(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0020】
以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
【0021】
さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
【0022】
また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。
【0023】
また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
【0024】
また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。
【0025】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
【0026】
まず、本実施の形態の半導体パワーモジュールの共通する基本構造について説明する。
【0027】
図1は本発明の実施の形態の半導体パワーモジュールの構造の一例を示す斜視図、
図2は
図1に示す半導体パワーモジュールの蓋を取り除いた構造の一例を示す斜視図、
図3は
図1に示す半導体パワーモジュールの展開図である。また、
図4は
図1に示す半導体パワーモジュールの蓋とリードを取り除いた構造の一例を示す平面図、
図5は
図1に示す半導体パワーモジュールの蓋を取り除いた構造の一例を示す平面図、
図6は
図5に示すA−A線に沿って切断した構造の一例を示す断面図である。
【0028】
図1および
図2に示す本実施の形態の半導体パワーモジュール15は、例えば、鉄道車両や自動車のインバータ等に搭載される高耐圧対応のパワーモジュールである。この場合、大電流が流されるため、半導体素子(半導体チップ)4からの発熱量も多い半導体モジュールである。
【0029】
まず、半導体パワーモジュール15の全体構成について説明すると、
図1に示すように、ベース板1と、ベース板1の外周部に沿って取り付けられた側壁であるケース7と、ケース7の開口部分を塞ぐ蓋12と、蓋12の外側に露出した外部端子13a,13b,13cとを有している。3つの外部端子13a,13b,13cは、ケース7の長手方向の両側の端部付近に2つと1つに分散して配置されている。
【0030】
次に、
図2〜
図6を用いて半導体パワーモジュール15の内部構造について説明すると、配線パターン3が形成された絶縁基板2と、絶縁基板2に接続部材(はんだ)16(
図6参照)を介して搭載された半導体素子4と、半導体素子4の上方を覆いお互いに絶縁された状態で積層された複数の板状部10と、を有している。
【0031】
さらに、複数の板状部10のそれぞれには、
図3に示すように、絶縁基板2に向けて延びる接続用のリード(リード部)5が形成されている。
【0032】
そして、接続用のリード5は複数本設けられ、これらのリード5は、
図4に示す絶縁基板2の配線パターン3のR部に電気的に接続されている。
【0033】
また、
図6に示すように、ベース板1上には、はんだ等の接続部材16を介して絶縁基板2が搭載され、さらに、絶縁基板2の表裏面には配線パターン3が形成されている。また、配線パターン3上には、板状部10から延びる接続用のリード5が配置されており、配線パターン3と電気的に接続されている。なお、リード5と配線パターン3の接続は、超音波接続によって行われる。
【0034】
また、ベース板1とケース7は、ねじや接着剤等で固定されている。ケース7や外部端子13a,13b,13cには、外部機器(図示せず)と接続する際に使用するねじ穴8が設けられており、さらに、
図2に示すケース7の長手方向の一方の辺の内壁には、複数の制御リード9が設けられている。また、複数の制御リード9のそれぞれは、L字形に形成されており、ケース7の内壁に一部が露出するように埋設されて固定されている。
【0035】
そして、これらの制御リード9の一部は、
図4および
図5に示すように、それぞれ金属細線であるワイヤ6を介して配線パターン3と電気的に接続されている。ワイヤ6は、例えば、アルミニウム、銅もしくは金等から成る。
