGAGGCCGATG−3’ (配列番号9); ならびにATP11C: 5’− CACCG
TCACCAAACGGTTGAGGGTC−3’ (配列番号10)およびd 5’−AAAC
GACCCTCAACCGTTTGGTGAC− 3’ (配列番号11)、CDC50AおよびATP11Cについて標的配列を下線で示す)を、T4 ポリヌクレオチドキナーゼ (Takara Bio)でリン酸化し、95℃で5分間加熱し、室温で放置してアニーリングさせ、BbsIで消化したpX260ベクター (CDC50A)またはpX330ベクター (ATP11C)にライゲートし、大腸菌の形質転換に用いた。この標的化配列を有するpX プラスミド DNAを、Super Electroporator NEPA21 type II (NepaGene)を用いたエレクトロポレーションにより、W3またはW3-Ildm細胞中に導入した。10% FCS含有RPMI中で3日間培養後、細胞にpXベクターを再びトランスフェクトした。
【0046】
変異を有するクローンを同定するため、細胞を、2回目のトランスフェクションの3日後に限界希釈し、QIAamp DNA Mini Kitを用いて個々のクローンからゲノムDNAを調製した。CRISPR標的部位に隣接するDNAフラグメントを、プライマー (CDC50A: 5’−CGTCTCCTAAAGACGCCCG−3’ (配列番号12)および5’− TCCACCCGACATTCTAGCTG−3’ (配列番号13); ならびにATP11C: 5’− GCAGTGTGTTTTGTGGACGG−3’ (配列番号14)および5’− CCGGGTTTCCGCTAAAACGC−3’ (配列番号15))を用いてPCRにより増幅し、DNA シークエンサー(ABI PRISM 3100 Genetic Analyzer)を用いてその配列を決定した。CDC50A 遺伝子領域における遺伝子編集は、96クローンのうち6クローンで観察され、そのうち2つ(CDC50A
ED29 および CDC50A
ED62)が、フレームシフトインデルをもたらす変異を両アレルで有していた。ATP11C遺伝子領域における遺伝子編集は、34クローンのうち9クローンで観察され、そのうち4つが、両アレルインデルを有するATP11C欠失クローンであった。そのうち2クローン (ATP11C
ED22 および ATP11C
ED23)を、本実験に用いた。
【0047】
5’-RACE-PCR
5’-cDNA末端の増幅を、キット(5’-Full RACE Core Set; Takara Bio) を用いて製造者の指示書にしたがい行った。簡単に説明すると、RNAを、RNeasy Mini Kit (Qiagen)を用いてKBM7細胞から調製した。5’-リン酸化プライマー (5’− CTTAGATGAGAC−3’ (配列番号16))を用いて、AMV (Avian Myeloblastosis Virus) 逆転写酵素によりファーストストランドcDNAを合成した。RNase HでRNAを消化後、合成したファーストストランドcDNAを、T4 RNA リガーゼを用いてライゲートし、ネステッド (nested) PCR用のテンプレートとして用いた。ネステッドPCRは、以下のプライマーを用いて行った (1st PCR: 5’−TGGCAATCATCCAGTTTCGG−3’ (配列番号17)および 5’− ACACTGTGCGTGTGCCAAC−3’ (配列番号18)、2nd PCR: 5’−CGGAAACAGAAGCTTACATTGC−3’ (配列番号19)および 5’−TCGTTTCTCTTCTCCAGCAC−3’ (配列番号20))。PCR産物を、pGEM-T easy vector中にクローニングし、DNA配列をDNAシークエンサー(ABI PRISM 3100 Genetic Analyzer)を用いて決定した。
【0048】
ヒトおよびマウス細胞株の形質転換
ヒトCDC50A cDNA (NCBI: NM_018247.3)を、KBM7細胞からのRNAを用いてRT-PCRにより調製した。天然の塩基配列を持つhATP11C cDNA (NCBI:XM_005262405.1) (47)は、哺乳動物細胞におけるタンパク質レベルが低かったことから、mRNAの安定性および翻訳効率が増強された配列を、GENEART (Regensburg, Germany)にて特注で製造した。Mut1+2、1+3、2+3、または1+2+3 変異体を作製するため、変異ヌクレオチドを含む以下のプライマー(配列中、制限酵素部位を下線で示す)を用いた組み換えPCR (48)により、hATP11C cDNA に変異を導入した。cDNAの真正性は、DNA配列決定により確認した。
hATP11C , 5’− CAT
TTAATTAAGCCACCATGTTCAG−3’ (配列番号21) および 5’−CCAG
GAATTCCAGCACGTTGGACTC− 3’ (配列番号22);
Mut1, 5’−CTGTCTGGCTCAGGCCGGCCACTTCCTGGGTCACG−3’ (配列番号23)および 5’− CGTGACCCAGGAAGTGGCCGGCCTGAGCCAGACAG−3’ (配列番号24);
Mut2, 5’−GAAGTAGGTCAGTGTGCCAGCTGTCTGGCTCAGGC−3’ (配列番号25) および 5’−GCCTGAGCCAGACAGCTGGCACACTGACCTACTTC−3’ (配列番号26);
Mut3, 5’−CTCTGTGGCGCCGGCCACGGCGGCGTTGGTCTTGA−3’ (配列番号27)および 5’−TCAAGACCAACGCCGCCGTGGCCGGCGCCACAGAG−3’ (配列番号28)。
