特許第6531812号(P6531812)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 宇部興産株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6531812
(24)【登録日】2019年5月31日
(45)【発行日】2019年6月19日
(54)【発明の名称】ポリイミド前駆体及びポリイミド
(51)【国際特許分類】
   C08G 73/10 20060101AFI20190610BHJP
   C08J 5/18 20060101ALI20190610BHJP
   G02F 1/1333 20060101ALI20190610BHJP
【FI】
   C08G73/10
   C08J5/18CFG
   G02F1/1333 500
【請求項の数】11
【全頁数】43
(21)【出願番号】特願2017-233080(P2017-233080)
(22)【出願日】2017年12月5日
(62)【分割の表示】特願2014-518309(P2014-518309)の分割
【原出願日】2013年3月15日
(65)【公開番号】特開2018-66017(P2018-66017A)
(43)【公開日】2018年4月26日
【審査請求日】2017年12月28日
(31)【優先権主張番号】特願2012-121417(P2012-121417)
(32)【優先日】2012年5月28日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000000206
【氏名又は名称】宇部興産株式会社
(74)【代理人】
【識別番号】100106297
【弁理士】
【氏名又は名称】伊藤 克博
(72)【発明者】
【氏名】岡 卓也
(72)【発明者】
【氏名】小濱 幸徳
(72)【発明者】
【氏名】渡辺 祥行
(72)【発明者】
【氏名】久野 信治
【審査官】 尾立 信広
(56)【参考文献】
【文献】 国際公開第2011/099518(WO,A1)
【文献】 国際公開第2013/021942(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 73/00− 73/26
C08L 1/00− 101/14
C08K 3/00− 13/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体であって、このポリイミド前駆体から得られるポリイミドが、50〜400℃の線熱膨張係数が100ppm/K以下であるポリイミド前駆体(但し、下記化学式(1)中のAが4,4’−オキシジアニリンから2つのNHを除いた残基である繰り返し単位の割合が、100モル%であるポリイミド前駆体を除く)と、
溶媒と、
粒子径が100nm以下のシリカ粒子と、を含むワニス。
【化1】
(式中、Aはアリーレン基であり、X、Xはそれぞれ独立に水素、炭素数1〜6のアルキル基、または炭素数3〜9のアルキルシリル基である。)
【請求項2】
前記ポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が72%を超えることを特徴とする請求項1に記載のワニス。
【請求項3】
前記ポリイミド前駆体が、Aが下記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項1または2に記載のワニス。
【化2】
(式中、mは0〜3を、nは0〜3をそれぞれ独立に示す。B、B、Bはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、X、Yはそれぞれ独立に直接結合、または 式:−NHCO−、−CONH−、−COO−、−OCO−で表される基よりなる群から選択される1種を示す。)
【請求項4】
前記ポリイミド前駆体のAが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする請求項3に記載のワニス。
【請求項5】
前記ポリイミド前駆体が、Aが下記化学式(3−1)〜(3−6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項3または4に記載のワニス。
【化3】
【請求項6】
下記化学式(5)で表される繰り返し単位を少なくとも1種含み、50〜400℃の線熱膨張係数が100ppm/K以下であるポリイミド(但し、下記化学式(5)中のAが4,4’−オキシジアニリンから2つのNHを除いた残基である繰り返し単位の割合が、100モル%であるポリイミドを除く)と、
粒子径が100nm以下のシリカ粒子と、を含むポリイミド組成物。
【化4】
(式中、Aはアリーレン基である。)
【請求項7】
前記ポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が72%以上であることを特徴とする請求項に記載のポリイミド組成物。
【請求項8】
下記化学式(5)で表される繰り返し単位を少なくとも1種含み、50〜400℃の線熱膨張係数が100ppm/K以下であるポリイミド(但し、下記化学式(5)中のAが4,4’−オキシジアニリンから2つのNHを除いた残基である繰り返し単位の割合が、100モル%であるポリイミドを除く)と、
溶媒と、
粒子径が100nm以下のシリカ粒子と、を含むワニス。
【化5】
(式中、Aはアリーレン基である。)
【請求項9】
請求項1〜のいずれかに記載のワニスから得られるポリイミド組成物。
【請求項10】
請求項1〜のいずれかに記載のワニスを用いて得られたポリイミドフィルム。
【請求項11】
請求項6、7、または9に記載のポリイミド組成物によって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体に関する。
【背景技術】
【0002】
近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討が行なわれたり、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
【0003】
芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。
【0004】
特許文献1には、薄く、軽く、割れ難いアクティブマトリックス表示装置を得るために、テトラカルボン酸成分残基が脂肪族基である透明なポリイミドのフィルムの基板上に通常の成膜プロセスを用いて薄膜トランジスタを形成して薄膜トランジスタ基板を得ることが開示されている。ここで具体的に用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5−シクロへキサンテトラカルボン酸二無水物と、ジアミン成分の4,4’−ジアミノジフェニルエーテルとから調製されたものである。
【0005】
特許文献2には、液晶表示素子、有機EL表示素子の透明基板や薄膜トランジスタ基板、フレキシブル配線基板などに利用される、無色透明性、耐熱性及び平坦性に優れるポリイミドからなる無色透明樹脂フィルムを、特定の乾燥工程を用いた溶液流延法によって得る製造方法が開示されている。ここで用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5−シクロへキサンテトラカルボン酸二無水物と、ジアミン成分のα,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼンと4,4’−ビス(4−アミノフェノキシ)ビフェニルとから調製されたもの等である。
【0006】
特許文献3,4には、テトラカルボン酸成分として、ジシクロヘキシルテトラカルボン酸と、ジアミン成分として、ジアミノジフェニルエ−テル、ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エ−テル、メタフェニレンジアミンを用いた有機溶剤に可溶なポリイミドが記載されている。
【0007】
この様なテトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドは、透明性、折り曲げ耐性、高耐熱性を兼ね備えている。しかしながら、この様な半脂環式ポリイミドは、一般に、線熱膨張係数が50ppm/K以上と大きいために、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがあり、特にディスプレイ用途などの微細な回路形成プロセスが容易ではないという問題があった。
【0008】
特許文献5には、エステル結合を含有した脂環式酸二無水物と種々の芳香族ジアミンとから得られるポリイミドが開示されており、例えば、実施例4のポリイミドは、100−200℃の線熱膨張係数が50ppm/K以下である。しかしながら、このポリイミドのガラス転移温度は300℃程度であり、それ以上の高温ではフィルムが軟化し、線熱膨張係数が非常に大きくなることが考えられ、低温のみならず高温での低熱膨張性が求められる回路形成プロセスにおいて不具合を生じる恐れがあった。
【0009】
特許文献6には、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物と4,4’−オキシジアニリンを用いたポリイミド等が記載されている。しかしながら、透明性や高温までの極めて低い線熱膨張係数などについては記載されていない。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2003−168800号公報
【特許文献2】国際公開第2008/146637号
【特許文献3】特開2002−69179号公報
【特許文献4】特開2002−146021号公報
【特許文献5】特開2008−31406号公報
【特許文献6】国際公開第2011/099518号
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、以上のような状況に鑑みてなされたものであり、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドにおいて、低温のみならず高温までの線熱膨張係数を改良すること、好ましくは優れた透明性を維持しながら、線熱膨張係数を改良することを目的とする。
【0012】
すなわち、本発明は、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、以下の各項に関する。
【0014】
1. 下記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体であって、
このポリイミド前駆体から得られるポリイミドが、50〜400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド前駆体。
【0015】
【化1】

(式中、Aはアリーレン基であり、X、Xはそれぞれ独立に水素、炭素数1〜6のアルキル基、または炭素数3〜9のアルキルシリル基である。)
