(58)【調査した分野】(Int.Cl.,DB名)
正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を少なくとも備える回転機における異常を検出する回転機異常検出装置であって、
前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定部と、
前記振動測定部で測定した測定データの周波数スペクトルを求めるスペクトル処理部と、
前記スペクトル処理部で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理部と、
前記特徴量処理部で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定部とを備え、
前記特徴量処理部は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めること
を特徴とする回転機異常検出装置。
前記特徴量処理部は、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求めること
を特徴とする請求項2に記載の回転機異常検出装置。
前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて前記所定の特徴量を求めること
を特徴とする請求項1に記載の回転機異常検出装置。
前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、
前記特徴量処理部は、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めること
を特徴とする請求項1に記載の回転機異常検出装置。
前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、
前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、
前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を求める総和処理、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を求める変化量処理、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比を求める成分総和比処理、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を求める最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めること
を特徴とする請求項1に記載の回転機異常検出装置。
前記スペクトル処理部は、ノイズを除去するためのハイパスフィルタと、前記振動測定部で測定した、前記ハイパスフィルタを介した測定データの周波数スペクトルを求めるスペクトル部とを備えること
を特徴とする請求項1ないし請求項7のいずれか1項に記載の回転機異常検出装置。
正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を備える回転機における異常を検出する回転機異常検出方法であって、
前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定工程と、
前記振動測定工程で測定した測定データの周波数スペクトルを求めるスペクトル処理工程と、
前記スペクトル処理工程で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理工程と、
前記特徴量処理工程で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定工程とを備え、
前記特徴量処理工程は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めること
を特徴とする回転機異常検出方法。
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、前記特許文献1に開示された圧縮機の診断装置は、ロータ同士が1回転につき1回接触する場合や、ロータ同士が1回転につき2回接触する場合等を検出している。例えば、雄ロータが4個の羽根A1〜A4を持ち、雌ロータがこれに噛み合う6個の凹部B1〜B6を持つ場合、羽根A1〜A4と凹部B1〜B6の組合せは、12通りであり、雄ロータが3回転するとともに雌ロータが2回転すると、全ての組合せが実現される(12通りの組合せが一巡して最初の組合せに戻る)。このため、ロータ同士が1回転につき1回接触する場合を検出しようとすると、この例では、前記特許文献1に開示された圧縮機の診断装置は、雄ロータが3回転するとともに雌ロータが2回転する間において、羽根A1が凹部B1、凹部B5および凹部B3それぞれと接触している場合を検出することになり、雄ロータが3回転するとともに雌ロータが2回転する間において羽根A1が凹部B1のみと接触している場合、雄ロータが3回転するとともに雌ロータが2回転する間において羽根A1が凹部B5のみと接触している場合、および、雄ロータが3回転するとともに雌ロータが2回転する間において羽根A1が凹部B3のみと接触している場合それぞれを区別して検出することができない。すなわち、前記特許文献1に開示された圧縮機の診断装置は、12通りの接触の態様を個々個別に検出ことができない。しかしながら、実際には、このような雄ロータが3回転するとともに雌ロータが2回転する間において羽根A1が凹部B1のみと接触している場合等も生じており、その検出が要請される。また、前記特許文献1には、雄ロータと雌ロータとの噛み合いの記載もあるが、これは、雄ロータの全ての羽根が雌ロータの全ての凹部に接触している場合を指しており、前記特許文献1に開示された圧縮機の診断装置は、12通りの接触の態様を個々個別に検出ことができない。
【0007】
また、前記特許文献2に開示された異常接触検出装置は、ロータ相互間の接触、ロータとケーシング間の接触、および、封止材とロータ間の接触それぞれを判定しており、接触の態様を個々個別に検出していない。
【0008】
本発明は、上述の事情に鑑みて為された発明であり、その目的は、より高精度に異常を判定できる回転機異常検出装置および回転機異常検出方法ならびに前記回転機異常検出装置を備える回転機を提供することである。
【課題を解決するための手段】
【0009】
