【実施例】
【0016】
図1は、本発明の実施例の熱交換器20の構成の概略を示す構成図である。
図2は、
図1におけるA−A断面を模式的に示す断面図である。実施例の熱交換器20は、空調装置や冷凍装置などの冷凍サイクルや発熱を伴って作動する機器の冷却装置などに用いられ、
図1に示すように、2つのチューブ部材40により構成される熱交換用チューブ30A,30Bを交互に複数積層して構成される積層体22と、積層体22の配列方向(図中上下方向)の両側に配置されるプレート23と、各熱交換用チューブ30A,30Bの長手方向(図中左右方向)の両側に配置されるプレート24と、積層体22およびプレート23に形成される熱交換媒体の流入用流路25および流出用流路26に取り付けられる供給管27および排出管28と、を備える。この熱交換器20は、流入用流路25から各熱交換用チューブ30A,30Bに形成された後述する連通流路46,47に供給されるハイドロフルオロカーボンや水などの熱交換媒体と隣接する熱交換用チューブ30A,30Bの間の隙間に流れる空気などの被熱交換媒体との熱交換により、熱交換媒体を加熱または冷却する又は被熱交換媒体を冷却または加熱する。
図2中、供給管27および排出管28の上に記載された白抜き矢印は、熱交換媒体の供給や排出の方向を示しており、熱交換器20の左右に記載された白抜き矢印は、被熱交換媒体の流れる方向を示している。
【0017】
図3は、熱交換用チューブ30Aの構成の概略を示す構成図である。
図4は、熱交換用チューブ30Bの構成の概略を示す構成図である。
図5は、
図1におけるB−B面の断面図であり、
図6は、
図1におけるC−C面の断面図である。
【0018】
熱交換用チューブ30Bは、
図3および
図4に示すように、熱交換用チューブ30Aの扁平面を水平にしたときに熱交換用チューブ30Aを鉛直軸回りに180度回転させたものと同一である。即ち、熱交換用チューブ30Bは、熱交換用チューブ30Aを180度回転させただけで、熱交換用チューブ30Aと同一となる。
【0019】
熱交換用チューブ30A,30Bは、アルミニウムの板材の両面にアルミシリコン合金などのロウ材を配置して一体に圧延することによって板材とロウ材とを接合した厚さが0.2mmのいわゆるクラッド板材に対して、プレス加工や穴開け加工などを施したチューブ部材40を向かい合わせに接合することによって構成されている。チューブ部材40には、
図3および
図4に示すように、長手方向(図中左右方向)の中央に短手方向に直列に並ぶように2つの流出入口用貫通孔42a,42bが形成されており、この2つの流出入口用貫通孔42a,42bを連通するようにU字形状の2つの連通流路46,47が形成されている。また、2つの流出入口用貫通孔42a,42bの周囲のフランジ部44a,44bが形成されており、2つの流出入口用貫通孔42a,42bの間にはスリット49が形成されている。スリット49は、2つの流出入口用貫通孔42a,42bにおける熱交換媒体の伝熱を抑制するために設けられている。
【0020】
フランジ部44a,44bは、熱交換用チューブ30A,30Bを積層したときに隣接するフランジ部44a,44bと接合するように形成されている。これにより、
図6に示すように、隣接する熱交換用チューブ30A,30Bの間隔を所定間隔に保持すると共に、熱交換用チューブ30A,30Bの両端部近傍の流出入口用貫通孔42a,42bが積層方向に接続されて熱交換媒体の流入用流路25および流出用流路26を形成する。
【0021】
連通流路46,47は、2つの流出入口用貫通孔42a,42bの中央を通る直線(
図3,
図4における上下方向の線)で鏡像対称となる一定幅の流路として形成されており、チューブ部材40の長手方向に沿った中央ラインを考えたときに、中央ラインで2つに区分けされるチューブ部材の
図3における上側(
図4における下側)で中央ラインから離れてチューブ部材40の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成された第1流路部46a,47aと、中央ラインで2つに区分けされるチューブ部材の
図3における下側(
図4における上側)でチューブ部材の縁から離れて中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成された第2流路部46b,47bと、端部で第1流路部46a,47aと第2流路部46b,47bとを接続するように折り返す折り返し流路部46c,47cとにより構成されている。そして、第2流路46b,47bとチューブ部材40の縁(
