【実施例】
【0050】
TAPPI試験法T−205に従い、Engineered Fiber Technologiesのフィブリル化アクリル繊維(マイクロファイバとナノファイバの組合せ)であるEFTEC(登録商標)A−010−04(基本繊維として掲載)、およびフィラメントあたり2デニール、長さ5mmに切断され、ポリプロピレンおよびポリエチレンから製作された二成分繊維で、直径約17ミクロンのFiberVisionsのT426繊維(添加繊維として掲載)を使用し、実施例36−51を製作した。このシートに、リニアインチ当り2200ポンド、室温(25Cまで)で2本の硬鋼ロール間にてカレンダ処理を行った。表4は、実施例の各繊維量、調整目付け、キャリパ(または厚さ)、見掛け密度および空隙率を示す。調整目付け、キャリパ、見掛け密度および引張強度は、本書に引用により組み入れるTAPPI T220に従い試験された。
【0051】
セパレータ特性
【0052】
【表2】
【0053】
空隙率が高いほど対象の電池内のピークパワー出力は高くなる。この高結果を受け、理論的には、少なくとも、各電池からの利用可能な出力を増加させることで、特定の装置(たとえばハイブリッド車など)を動作させるのに必要な出力レベルが要する電池数を減らせる。該効果を、有効な透気抵抗性障壁層にも持たせる。本発明のセパレータの空隙率は、下記に示すように、マイクロファイバに対するナノファイバ率、ナノファイバの種類、およびカレンダ処理などの後処理によっても制御可能としてよい。
【0054】
バッテリセパレータ基材分析及び試験
試験プロトコルは以下の通りである。
空隙率は、本書に引用により組入れる特許文献4に記載の方法に従い計算した。結果は%で報告されるが、これは空気、または電池内では電解質など非固形物質で充填されたセパレータバルク部分を対象にしている。
【0055】
ガーレ透気抵抗度は、本書に引用により組入れるTAPPI試験法T460に従い試験した。この試験に使用する装置はガーレ式デンソメータモデル4110である。この試験を実施するため、デンソメータの中に試料を挿入し、固定する。シリンダの勾配を100cc(100ml)ラインまで上げ、自重量により落下させる。100ccの空気が試料を通過するのにかかる時間(秒単位)が記録される。結果は100cc当り秒で報告されるが、これは空気100立方センチメートルがセパレータを通過するに要する時間である。
【0056】
平均流量細孔径は、ASTM E−1294「自動液体ポロシメータを使用した膜フィルタの細孔径特性標準試験方法」に従い試験したが、この試験方法では、毛細管ポロシメータを使用し、ASTM F316の自動バブルポイント法を使用する。試験は、ニューヨーク州イサカにあるPorous Materials社で実施した。
【0057】
セパレータの通気性は、一定量の空気が軽圧下で標準面積を通過するのに要する時間を測定するものである。その手順はASTM D−726−58に記載されている。
【0058】
引張特性及び平均流量細孔径
【0059】
【表3】
【0060】
本発明の実施例は極小さい細孔径平均であることを示し、対象電池の再充電サイクルを多数回可能にすることを示す。また、ナノファイバ材及びマイクロファイバ材の比率を変更して細孔径を変更することにより、細孔径を制御できることを示している。これは、いずれの先行技術にも無い重要な効果であり、本技術を使いエンドユーザの要求に応じて電池製造業者が細孔径を調整できるということである。よって、腕時計用、携帯電話用またはラップトップコンピュータ用二次電池とは異なる特性を持ち、セパレータをパワーツール用または自動車用にも設計することができる。
【0061】
実施例に挙げた引張特性は等方性を有し、つまり、全方向に同等であって、機械方向および横方向での違いは無い。比較例では、機械方向(MD)および横方向(CD)引張強度に大きく異なる引張特性を示している。通常、ナノファイバをベースにしたバッテリセパレータは極めて弱い。本発明の効果のひとつに引張強度があり、この効果により電池製造業者での処理を迅速にでき、電池の巻きをより密着させ、電池使用における耐久性に優れる。該MD引張強度は、好ましくは25kg/cm
2超、より好ましくは50kg/cm
2超、最も好ましくは100kg/cm
2超とする。CD引張強度に対する要求値はMD引張強度より低く、好ましくは10kg/cm
2超、より好ましくは25kg/cm
2超、最も好ましくは50kg/cm
2超とする。
【0062】
上に示した通り、カレンダ処理し、マイクロファイバに対するナノファイバの比率を増加させると全体的な細孔径平均は小さくなり、さらには本発明技術では、要求に応じ所定の長さを目的とすることができる。当初、セパレータのシート製作は、カレンダ処理などの工程も抄紙機(該方法により製造を簡素化できることを示す)で製作された。
【0063】
抄紙機による製作
続いて2種の材料をロトフォーマ抄紙機で製作した。まず、実施例52は、75%のEFTec A−010−4および25%のフィラメント当り0.5デニールポリエチレンテレフタレート(PET)繊維から製作し、長さ6mmに切断した。次に、実施例53は、37.5%のEFTec A−010−4、37.5%のEFTec L−010−4および25%のPET繊維から製作し、長さ6mmに切断した。それら繊維材を高剪断混合により分散させ、水に高希釈度で混合し、その後ロトフォーマのヘッドボックスに投入し、重さ20グラム/m