【0036】
また、半導体パワーモジュール15では、
図3の展開図(説明を分かり易くするためにケース7と蓋12とワイヤ6は省略している)に示すように、3枚の板状部10a,10b,10cが積層されており、それぞれの板状部10が、お互いに絶縁された状態となるように積層されている。ここでは、積層される板状部10間に、薄板状の絶縁部材14が介在されており、これにより、板状部10同士での絶縁が行われている。また、それぞれの板状部10には、板状部自体と交差する方向に折れ曲がって形成された複数のリード5が形成されている。
【0037】
なお、上述のように、積層された3枚の板状部10は、その厚さ方向に対して隣り合う板状部間が絶縁された状態となっている。すなわち、
図3に示すように、各板状部間に板状の絶縁部材14が介在されており、これによって、各板状部10が、耐圧を確保するために一定以上の距離となるように(一定の距離を離して)配置されている。
【0038】
また、本実施の形態の半導体パワーモジュール15では、
図4に示す構造において、一例として、大きい方の半導体素子4が、例えばIGBT(Insulated Gate Bipolar Transistor)等のSi製半導体素子であり、一方、小さい方の半導体素子4が、例えばダイオード等のSi製半導体素子である。
【0039】
また、
図4および
図5に示すように、半導体素子間、半導体素子4と配線パターン3、配線パターン3と制御リード9の一部は、それぞれワイヤ6によって電気的に接続されている。
【0040】
また、
図6に示すように、絶縁基板2は、その下側(裏面側)の配線パターン3が、接続部材(はんだ)16を介してベース板1と接続することでベース板1に固定されている。
【0041】
また、ケース7内の隙間には、ゲル状の封止樹脂(図示せず)が充填され、板状部間等の耐圧が確保されている。そして、
図1に示す蓋(例えば、プラスチック製)12によってケース7の内部が閉じられた状態で使用される。
【0042】
次に、半導体パワーモジュール15の内部構造の詳細について説明する。
図7は
図1に示す半導体パワーモジュールのリード接続部を示す拡大部分断面図、
図8は
図7においてリードを取り除いた構造の一例を示す平面図、
図9は
図1に示す半導体パワーモジュールのリード接続部におけるリードと配線パターンの接合構造の一例を示す拡大部分断面図である。また、
図10は
図9に示すA部の構造を示す拡大部分断面図、
図11は
図9に示すB部の構造を示す拡大部分断面図である。
【0043】
上述のように、
図7に示すリード接続部において、ベース板1の上には、はんだなどの接続部材16を介して絶縁基板2が搭載され、絶縁基板2の表裏面には配線パターン3が形成されている。配線パターン3上には、
図6に示すように接続部材16を介して半導体素子(半導体チップ)4が搭載されている。さらに、配線パターン3には外部との接続に使用されるリード(リード部)5も接続されている。リード5は、
図7および
図8に示すように、配線パターン3と接続する被接続部5aを備えており、この被接続部5aは、その延在方向Qにおいて、一方が端部(終端部)5eであり、さらに他方が屈曲部5dとなっている。ここで、屈曲部5dとは、リード5の折れ曲がった部分であり、折り曲げ部分の一方の端から反対側の端までの部分である。したがって、屈曲部5dは、折れ曲がりの幅を有する領域である。
【0044】
なお、上述のように、半導体パワーモジュール15では、配線パターン3とリード5の被接続部5aとは、超音波接続により接続されている。また、ベース板1上の外周部にはケース7が接合部材(図示せず)を介して搭載され、ケース7には一部埋没した形で制御リード9が設けられている。そして、
図1に示すように、ケース7の上面に配置される蓋12によりパワーモジュール内部が保護されている。さらに、ケース7の内側には図示していないが、ゲルが注入され、絶縁耐圧が保たれる構造になっている。そして、制御リード9、配線パターン3、半導体素子4間は、金属細線であるワイヤ6により電気的に接続されている。
【0045】