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる回転機異常検出装置は、正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を少なくとも備える回転機における異常を検出する回転機異常検出装置であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定部と、前記振動測定部で測定した測定データの周波数スペクトルを求めるスペクトル処理部と、前記スペクトル処理部で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理部と、前記特徴量処理部で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定部とを備え、前記特徴量処理部は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記振動測定部は、可聴帯域の振動および超音波帯域の振動のうちの少なくとも一方の振動を測定する。好ましくは、上述の回転機異常検出装置において、前記スペクトル処理部は、前記振動測定部で測定した測定データのRMS(Root Mean Square、二乗平均平方根)を求め、この求めた測定データのRMSをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データの周波数スペクトル(パワースペクトル)を求める。好ましくは、上述の回転機異常検出装置において、前記スペクトル処理部は、前記振動測定部で測定した測定データのエンベロープ(包絡線)を求め、この求めた測定データのエンベロープをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データの周波数スペクトル(パワースペクトル)を求める。好ましくは、上述の回転機異常検出装置において、前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を前記所定の特徴量として求める。好ましくは、上述の回転機異常検出装置において、前記異常判定部は、前記特徴量処理部で求めた特徴量が予め設定された所定の閾値以上か否かに応じて前記回転機における異常の有無を判定する。
【0010】
このような回転機異常検出装置は、第1回転周波数VAを第1歯数MAで除した周波数VA/MAを基本波歯合周波数f1[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでの、前記基本波歯合周波数f1に対するn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを周波数スペクトルから求めるので、第1および第2回転体における接触の全ての組合せにかかる周波数成分F1、Fnを求めることができる。そして、上記回転機異常検出装置は、これら接触の全ての組合せにかかる周波数成分F1、Fnに基づいて接触の有無を判定するので、より高精度に異常を判定できる。
【0011】
また、他の一態様では、上述の回転機異常検出装置において、前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を前記所定の特徴量として求めることを特徴とする。上述の回転機異常検出装置において、好ましくは、前記特徴量処理部は、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求める。
【0012】
異常として接触が発生した時点の前後では、振動測定部の出力は、比較的大きく変化するが、非接触の場合でも例えば回転機の運転条件が変化すると、振動測定部の出力は、徐々に変化する場合がある。前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量、特にそれらにおける各成分ごとの差分の2乗和は、接触の周期性の変化を表すことから、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点で比較的大きくなる特徴を持っている。上記回転機異常検出装置は、このような前記変化量を前記所定の特徴量として求めているので、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点を、より高精度に検出できる。また、バックグラウンドノイズが比較的大きい場合でも、そのトレンド(傾向)に変化が無い場合には、前記変化量も大きくならないので、上記回転機異常検出装置は、過検出を少なくできる。
【0013】
また、他の一態様では、上述の回転機異常検出装置において、前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて前記所定の特徴量を求めることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記基本波歯合周波数f1および前記n次高調波歯合周波数fnから最も離れた周波数を求める観点から、前記非高調波成分Gは、前記周波数間の中央に当たる周波数の成分である(Gk=(Fk+Fk+1)/2、k=1〜XAB−1の整数)。好ましくは、上述の回転機異常検出装置において、前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数gkの各非高調波成分Gk(kは1から(XAB−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Gkの総和で除した成分総和比を前記所定の特徴量として求める。
【0014】
振動測定部の出力には、単発の電気ノイズ等が重畳する場合がある。上記回転機異常検出装置は、前記非高調波成分Gもさらに考慮して前記所定の特徴量を求めるので、このような単発の電気ノイズ等の重畳が異常の検出に与える影響を回避でき、周期性の無いノイズを低減できる。
【0015】
また、他の一態様では、上述の回転機異常検出装置において、前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、前記特徴量処理部は、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めることを特徴とする。
【0016】
このような回転機異常検出装置は、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めるので、電気的なパスルノイズや、外部からの衝撃による単発で比較的大きな振幅を持つノイズと、例えば接触等の異常とを弁別でき、より高精度に異常を検出できる。
【0017】
また、他の一態様では、上述の回転機異常検出装置において、前記異常判定部は、前記特徴量処理部で前記異常の態様ごとに求めた一致度の中から最大の一致度を持つ異常の態様で前記回転機における異常が有ると判定することを特徴とする。
【0018】
このような回転機異常検出装置は、異常の態様を検出できる。
【0019】
また、他の一態様では、上述の回転機異常検出装置において、前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を求める総和処理、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を求める変化量処理、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比を求める成分総和比処理、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を求める最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めることを特徴とする。
【0020】
このような回転機異常検出装置は、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めるので、より高精度に異常を検出できる。
【0021】
また、他の一態様では、上述の回転機異常検出装置において、前記スペクトル処理部は、ノイズを除去するためのハイパスフィルタと、前記振動測定部で測定した、前記ハイパスフィルタを介した測定データの周波数スペクトルを求めるスペクトル部とを備えることを特徴とする。
【0022】
このような回転機異常検出装置は、前記ハイパスフィルタを備えるので、比較的低周波数帯域に分布するバックグラウンドノイズを除去できる。したがって、上記回転機異常検出装置は、より高精度に異常を検出できる。
【0023】