【0049】
KBM7、W3、W3-Ildm、Jurkat、およびそれら由来の細胞を、VSV-Gエンベロープ遺伝子を含むレトロウイルスベクターで形質転換した。上記のcDNAをC末端にてFlagまたはGFP標識し、pMXs-puroベクターに挿入し、Fugene 6 (Promega)を用いて、pGag-pol-IRES-bsr、pCMV-VSV-G、およびpAdVAntage
(商標)と共にHEK293T細胞に導入した。産生されたレトロウイルスを遠心により濃縮し、KBM7、W3、W3-Ildm、またはJurkat細胞への感染に用いた。感染細胞を、0.8μg/ml (KBM7細胞) または 1μg/ml (W3、W3-Ildm または Jurkat細胞)のピューロマイシンの存在下で培養した。
【0050】
アポトーシスの誘導およびホスファチジルセリンの検出
アポトーシスを誘導するため、W3-Ildm細胞(1×10
6)をFasL(33 ユニット/ml)にて37℃で1-2時間処理し、細胞生存率を、2−(4−ヨードフェニル)−3−(4−ニトロフェニル)−5−(2,4−ジスルホフェニル)−2H−テトラゾリウム, モノナトリウム塩(WST-1; Dojin Laboratories) および1−メトキシ−5−メチルフェナジニウムメチルスルファートを用いるWST-1アッセイにより、既報(20)のとおり測定した。
【0051】
細胞表面上のPtdSer(ホスファチジルセリン)を検出するため、細胞を Annexin Vバッファー(10 mM Hepes-KOH (pH 7.4)、140 mM NaCl、および2.5 mM CaCl
2)または10% FCS添加IMDM中で、1-2,000倍希釈したCy5-Annexin V またはFITC-MFG-E8(800 ng/ml)と25℃にて5分間インキュベートし、次いで、200 nM SYTOX
(登録商標) Blue (Life Technologies Molecular Probes)とインキュベートし、FACSAria II または FACSCanto IIにより解析した。顕微鏡観察のため、8ウェルのLab-Tek IIチェンバースライド(Nalge Nunc)上で、2×10
5細胞をFITC結合MFG-E8(4μg/ml)と染色バッファー中にて氷上で15分間インキュベートし、共焦点蛍光顕微鏡(FV1000-D; Olympus)により観察した。
【0052】
カスパーゼ処理
膜画分を、hATP11C-GFPを発現する細胞またはその変異体より既報 (49)のとおり調製し、20 mM Tris-HCl (pH 7.4)、140 mM NaCl、1% Triton X−100、10% グリセロールおよび1 mM (p−アミノフェニル)メタンスルホニルフルオリド(APMSF)中に溶解した。不溶性物質を遠心により除去後、膜タンパク質 (10μg)を、100μl の 50 mM Hepes-NaOH (pH 7.4)、5% グリセロール、5 mM DTT、10 mM EDTA、0.1 mM APMSF および0.1% CHAPS中、3ユニットの各種ヒト組み換えカスパーゼ (Biovision)と共に37℃にて1時間インキュベートし、ウエスタンブロットにより解析した。
【0053】
ウェスタンブロッティング
細胞または膜画分を、RIPA バッファー (50 mM HEPES-NaOH (pH 8.0)、1% NP-40、0.1% SDS、0.5% デオキシコール酸ナトリウム、150 mM NaCl、およびプロテアーゼインヒビターカクテル [cOmplete, Mini, EDTA−free, Roche Diagnostics])中に溶解した。不溶性物質を遠心により除去後、溶解物を、3×SDSサンプルバッファー(200 mM Tris−HCl [pH 6.8]、10% SDS、25% グリセロール、15% β−メルカプトエタノール、および0.05% ブロモフェノールブルー)と3:1の比率で混合し、室温で20分間インキュベートした。タンパク質を7.5%または10-20%勾配ゲル(Bio Craft)のSDS−PAGEにより分離し、PVDFメンブレン (Millipore)に転写した。膜を、マウス抗 GFP mAb、ウサギ抗活性型カスパーゼ−3 mAb、ウサギ抗 hATP11C Ab、ウサギ抗α−チューブリンmAb、またはラット抗 mFas mAbとインキュベートし、次いで、HRP結合ヤギ抗マウスIg、ヤギ抗ウサギIgまたはウサギ抗ラットIg (Dako)と共にインキュベートした。ペルオキシダーゼ活性は、Western Lightning-ECL システム(PerkinElmer)により検出した。
【0054】
インビトロ貪食アッセイ
チオグリコール酸誘発腹腔マクロファージ(thoglycollate-elicited peritoneal macrophages, thio-pMacs)を調製するために、7-12週齢のメスのC57BL/6J マウスに、60 mgのチオグリコール酸(Sigma-Aldrich)を腹腔内注入し、4日後に腹腔マクロファージを集めた。貪食は、pHrodoで染色した獲物(prey)のマクロファージリソソームへの輸送により解析した (50, 51)。簡単に説明すると、thio-pMacs(5×10
5)を、12ウェルプレート(Corning)中で一晩増殖させた。増殖中の細胞またはアポトーシスを起こした細胞(2.0×10