なお、ベース板1の材質は、放熱性の観点から主に熱伝導性の良いアルミニウムやアルミニウム合金、銅や銅合金、AlSiCなどであり、これらの材料によって形成され、さらに、裏面から水冷や空冷により冷却される。また、接続部材16の材質は、はんだや焼結銀や焼結銅などである。絶縁基板2の材質は、主にアルミナやAlN(窒化アルミニウム)やSiN(窒化シリコン)などであり、配線パターン3の材質は主にCu(銅)、Cu(銅)合金やアルミニウムなどである。
【0046】
また、絶縁基板2と配線パターン3の接続は、材質の組み合わせにより異なるが、主に直接接続あるいはろう材による方法が用いられる。高耐圧の場合は、絶縁基板2の厚さは例えば、0.2〜0.6mm、配線パターン3の厚さは、0.1〜0.6mmである。
【0047】
また、半導体素子4の材質は、Si、SiC、GaNなどである。さらに、ケース7、蓋12の材質は、形状の複雑さから樹脂であることが多い。制御リード9の材質は、細く強度が必要なため鉄や銅の合金である。リード5の材質は、大電流を流すので放熱性が良く、電気電導率が大きいCu(銅)、Cu(銅)合金、アルミニウム、アルミニウム合金、銅とアルミニウムのクラッド材などである。
【0048】
各部材の材質は、用途、放熱性、電気特性、コスト、長期信頼性などの観点から決定するものであり、上述のものに限定されるものではない。
【0049】
次に、本実施の形態の半導体パワーモジュール15の特徴部分について図面を用いて説明する。
【0050】
図7に示すように、ベース板1には接続部材16を介して絶縁基板2が搭載され、絶縁基板2の表裏面には配線パターン3が設けられている。配線パターン3上の一部にはNi層11(金属層)が設けられており、またリード5が超音波接続により配線パターン3に接続されている。
図7および
図8に示すように、配線パターン3とリード5との被接続部(接続面)5aでは、リード5の端部5e側(先端側)は直接配線パターン3と接続しており、一方、リード5の折り曲げ加工が施された屈曲部5d側(コーナ側)はNi層11を介して接続されている。
【0051】
詳細には、半導体パワーモジュール15は、
図7に示すように、配線パターン3と接続する被接続部5aを備えた複数のリード5を備えている。複数のリード5が有する被接続部5aのそれぞれは、被接続部5aの先端側の端部(終端部)5eと、その反対側に位置する屈曲部5dとを有している。なお、リード5の屈曲部5dは、リード5が絶縁基板2の配線パターン3と接続可能なように、リード5を半導体パワーモジュール15の略垂直方向から略水平方向に折り曲げた部分である。そして、半導体パワーモジュール15における各リード5のそれぞれは、打ち抜き成形によって形成されたものである。
【0052】
さらに、それぞれの被接続部5aは、リード5において、絶縁基板2の配線パターン3と電気的に接続される部分であるが、各被接続部5aは、端部5e側に位置する第1領域5bと、屈曲部5d側に位置する第2領域5cとを有している。そして、被接続部5aにおける第1領域5bは、配線パターン3と直接接続しており、一方、第2領域5cは、Ni層11を介して配線パターン3と接続している。つまり、第1領域5bは、配線パターン3と合金層等を介在せずに直接接続されている。
【0053】
これにより、本実施の形態の半導体パワーモジュール15では、リード5の被接続部5aの屈曲部5d側に位置する第2領域5cは、配線パターン3との間にNi層11が介在されているため、リード接続を行う際の超音波印加時に屈曲部5dの下方の絶縁基板2に圧力が付与されることを緩和することができる。すなわち、Ni層11がバリア層となり、絶縁基板2にかかる圧力を緩和させることができる。その結果、絶縁基板2に損傷部S(後述する
図12参照)が形成されることを低減することができる。
【0054】
一方、リード5の被接続部5aの先端部側である端部5e側の第1領域5bは、直接配線パターン3と接続しており、リード5と絶縁基板2との電気的な接続を確保している。そして、
図8に示すように、被接続部5aにおける第1領域5bと第2領域5cの境界は、リード5の被接続部5aにおける延在方向Qの略半分の箇所である。すなわち、第1領域5bと第2領域5cの平面視での大きさは、略等しい。なお、第1領域5bと第2領域5cとでは、どちらか一方が、それぞれの機能を損なわない程度に僅かに大きくてもよい。