また、本発明の他の一態様にかかる回転機異常検出方法において、正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を備える回転機における異常を検出する回転機異常検出方法であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定工程と、前記振動測定工程で測定した測定データの周波数スペクトルを求めるスペクトル処理工程と、前記スペクトル処理工程で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理工程と、前記特徴量処理工程で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定工程とを備え、前記特徴量処理工程は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めることを特徴とする。
【0024】
このような回転機異常検出方法は、第1回転周波数VAを第1歯数MAで除した周波数VA/MAを基本波歯合周波数f1[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでの、前記基本波歯合周波数f1に対するn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを周波数スペクトルから求めるので、第1および第2回転体における接触の全ての組合せにかかる周波数成分F1、Fnを求めることができる。そして、上記回転機異常検出方法は、これら接触の全ての組合せにかかる周波数成分F1、Fnに基づいて接触の有無を判定するので、より高精度に異常を判定できる。
【0025】
また、本発明は、他の一態様では、これら上述のいずれかの回転機異常検出装置を備える回転機である。
【0026】
これによれば、これら上述のいずれかの回転機異常検出装置を備える回転機が提供され、このような回転機は、これら上述のいずれかの回転機異常検出装置を備えるので、より高精度に異常を判定できる。
【発明の効果】
【0027】
本発明にかかる回転機異常検出装置および回転機異常検出方法は、より高精度に異常を判定できる。本発明によれば、このような回転機異常検出装置を備える回転機が提供できる。
【発明を実施するための形態】
【0029】
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
【0030】
図1は、実施形態における回転機およびこれに備えられた回転機異常検出装置の構成を示すブロック図である。
図2は、
図1に示す回転機における一例の回転体の上面模式図である。
図3は、
図2に示す回転体の断面模式図である。
図4は、比較的小さいバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。
図4(A)は、AEセンサで測定された測定データを示し、
図4(B)は、そのRMSを示し、
図4(C)は、その周波数スペクトルを示す。
図4(A)の横軸は、時間(測定開始からの経過時間)であり、その縦軸は、センサ出力の出力レベルである。
図4(B)の横軸は、時間(測定開始からの経過時間)であり、その縦軸は、RMS値である。
図4(C)の横軸は、周波数であり、その縦軸は、成分値である。
図5は、比較的大きいバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。
図5(A)は、AEセンサで測定された測定データを示し、
図5(B)は、ハイパスフィルタ透過後の測定データを示す。
図5(A)および(B)の各横軸は、時間(測定開始からの経過時間)であり、その各縦軸は、センサ出力の出力レベルである。
【0031】
実施形態における回転機(回転機械)は、所定の軸に対し軸回りに回転する回転体を備える装置であり、さらに、本実施形態では、前記回転体の異常を検出するための回転機異常検出装置を備える。より具体的には、例えば、
図1に示すように、回転機Mは、第1および第2回転体を少なくとも有する回転部RBと、回転機異常検出装置ADとを備え、この回転機異常検出装置ADは、例えば、振動測定部1と、異常検出部22を持つ制御処理部2とを備える。そして、
図1に示す例では、前記回転機異常検出装置ADは、さらに、入力部3と、出力部4と、インターフェース部(IF部)5と、記憶部6とを備えている。
【0032】
本実施形態の回転機異常検出装置ADが組み込まれた回転機Mは、例えば、電動機、発電機、圧縮機およびポンプ等の、回転体RBを含む任意の装置であって良いが、ここでは、一例として、回転機Mが圧縮機である場合について以下に説明する。
【0033】
この圧縮機としての回転機Mは、前記第1および第2回転体を少なくとも有し、流体を圧送する圧縮機として機能する回転部RBと、前記回転体を回転駆動するための図略の周辺装置とを備える。回転部RBは、例えば、
図2および
図3に示すように、正常状態において所定のギャップ(間隙)Gを空けて互いに咬合するように係合しつつ所定の各軸に対し軸回りに回転する一対の第1および第2回転体81−1、81−2と、これら第1および第2回転体81−1、81−2を収容するケーシング82とを備える。
【0034】
第1回転体81−1は、圧縮機における雄ロータであり、大略、第1回転体本体811−1と、第1回転体本体の周面に形成された複数の凸部812−1と、この第1回転体本体811−1に同軸で設けられた第1回転軸813−1とを備える。このような第1回転体81−1は、第1回転軸813−1を中心に例えば反時計回り(矢印A方向)に回転駆動される。第2回転体81−2は、圧縮機における雌ロータであり、大略、第2回転体本体811−2と、第2回転体本体の周面に形成された複数の凹部812−2と、この第2回転体本体811−2に同軸で設けられた第2回転軸813−2とを備える。このような第2回転体81−2は、第2回転軸813−2を中心に例えば時計回り(矢印B方向)に回転駆動される。
【0035】
以下、複数の凸部812−1とは、第1回転体81−1の周面に形成された複数の凸部812−1を意味し、凸部812−1とは、それら複数の凸部812−1のいずれかを意味する。複数の凹部812−2とは、第2回転体81−2の周面に形成された複数の凹部812−2を意味し、凹部812−2とは、それら複数の凹部812−2のいずれかを意味する。
【0036】
第1回転体81−1が反時計回りに回転し、かつ、第2回転体81−2が時計回りに回転することによって、複数の凸部812−1および複数の凹部812−2の中で、対応する凸部812−1と凹部812−2とが順番に咬合する。すなわち、第1回転体81−1が反時計回りに回転し、かつ、第2回転体81−2が時計回りに回転することによって、或る凸部812−1と或る凹部812−2とが互いに咬合し、さらにそれぞれ回転することによって、それらの咬合いが解消され、次の凸部812−1と次の凹部812−2とが咬合し、さらにそれぞれ回転することによって、それらの咬合いが解消され、その次の凸部812−1と次の凹部812−2とが咬合する。以下、これが繰り返される。そして、これによって流体が圧縮される。
【0037】
凸部812−1と凹部812−2とが咬合するとは、凸部812−1が凹部812−2に入っているが、正常な状態では、凸部812−1と凹部812−2とが接触せずに、前記所定のギャップGを有していることである。凸部812−1と凹部812−2との接触は、第1回転体81−1と第2回転体81−2との接触を意味し、異常な状態の一態様である。
【0038】