【0016】
2. このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が72%を超えることを特徴とする前記項1に記載のポリイミド前駆体。
【0017】
3. このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする前記項2に記載のポリイミド前駆体。
【0018】
4. Aが下記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項1〜3のいずれかに記載のポリイミド前駆体。
【0019】
【化2】
(式中、mは0〜3を、nは0〜3をそれぞれ独立に示す。B、B、Bはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、X、Yはそれぞれ独立に直接結合、または 式:−NHCO−、−CONH−、−COO−、−OCO−で表される基よりなる群から選択される1種を示す。)
【0020】
5. Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含むことを特徴とする前記項4に記載のポリイミド前駆体。
【0021】
6. Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする前記項5に記載のポリイミド前駆体。
【0022】
7. Aが、mおよび/またはnが1〜3であり、Xおよび/またはYが、それぞれ独立に、−NHCO−、−CONH−、−COO−、または−OCO−のいずれかである前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1−1)を少なくとも1種含み、
Aが、mおよびnが0である前記化学式(2)の構造であるか、または、mおよび/またはnが1〜3であり、XおよびYが直接結合である前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1−2)を少なくとも1種含むことを特徴とする前記項5または6に記載のポリイミド前駆体。
【0023】
8. 前記繰り返し単位(1−1)として、Aが下記化学式(3−1)〜(3−3)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項7に記載のポリイミド前駆体。
【0024】
【化3】
【0025】
9. 前記繰り返し単位(1−2)として、Aが下記化学式(3−4)〜(3−6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項7または8に記載のポリイミド前駆体。
【0026】
【化4】
【0027】
10. 前記繰り返し単位(1−1)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であり、
前記繰り返し単位(1−2)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であることを特徴とする前記項7〜9のいずれかに記載のポリイミド前駆体。
【0028】
11. Aが下記化学式(3−1)〜(3−6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項4に記載のポリイミド前駆体。
【0029】
【化5】
【0030】
12. Aが前記化学式(3−1)、(3−2)、(3−4)または(3−5)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項11に記載のポリイミド前駆体。
【0031】
13. Aが前記化学式(3−1)、(3−2)、(3−4)または(3−5)のいずれかで表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする前記項12に記載のポリイミド前駆体。
【0032】
14. 下記化学式(5)で表される繰り返し単位を少なくとも1種含み、50〜400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド。
【0033】
【化6】
(式中、Aはアリーレン基である。)
【0034】
15. 厚さ10μmのフィルムでの波長400nmの光透過率が72%以上であることを特徴とする前記項14に記載のポリイミド。
【0035】
16. 厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする前記項15に記載のポリイミド。
【0036】
17. 前記項1〜13のいずれかに記載のポリイミド前駆体から得られるポリイミド。
【0037】
18. 前記項1〜13のいずれかに記載のポリイミド前駆体から得られるポリイミドフィルム。
【0038】
19. 前記項1〜13のいずれかに記載のポリイミド前駆体、又は前記項14〜17のいずれかに記載のポリイミドを含むワニス。
【0039】
20. 前記項1〜13のいずれかに記載のポリイミド前駆体、又は前記項14〜17のいずれかに記載のポリイミドを含むワニスを用いて得られたポリイミドフィルム。
【0040】
21. 前記項1〜13のいずれかに記載のポリイミド前駆体から得られるポリイミド、又は前記項14〜17のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
【発明の効果】
【0041】
本発明によって、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することができる。この本発明のポリイミド前駆体から得られるポリイミド、及び本発明のポリイミドは、透明性が高く、且つ高温まで低線熱膨張係数であって微細な回路の形成が容易であり、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。
【発明を実施するための形態】
【0042】
本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体である。化学式(1)中のAはアリーレン基であり、好ましくは炭素数6〜40のアリーレン基である。ただし、前記化学式(1)は、2つのノルボルナン環(ビシクロ[2.2.1]ヘプタン)の5位または6位の一方の酸基がアミノ基と反応してアミド結合(−CONH−)を形成しており、一方がアミド結合を形成していない−COOXで表される基、または−COOXで表される基であることを示し、前記化学式(1)には、4つの構造異性体、すなわち(i)5位に−COOXで表される基を、6位に−CONH−で表される基を有し、5’’位に−COOXで表される基を、6’’位に−CONH−A−で表される基を有するもの、(ii)6位に−COOXで表される基を、5位に−CONH−で表される基を有し、5’’位に−COOXで表される基を、6’’位に−CONH−A−で表される基を有するもの、(iii)5位に−COOXで表される基を、6位に−CONH−で表される基を有し、6’’位に−COOXで表される基を、5’’位に−CONH−A−で表される基を有するもの、(iv)6位に−COOXで表される基を、5位に−CONH−で表される基を有し、6’’位に−COOXで表される基を、5’’位に−CONH−A−で表される基を有するもの全てが含まれる。換言すれば、本発明のポリイミド前駆体は、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸類等(テトラカルボン酸類等とは、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を表す)を含むテトラカルボン酸成分と、化学構造中に少なくとも一つの芳香族環を有する、好ましくは炭素数6〜40の芳香族ジアミンを含むジアミン成分から得られるポリイミド前駆体である。そして、本発明のポリイミド前駆体は、このポリイミド前駆体から得られるポリイミドが、50〜400℃の線熱膨張係数が100ppm/K以下であり、厚さ10μmのフィルムでの波長400nmの光透過率が好ましくは72%を超え、より好ましくは75%を超えることを特徴とするポリイミド前駆体である。
【0043】
テトラカルボン酸成分は、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸類等を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0044】
本発明において用いるジアミン成分は、化学構造中に少なくとも一つ芳香族環を有するジアミン成分であり、好ましくは炭素数6〜40の芳香族ジアミンを含むジアミン成分である。
【0045】
本発明において用いるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、特に限定するものではないが、例えば4,4’−ジアミノベンズアニリド、3,4’−ジアミノベンズアニリド、2,2’−ビス(トリフルオロメチル)ベンジジン、9,9−ビス(4−アミノフェニル)フルオレン、3,3’−ジアミノ−ビフェニル、3,3’−ビス(トリフルオロメチル)ベンジジン、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、p−メチレンビス(フェニレンジアミン)、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルホン、3,3−ビス((アミノフェノキシ)フェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)ジフェニル)スルホン、ビス(4−(3−アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ジアミノビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,4−ジアミノシクロへキサン、1,4−ジアミノ−2−メチルシクロヘキサン、1,4−ジアミノ−2−エチルシクロヘキサン、1,4−ジアミノ−2−n−プロピルシクロヘキサン、1,4−ジアミノ−2−イソプロピルシクロヘキサン、1,4−ジアミノ−2−n−ブチルシクロヘキサン、1,4−ジアミノ−2−イソブチルシクロヘキサン、1,4−ジアミノ−2−sec−ブチルシクロヘキサン、1,4−ジアミノ−2−tert−ブチルシクロヘキサン、1,2−ジアミノシクロへキサン、1,4−ジアミノシクロへキサン、p−フェニレンジアミン、m−フェニレンジアミン、ベンジジン、m−トリジン、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ジアミノビフェニル、3,3’−ジアミノ−ビフェニル、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−p−フェニレンビス(p−アミノベンズアミド)、4−アミノフェニル−4−アミノベンゾエート、ビス(4−アミノフェニル)テレフタレート、ビフェニル−4,4’−ジカルボン酸ビス(4−アミノフェニル)エステル、p−フェニレンビス(p−アミノベンゾエート)、ビス(4−アミノフェニル)−[1,1’−ビフェニル]−4,4’−ジカルボキシレート、[1,1’−ビフェニル]−4,4’−ジイルビス(4−アミノベンゾエート)、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル等やこれらの誘導体が挙げられる。これらのうち、p−フェニレンジアミン、m−トリジン、4,4’−ジアミノベンズアニリド、4−アミノフェニル−4−アミノベンゾエート、2,2’−ビス(トリフルオロメチル)ベンジジン、ベンジジンが好ましく、p−フェニレンジアミン、m−トリジン、4,4’−ジアミノベンズアニリド、4−アミノフェニル−4−アミノベンゾエート、2,2’−ビス(トリフルオロメチル)ベンジジンがより好ましい。なお、o−トリジンは危険性が高いことから好ましくない。