7)をPBSで洗浄し、pHrodo(40 ng/ml)と共に室温にて10分間インキュベートし、標識した。FCS(2 ml)で反応を停止させた後、細胞を10% FCSを含むIMDMで洗浄し、1% メチルセルロース(Sigma-Aldrich)を含む培地中にてマクロファージに添加し、スインギングローターを用いて500×gで室温にて4分間スピンし、37℃でインキュベートした。マクロファージを0.25%トリプシンで処理してプレートから剥がし、APC結合ラット抗マウスMac1で染色した後、150 mM NaCl、2% FCS、および200 nM Sytox Blueを含む20 mM CHES-NaOH バッファー (pH 9.0) 中に懸濁し、FACSCanto IIを用いてフローサイトメトリーにより解析した。貪食作用は、Mac-1
+ Sytox Blue
- 集団におけるpHrodo陽性細胞の割合と定義した。
【0055】
経時的観察のために、thio-pMacs (5×10
4)を、フィブロネクチンでコーティングした8ウェル Lab-Tek II チャンバー中で一晩増殖させた。pHrodo標識細胞 (2×10
5)(10% FCS、1%メチルセルロース、および5μM CellEvent
(商標) Caspase-3/7 Green を含むIMDM中)をマクロファージに添加し、この混合物を室温にて500×gで4分間スピンした。この細胞培養物を共焦点顕微鏡(FV1000-D)を用いてリアルタイムで3-4時間追跡し、画像を1-2分毎に撮影した。
【0056】
電子顕微鏡法
マウスthio-pMacsを、上記のとおり、10% FCSおよび1% メチルセルロースを含むIMDM中で2時間獲物と共にインキュベートした。その後、マクロファージをプレートから擦過により剥がし、4%パラホルムアルデヒドおよび2%グルタルアルデヒド(Nacalai Tesque)を含むPBS中で4℃で一晩インキュベートして固定化した。細胞を 0.1 M リン酸バッファーで3回洗浄後、0.1M リン酸バッファー中の1% OsO4を用いて4℃で2時間固定化(post-fixed)し、段階的に希釈したエタノール(50、60、70、80、90、および99%エタノール) 中で各20分間連続してインキュベートすることにより脱水し、次いで、100%エタノール中での30分間の浸漬を2回行った。次いで、このサンプルを、プロピレン酸化物中で1時間、プロピレン酸化物とエポキシドの1:1混合物(Luveak 812, Nacalai Tesque)中で1.5時間、プロピレン酸化物とエポキシドの1:3混合物中で1.5時間、そしてエポキシド中で12時間インキュベートすることを2回行った。その後、これらを60℃にて3日間インキュベートしてエポキシド内に取り込ませた。超薄切片(60-80 nm) を、Ultramicrotome EM UC6 (Leica)を用いて切り出し、ウラニル酢酸塩およびクエン酸鉛で染色し、電子顕微鏡 H-7650 (Hitachi)で観察した。
【0057】
NBD標識脂質の取り込み
細胞(2×10
6)を、1.5 μMのNBD-PS、NBD-PE、またはNBD-PCと共に、25℃にて15-20分間、600μlの HBSS(1 mM MgCl
2 および 2.5 mM CaCl
2を含有)中でインキュベートした。インキュベーション後、細胞を遠心により回収し、脂肪酸不含有BSA(5 mg/ml)を含むHBSS中に再懸濁し、FACSAria IIにより解析した。スクランブラーゼ活性の測定のため、1.5×10
6の細胞を0.5 μMのNBD-PCとともに25℃にて4分間インキュベートした。
【0058】
腫瘍発生
腫瘍発生を誘導するために、1×10
6の細胞を、7週齢のメスBALB/c無胸腺ヌードマウスに皮下注射した。4週間後、腫瘍を切り出し、計量した。
【0059】
リアルタイムRT−PCRおよびPCR
RNAを、Isogen (Nippon Gene)とRNeasy Mini Kit(Qiagen)とを用いて調製し、High Capacity RNA-to-cDNA
(商標) Kit (Life Technologies, Applied Biosystems)を用いて逆転写した。このcDNAを、LightCycler 480 SYBR Green I Master (Roche Diagnostics)を用いて増幅させた。リアルタイム RT−PCRのためのプライマーは、以下のとおりである。
hCDC50A, 5’− CGATGGCGATGAACTATAACGC−3’ (配列番号29)および 5’−CGGTATAATCAATCTCGATCTC−3’ (配列番号30);
hATP11C, 5’−GGAACGTAATGCAATGGATGGG−3’ (配列番号31)および 5’− GGTTAGTTCTAAGAGCTCAGTG−3’ (配列番号32);
hβ−アクチン, 5’−GCATCCTCACCCTGAAGTAC−3’ (配列番号33)および 5’−CTTAATGTCACGCACGATTTC−3’ (配列番号34);
mCDC50A, 5’−TGCCAACAGCATGTTTAATGA−3’ (配列番号35)および 5’− TTCGAGGCTCTCTTTTCCAG−3’ (配列番号36);
mCDC50B, 5’−AACGACTCCTTCTCGCTCTG−3’ (配列番号37)および 5’−CACGAAGTCCTGGTTGATGA−3’ (配列番号38);
mCDC50C, 5’−TTTCGGAATCCAAGATCCAG−3’ (配列番号39)および 5’−CAGTCGGCGGTACAGTTTTT−3’ (配列番号40);
mATP11C, 5’−TTACAGTTGGGGCCCTTCTT− 3’ (配列番号41)および 5’−TATCCAAGGCGAGCTTCAGA−3’ (配列番号42);