図3における下端、
図4における上端)との間の流路が形成されていない端部ヒレ部48aの幅は、第1流路部46a,47aの幅(実施例では単に流路の幅)より広くなるように形成されており、第1流路部46a,47aと第2流路部46b,47bの間の流路が形成されていない中央ヒレ部48bの幅は、第2流路部46b,47bの幅(実施例では単に流路の幅)より広くなるように形成されている。このように連通流路46,47を形成することにより、熱交換用チューブ30A,30Bを交互に積層したときに、
図5に示すように、熱交換用チューブ30A,30Bの間の隙間を、幅が略一定となるように且つ蛇行するように形成することができる。
【0022】
実施例では、チューブ部材40を
図3の熱交換用チューブ30Aと
図4の熱交換用チューブ30Bとが交互に積層されるように積層配置して積層体22とし、これにプレート23,24および供給管27,排出管28を組み付け、これをロウ材の融点より高く板材の融点より低い温度(例えば610℃や620℃など)で加熱することによって当接部を接合(ロウ付け)して熱交換器20を完成する。即ち、熱交換用チューブ30A、30Bを構成するチューブ部材40の向かい合わせの接触部を接合すると共に隣接する熱交換用チューブ30A,30Bのフランジ部44a,44bの接触部を接合し、同時にプレート23,24や供給管27,排出管28を接合するのである。
【0023】
こうして構成された熱交換器20では、ハイドロフルオロカーボンや水などの熱交換媒体は、供給管27から2つの流出入口用貫通孔42a,42bにより形成される流入用流路25に供給され、各熱交換用チューブ30A,30Bの連通流路46,47を流れて2つの流出入口用貫通孔42a,42bにより形成される流出用流路26に流出し、排出管28から排出される。一方、空気などの被熱交換媒体は、流出用流路26側から各熱交換用チューブ30A,30Bに供給され、各熱交換用チューブ30A,30Bの間の隙間を蛇行して流れて熱交換媒体と熱交換を行ない、流入用流路25側から排出される。このように、熱交換媒体と被熱交換媒体とを給排することにより、熱交換媒体の全体としての流れと被熱交換媒体の流れとを対向流とすることができる。
【0024】
以上説明した実施例の熱交換器20では、チューブ部材40を、長手方向の中央に短手方向に直列に並ぶように2つの流出入口用貫通孔42a,42bを有するように、且つ、この2つの流出入口用貫通孔42a,42bを連通するU字形状の2つの連通流路46,47を有するように形成して熱交換用チューブ30A,30Bを構成する。これにより、長手方向に対して垂直方向に被熱交換媒体を給排したときに、矩形の熱交換用チューブの長手方向の両端部に2つの流出入口用貫通孔が形成されていると共にこの2つの流出入口用貫通孔を連通する連通流路が形成されているものに比して、流出入口用貫通孔の1つ分だけ被熱交換媒体の流路幅を広くすることができ、熱交換に有効な流路幅を広くすることができる。この結果、熱交換効率を向上させることができる。また、2つの流出入口用貫通孔42a,42bは、被熱交換媒体の流れの方向に直列に並ぶように形成されているから、2つの流出入口用貫通孔42a,42bにより形成される2つの流路22,24のうち被熱交換媒体の流れの下流側を流入用流路25として熱交換媒体を供給し、被熱交換媒体の流れの上流側を流出用流路26として熱交換媒体を排出するようにすれば、熱交換媒体の全体としての流れと被熱交換媒体の流れとを対向流とすることができ、熱交換効率を更に向上させることができる。さらに、連通流路46,47を、2つの流出入口用貫通孔42a,42bの一方から他方にU字形状で鏡像対称な2つの流路として形成することにより、2つの流路46,47に略均等に熱交換媒体を供給することができ、2つの流路46,47で略均等に熱交換を行うことができる。これらの結果、熱交換効率を向上させることができる。このように鏡像対称としてチューブ部材40を形成するから、熱交換用チューブ30A,30Bの一方側のチューブ部材と他方側のチューブ部材とを形成する必要がなく、単一形状のチューブ部材40を形成すればよいことになる。これにより、部品点数を少なくすることができ、組み付け性を向上させることができる。
【0025】