【0046】
ジアミン成分は、前記のようなジアミン成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0047】
複数種を組み合わせて使用する場合は、下記化学式(4)の少なくとも1種類を30モル%以上含むことが好ましい。
【0048】
【化7】
【0049】
本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことが好ましい。Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分は、芳香環を有し、芳香環を複数有する場合は芳香環同士をそれぞれ独立に、直接結合、アミド結合、またはエステル結合で連結したものである。芳香環同士の連結位置は特に限定されないが、アミノ基もしくは芳香環同士の連結基に対して4位で結合することで直線的な構造となり、得られるポリイミドが低線熱膨張になることがある。また、芳香環にメチル基やトリフルオロメチル基が置換されていてもよい。なお、置換位置は特に限定されない。
【0050】
Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分としては、特に限定するものではないが、例えば、p−フェニレンジアミン、m−フェニレンジアミン、ベンジジン、3,3’−ジアミノ−ビフェニル、2,2’−ビス(トリフルオロメチル)ベンジジン、3,3’−ビス(トリフルオロメチル)ベンジジン、m−トリジン、4,4’−ジアミノベンズアニリド、3,4’−ジアミノベンズアニリド、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−p−フェニレンビス(p−アミノベンズアミド)、4−アミノフェノキシ−4−ジアミノベンゾエート、ビス(4−アミノフェニル)テレフタレート、ビフェニル−4,4’−ジカルボン酸ビス(4−アミノフェニル)エステル、p−フェニレンビス(p−アミノベンゾエート)、ビス(4−アミノフェニル)−[1,1’−ビフェニル]−4,4’−ジカルボキシレート、[1,1’−ビフェニル]−4,4’−ジイルビス(4−アミノベンゾエート)等が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、p−フェニレンジアミン、m−トリジン、4,4’−ジアミノベンズアニリド、4−アミノフェノキシ−4−ジアミノベンゾエート、2,2’−ビス(トリフルオロメチル)ベンジジン、ベンジジン、N,N’−ビス(4−アミノフェニル)テレフタルアミド、ビフェニル−4,4’−ジカルボン酸ビス(4−アミノフェニル)エステルが好ましく、p−フェニレンジアミン、4,4’−ジアミノベンズアニリド、2,2’−ビス(トリフルオロメチル)ベンジジンがより好ましい。ジアミン成分として、p−フェニレンジアミン、4,4’−ジアミノベンズアニリド、2,2’−ビス(トリフルオロメチル)ベンジジンを使用することで、得られるポリイミドが高耐熱性と高透過率を両立する。これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。ある実施態様においては、ジアミン成分が4,4’−ジアミノベンズアニリドの1種のみであるものは除くことができる。ある実施態様においては、ジアミン成分が4,4’−ジアミノベンズアニリドと、Aが前記化学式(2)以外の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分(Aが前記化学式(2)の構造のものを与えるジアミン成分以外の、他のジアミン)との組み合わせであるものは除くことができる。なお、o−トリジンは危険性が高いことから好ましくない。
【0051】
本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分を含むことが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造のものを与えるジアミン成分であることで、得られるポリイミドの耐熱性が向上する。
【0052】
本発明のポリイミド前駆体は、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位1種以上の割合が、合計で、全繰り返し単位中、30モル%以上、より好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位の割合が、全繰り返し単位中、30モル%より小さい場合、得られるポリイミドの線熱膨張係数が大きくなることがある。ある実施態様においては、得られるポリイミドの機械的特性の点から、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、前記化学式(2)の構造を与えるジアミン成分の割合が、合計で、好ましくは80モル%以下、より好ましくは90モル%以下または90モル%未満であることが好ましいことがある。例えば、4,4’−オキシジアニリン等の他のジアミン類を、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、好ましくは20モル%未満、より好ましくは10モル%以下、より好ましくは10モル%未満で使用することができる。
【0053】
本発明のポリイミド前駆体において、Aは前記化学式(3−1)〜(3−6)のいずれかで表されるものが好ましく、前記化学式(3−1)、(3−2)、(3−4)または(3−5)のいずれかで表されるものがより好ましい。
【0054】
Aが前記化学式(3−1)、(3−2)、(3−4)または(3−5)のいずれかで表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上、より好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
【0055】
本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含むことが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分を少なくとも2種含むことが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造のものを与えるジアミン成分の少なくとも2種類を含むことで、得られるポリイミドの高透明性と低線熱膨張性のバランスが取れる(すなわち、透明性が高く、且つ、低線熱膨張係数であるポリイミドが得られる)。
【0056】
Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含む場合、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上、より好ましくは50モル%以上、より好ましくは60モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
【0057】
本発明のポリイミド前駆体は、
(i)Aが、mおよび/またはnが1〜3であり、Xおよび/またはYが、それぞれ独立に、−NHCO−、−CONH−、−COO−、または−OCO−のいずれかである前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1−1)を少なくとも1種含み、
(ii)Aが、mおよびnが0である前記化学式(2)の構造であるか、または、mおよび/またはnが1〜3であり、XおよびYが直接結合である前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1−2)を少なくとも1種含むことがより好ましい。
【0058】
前記繰り返し単位(1−1)としては、Aが前記化学式(3−1)〜(3−3)のいずれかで表されるものである前記化学式(1)の繰り返し単位が好ましく、Aが前記化学式(3−1)〜(3−2)のいずれかで表されるものである前記化学式(1)の繰り返し単位がより好ましい。なお、Aが前記化学式(3−1)または前記化学式(3−2)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分は4,4’−ジアミノベンズアニリドであり、Aが前記化学式(3−3)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はビス(4−アミノフェニル)テレフタレートであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0059】
前記繰り返し単位(1−2)としては、Aが前記化学式(3−4)〜(3−6)のいずれかで表されるものである前記化学式(1)の繰り返し単位が好ましく、Aが前記化学式(3−4)〜(3−5)のいずれかで表されるものである前記化学式(1)の繰り返し単位がより好ましい。なお、Aが前記化学式(3−4)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はp−フェニレンジアミンであり、Aが前記化学式(3−5)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分は2,2’−ビス(トリフルオロメチル)ベンジジンであり、Aが前記化学式(3−6)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はm−トリジンであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0060】