ケーシング82は、断面長円形であって、各軸が平行となるように並設された第1および第2回転体81−1、81−2を当該ケーシング82の内周面から所定の間隔開けて収容できる空間を有する中空の円柱体である。ケーシング82は、第1および第2回転体81−1、81−2における軸方向の一方側に、圧縮するべき流体を取り入れる図略の流入口が設けられ、その他方側に、第1および第2回転体81−1、81−2によって圧縮された流体を取り出す図略の流出口が設けられている。
【0039】
そして、回転機異常検出装置ADによって回転体の異常を検出するために、本実施形態では、ケーシング82の外壁には、予め設定された所定の位置に振動測定部1が取り付けられる。なお、振動測定部1は、ケーシング82の互いに異なる位置に取り付けられた複数であってよい。
図2には、その一例として、前記振動測定部1は、軸方向における略中央位置より一方側に寄った位置であってケーシング82の外側壁に取り付けられている。
【0040】
振動測定部1は、制御処理部2に接続され、回転機M、特に回転部RBの回転体81に生じた異常を検出するために、回転体81に起因して生じた振動を測定する装置である。本実施形態では、振動測定部1は、第1および第2回転体81−1、81−2のうちの少なくとも一方に起因して生じた振動を測定する。振動測定部1は、好ましくは、可聴帯域の振動および超音波帯域の振動のうちの少なくとも一方の振動を測定する。なお、可聴帯域は、一般的に20Hzないし20kHzの範囲であり、超音波帯域は、一般的に20kHz以上である。このような振動測定部1は、例えばAE(Acoustic Emission)センサ等である。このAEセンサを備える振動測定部1は、例えば接触等の異常により回転体81に起因して生じた所定の波長帯域の弾性波を観測し、それを測定する。振動測定部1で測定した測定結果は、制御処理部2へ出力される。より具体的には、振動測定部1は、振動を観測し、前記振動の測定結果を制御処理部2へ出力する。制御処理部2は、予め設定された所定の時間間隔(サンプリング間隔)で、振動測定部1から入力された測定結果を測定データとしてサンプリングする。これによって制御処理部2は、サンプリング間隔を空けて連続的した時系列な測定データを取得する。
【0041】
入力部3は、制御処理部2に接続され、例えば、異常検出の開始を指示するコマンド等の各種コマンド、および、例えば異常検出対象の回転機M(または回転体81)における識別子の入力等の異常を検出する上で必要な各種データを回転機異常検出装置AD(回転機M)に入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチ等や、キーボードや、マウス等である。出力部4は、制御処理部2に接続され、制御処理部2の制御に従って、入力部3から入力されたコマンドやデータ、および、回転機異常検出装置ADによって検知や測定された各結果を出力する機器であり、例えばCRTディスプレイ、LCDおよび有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。
【0042】
IF部5は、制御処理部2に接続され、制御処理部2の制御に従って外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS−232Cのインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。
【0043】
記憶部6は、制御処理部2に接続され、制御処理部2の制御に従って、回転機異常検出装置ADの各部を当該各部の機能に応じて動作させるための制御プログラムや、回転機Mの異常を検出するための回転機異常検出プログラム等の各制御処理プログラム、および、各制御処理プログラムの実行に必要な情報等を記憶する。そして、記憶部6は、制御処理部2に対する所謂ワーキングメモリでもある。記憶部6は、上記各制御処理プログラムやこれに必要な情報等を記憶する、例えばROM(Read Only Memory)等の不揮発性の記憶素子、EEPROM(Electrically Erasable Programmable Read Only Memory)等の書換え可能な不揮発性の記憶素子、および、ワーキングメモリとなる例えばRAM(Random Access Memory)等の揮発性の記憶素子およびそれらの周辺回路を備えて構成される。そして、記憶部6は、振動測定部1によって測定された測定データを記憶する。このために、記憶部6は、測定データ記憶部61を機能的に備える。なお、記憶部6は、振動測定部1によって測定された測定データや、この測定データに所定の各情報処理を施すことによって得られた各種データを記憶するために、例えばハードディスク等の比較的大容量の記憶装置をさらに備えてもよい。
【0044】
制御処理部2は、回転機Mの異常を検出するべく、回転機異常検出装置ADの各部を当該各部の機能に応じてそれぞれ制御するものであり、例えば、CPU(Central Processing Unit)等のマイクロプロセッサおよびその周辺回路を備えて構成される。そして、制御処理部2には、制御処理プログラムを実行することによって、機能的に、制御部21と、異常検出部22とが構成される。
【0045】
制御部21は、回転機異常検出装置ADの各部を当該各部の機能に応じてそれぞれ制御し、回転機異常検出装置ADの全体制御を司るものである。
【0046】
異常検出部22は、振動測定部1で測定された測定結果に基づいて回転機Mにおける異常を検出するものである。より具体的には、本実施形態では、異常検出部22は、前記制御処理プログラムの実行によって、スペクトル処理部221、特徴量処理部222および異常判定部223とを機能的に備える。
【0047】
スペクトル処理部221は、振動測定部1で測定した測定データの周波数スペクトルを求めるものである。より具体的には、例えば、スペクトル処理部221は、振動測定部1で測定した測定データのRMS(Root Mean Square、二乗平均平方根)を求め、この求めた測定データのRMSをフーリエ変換、例えば高速フーリエ変換することによって、前記測定データの周波数スペクトル(パワースペクトル)を求める。一例では、
図4(A)に示す測定データから、スペクトル処理部221によって、
図4(B)に示す前記測定データのRMSが求められ、そして、スペクトル処理部221によって、
図4(C)に示す前記測定データの周波数スペクトル(パワースペクトル)が求められる。なお、RMSの時定数(RMSを求めるための測定データの個数)は、振動測定部1のサンプリングレートと回転体81の回転数とを考慮して適宜に設定される。また、
図4は、歯数3個の第1回転体81−1と歯数4個の第2回転体81−2とを備える回転機Mの測定結果であり、
図4(C)に示す例では、3次高調波成分F3が最も強いことから、歯数4個の第2回転体81−2が1回転ごとに1度接触している。
【0048】
また例えば、スペクトル処理部221は、包絡線検波によって、振動測定部1で測定した測定データのエンベロープ(包絡線)を求め、この求めた測定データのエンベロープをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データの周波数スペクトル(パワースペクトル)を求める。
【0049】
なお、バックグラウンドノイズが例えば
図4(A)に示すように比較的小さい場合には、上述のように、振動測定部1の測定データから、前記測定データのRMSや前記測定データのエンベロープが求められて良いが、例えば回転機Mの設置環境等によってバックグラウンドノイズが例えば