実施例の熱交換器20では、連通流路46,47の第1流路部46a,47aを、チューブ部材40の長手方向に沿った中央ラインを考えたときに、中央ラインで2つに区分けされるチューブ部材40の一方側で中央ラインから離れてチューブ部材40の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成し、第2流路部46b,47bを中央ラインで2つに区分けされるチューブ部材40の他方側でチューブ部材40の縁から離れて中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成し、折り返し流路部46c,47cを第1流路部46a,47aと第2流路部46b,47bとを接続するように形成する。また、チューブ部材40の端部ヒレ部48aの幅を第1流路部46a,47aの幅より広くなるように形成すると共に中央ヒレ部48bの幅を第2流路部46b,47bの幅より広くなるように形成する。そして、熱交換用チューブ30A,30Bを交互に積層して熱交換器20を構成する。このため、熱交換用チューブ30A,30Bの間の隙間を、幅が略一定となるように且つ蛇行するように形成することができる。この結果、被熱交換媒体の圧損を抑制すると共に被熱交換媒体の流れに若干の乱れを生じさせ、熱交換効率を向上させることができる。
【0026】
実施例の熱交換器20では、2つの流出入口用貫通孔42a,42bの間にスリット49を形成することにより、2つの流出入口用貫通孔42a,42bにおける熱交換媒体の伝熱を抑制することができる。この結果、熱交換効率を向上させることができる。
【0027】
実施例の熱交換器20の製造方法では、向かい合わせることにより扁平な熱交換用チューブ30A,30Bを構成するチューブ部材40をクラッド板材を用いて形成し、熱交換用チューブ30A,30Bを交互に複数積層した状態となるようにチューブ部材40を複数積層して積層体22を組み付け、これをロウ材の融点より高く板材の融点より低い温度の炉に入れて当接部を接合(ロウ付け)して実施例の熱交換器20を完成する。このため、熱交換効率の高い実施例の熱交換器20をより簡易に製造することができる。
【0028】
実施例の熱交換器20では、連通流路46,47の第1流路部46a,47aをチューブ部材40の長手方向の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成し、第2流路部46b,47bをチューブ部材40の長手方向の中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成し、折り返し流路部46c,47cを第1流路部46a,47aと第2流路部46b,47bとを接続するように形成したが、第1流路部および第2流路部をチューブ部材の縁と中央ラインとの中央に形成するものとしても構わない。この場合、チューブ部材を向かい合わせた熱交換用チューブは、長手方向の中央ラインで鏡像対称となるから、実施例の熱交換器20の熱交換用チューブ30A,30Bに相当するものは同一形状となる。
【0029】
実施例の熱交換器20では、2つの流出入口用貫通孔42a,42bの間にスリット49を形成したが、こうしたスリット49を形成しないものとしてもよい。
【0030】
実施例の熱交換器20では、流出入口用貫通孔42a,42bの周囲にフランジ部44a,44bを形成するものとしたが、フランジ部44a,44bに代えてバーリング加工によりバーリング加工部を形成するものとしてもよい。この場合、チューブ部材の2つのバーリング加工部のうちの一方のバーリング加工部が他方のバーリング加工部に嵌合するよう一方のバーリング加工部の径を他方のバーリング加工部の径より若干小さく或いは若干大きく形成するのが好ましい。こうしたバーリング加工部を有するチューブ部材を、実施例の熱交換用チューブ30Aと熱交換用チューブ30Bとが交互に重なるように積層すれば、向かい合うチューブ部材のバーリング加工部が嵌まり合うようにすることができる。
【0031】
実施例の熱交換器20では、アルミニウムの板材の両面にアルミシリコン合金などのロウ材を接合した厚さが0.2mmのクラッド板材を用いてチューブ部材40を形成するものとしたが、0.2mmより薄いアルミニウムとアルミニウム合金によるクラッド板材や0.2mmより厚いアルミニウムとアルミニウム合金によるクラッド板材を用いてチューブ部材40を形成するものとしてもよい。また、ステンレスの板材の両面に銅やニッケルなどのロウ材を接合したクラッド板材やステンレスに板材の両面にメッキを施した板材を用いてチューブ部材を形成するものとしてもよい。さらに、銅の板材の両面にロウ材を接合したりメッキした板材を用いてチューブ部材を形成するものとしてもよい。
【0032】
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。