本発明のポリイミド前駆体において、前記繰り返し単位(1−1)1種以上の割合が、合計で、全繰り返し単位中、30モル%以上70モル%以下であり、前記繰り返し単位(1−2)1種以上の割合が、合計で、全繰り返し単位中、30モル%以上70モル%以下であることが好ましく、前記繰り返し単位(1−1)1種以上の割合が、合計で、全繰り返し単位中、40モル%以上60モル%以下であり、前記繰り返し単位(1−2)1種以上の割合が、合計で、全繰り返し単位中、40モル%以上60モル%以下であることが特に好ましい。ある実施態様においては、前記繰り返し単位(1−1)の割合が、合計で、繰り返し単位中、60モル%未満であることがより好ましく、50モル%以下であることがより好ましく、40モル%以下であることが特に好ましい。また、ある実施態様においては、前記繰り返し単位(1−1)及び前記繰り返し単位(1−2)以外の、他の前記化学式(1)で表される繰り返し単位(例えば、Aが複数の芳香環を有し、芳香環同士がエーテル結合(−O−)で連結されているもの)を、全繰り返し単位中、好ましくは20モル%未満、より好ましくは10モル%以下、特に好ましくは10モル%未満で含むことが好ましいことがある。
【0061】
本発明のポリイミド前駆体は、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)が前記化学式(2)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’−ジアミノベンズアニリドであることが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’−ジアミノベンズアニリドであることで、高透明性と低線熱膨張性に加え、高い耐熱性も兼ね備えたポリイミドが得られる。
【0062】
本発明のポリイミド前駆体は、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)が2,2’−ビス(トリフルオロメチル)ベンジジン及びp−フェニレンジアミンから選択される少なくとも1種類と、4,4’−ジアミノベンズアニリドを含むことが特に好ましい。これらのジアミン成分を組み合わせることで、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。
【0063】
前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、好ましくは4,4’−ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p−フェニレンジアミンと2,2’−ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことが好ましく、特に好ましくは4,4’−ジアミノベンズアニリドを40モル%以上、60モル%以下で含み、且つ、p−フェニレンジアミンと2,2’−ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で40モル%以上、60モル%以下で含むことがより好ましい。前記化学式(1)中のAを与えるジアミン成分として、4,4’−ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p−フェニレンジアミンと2,2’−ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことにより、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。ある実施態様においては、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、4,4’−ジアミノベンズアニリドを60モル%未満で含むことがより好ましく、50モル%以下で含むことがより好ましく、40モル%以下で含むことが特に好ましい。
【0064】
本発明のポリイミド前駆体は、他のテトラカルボン酸成分および/またはジアミン成分を使用して得られるポリイミド前駆体であってもよく、例えば、全テトラカルボン酸成分100モル%中、化学式(1)で表される繰り返し単位を与えるテトラカルボン酸成分(すなわち、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸類)を70モル%以上、それ以外のテトラカルボン酸成分を30モル%以下で含むことが好ましい。
【0065】
また、一般的にポリイミドで使用される他の芳香族または脂肪族テトラカルボン酸成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、より好ましくは10モル%未満)併用することもできる。
【0066】
換言すれば、本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むものであってもよく、その割合は、合計で、全繰り返し単位中、好ましくは30モル%以下、より好ましくは10モル%以下、より好ましくは10モル%未満であることが好ましい。
【0067】
本発明で使用することができる他の芳香族または脂肪族テトラカルボン酸成分(他の繰り返し単位を与えるテトラカルボン酸成分)としては、例えば、(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2t,3t,6c,7c−テトラカルボン酸二無水物、(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2c,3c,6c,7c−テトラカルボン酸二無水物、シクロヘキサン−1,2,4,5−テトラカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸二無水物、[1,1’−ビ(シクロヘキサン)]−3,3’,4,4’−テトラカルボン酸、[1,1’−ビ(シクロヘキサン)]−2,3,3’,4’−テトラカルボン酸、[1,1’−ビ(シクロヘキサン)]−2,2’,3,3’−テトラカルボン酸、4,4’−メチレンビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(プロパン−2,2−ジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−オキシビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−チオビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−スルホニルビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(ジメチルシランジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(テトラフルオロプロパン−2,2−ジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、オクタヒドロペンタレン−1,3,4,6−テトラカルボン酸、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸、6−(カルボキシメチル)ビシクロ[2.2.1]ヘプタン−2,3,5−トリカルボン酸、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸、ビシクロ[2.2.2]オクタ−5−エン−2,3,7,8−テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン−3,4,7,8−テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ−7−エン−3,4,9,10−テトラカルボン酸、9−オキサトリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、4,4’−オキシジフタル酸無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2−ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2−ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’−ビス〔4−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’−ビス〔3−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物等の誘導体や、これらの酸二無水物が挙げられる。これらのうちでは、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸、(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2t,3t,6c,7c−テトラカルボン酸二無水物、(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2c,3c,6c,7c−テトラカルボン酸二無水物等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性、透明性に優れることから、より好ましい。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0068】
本発明では、前記のようなAが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分以外の、他の芳香族または脂肪族ジアミン類を使用することもできる。他のジアミン成分として、例えば、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、p−メチレンビス(フェニレンジアミン)、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルホン、3,3−ビス((アミノフェノキシ)フェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)ジフェニル)スルホン、ビス(4−(3−アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,4−ジアミノシクロへキサン、1,4−ジアミノ−2−メチルシクロヘキサン、1,4−ジアミノ−2−エチルシクロヘキサン、1,4−ジアミノ−2−n−プロピルシクロヘキサン、1,4−ジアミノ−2−イソプロピルシクロヘキサン、1,4−ジアミノ−2−n−ブチルシクロヘキサン、1,4−ジアミノ−2−イソブチルシクロヘキサン、1,4−ジアミノ−2−sec−ブチルシクロヘキサン、1,4−ジアミノ−2−tert−ブチルシクロヘキサン、1,2−ジアミノシクロへキサン、1,4−ジアミノシクロへキサン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0069】