【0055】
また、Ni層11は、Ni合金層(金属層)であってもよい。
【0056】
ここで、
図12および
図13を用いてリード5の屈曲部5dの下部の絶縁基板2に損傷部Sが形成される理由について詳しく説明する。
図12(a),(b)は本願発明者が比較検討を行った比較例の半導体パワーモジュールにおけるリード接続構造を示す部分断面図および断面図、
図13(a),(b),(c)は
図12に示す比較例のリードの屈曲部に発生する応力を示す概念図および断面図である。
【0057】
図12(b)に示すように、端子40の製造方法には、エッチング、金型による打ち抜き、ワイヤカットなどがあるが、量産では、低コストにする必要があるため、一般的に打ち抜きで製造することが多い。
図12(b)は、打ち抜きによって製造された端子40の断面を示している。端子40において、最初に切断される面(H部)にはダレ部I,Jが形成され、最後に切断される面(G部)には、その端部に尖ったエッジ部41が形成される。
【0058】
したがって、端子40の接続部を良好な接続にするには、ダレ部側の面(H部)を接続面とすることにより、端子40がスムーズに移動することができ、接続を安定させることができる。
【0059】
しかしながら、
図12(a)に示すように、リード5の被接続部5aにおける屈曲部5dの下方の絶縁基板2には、リード接続を行う際の超音波印加時に圧力が付与される。この現象を
図13を用いて詳しく説明する。打ち抜き金型を用いたリードの曲げ成形を、
図13(a)に示す板材42の曲げに置き換えて説明する。
図13(a)に示すように板材42を曲げると、長手方向43の上側には圧縮45の力が加わり、下側には引っ張り46の力が加わる。幅方向44の上側には引っ張り46の力が加わり、下側には圧縮45の力が加わる。そして、厚さ方向の1/2の面には歪みの中立面47が発生する。
【0060】
このように力が加わって曲げられた板材42の断面において、
図13(b)に示すように、板材42の断面形状のアスペクト比が小さい場合は、全体的に扇状に変形し、その中央部付近(K部)が出っ張る(突出する)。
【0061】
一方、
図13(c)に示すように、板材42の断面形状において、アスペクト比が大きい場合は、幅方向44の曲がりに対する力の抵抗が大きいため、中央部(L部)には変形が発生せず端部(M部)側だけの変形となる。リード5の断面形状は、
図13(b)の断面形状に近いため、アスペクト比が小さく、扇状に変形する。すなわち、中央部が出っ張る(突出する)。
【0062】
したがって、このように変形したリード5を用いて超音波接続すると、
図12(a)に示すように、リード5の被接続部5aにおける屈曲部5dの下方の絶縁基板2に、超音波印加時に圧力が付与され、その結果、絶縁基板2に損傷部Sが形成される。
【0063】
そこで、本実施の形態の
図1に示す半導体パワーモジュール15では、
図7および
図8に示すように、リード5の被接続部5aの屈曲部5d側に位置する第2領域5cにおいて、配線パターン3との間にNi層11が介在されている。これにより、リード接続を行う際の超音波印加時に、屈曲部5dの下方の絶縁基板2に圧力が付与されることを緩和することができ、その結果、絶縁基板2に
図12(a)に示すような損傷部Sが形成されることを低減できる。
【0064】
なお、リード5の屈曲部5dの下部に形成する層として、Ni層11またはNi合金層を採用する理由は、コストや接続実績に基づくものである。すなわち、バリア層として使用される材料のうち、コストが安価であり、さらに接続信頼性に実績があるため、Ni層11またはNi合金層が適している。
【0065】
また、絶縁基板2として、AlN(窒化アルミニウム)基板を採用した場合には、窒化アルミニウム基板は、抗折強度が小さく
図12に示すような損傷部Sが形成され易いため、リード5の屈曲部5dの下部にNi層11またはNi合金層を形成することにより、窒化アルミニウム基板において損傷部Sが形成されることを抑制できる。
【0066】