図5(A)に示すように比較的大きい場合があり、このような場合では、回転体81の異常を示す信号がバックグラウンドノイズに埋もれ明確に現れない場合がある。このような場合に回転体81の異常を示す信号を取り出すために、スペクトル処理部221は、例えば、
図1に破線で示すように、バックグラウンドノイズ等のノイズを除去するためのハイパスフィルタ2211と、振動測定部1で測定した、ハイパスフィルタ2211を介した測定データの周波数スペクトルを求めるスペクトル部2212とを備えても良い。ハイパスフィルタ2211のカットオフ周波数は、回転体81の異常を示す信号の周波数を考慮して適宜に設定されて良いが、例えば、100kHz等の値に設定される。スペクトル部2212は、ハイパスフィルタ2211でフィルタリングされた測定データに対し、そのRMSやそのエンベロープを求め、その周波数スペクトルを求める。
【0050】
特徴量処理部222は、スペクトル処理部221で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量CVを求めるものである。より具体的には、特徴量処理部222は、第1回転体81−1の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、第2回転体81−2の第2歯数および第2回転周波数それぞれをMB[個]およびVB[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、第1回転周波数VAを第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1の基本波成分F1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、この求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量CVを求める。
【0051】
この所定の周波数成分に関わる前記所定の特徴量CVは、振動測定部1の測定データに含まれる、回転体81の異常を示す信号を取り出すためや、振動測定部1の測定データに含まれる種々のノイズを取り除くために、種々適宜な諸量が可能であるが、例えば、第1ないし第5態様の各特徴量CVa〜CVeが挙げられる。ここでは、第1態様の特徴量CVaについて説明し、第2ないし第5態様の各特徴量CVb〜CVeについては、後述する。
【0052】
この第1態様の特徴量CVaは、次式1に示すように、前記求めた基本波成分F1およびn次高調波成分Fnの総和CVaである。したがって、特徴量処理部222は、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1の基本波成分F1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、この求めた基本波成分F1およびn次高調波成分Fnの総和を求める特徴量処理部222aを備えて構成される。
CVa=ΣFi ・・・(1)
ただし、iは、1〜XABの整数であり、Σは、iについてFの和と求める演算子である。
【0053】
例えば、第1回転体81−1において、その第1歯数MAが3個であり、その第1回転周波数VAが60Hzであり(MA=3、VA=60)、第2回転体81−2において、その第2歯数MBが4個であり、その第2回転周波数VBが45Hzである(MB=4、VB=45)場合では、これらの最小公倍数XABは、12であり、したがって、歯合の組合せも12通りとなる。ここで、基本波歯合周波数f1は、20(=60/3)Hzとなるから、これら第1および第2回転体81−1、81−2は、基本波歯合周波数f1の20Hzと、40Hz、60Hz、80Hz、・・・、200、220、240のn次高調波歯合周波数fn(n=2〜XAB(=12))との12通りの歯合周波数(f1〜f12)を持つ。このため、このような場合では、特徴量処理部222aは、周波数スペクトルから、基本波歯合周波数20Hzの基本波成分F1および最小公倍数12までのn次高調波歯合周波数fn(n=2〜12)のn次高調波成分Fnを求め、これらの総和を第1態様の特徴量CVaとして求める(CVa=ΣFi、i=1〜12、Σはiについて和と求める)。
【0054】
異常判定部223は、特徴量処理部222で求めた特徴量CVに基づいて回転機Mにおける異常の有無を判定するものである。より具体的には、異常判定部223は、特徴量処理部222で求めた特徴量CVが予め設定された所定の閾値th以上か否かに応じて回転機Mにおける異常の有無を判定する。より詳しくは、異常判定部223は、特徴量処理部222で求めた特徴量CVが前記所定の閾値th以上である場合には回転機Mの異常と判定し、特徴量処理部222で求めた特徴量CVが前記所定の閾値th以上ではない場合(前記特徴量CVが前記所定の閾値th未満である場合)には回転機Mの異常なしと判定する。前記所定の閾値thは、正常状態の回転機Mからサンプリングした測定データと異常状態の回転機Mからサンプリングした測定データから、特徴量CVの態様に合わせて適宜に設定される。
【0055】
次に、本実施形態の動作について説明する。
図6は、実施形態における回転機異常検出装置の動作を示すフローチャートである。
【0056】
回転機異常検出装置ADは、例えば、ユーザによって図略の起動スイッチが操作されて回転機Mの運転が開始されると、制御処理プログラムを実行する。この制御処理プログラムの実行によって、制御処理部2に制御部21および異常検出部22が機能的に構成され、異常検出部22にスペクトル処理部221、特徴量処理部222(ここでは特徴量処理部222a)および異常判定部223が機能的に構成される。そして、回転機異常検出装置ADは、以下の動作によって、回転機Mの異常を検出する。
【0057】
まず、振動測定部1は、回転機Mにおける振動を観測し、前記振動の測定結果を制御処理部2へ出力する。
【0058】
図6において、まず、回転機異常検出装置ADは、制御処理部2によって測定データを収集する(S1)。より具体的には、上述の状態において、制御処理部2は、制御部21によって、所定のサンプリング間隔で、振動測定部1から入力された測定結果を測定データとしてサンプリングし、これを記憶部6の測定データ記憶部61に記憶する。これによって測定結果がサンプリング間隔を空けて連続的に計測され、時系列な複数のデータから成る測定データが測定データ記憶部61に記憶される。
【0059】
次に、回転機異常検出装置ADは、異常検出部22のスペクトル処理部221によって、記憶部6に記憶された、最新に測定された測定データを含み、予め設定された所定の時間範囲における測定データ(最新の測定時点から前記所定の時間範囲に対応する時間だけ遡った時点までの間に測定された各測定結果の測定データ)から、前記測定データのRMS(または前記測定データのエンベロープ)を求め、この求めた前記測定データのRMS(または前記測定データのエンベロープ)を高速フーリエ変換(FFT)することによって測定データの周波数スペクトルを求める(S2)。なお、上述したように、RMSやエンベロープを求める前に、測定データは、ハイパスフィルタ2211でフィルタリングされても良い。
【0060】