本発明で用いるテトラカルボン酸成分は、特に限定されないが、純度(複数の構造異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度であり、複数種のテトラカルボン酸成分を用いる場合には、最も純度の高いテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のテトラカルボン酸成分を70質量部、純度90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の純度は、97%と計算される。)が99%以上、好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析やH−NMR分析から求められる値であり、テトラカルボン酸二無水物の場合、加水分解の処理を行い、テトラカルボン酸として、その純度を求めることもできる。
【0070】
本発明で用いるジアミン成分は、特に限定されないが、純度(複数種のジアミン成分を用いる場合には、最も純度の高いジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のジアミン成分を70質量部、純度90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の純度は、97%と計算される。)が99%以上、更に好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析から求められる値である。
【0071】
本発明のポリイミド前駆体において、前記化学式(1)のX、Xはそれぞれ独立に水素、炭素数1〜6、好ましくは炭素数1〜3のアルキル基、または炭素数3〜9のアルキルシリル基のいずれかである。X、Xは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
【0072】
、Xが水素である場合、ポリイミドの製造が容易である傾向がある。
【0073】
また、X、Xが炭素数1〜6、好ましくは炭素数1〜3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、X、Xはメチル基もしくはエチル基であることがより好ましい。
【0074】
更に、X、Xが炭素数3〜9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。この場合、X、Xはトリメチルシリル基もしくはt−ブチルジメチルシリル基であることがより好ましい。
【0075】
官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X、Xはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
【0076】
本発明のポリイミド前駆体は、X及びXが取る化学構造によって、1)ポリアミド酸(X、Xが水素)、2)ポリアミド酸エステル(X、Xの少なくとも一部がアルキル基)、3)4)ポリアミド酸シリルエステル(X、Xの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。
【0077】
1)ポリアミド酸
本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90〜1.10、より好ましくは0.95〜1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
【0078】
本発明のポリイミド前駆体の合成方法は、限定するものではないが、より具体的には、有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。
【0079】
また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。
【0080】
2)ポリアミド酸エステル
テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを−20〜120℃、好ましくは−5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
【0081】
この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
【0082】
3)ポリアミド酸シリルエステル(間接法)
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
【0083】
ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
【0084】
また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
【0085】
4)ポリアミド酸シリルエステル(直接法)
1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
【0086】
ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
【0087】
前記製造方法は、いずれも有機溶媒中で好適に行なうことができるので、その結果として、本発明のポリイミド前駆体のワニスを容易に得ることができる。
【0088】
ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1−エチル−2−ピロリドン、1,1,3,3−テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N−ジメチルアセトアミド、N−メチル−2−ピロリドンが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
【0089】
本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N−ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
【0090】
本発明において、ポリイミド前駆体のワニスは、少なくとも本発明のポリイミド前駆体と溶媒とを含み、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、テトラカルボン酸成分とジアミン成分との合計量が5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
【0091】
本発明のポリイミド前駆体のワニスに用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。
【0092】
本発明において、ポリイミド前駆体のワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec−1で測定した回転粘度が、0.01〜1000Pa・secが好ましく、0.1〜100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
【0093】
本発明のポリイミド前駆体のワニスは、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
【0094】
本発明のポリイミド前駆体のワニスには、必要に応じて、シリカ等の無機粒子を混合することもできる。混合のさせ方としては特に限定されるものではないが、重合溶媒に無機粒子を分散させその溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法、ポリイミド前駆体溶液に無機粒子を添加し混合する方法等がある。本発明のポリイミド前駆体のワニスには、例えば、シリカ粒子やシリカ粒子分散溶液を添加することが出来る。添加するシリカ粒子としては、粒子径が好ましくは100nm以下、より好ましくは50nm以下、特に好ましくは30nm以下であることが好ましい。添加するシリカ粒子の粒子径が100nmを超えるとポリイミドが白濁することがある。また、シリカ粒子分散溶液を添加する場合は、例えば、日産化学社製「オルガノシリカゾル DMAc−ST(一次粒子径:10〜15nm、分散溶媒:N,N−ジメチルアセトアミド)固形分:20〜21%」等を使用することができる。ポリイミド前駆体へのシリカの添加量としては、そのポリイミド前駆体をイミド化した後のポリイミドに対して、好ましくは50体積%以下、さらに好ましくは50体積%未満、特に好ましくは40体積%未満である。ポリイミドに対してシリカ含有量が50体積%より大きい場合、ポリイミドが脆くなることがある。
【0095】
本発明のポリイミドは、前記化学式(5)で表される繰り返し単位を少なくとも1種含み、50〜400℃の線熱膨張係数が100ppm/K以下であり、厚さ10μmのフィルムでの波長400nmの光透過率が好ましくは72%を超え、より好ましくは75%を超えることを特徴とする。この本発明のポリイミドは、前記のような本発明のポリイミド前駆体を脱水閉環反応(イミド化反応)することで好適に製造することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体およびワニスなどを好適に挙げることができる。
【0096】
なお、本発明のポリイミドの前記化学式(5)は本発明のポリイミド前駆体の前記化学式(1)に対応する。
【0097】
本発明において、ポリイミドの対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N−ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.4dL/g以上、特に好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、得られるポリイミドの機械強度や耐熱性に優れる。
【0098】
本発明において、ポリイミドのワニスは、少なくとも本発明のポリイミドと溶媒とを含み、溶媒とポリイミドの合計量に対して、ポリイミドが5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上、特に好ましくは20質量%以上の割合であることが好適である。この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
【0099】
本発明のポリイミドのワニスに用いる溶媒としては、ポリイミドが溶解すれば問題はなく、特にその構造は限定されない。溶媒としては、前記の本発明のポリイミド前駆体のワニスに用いる溶媒を同様に用いることができる。
【0100】
本発明において、ポリイミドのワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec−1で測定した回転粘度が、0.01〜1000Pa・secが好ましく、0.1〜100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
【0101】
本発明のポリイミドのワニスは、必要に応じて、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
【0102】