また、リード5や絶縁基板2の配線パターン3が、Cu(銅)もしくはCu(銅)合金によって形成されていることにより、放熱性を向上させることができる。これは、本実施の形態の半導体パワーモジュール15では、端子(リード5)に電流が流れるとジュール熱が発生するが、このジュール熱を絶縁基板2や板状部10に拡散させることができ、半導体パワーモジュール15の放熱性を向上させることができる。さらに、リード5や絶縁基板2の配線パターン3が、Cu(銅)もしくはCu(銅)合金によって形成されていることにより、半導体パワーモジュール15の電気特性を向上させることができる。
【0067】
次に、半導体パワーモジュール15のリード5の接続部の他の特徴部分について説明する。
【0068】
図7および
図8に示すように、配線パターン3の一部にはNi層11が施されている。そして、このNi層11は、リード5の屈曲部5d側(コーナ側)にリード5の被接続部5aの延在方向Qに対して半分ぐらいの位置までかかる大きさであり、さらに位置ずれも考慮した大きさにする必要がある。具体的には、Ni層11は、平面視で、被接続部5aの第2領域5cの周囲に露出している。すなわち、Ni層11は、被接続部5aの巾方向Pと延在方向Qの両方向に対して被接続部5aの周囲に露出するように形成されており、言い換えると、Ni層11は被接続部5aの第2領域5cより大きく形成されている。これにより、リード5を超音波で接続する際に、Ni層11との接続位置に対してマージンを増やすことができる。
【0069】
なお、Ni層11(Ni合金層についても同様)の厚さは、2〜6μm程度が望ましい。これは、Ni層11が薄過ぎると、バリア層としての役目を果たすことができず、また、厚過ぎると、材料コストが高くなるためである。例えば、Ni層11の場合、厚さが1.5μmより薄くなると、Ni層11の形成が困難になる。Ni層11の形成方法は、例えば、めっき蒸着法、ジャブ浸け法、電解めっき法または無電解めっき法などである。
【0070】
次に、
図9〜11を用いて本実施の形態の半導体パワーモジュール15の実験結果について説明する。
図9および
図10は、リード5と配線パターン3を接続した断面のSEM画像を図示化したものである。絶縁基板2の材質はAlN(窒化アルミニウム)、配線パターン3とリード5の材質はCu(銅)である。SEM画像を図示化したものであるため、
図9と
図10には図示されていないが、配線パターン3のリード5のコーナ部(屈曲部5d)と接続する箇所にはNi層11(厚さ2〜6μm)を施している。
図10は
図9のA部の拡大図であり、
図11は
図9のB部の拡大図である。
図10の結果、Ni層11により絶縁基板2に損傷がないことを確認できた。また、
図11において、点線の内側の領域は、リード5と配線パターン3の接続領域18であり、この接続領域18には、接続前に存在していたNi層11は接続時に破壊されたため、小片のNi片20となって存在していることが確認できた。
【0071】
上述のようにリード5の被接続部5aの屈曲部5d側の第2領域5cと配線パターン3との間にNi層11またはNi合金層を介在させることにより、絶縁基板2の損傷を抑止することができる。また、リード5の被接続部5aの第1領域5bにて直接配線パターン3と接続するため、接続強度の低下も防止することができ、接続条件のマージンを拡大することができる。
【0072】
すなわち、半導体パワーモジュール15において、リード5の屈曲部5dの下部にNi層11またはNi合金層を設けたことにより、絶縁基板2上の配線パターン3と、屈曲部5dを有するリード5とを超音波接続する際に絶縁基板2に付与するダメージを緩和することができる。したがって、リード5の屈曲部5dの直下における絶縁基板2の損傷を抑止することができる。また、リード5の被接続部5aの先端側(端部5e側)は配線パターン3と直接接続するため容易に接続することができ、接続条件のマージンを確保し易くすることができる。
【0073】
(変形例1)
図14は変形例1の半導体パワーモジュールのリード接続部を示す拡大部分断面図、
図15は
図14においてリードを取り除いた構造の一例を示す平面図である。
【0074】