次に、回転機異常検出装置ADは、異常検出部22の特徴量処理部222によって、スペクトル処理部221で求めた周波数スペクトルに基づいて前記所定の特徴量CVを求める(S3)。ここでは、特徴量処理部222aによって、第1態様の特徴量CVa、すなわち、基本波成分F1およびn次高調波成分Fnの総和が求められる(CVa=ΣFi、i=1〜12、Σはiについて和と求める)。なお、回転体81の回転数の誤差を考慮し、基本波成分F1およびn次高調波成分Fnの各成分が含まれるようにするために、基本波成分F1およびn次高調波成分Fnの各成分それぞれにおいて、前後の数データが前記総和に加えられても良い。
【0061】
次に、回転機異常検出装置ADは、異常検出部22の異常判定部223によって、特徴量処理部222で求めた前記所定の特徴量CVに基づいて回転機Mにおける異常の有無を判定する(S4)。より具体的には、ここでは、異常判定部223は、特徴量処理部222aで求めた第1態様の特徴量CVaが前記所定の閾値th以上であるか否かを判定することで回転機Mにおける異常の有無を判定する。この判定の結果、異常判定部223は、特徴量処理部222aで求めた第1態様の特徴量CVaが前記所定の閾値th以上である場合には回転機Mの異常有りと判定し、特徴量処理部222aで求めた第1態様の特徴量CVaが前記所定の閾値th以上ではない場合には回転機Mの異常無しと判定する。
【0062】
次に、回転機異常検出装置ADは、制御部21によって、処理S5の判定結果を出力部4に出力する(S5)。
【0063】
次に、回転機異常検出装置ADは、制御処理部2によって、終了か否か、すなわち、次の異常判定が不要か否かを判定する(S6)。この判定の結果、制御処理部2は、終了(不要)である場合(Yes)には本処理を終了し、一方、終了(不要)ではない場合(No)には処理を処理S2に戻す。なお、処理を処理S2に戻す前に所定の時間だけ待機する待機処理(Wait処理)が実施されても良い。これによって所定の時間ごとに異常判定が続けて実施される。
【0064】
以上説明したように、本実施形態における回転機異常検出装置AD、これに実装された回転機異常検出方法およびこれを備える回転機Mは、第1回転周波数VAを第1歯数MAで除した周波数VA/MAを基本波歯合周波数f1[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでの、前記基本波歯合周波数f1に対するn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを周波数スペクトルから求めるので、第1および第2回転体81−1、81−2における接触の全ての組合せにかかる周波数成分F1、Fnを求めることができる。そして、上記回転機異常検出装置、該方法および回転機Mは、これら接触の全ての組合せにかかる周波数成分F1、Fnに基づいて接触の有無を判定するので、より高精度に異常を判定できる。
【0065】
また、上述のハイパスフィルタ2211およびスペクトル部2212を備える場合には、上記回転機異常検出装置AD、該方法および回転機Mは、比較的低周波数帯域に分布するバックグラウンドノイズを除去でき、より高精度に異常を検出できる。特に、圧縮機におけるバックグラウンドノイズは、主に振動が起因して生じるため、比較的低周波帯域に強く分布する一方、接触による信号は、高周波帯域にも強く発生する。このような特徴の差異から、ハイパスフィルタ2211を備えることで、接触の有無を検出する性能が向上できる。
【0066】
なお、上述では、振動測定部1は、1個であるが、複数であっても良く、各振動測定部1で測定された各測定データが個別に処理されても良い。
【0067】
また、上述では、特徴量処理部222は、第1態様の特徴量CVaを求める特徴量処理部222aを備えて構成されたが、第2ないし第5態様の特徴量CVb〜CVeを求める特徴量処理部222b〜222eを備えて構成されても良い。
【0068】
図7は、第2態様の特徴量を説明するための図である。
図7の横軸は、時間であり、その縦軸は、変化量である。
図8は、異常発生前後における周波数スペクトルの時間変化を示す図である。
図8(A)は、接触発生10秒前の周波数スペクトルを示し、
図8(B)は、接触発生5秒前の周波数スペクトルを示し、
図8(C)は、接触発生時の周波数スペクトルを示し、
図8(D)は、接触発生2秒後の周波数スペクトルを示す。
図8の各図における各横軸は、周波数であり、それらの縦軸は、成分値である。
図9は、第3態様の特徴量を説明するための図である。
図9(A)は、基本波歯合周波数f1およびn次高調波歯合周波数fnの各成分を示し、
図9(B)は、各非高調波成分を示す。
図10は、第4態様の特徴量に関し、モデル情報の一例を示す図である。
図11は、
図10に示すモデル情報の求め方を説明するための図である。
図11(A)は、12歯合中、1歯合で接触する場合における測定データのRMSを示し、
図11(B)は、そのフーリエ変換の結果の一部を示す。
図12は、第5態様の特徴量を用いた異常の判定結果の一例を示す図である。
図12の横軸は、事例であり、その縦軸は、特徴量値(指標値)である。
【0069】
まず、第2態様の特徴量CVbについて説明する。この第2態様の特徴量CVbは、基本波成分F1およびn次高調波成分Fnにおける変化量、より具体的には、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける変化量である。異常として接触が発生する前後では、周波数スペクトルは、
図8に示すように変化し、これによって、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける変化量は、
図7に示すように変化する。より詳しくは、接触が発生する前は、周波数スペクトルは、
図8(A)および(B)に示すように、ほとんど変化せず、この結果、前記変化量も、
図7に示すように、略0である。接触が発生すると、
図8(C)に示すように、周波数スペクトルが変化し、この変化が
図7に示すように、前記変化量として現れる。そして、接触が進むと周波数スペクトルは、
図8(D)に示すように、さらに変化し、この変化が
図7に示すように、より大きな前記変化量として現れる。このため、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける前記変化量は、異常の有無を評価する指標として利用可能と考えられ、前記所定の特徴量CVの一つとして好適である。
【0070】
このような第2態様の特徴量CVbが用いられる場合では、特徴量処理部222は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を第2態様の特徴量CVbとして求める特徴量処理部222bを備えて構成される。より具体的には、特徴量処理部222bは、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求める。なお、スペクトル処理部221は、上述したように、処理S6から処理S2に戻される場合では、互いに異なる期間で周波数スペクトルを順次に求めるので、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求めていることになる。
【0071】
より詳しくは、今回の期間における基本波成分F1およびn次高調波成分Fn(前記第1期間の前記基本波成分F1および前記n次高調波成分Fnの一例)をFi_now(i=1〜nの整数)とし、今回の期間より以前の各期間で求められた基本波成分F1およびn次高調波成分Fnそれぞれの平均値(前記第2期間の前記基本波成分F1および前記n次高調波成分Fnの一例)をFi_past(i=1〜nの整数)とする場合、特徴量処理部222bは、次式2に示すように、前記変化量、すなわち、第2態様の特徴量CVbを求める。なお、前記平均値Fi_pastを算出するための期間は、対象の回転機Mにおける運転条件を変更する周期等に応じて適宜に設定される。