本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、必要に応じて、シリカ等の無機粒子を混合することもできる。混合のさせ方としては特に限定されるものではないが、重合溶媒に無機粒子を分散させその溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法、ポリイミド溶液に無機粒子を混合する方法、ポリイミド溶液に無機粒子分散溶液を混合する方法等がある。それらの方法で分散させたシリカ分散ポリイミド前駆体溶液中のポリイミド前駆体をイミド化することで、または、ポリイミド溶液とシリカ粒子やシリカ分散溶液を混合させた後に加熱乾燥し溶媒を除去することで、シリカ含有ポリイミドが得られる。ポリイミドに分散させる無機粒子としては、シリカ粒子を添加することが出来る。添加するシリカ粒子としては、粒子径が好ましくは100nm以下、より好ましくは50nm以下、特に好ましくは30nm以下であることが好ましい。添加するシリカ粒子の粒子径が100nmを超えるとポリイミドが白濁することがある。また、シリカ粒子分散溶液を使用する場合は、例えば、日産化学社製「オルガノシリカゾル DMAc−ST(一次粒子径:10〜15nm、分散溶媒:N,N−ジメチルアセトアミド)固形分:20〜21%」等を使用することができる。シリカの添加量としては、ポリイミドに対して、好ましくは50体積%以下、さらに好ましくは50体積%未満、特に好ましくは40体積%未満である。ポリイミドに対してシリカ含有量が50体積%より大きい場合、ポリイミドが脆くなることがある。
【0103】
本発明のポリイミドは、特に限定されないが、フィルムにしたときの50℃〜400℃における線熱膨張係数が、好ましくは100ppm/K以下、より好ましくは50ppm/K以下、より好ましくは40ppm/K以下、特に好ましくは30ppm/K以下であり、極めて低い線熱膨張係数を有する。
【0104】
本発明のポリイミドは、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm〜780nmの平均光透過率)は、好ましくは80%以上、より好ましくは85%以上、より好ましくは86%以上、特に好ましくは87%以上であり、優れた光透過性を有する。
【0105】
本発明のポリイミドは、特に限定されないが、膜厚10μmのフィルムにしたとき、波長400nmにおける光透過率が、好ましくは70%以上、より好ましくは72%以上であり、より好ましくは72%を超え、より好ましくは75%以上であり、より好ましくは75%を超え、より好ましくは76%以上、より好ましくは77%以上、特に好ましくは80%以上であり、優れた透明性を有する。
【0106】
なお、本発明のポリイミドからなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは1μm〜250μm程度、さらに好ましくは1μm〜150μm程度である。
【0107】
本発明のポリイミドは、特に限定されないが、5%重量減少温度は、好ましくは470℃以上であり、より好ましくは480℃以上、特に好ましくは490℃以上である。
【0108】
本発明のポリイミドは、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
【0109】
以下では、本発明のポリイミド前駆体を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
【0110】
例えばセラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基材に、本発明のポリイミド前駆体のワニスを流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20〜180℃、好ましくは20〜150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、200〜500℃、より好ましくは250〜450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1〜250μm、より好ましくは1〜150μmである。
【0111】
また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体のワニス中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
【0112】
この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
【0113】
フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
【0114】
第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
【0115】
なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル−ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
【0116】
また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
【0117】
本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、透明性、折り曲げ性、耐熱性が優れ、さらに極めて低い線熱膨張係数や優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
【0118】
すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
【実施例】
【0119】
以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
【0120】
以下の各例において評価は次の方法で行った。
【0121】
<ポリイミド前駆体のワニスの評価>
[対数粘度]
重合に用いた溶媒で希釈し、濃度0.5g/dLのポリイミド前駆体溶液を調製し、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
【0122】
<ポリイミドフィルムの評価>
[400nm光透過率、全光透過率]
大塚電子製MCPD−300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm〜780nmにおける平均透過率)を測定した。測定した400nmにおける光透過率と、全光透過率をランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
【0123】
Log10(T/100)=10/L×(Log10(T’/100))
Log10(T/100)=10/L×(Log10(T’/100))
:10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
また、反射率を10%としてランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
【0124】
Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
:反射率を10%としたときの10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:反射率を10%としたときの10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
【0125】
[弾性率、破断伸度]
膜厚約10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断伸度を測定した。
【0126】
[線熱膨張係数(CTE)]
膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、50℃から400℃までの線熱膨張係数を求めた。
【0127】
[5%重量減少温度]
膜厚約10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
【0128】
以下の各例で使用した原材料の略称、純度等は、次のとおりである。
【0129】
[ジアミン成分]
DABAN: 4,4’−ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
TFMB: 2,2’−ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
PPD: p−フェニレンジアミン〔純度:99.9%(GC分析)〕
m−TD: m−トリジン〔純度:99.84%(GC分析)〕
BAPT: ビス(4−アミノフェニル)テレフタレート〔純度:99.56%(LC分析)〕
FDA: 9,9−ビス(4−アミノフェニル)フルオレン
4−APTP: N,N’−ビス(4−アミノフェニル)テレフタルアミド〔純度:99.95%(GC分析)〕
ODA: 4,4’−オキシジアニリン〔純度:99.9%(GC分析)〕
[テトラカルボン酸成分]
CpODA:ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物
PMDA−HS: 1R,2S,4S,5R−シクロヘキサンテトラカルボン酸二無水物〔PMDA−HSとしての純度:92.7%(GC分析),水素化ピロメリット酸二無水物(立体異性体の混合物)としての純度:99.9%(GC分析)〕
cis/cis−BTA−H: 1rC7−ビシクロ[2.2.2]オクタン−2c,3c,5c,6c−テトラカルボン酸−2,3:5,6−二無水物〔cis/cis−BTA−Hとしての純度:99.9%(GC分析)〕
【0130】
[シリル化剤]
BSA: N,O−ビス(トリメチルシリル)アセトアミド
[シリカ分散溶液]
オルガノシリカ DMAc−ST シリカ固形分 21.3質量%
[溶媒]
DMAc: N,N−ジメチルアセトアミド
NMP: N−メチル−2−ピロリドン
[溶媒の純度]
GC分析:
主成分の保持時間(min) 14.28
主成分の面積% 99.9929
短保持時間不純物のピーク面積% 0.0000
長保持時間不純物のピーク面積% 0.0071

不揮発分(質量%) <0.001
光透過率:
400nm光透過率(%) 92
還流後の400nm光透過率(%) 92
金属分:
Na(ppb) 150
Fe(ppb) <2
Cu(ppb) <2
Mo(ppb) <1
【0131】
表1に実施例、比較例で使用したテトラカルボン酸成分、ジアミン成分の構造式を記す。
【0132】
【表1】
【0133】
〔実施例1〕
窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 26質量%となる量の17.41gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.0dL/gであった。