mβ−アクチン, 5’− TGTGATGGTGGGAATGGGTCAG−3’ (配列番号43)および 5’−TTTGATGTCACGCACGATTTCC−3’ (配列番号44)。
KBM7細胞におけるP4−ATPase および CDC50 ファミリーメンバーのPCR解析は、Takatsu ら(52)に記載される特異的プライマーを用いて行った。
【0060】
統計分析
データはいずれも、平均標準偏差で示す。グループ間の相違の統計的有意性は、スチューデントのt検定を用いて決定した。
【0061】
2.結果
リン脂質フリッパーゼのハプロイド遺伝子スクリーニング
フリッパーゼをコードする遺伝子を同定するため、第8染色体を除きハプロイドの染色体からなるヒト白血病KBM7を用いたハプロイド遺伝子スクリーニングをおこなった(16)。KBM7は、NBD-PSを取り込んだ。これは、KBM7がフリッパーゼを発現していることを示す。KBM7細胞にレトロウイルスジーントラップベクターに感染させることによって、変異を誘発し、NBD-PSと共にインキュベートし、フローサイトメトリーを行った。NBD-PSの取り込みが障害された約1.0%の細胞を回収して増殖させ、2回目のソーティングを行い(
図1A)、フリッパーゼの活性が低下した細胞集団を得た(LF, 低フリッピング細胞)。ジーントラップ挿入部位をLF由来のDNAを用いたインバースPCRにより増幅し、マス・シークエンシングによって同定した(17)。近接する複数のジーントラップ挿入を含む遺伝子領域における近接インデックス解析により、2種の遺伝子が同定された(
図1B)。CDC50A(細胞周期制御タンパク質50A またはTMEM30A)に41個の挿入が存在し、ATP11Cに86個の挿入が存在した。ヒトゲノムデータベースの情報(UCSC Genome Browser, http://genome.ucsc.edu/cgi-bin/hgTracks?org=human)および5'-RACE分析(
図7)に基づいて解析したところ、大部分の挿入がイントロン1に割り当てられ、挿入されたレトロウイルスは転写と同じ方向であった(
図1B)。逆方向の挿入はエクソン1またはプロポーター領域に存在し、遺伝子を不活性化すると考えられた。
【0062】
10回膜貫通領域を有するATP11C(
図1C)は、P4-ATPアーゼファミリーのメンバーであり、2回膜貫通領域を有するCDC50Aは、P4-ATPアーゼのβ−サブユニットである(12, 18)。これらは様々な組織で発現していた(
図1D)。ATP11C-GFPをヒトHEK293Tで発現させると、このタンパク質は主に細胞膜に局在した(
図1E)。ATP11CまたはCDC50A遺伝子の第1イントロンに挿入を有する細胞(ATP11C
GTおよびCDC50A
GT)を、限界希釈によって単離した(
図2A)。KBM7は高レベルのNBD-PSを取り込み(
図2B)、この取り込みはATP11C
GTでは著しく減少した。NBD-PCの取り込みは減少しなかったが、NBD-PEの取り込みはATP11C
GTにおいて減少した。ヒト(h)ATP11Cによる形質転換により、フリッパーゼ活性は完全に回復した(
図2C)。ATP11C
GTにおけるリン脂質の取り込みは、ATPアーゼ阻害剤であるオルトバナデートによって阻害された(
図2D)。これは、ATP11C
GTに残存するフリッパーゼ活性がKBM7で発現する他のATPアーゼによるものであることを示唆している(
図2E)。CDC50ファミリーの3種のメンバーのうち、CDC50AのみがKBM7で発現していた(
図2E)。CDC50A
GTでは、NBD-PSおよびNBD-PEの取り込みが完全に障害されており、これはhCDC50Aによる形質転換により回復した(
図2C)。CDC50A
GTにおけるPtdSerフリッパーゼの欠失は、細胞表面の構成的なPdtSer露出をもたらした(
図2F)。これは、PtdSerを露出しないATP11C
GTと対照的であり、ATP11C
GTに残存するPtdSerフリッパーゼが非対称的なPtdSer分布を維持するのに十分であることが示唆された。また、CDC50A
GTではNBD-PCを取り込む能力も低下しており(
図2C)、KBM7で発現するいずれかのP4-ATPアーゼがPtdChoのフリッピングを促進している可能性が示唆された。
【0063】
アポトーシスの際のカスパーゼによるATP11Cの切断
マウス(m)ATP11Cを、W3細胞において、CRISPR/Cas (clustered regulatory interspaced short palindromic repeats/cas)システムを用いて変異させた(19)。この操作により、ATP11Cの切断・不活化をもたらす挿入を有する4種のクローンを同定した。そして、そのうちの2種(ATP11C
ED22およびATP11C
ED23)を用いて更なる解析をおこなった(
図3A)。ATP11C
ED22およびATP11C
ED23ではNBD-PSおよびNBD-PEの取り込みがかなり減少したが、NBD-PCは減少しなかった(
図3Bおよび
図8A)。
【0064】
アポトーシス性のPtdSer露出は、フリッパーゼ活性の消失を伴う(14, 15)。W3細胞をhFasリガンド(FasL)で処理すると、SDS-電気泳動法でのATP11Cの移動度がシフトし(120 kDaから50kDa)(
図3D)、このシフトはカスパーゼ阻害剤(Q-VD-OPh)によって阻止された。Cascleave (http://sunflower.kuicr.kyoto-u.ac.jp/〜sjn/Cascleave/)を用いてhATP11Cにおけるカスパーゼ認識配列を調べ、ヌクレオチド結合ドメイン、すなわちNドメインに3つの部位(部位1-3)(それぞれQEVDG(配列番号45)、SQTDG(配列番号46)およびDAVDG(配列番号47))が明らかになった(