CVb=Σ(Fi_now−Fi_past)
2 ・・・(2)
【0072】
また、異常として接触が発生した時点の前後では、振動測定部1の出力は、上述のように、比較的大きく変化するが、非接触の場合でも例えば回転機Mの運転条件が変化すると、振動測定部1の出力は、徐々に変化する場合がある。前記第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnにおける変化量CVb、特に前記式2で示すそれらにおける各成分ごとの差分の2乗和CVbは、接触の周期性の変化を表すことから、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点で比較的大きくなる特徴を持っている。このため、第2態様の特徴量CVbを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、このような前記変化量CVbを前記所定の特徴量CVとして求めているので、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点を、より高精度に検出できる。また、バックグラウンドノイズが比較的大きい場合でも、そのトレンド(傾向)に変化が無い場合には、前記変化量も大きくならないので、上記回転機異常検出装置AD、該方法および回転機Mは、過検出を少なくできる。
【0073】
次に、第3態様の特徴量CVcについて説明する。この第3態様の特徴量CVcは、基本波成分F1およびn次高調波成分Fnだけでなく、基本波歯合周波数f1およびn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gにも基づく量である。
【0074】
このような第3態様の特徴量CVcが用いられる場合では、特徴量処理部222は、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて第3態様の特徴量CVcを求める特徴量処理部222cを備えて構成される。より具体的には、基本波歯合周波数f1およびn次高調波歯合周波数fnから最も離れた周波数を求める観点から、非高調波成分Gは、
図9(B)に示すように、前記互いに隣接した周波数間の中央に当たる周波数の成分である(Gk=(Fk+Fk+1)/2、k=1〜XAB−1の整数)。
【0075】
より詳しくは、特徴量処理部222cは、次式3に示すように、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間の中央に在る所定の各周波数gkの各非高調波成分Gk(kは1から(XAB−1)までの範囲内の整数)をさらに求め、これら求めた基本波成分F1およびn次高調波成分Fnの総和(
図9(A)参照)を前記求めた非高調波成分Gkの総和(
図9(B)参照)で除した成分総和比を第3態様の特徴量CVcとして求める。なお、非高調波成分Gkの総和で異常の有無が判定されても良いが、この手法は、バックグラウンドノイズのレベルの変化に弱くなるため、本実施形態では、成分総和比で異常の有無が判定されている。これによって第3態様の特徴量CVc(=成分総和比)が、回転体81に起因して生じる信号とほぼ一致すると判断できる。
CVc=成分総和比=(基本波成分F1およびn次高調波成分Fnの総和)/(非高調波成分Gkの総和)=(ΣFi)/(ΣGk) ・・・(3)
【0076】
AEセンサ等の振動測定部1の出力には、単発の電気ノイズ等が重畳する場合がある。第3態様の特徴量CVcを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記非高調波成分Gもさらに考慮して前記所定の特徴量CVを求めるので、このような単発の電気ノイズ等の重畳が異常の検出に与える影響を回避でき、周期性の無いノイズを低減できる。
【0077】
次に、第4態様の特徴量CVdについて説明する。この第4態様の特徴量CVdは、第1および第2回転体81−1、81−2における異常の態様ごとに予め生成された複数のモデルそれぞれとの間で求められた一致度の中の最大値である。前記モデルは、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値で構成される。前記一致度は、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnと前記モデルとの一致の程度を表す値である。
【0078】
このような第4態様の特徴量CVdが用いられる場合では、回転機異常検出装置ADは、
図1に破線で示すように、記憶部6に、前記異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部62をさらに備える。そして、特徴量処理部222は、前記異常の態様ごとに、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnと前記モデル情報(前記モデル)との前記一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を第4態様の特徴量CVdとして求める特徴量処理部222dを備えて構成される。
【0079】
より具体的には、前記モデル情報は、テーブル形式でモデル情報記憶部62に記憶される。このモデル情報テーブルMTは、例えば、
図10に示すように、モデル名を登録する接触モデルフィールド621と、接触モデルフィールド621に登録されたモデル名で表されるモデルの各モデル値を登録する係数フィールド622とを備え、モデル名ごとにレコードを備える。係数フィールド622は、各モデル値を登録するために、第1歯数MAと第2歯数MBとの最小公倍数XAB個のサブフィールドを備える。
図10に示す例では、上述したように、第1回転体81−1の第1歯数MAが3個であり、第2回転体81−2の第2歯数MBが4個であることから、係数フィールド622は、各モデル値ai(i=1〜12)を登録するために、12個のサブフィールド622−1〜622−12を備える。そして、モデル情報テーブルMTは、接触が周期的に発生する異常をモデル化した6個のモデルを登録しており、これら12通りの組合せのうちの1歯合で接触する異常である12歯合中、1歯合接触の各モデル値aiを登録する1行目のレコードと、前記12通りの組合せのうちの2歯合で接触する異常である12歯合中、2歯合接触の各モデル値aiを登録する2行目のレコードと、前記12通りの組合せのうちの3歯合で接触する異常である12歯合中、3歯合接触の各モデル値aiを登録する3行目のレコードと、前記12通りの組合せのうちの4歯合で接触する異常である12歯合中、4歯合接触の各モデル値aiを登録する4行目のレコードと、前記12通りの組合せのうちの6歯合で接触する異常である12歯合中、6歯合接触の各モデル値aiを登録する5行目のレコードと、前記12通りの組合せのうちの12歯合で接触する異常である12歯合中、12歯合接触の各モデル値aiを登録する6行目のレコードとを備える。各モデルの各モデル値aiは、例えば、実際に接触の異常を生じている回転機Mから複数のサンプルを実測し、これら複数のサンプルから統計処理しつつ基本波成分F1およびn次高調波成分Fnを求めることによって予め求められる。例えば、12歯合中、1歯合接触の場合では、サンプルの測定データからRMSを求めると、
図11(A)に示す結果が得られ、これを高速フーリエ変換(FFT)することによって、