【0134】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは75%、Tは90%であった。
【0135】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0136】
〔実施例2〕
窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 28質量%となる量の18.12gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0137】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは91%、Tは94%であった。
【0138】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0139】
〔実施例3〕
窒素ガスで置換した反応容器中にPPD 1.08g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の24.05gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.2dL/gであった。
【0140】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは90%であった。
【0141】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0142】
〔実施例4〕
窒素ガスで置換した反応容器中にm−TD 2.12g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の27.18gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.9dL/gであった。
【0143】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは89%、Tは92%であった。
【0144】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0145】
〔実施例5〕
窒素ガスで置換した反応容器中にBAPT 3.48g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の38.47gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は2.5dL/gであった。
【0146】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは74%、Tは86%であった。
【0147】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0148】
〔実施例6〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 25質量%となる量の16.34gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.2dL/gであった。
【0149】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは91%であった。
【0150】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0151】
〔実施例7〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 21質量%となる量の18.07gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.4dL/gであった。
【0152】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは92%であった。
【0153】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0154】
〔実施例8〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とPPD 0.32g(3ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 26質量%となる量の11.86gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.2dL/gであった。
【0155】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは84%、Tは92%であった。
【0156】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0157】
〔実施例9〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 25質量%となる量の13.15gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.1dL/gであった。
【0158】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは92%であった。
【0159】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0160】
〔実施例10〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.76g(7ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 19質量%となる量の19.61gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.1dL/gであった。
【0161】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは92%であった。
【0162】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0163】
〔実施例11〕
窒素ガスで置換した反応容器中に4−APTP 3.46g(10ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 13質量%となる量の48.85gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0164】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0165】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0166】
〔実施例12〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の22.08gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0167】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0168】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0169】
〔実施例13〕
窒素ガスで置換した反応容器中にTFMB 1.60g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 23質量%となる量の20.02gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0170】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0171】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0172】
〔実施例14〕
窒素ガスで置換した反応容器中にTFMB 0.96g(3ミリモル)とPPD 0.76g(7ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 23質量%となる量の18.61gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0173】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0174】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0175】
〔実施例15〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.22g(2ミリモル)とTFMB 1.28g(4ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20量%となる量の25.00gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0176】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0177】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0178】
〔実施例16〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.22g(2ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20量%となる量の25.36gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0179】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0180】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0181】
〔実施例17〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とFDA 0.35g(1ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の30.52gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0182】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0183】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0184】