図14に示す変形例1の構造を説明すると、ベース板1には接続部材16を介して絶縁基板2が搭載され、絶縁基板2の表裏面には配線パターン3が設けられている。配線パターン3上にはNi層11が設けられており、リード5の先端側(端部5e側)と接続する箇所は配線パターン3が露出するようにNi層11が施されていない箇所がある。また、配線パターン3上にはリード5が超音波接続により接続されている。これにより、配線パターン3とリード5の接続面では、リード5の先端側(端部5e側)は直接配線パターン3と接続しており、一方、リード5の折り曲げ加工が施されたコーナ側(屈曲部5d側)はNi層11を介して配線パターン3と接続されている。
【0075】
なお、
図15に示すように、配線パターン3には開口部3aを除いてその略前面に亘ってNi層11が施されている。つまり、Ni層11は、配線パターン3の略全体を覆うように形成されており、リード5の被接続部5aの第1領域5bは、Ni層11に形成された開口部3aにおいて、配線パターン3と直接接続されている。また、開口部3aは、平面視で、被接続部5aの第1領域5bより大きく、第1領域5bの周囲の開口部3aに配線パターン3が露出している。つまり、リード5の被接続部5aと配線パターン3との位置ずれも考慮した大きさにする必要があるため、配線パターン3の開口部3aは、リード5の被接続部5aの延在方向Qにおいて約半分ぐらいまでかかる大きさであり、被接続部5aの第1領域5bより平面視で大きい。
【0076】
なお、Ni層11の厚さは、上記実施の形態と同様に、2〜6μmが望ましい。また、Ni層11はNi合金層であってもよい。
【0077】
上述のように配線パターン3とリード5の被接続部5aにおいて、リード5の端部5e側は直接配線パターン3と接続しており、一方、リード5の被接続部5aの屈曲部5d側はNi層11を介して配線パターン3と接続されており、これにより、Ni層11がバリア層となるため、上記実施の形態と同様に、絶縁基板2の損傷を抑止することができる。また、配線パターン3の開口部3aにおいてリード5の被接続部5aと配線パターン3とが直接接続するため、接続強度を確保して接続強度の低下も防止することができる。また、接続条件のマージンを拡大することもできる。さらに、Ni層11は配線パターン3の略全面に亘って施されており、その結果、半導体素子(半導体チップ)4と配線パターン3との接続性を向上させることができる。すなわち、
図6に示すように、半導体素子4は、はんだ(接続部材)16によって配線パターン3に接続されているため、Ni層11を介在させることにより、はんだ16の濡れ性を向上させることができ、半導体素子4のはんだ付けによる接続性を向上させることができる。
【0078】
(変形例2)
図16は変形例2のリードの接続前の構造を示す断面図、
図17は変形例2のリードの接続後の構造を示す断面図である。
【0079】
上述の実施の形態や変形例1では、絶縁基板2の配線パターン3上にNi層11を形成しておく場合を説明したが、変形例2では、
図16に示すように、予めリード5の屈曲部5d側にNi層11を形成しておく。その際、Ni層11は、被接続部5aの第2領域5cと、屈曲部5dの上方のリード部分にも形成しておく。
【0080】
これにより、リード5を超音波接続で配線パターン3に接続した際には、
図17に示すように、リード5の屈曲部5dの上方のリード部分にNi層11の一部が残存した状態となる。
【0081】
変形例2の接続方法においても、リード5の被接続部5aの第2領域5cのNi層11がバリア層となるため、上記実施の形態と同様に、絶縁基板2の損傷を抑止することができる。また、リード5の被接続部5aの第1領域5bと配線パターン3とが直接接続するため、接続強度を確保して接続強度の低下も防止することができる。また、接続条件のマージンを拡大することもできる。さらに、予めリード5側にNi層11を形成しておくことにより、絶縁基板2の形成工程においてNi層11を形成する工程を省略することができ、半導体パワーモジュール15の組立ての簡略化を図ることができる。
【0082】
(変形例3)
図18は
図1に示す半導体パワーモジュールの搭載例(変形例3、鉄道車両)を示す模式図、
図19は
図18に示す搭載例を示す平面図である。