図3C)。α−ヘリックスに隣接するこれらの部位は進化的に保存されていた。部位1-3の配列をQEVAG (Mut1) (配列番号48)、SQTAG (Mut2) (配列番号49)およびAAVAG (Mut3) (配列番号50)に変更した。これらの変異を二重または三重にもつ変異体(
図8B)を作製し、C末端にGFPを付加して、ATP11C
ED22で発現させた。このATP11C
ED22形質転換体をFasLで処理し、ウェスタンブロッティングによって抗 GFPを用いて解析した(
図3E)。FasL処理により、野生型および二重変異hATP11C-GFPキメラ(Mut1+2、Mut1+3およびMut2+3)は140 kDaから約80 kDaへシフトした。一方、三重変異hATP11C-GFP (Mut1+2+3)ではほとんど切断が観察されなかった。hATP11C-GFP発現細胞の可溶化膜画分をカスパーゼと共にインキュベーションすることにより、hATP11Cがカスパーゼ-3、カスパーゼ-6およびカスパーゼ-7によって切断されることが明らかとなった (
図3F)。特に、カスパーゼ-3はhATP11Cを3カ所全てで切断した。mATP11Cのアミノ酸配列は、これらのカスパーゼ認識部位を含め、hATP11Cと相同性が高い(94.8%同一)ため、mATP11Cもアポトーシスの際にカスパーゼ-3によって切断されると考えられる。
【0065】
PtdSer露出におけるカスパーゼによるATP11C切断の必要性
3カ所のカスパーゼ認識部位を全て変異させたカスパーゼ耐性ATP11C(CasR)を発現するATP11C
ED22変異体は、野生型ATP11Cを発現する細胞と同程度に効率よくNBD-PSを取り込んだ(
図4A)。このことは、この変異体がフリッパーゼ活性を保持していることを示している。一方、CasRは、アポトーシス時におこるPtdSerの露出を阻害した。FasLを用いて細胞を処理すると、W3細胞、ATP11C
ED22、および野生型ATP11Cを発現するATP11C
ED22形質転換体はPtdSerを露出したが、CasRを発現するATP11C
ED22形質転換体ではPtdSerの露出は認められなかった(
図4B)。一方、カスパーゼ-3は、これらの各種細胞のいずれにおいても活性化された(
図4C)。CasR ATP11Cは、NBD-PCの取り込みによって測定されるFasL誘導性のスクランブル活性には影響しなかった (
図4D)。これらの結果は、CasR形質転換体におけるFasL誘導性のPtdSer露出の欠失が、ATP11Cがカスパーゼによって不活性化されないためであることを示す。
【0066】
PtdSer露出と対照的に、FasL誘導性の細胞死、細胞収縮、およびDNAフラグメンテーションは、親細胞とCasR発現細胞とで同等であった(
図9A−C)。CasRは、野生型細胞でも同様にアポトーシス性PtdSer露出を阻害した。すなわち、W3-IldmおよびJurkat、並びにそれらのhATP11C形質転換体(W3Ildm-hATP11CおよびJurkat-hATP11C)は、FasL処理によってPtdSerを露出した(
図4E)。しかしながら、そのCasR発現形質転換体(W3Ildm-CasRおよびJurkat-CasR)は、FasL処理をしてもほとんどPtdSerを露出しなかった。FasL処理した親株およびhATP11C形質転換体は、チオグリコレート誘導腹腔マクロファージ(thio-pMacs)によって効率よく貪食されるが、CasR形質転換体は貪食されなかった(
図4F)。これは、アポトーシス細胞のマクロファージによる貪食には、フリッパーゼがカスパーゼによって不活性化されなければならないことを示唆している。
【0067】
CDC50A欠損生細胞における構成的PtdSer露出
次いで、CDC50ファミリーメンバーのうちCDC50Aのみを発現するマウスW3-Ildm細胞(
図5A)を用いて、CDC50A遺伝子をCrispr/Casシステムを用いて変異させた。2種のクローン(CDC50A
ED29およびCDC50A
ED62)において、CDC50A遺伝子の両アレルに変異が導入されていた(
図5B)。これらの変異体ではNBD-PSの取り込みが障害されており(
図5C)、PtdSerを構成的にアポトーシス細胞と同レベルで露出した(
図5Dおよび
図10A)。hCDC50A cDNAを用いてCDC50A
EDを形質転換すると、フリッパーゼが完全に回復し(
図5C)、PtdSerは露出されなくなった(
図5D)。
【0068】
TMEM16Fの構成的活性型(D430G-L)を発現するW3細胞は、高レベルのPtdSerを露出する(5, 20)。しかしながら、この細胞のPtdSer結合タンパク質であるMFG-E8 (21)を結合する能力は、アッセイ条件に依存した。例えば、この細胞は、2.5 mM CaCl
2を含むHEPES緩衝食塩水中ではMFG-E8と結合するが、この結合は10% FCSを含むIMDM中では抑制された(
図5E)。これに対して、CDC50A
EDは、10% FCSを含むIMDM中でもMFG-E8と結合した。共焦点顕微鏡での観察により、MFG-E8のCDC50A
EDへの均一な結合が確認された(
図5F)。W3-D430G-LはPtdSerを取り込むことから(
図5C)、W3-D430G-LにおけるPtdSer露出はスクランブラーゼのみではなくフリッパーゼによっても制御されていることが示唆された。CDC50A
ED29細胞のdoubling time は、野生型およびCDC50A発現CDC50A