〔実施例18〕
窒素ガスで置換した反応容器中にDABAN 2.05g(9ミリモル)とFDA 0.35g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の28.43gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0185】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0186】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0187】
〔実施例19〕
窒素ガスで置換した反応容器中に4−APTP 3.12g(9ミリモル)とFDA 0.35g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 13質量%となる量の48.92gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0188】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0189】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0190】
〔実施例20〕
窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾル DMAc−ST 5.88gとN,N−ジメチルアセトアミド 19.83gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0191】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは79%、Tは90%であった。
【0192】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0193】
〔実施例21〕
窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc−ST 11.32gとN,N−ジメチルアセトアミド 15.55gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0194】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは83%、Tは92%であった。
【0195】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0196】
〔実施例22〕
窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc−ST 3.60gとN,N−ジメチルアセトアミド 25.35gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0197】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは89%、Tは94%であった。
【0198】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0199】
〔実施例23〕
窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc−ST 7.61gとN,N−ジメチルアセトアミド 22.20gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0200】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは94%であった。
【0201】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0202】
〔実施例24〕
窒素ガスで置換した反応容器中に実施例8で得られたポリイミド前駆体溶液 5.00gを入れ、N,O−ビス(トリメチルシリル)アセトアミド 0.93gを入れ、室温で12時間攪拌し均一で粘稠なポリイミド前駆体溶液を得た。
【0203】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは78%、Tは87%であった。
【0204】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0205】
〔実施例25〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とTFMB 0.32g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.56gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0206】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0207】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0208】
〔実施例26〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.65g(6ミリモル)とTFMB 0.32g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.01gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0209】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0210】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0211】
〔実施例27〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とODA 0.20g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.01gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0212】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0213】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0214】
〔実施例28〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.65g(6ミリモル)とODA 0.20g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の24.46gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0215】
PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
【0216】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0217】
〔比較例1〕
窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.39gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.6dL/gであった。
【0218】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは82%、Tは89%であった。
【0219】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0220】
〔比較例2〕
窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の20.70gを加え、室温で1時間攪拌した。この溶液にPMDA−HS 2.24g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.0dL/gであった。
【0221】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは89%であった。
【0222】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0223】
〔比較例3〕
窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の20.50gを加え、室温で1時間攪拌した。この溶液にcis/cisBTA−H 2.50g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0224】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは84%、Tは88%であった。
【0225】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0226】
【表2-1】
【0227】
【表2-2】
【0228】
【表2-3】
【0229】
表2−1〜2−3に示した結果から、比較例1〜3に比べ、本発明のポリイミド(実施例1〜28)は、50℃から400℃という高温までの線熱膨張係数が小さくなることが分かる。
【0230】
特に、ジアミン成分としてDABAN、PPD、BAPTを用いると線熱膨張係数が極めて小さくなる(実施例1,3,5)。また、TFMB、PPD、m−TDを用いることで透明性が高くなる(実施例2,3,4)。これらを共重合することで高温まで極めて低熱膨張でかつ、高透明性を示す(実施例6−10、12−16)。また、シリカ入りのポリイミドフィルムとすることで、DABANを用いたポリイミドでは透過率と耐熱性が向上しており(実施例1、20および21)、TFMBを用いたポリイミドでは、耐熱性が向上し線熱膨張率が低下していることが分かる(実施例2、22および23)。
【0231】
前記のとおり、本発明のポリイミド前駆体から得られたポリイミドは、優れた光透過性、折り曲げ耐性を有すると共に、高温までの低線熱膨張係数を有しており、本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
【産業上の利用可能性】
【0232】
本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することができる。このポリイミド前駆体から得られるポリイミド、及びポリイミドは、透明性が高く、且つ低線熱膨張係数であって微細な回路の形成が容易であり、耐溶剤性も併せ有するので、特にディスプレイ用途などの基板を形成するために好適に用いることができる。