図11(B)に示す結果が得られる(
図11(B)には高速フーリエ変換の結果の一部が図示されている)。この
図11(B)に示す高速フーリエ変換の各ピーク値が12歯合中、1歯合接触のモデルにおける各モデル値aiとなる。なお、各モデル値aiは、各モデル値aiの総和が1となるように、規格化される(Σai=1)。
【0080】
特徴量処理部222dは、例えば、各モデルごとに、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnの各値Fiそれぞれにモデルの各モデル値aiそれぞれを乗算し(Fi×ai)、その総和Smを求める(Sm=Σ(Fi×ai)、i=1〜12、Σはiについて和を求める、この例ではmは1〜6)。特徴量処理部222dは、これら各モデルごとに求めた各総和Smの総和SSを求め(SS=ΣSm、m=1〜6、Σはmについて和を求める)、各モデルごとに、モデルの総和Smをその求めた総和SSで除算(規格化)する(Sm/SS、m=1〜6)。この除算結果が一致度であり、このような算出方法によって前記基本波成分F1および前記n次高調波成分Fnの各成分分布における絶対値の影響を除去できる。そして、特徴量処理部222dは、これら各モデルごとに求めた各除算結果(各一致度)の中の最大値を第4態様の特徴量CVdとして求める。
【0081】
第4態様の特徴量CVdを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記異常の態様(上述では接触の態様)ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めるので、電気的なパスルノイズや、外部からの衝撃による単発で比較的大きな振幅を持つノイズと、例えば接触等の異常とを弁別でき、より高精度に異常を検出できる。
【0082】
なお、この第4態様の特徴量CVdが用いられる場合に、好ましくは、異常判定部223は、特徴量処理部222eで前記異常の態様ごとに求めた一致度の中から最大の一致度を持つ異常の態様で回転機Mにおける異常が有ると判定しても良い。例えば、12歯合中、1歯合接触の一致度、12歯合中、2歯合接触の一致度、12歯合中、3歯合接触の一致度、12歯合中、4歯合接触の一致度、12歯合中、6歯合接触の一致度、および、12歯合中、12歯合接触の一致度のうち、最大の一致度が12歯合中、2歯合接触の一致度であった場合には、異常判定部223は、この12歯合中、2歯合接触の異常が有ると判定する。これによれば、異常の態様が検出できる。
【0083】
次に、第5態様の特徴量CVeについて説明する。この第5態様の特徴量CVeは、これら上述の総和、変化量、成分総和比、および、最大の一致度のうちの複数に基づく量である。
【0084】
このような第5態様の特徴量CVeが用いられる場合では、特徴量処理部222は、総和処理、変化量処理、成分総和比処理および最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて第5態様の特徴量CVeを求める特徴量処理部222eを備えて構成される。前記総和処理は、上述のように、基本波成分F1およびn次高調波成分Fnの総和CVaを求める処理である。前記変化量処理は、上述のように、第1および第2周波数スペクトルそれぞれから、第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnを求め、これら求めた第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnにおける変化量CVbを求める処理である。前記成分総和比処理は、上述のように、周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1およびn次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比CVcを求める処理である。前記最大一致度処理は、異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnとモデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度CVdを求める処理である。
【0085】
より具体的には、特徴量処理部222eは、例えば、次式4によって第5態様の特徴量CVeを求める。
CVe=p1*CVa+p2*CVb+p3*CVc+p4*CVd ・・・(4)
【0086】
また例えば、特徴量処理部222eは、例えば、次式5によって第5態様の特徴量CVeを求める。
CVe=CVa
p1*CVb
p2*CVc
p3*CVd
p4 ・・・(5)
【0087】
ここで、これら式4および式5におけるパラメータp1〜p4(実数)は、接触が生じている場合に実際に振動測定部1で測定された測定データから求められた総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdと、非接触の場合に実際に振動測定部1で測定された測定データから求められた総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdとを用いることによって、接触の有無を好適に弁別し得る値を例えば重回帰分析等の手法で求められる。
【0088】
一例として、接触が生じている場合に実際に振動測定部1で測定された測定データから式5で求めた特徴量CVe(◆)、および、非接触の場合に実際に振動測定部1で測定された測定データから式5で求めた特徴量CVe(×)の結果が
図12に示されている。
図12に示すように、接触の場合における特徴量CVe(◆)の分布と、非接触の場合における特徴量CVe(×)の分布とは、略明確に分かれていることから、式5の特徴量CVeによって、接触による異常の有無が弁別可能である。
【0089】
第5態様の特徴量CVeを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記行った複数の処理の処理結果に基づいて第5態様の特徴量CVeを求めるので、より高精度に異常を検出できる。
【0090】
なお、上述の式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdの4個全てを用いたが、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの任意の組合せの2個を用いて構成されて良く、また、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの任意の組合せの3個を用いて構成されて良い。総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdそれぞれは、上述したように、振動測定部1の測定データに含まれる、回転体81の異常を示す信号を取り出すための、あるいは、振動測定部1の測定データに含まれる種々のノイズを取り除くための、適宜な量であるので、好ましくは、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの、上記目的に応じた適宜な2個の組合せで構成されて良く、また、好ましくは、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの、上記目的に応じた適宜な3個の組合せで構成されて良い。
【0091】
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。