ED29形質転換体と比べて僅かに長かった(それぞれ12.2±0.39, 13.7±0.14および12.4±0.13 h)(
図10B)。一方、CDC50A
EDのFasL誘導性アポトーシスの用量依存性は、W3-Ildmで観察されるものと同様であった(
図10C)。
【0069】
生細胞のPtdSer依存性貪食
pHrodoで標識された CDC50A
ED生細胞を1.0% メチルセルロースを含む培地でthio-pMacsと培養すると、20%を越えるマクロファージがCDC50A
ED細胞を貪食した(
図6A)。Thio-pMacsは、W3-Ildm、W3-D430G-L、またはhCDC50Aを発現するCDC50A
ED形質転換体を貪食しなかった。CDC50A
ED29の貪食は、PtdSerをマスクするMFG-E8のD89E変異体(21)によって阻害されたことから、この工程がPtdSer依存性であることが確認された。チロシンキナーゼ受容体であるMERは、thio-pMacsによるアポトーシス細胞の貪食に必須である(22)。同様に、CDC50A
ED生細胞は、MerTK
-/- thio-pMacsによって貪食されなかった(
図6B)。アポトーシス細胞をマークするために、CellEvent
(商標) Caspase 3/7 Greenを培養物に加え、貪食を低速度撮影顕微鏡によってモニターした(
図6C)。リソソームが強いpHrodo陽性を示すことからわかるように、CellEvent
(商標)で染色されていない生細胞であってもマクロファージに高い頻度で貪食され、リソソームに移動した。また、CellEvent
(商標)により染色されるアポトーシスを起こした細胞は、全体の細胞の10%未満であり、これらはマクロファージによって貪食された。132回の貪食事象をモニターすることによって、貪食された細胞のうち約80%が生存している細胞を貪食したもの、20%がアポトーシス細胞を貪食したものであることが分かった。上皮細胞のアノイキス誘導エントーシスについて報告された通り(23)、CDC50A
ED生細胞の貪食は、特定の時点までは可逆であるようである。すなわち、貪食された細胞の約3%が、pHrodoのシグナルが強くなる前にマクロファージから解放された(
図6D)。貪食された細胞の解放は、カスパーゼ陽性細胞では観察されなかった。電子顕微鏡で調べると、貪食された生細胞は膨張した形態を有し(
図6E)、凝縮した形態を示すFasL処理アポトーシス細胞とは異なっていた。同様に、CDC50A欠損KBM7細胞においても、PtdSer露出生細胞のthio-pMacsによる貪食が観察された(
図11)。
【0070】
W3-Ildm細胞をヌードマウスの皮下に移植すると、11匹のレシピエントのうち8匹で腫瘍が誘導され、腫瘍サイズは4週後で平均 約4.3 gであった(
図6F)。これに対して、CDC50A
ED細胞を移植すると、6匹のマウスのうち1匹のみで腫瘍が形成され、4週間後に測定したその大きさも非常に小さかった(0.25 g)。CDC50A
ED細胞にhCDC50Aを発現させた後ヌードマウスに移植すると、6匹のレシピエントのうち5匹で平均サイズ2.5 gの腫瘍が形成された。この結果は、PtdSerを露出するCDC50A
EDがマウス体内で除去されることを示唆する。
【0071】
参考文献(これら文献は引用により本明細書に含まれる)
1. P. A. Leventis, S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407-427 (2010). doi:10.1146/annurev.biophys.093008.131234
2. B. Lentz, Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res. 42, 423-438 (2003). doi:10.1016/j.bbr.2011.03.031
3. S. Nagata, R. Hanayama, K. Kawane, Autoimmunity and the clearance of dead cells. Cell 140, 619-630 (2010). doi:10.1016/j.cell.2010.02.014
4. J. Suzuki et al., Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403-406 (2013). doi:10.1126/science.1236758
5. J. Suzuki, M. Umeda, P. J. Sims, S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834-838 (2010). doi:10.1038/nature09583
6. P. Williamson et al., Transbilayer phospholipid movements in ABCA1-deficient cells. PLoS ONE 2, e729 (2007). doi:10.1371/journal.pone.0000729
7. K. Tanaka, K. Fujimura-Kamada, T. Yamamoto, Functions of phospholipid flippases. J. Biochem. 149, 131-143 (2011). doi:10.1093/jb/mvq140
8. T. Pomorski et al., Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell 14, 1240-1254 (2003). doi:10.1091/mbc.E02-08-0501