【0083】
変形例3は、上記実施の形態の半導体パワーモジュールが搭載された移動体を説明するものであり、その一例として、パワーモジュール(半導体パワーモジュール)19が、
図18に示すような集電装置であるパンタグラフ22が設けられた鉄道車両(移動体)21に設置されたインバータ23に搭載されている場合を示している。
【0084】
図19に示すように、インバータ23の内部では、プリント基板25上に複数のパワーモジュール19が搭載され、さらにこれらのパワーモジュール19を冷却する冷却装置24が搭載されている。
【0085】
パワーモジュール19は、半導体素子からの発熱量が多い。従って、複数のパワーモジュール19を冷却してインバータ23の内部を冷却可能なように冷却装置24が取り付けられている。
【0086】
なお、パワーモジュール19の主要構造は、上記実施の形態のパワーモジュール15のものと同様である。したがって、
図7に示す構造と同様に、配線パターン3とリード5の被接続部5aにおいて、リード5の端部5e側は直接配線パターン3と接続しており、一方、リード5の被接続部5aの屈曲部5d側はNi層11を介して配線パターン3と接続されている。これにより、Ni層11がバリア層となるため、上記実施の形態と同様に、絶縁基板2の損傷を抑止することができる。
【0087】
さらに、鉄道車両(移動体)21においては、複数のパワーモジュール(半導体パワーモジュール)19を搭載したインバータ23が設けられていることにより、インバータ23内が高温環境となった場合であっても、インバータ23およびそれが設けられた鉄道車両21の信頼性を高めることができる。
【0088】
(変形例4)
図20は
図1に示す半導体パワーモジュールの搭載例(変形例4、自動車)を示す模式図、
図21は
図20に示す搭載例を示す平面図である。
【0089】
変形例4のパワーモジュール(半導体パワーモジュール)29は、
図20に示すようなタイヤ28aによって走行する自動車(移動体)27の車体28に設置されたインバータ23に搭載される自動車用パワーモジュールである。
【0090】
図21に示すように、インバータ23の内部では、プリント基板25上に複数(例えば2つ)のパワーモジュール29が搭載され、さらにこれらのパワーモジュール29を冷却する冷却装置24が搭載されている。パワーモジュール29は、半導体素子(半導体チップ)4からの発熱量が多い。したがって、複数のパワーモジュール29を冷却してインバータ23の内部を冷却可能なように冷却装置24が取り付けられている。
【0091】
なお、パワーモジュール29の主要構造は、上記実施の形態のパワーモジュール15のものと同様である。したがって、
図7に示す構造と同様に、配線パターン3とリード5の被接続部5aにおいて、リード5の端部5e側は直接配線パターン3と接続しており、一方、リード5の被接続部5aの屈曲部5d側はNi層11を介して配線パターン3と接続されている。これにより、Ni層11がバリア層となるため、上記実施の形態と同様に、絶縁基板2の損傷を抑止することができる。
【0092】
さらに、自動車(移動体)27においても、複数のパワーモジュール29を搭載したインバータ23が設けられていることにより、インバータ23内が高温環境となった場合であっても、インバータ23およびそれが設けられた自動車27の信頼性を高めることができる。
【0093】
なお、パワーモジュール29における耐熱温度は、搭載される半導体素子4の材質によって決定される。Si製半導体素子の場合、150℃であり、SiC製半導体素子の場合200℃であるが、これらの数値は、一例に過ぎず種々変更可能である。そして、自動車27で求められるパワーモジュール29の耐熱温度についても、半導体素子4の材質によって決定される。
【0094】
以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
【0095】
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
【0096】
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。