9. X. Tang, M. S. Halleck, R. A. Schlegel, P. Williamson, A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1495-1497 (1996).
10. O. M. Siggs, B. Schnabl, B. Webb, B. Beutler, X-linked cholestasis in mouse due to mutations of the P4-ATPase ATP11C. Proc. Nat. Acad. Sci. USA 108, 7890-7895 (2011). doi:10.1073/pnas.1104631108
11. M. Yabas et al., ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat. Immunol. 12, 441-449 (2011). doi:10.1038/ni.2011
12. V. A. van der Mark, R. P. Elferink, C. C. Paulusma, P4 ATPases: Flippases in Health and Disease. Int. J. Mol. Sci. 14, 7897-7922 (2013). doi:10.3390/ijms14047897
13. T. T. Sebastian, R. D. Baldridge, P. Xu, T. R. Graham, Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochimi. Biophys. Acta 1821, 1068-1077 (2012). doi:10.1016/j.bbalip.2011.12.007
14. B. Verhoven, R. A. Schlegel, P. Williamson, Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597-1601 (1995).
15. D. L. Bratton et al., Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159-26165 (1997). doi:10.1074/jbc.272.42.26159
16. M. Kotecki, P. S. Reddy, B. H. Cochran, Isolation and characterization of a near-haploid human cell line. Exp. Cell Res. 252, 273-280 (1999). doi:10.1006/excr.1999.4656
17. J. E. Carette et al., Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542-546 (2011). doi:10.1038/nbt.1857
18. J. A. Coleman, F. Quazi, R. S. Molday, Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. BBA - Mol. Cell Biol. L. 1831, 555-574 (2013). doi:10.1016/j.bbalip.2012.10.006
19. L. Cong et al., Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339, 819-823 (2013). doi:10.1126/science.1231143
20. K. Segawa, J. Suzuki, S. Nagata, Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl. Acad. Sci. USA 108, 19246-19251 (2011). doi:10.1073/pnas.1114799108
21. R. Hanayama et al., Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182-187 (2002). doi:10.1038/417182a
22. H. M. Seitz et al., Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635-5642 (2007).
23. M. Overholtzer et al., A nonapoptotic cell death process, entosis, that occurs by cell-incell invasion. Cell 131, 966-979 (2007). doi:10.1016/j.cell.2007.10.040
24. M. G. Palmgren, P. Nissen, P-type ATPases. Annu. Rev. Biophys. 40, 243-266 (2011). doi:10.1146/annurev.biophys.093008.131331
25. M. Auland, B. Roufogalis, P. Devaux, A. Zachowski, Reconstitution of ATP-dependent aminophospholipid translocation in proteoliposomes. Proc. Natl. Acad. Sci. USA 91, 10938-10942 (1994).
26. M. Darland-Ransom et al., Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320, 528-531 (2008).
doi:10.1126/science.1155847
27. U. Kato et al., Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J. Biol. Chem. 288, 4922-4934 (2013). doi:10.1074/jbc.M112.402701
28. A. Siegmund et al., Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. J. Biol. Chem. 273, 34399-34405 (1998). doi:10.1074/jbc.273.51.34399
29. U. Marx et al., Rapid transbilayer movement of fluorescent phospholipid analogues in the plasma membrane of endocytosis-deficient yeast cells does not require the Drs2 protein. Eur. J. Biochem. 263, 254-263 (1999). doi:10.1046/j.1432-1327.1999.00497.x
30. B. Chen et al., Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1. PLoS Genet 6, e1001235 (2010). doi:10.1371/journal.pgen.1001235
31. A.-F. Ruaud et al., The C. elegans P4-ATPase TAT-1 regulates lysosome biogenesis and endocytosis. Traffic 10, 88-100 (2009). doi:10.1111/j.1600-0854.2008.00844.x
32. L. M. van der Velden et al., Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. J. Biol. Chem. 285, 40088-40096 (2010). doi:10.1074/jbc.M110.139006
33. G. Lenoir, P. Williamson, C. F. Puts, J. C. M. Holthuis, Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J. Biol. Chem. 284, 17956-17967 (2009). doi:10.1074/jbc.M109.013722
34. A. Zachowski, Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294, 1-14 (1993).
35. J. I. Elliott et al., Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat. Cell Biol. 7, 808-816 (2005). doi:10.1038/ncb1279
36. D. L. Daleke, J. V. Lyles, Identification and purification of aminophospholipid flippases. Biochim. Biophys. Acta 1486, 108-127 (2000).
37. P. A. Oldenborg et al., Role of CD47 as a marker of self on red blood cells. Science 288, 2051-2054 (2000). doi:10.1126/science.288.5473.2051
38. J. J. Neher et al., Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J. Immunol. 186, 4973-4983 (2011).
doi:10.4049/jimmunol.1003600
39. G. C. Brown, J. J. Neher, Eaten alive! Cell death by primary phagocytosis: 'phagoptosis'. Trends Biochem Sci 37, 325-332 (2012). doi:10.1016/j.tibs.2012.05.002
40. C. Toyoshima, G. Inesi, Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73, 269-292 (2004). doi:10.1146/annurev.biochem.73.011303.073700
41. Q. Lu et al., Tyro-3 family receptors are essential regulators of mammalian
spermatogenesis. Nature 398, 723-728 (1999). doi:10.1038/19554
42. R. Watanabe-Fukunaga et al., Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314-317 (1992).
43. H. Sakahira, M. Enari, S. Nagata, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99 (1998).
44. T. Kitamura, New experimental approaches in retrovirus-mediated expression screening. Int. J. Hematol. 67, 351-359 (1998).
45. T. Shiraishi et al., Increased cytotoxicity of soluble Fas ligand by fusing isoleucine zipper motif. Biochem. Biophys. Res. Commun. 322, 197-202 (2004).
doi:10.1016/j.bbrc.2004.07.098
46. J. Carette et al., Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231-1235 (2009).
47. M. A. Nesbit et al., X-linked hypoparathyroidism region on Xq27 is evolutionarily conserved with regions on 3q26 and 13q34 and contains a novel P-type ATPase. Genomics 84, 1060-1070 (2004). doi:10.1016/j.ygeno.2004.08.003
48. R. Higuchi, in PCR protocols: A guide to methods and applications. (Academic Press, San Diego, 1990), pp. 177-188.
49. R. Fukunaga, E. Ishizaka-Ikeda, S. Nagata, Purification and characterization of the receptor for murine granulocyte colony-stimulating factor. J. Biol. Chem. 265, 14008-14015 (1990).
50. M. Miksa et al., A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J. Immunol. Methods 342, 71-77 (2009).
51. S. Toda, R. Hanayama, S. Nagata, Two-step engulfment of apoptotic cells. Mol. Cell. Biol. 32, 118-125 (2012). doi:10.1128/MCB.05993-11
52. H. Takatsu et al., ATP9B, a P4-ATPase (a Putative Aminophospholipid Translocase), Localizes to the trans-Golgi Network in a CDC50 Protein-independent Manner. J. Biol. Chem. 286, 38159-38167 (2011). doi:10.1074/jbc.M111.281006