2のシートにし、熱風オーブンで乾燥させた。得られたロールを325°F、リニアインチ当り2200ポンドでカレンダ処理し、厚さ40ミクロン以下の第一シートおよび厚さ30ミクロンの第二シートを製作した。90℃、130℃および160℃を測定温度とし、機械方向および横方向のそれぞれにおける長さ12”を測り、測定温度に安定させたオーブンの中で1時間放置し、再度長さを計測することで、収縮率を測定する。収縮率は、元の長さに対する割合で表した長さの変化量である。表4はシートの特性を示す。
【0064】
膜特性
【0065】
【表4】
【0066】
上記でわかるように、アクリル(EFTec A−010−4)およびリヨセル(EFTec L−010−4)の両材を使った材料は、高温での特性に優れている。たとえば、現在流通している延伸フィルムセパレータの多くは、135℃で溶融し、110℃超で著しく収縮するポリエチレンから製作される場合もあり、また160℃で溶融し、130℃超で著しく収縮するポリプロピレンから作られる場合もある。電気自動車で使われることもある大型セルにおいて特に、業界では知られている問題の一つに、高温にさらされた時の収縮性により、セパレータが収縮すれば両極が端部で接触し、ショートし、爆発を引き起こす致命的な熱暴走の可能性がある。そのため高温安定性を有するセパレータがこのような環境では安全であり、セル当たりエネルギー量が高い大型セルの使用を可能にする。好ましいセパレータ性能は、130℃、160℃、または190℃において両方向の収縮率が10%未満で、好ましくは6%未満、または最も好ましくは3%未満である。さらに、セパレータは、リヨセル、レーヨン、パラ系アラミド、またはメタ系アラミドなど、高温での安定性が高く、他材料と合わせシート状に形成された時、結果として収縮性が低くなる構成要素で作られる場合もあり、これを実施例53に示す。
【0067】
別の実施例を、カレンダ処理条件を変えて製作し、試験した。Herty Foundationの施設にあるロトフォーマ上で紙を製作したが、これは、EFTec A−010−04アクリルナノファイバを27%、EFTec L−010−04リヨセルナノファイバを53%およびフィラメント当り0.5デニールのポリエステル繊維を20%で構成し、長さ5mmに切断したものである。材料を1000ガロン―ハイドロパルパで40分間混合し、繊維含量約0.25%でマシンに投入し、目付け15g/m
2のシートを製作した。この紙に、下のリストにまとめたように、また下の表5にある実施例56から60に示すように、条件を変えてカレンダ処理を施した。
【0068】
実施例56−60の説明
56:ロール加熱はしないが、それ以外は上記条件にてカレンダ処理を施した。
57:シートを第二シート(実施例56のシート)と重ね合わせ、カレンダ処理した。
58:56のシートを複写紙ロールとカレンダ処理し、その後複写紙から剥離させた。
59:56のシートを同条件で再度カレンダ処理した。
60:57の層を剥離し、別々の2枚のシートにした。
【0069】
下の実施例から2つのことがわかる。第一に、2枚のシートを積層すると、ガーレ透気抵抗は単シートの2倍超となり、全体の空隙率は下がる。第二に、カレンダ処理を2度施せば、空隙率を上昇させガーレ値を低下させる効果があった。最後に、別のシートと合わせて処理した2枚のシートでは、ガーレ値を上昇させ、同時に空隙率を上昇させる効果があった。引張強度はカレンダ処理を追加した全てのケースで低下した。
【0070】
シートのカレンダ処理結果
【0071】
【表5】
【0072】
濡れ性試験
実施例39の四角片とCelgard2320の四角片とに、1MのLiPF6を溶解させたEC:DMC:DEC混合(体積比1:1:1)電解質を1滴表面にたらした。5秒後、(液滴の表面の光沢からくる)分光反射が観察されることなく、その電解質が実施例39に完全に吸収された。Celgard2320上にたらした電解質の液滴は数分間残った。これは、リチウムイオンバッテリセパレータには極めて好ましく、電解質分散の処理速度を向上させ、電解質を確実に均一に分散させる。電解質の分散が不均一であれば、充放電を繰り返すうち、セル内の欠陥となりショートを引き起こす可能性のあるデンドライトの生成を促進することが知られている。
【0073】
電解質を材上に垂らした液滴の分光反射が5分未満、または2分未満、より好ましくは1分未満で消えるセパレータが望ましい。さらに、2つの電極、セパレータおよび電解質からなる蓄電装置であって、セパレータ上に垂らしたこの電解質の液滴の分光反射が5分未満、または2分未満、より好ましくは1分未満で消える蓄電装置が望ましい。
【0074】
示差走査熱量測定および濡れ性熱重量分析の測定を含む他の試験も実施した。実施例53に、室温から1000℃まで熱重量分析試験を実施した。試料は100℃近くで1.39%の質量を失ったが、それはセルロースナノファイバおよびマイクロファイバから失われた水分量に相当する。約300℃までは更なる劣化は見られず、酸化状態になったとき、335℃から400℃の間約60%の質量分急減した。実施例53に、室温から300℃まで示差走査熱量測定試験も実施した。100℃付近を中心に広く発熱したが、これは水分放散に相当し、250℃に始まり266℃で急激に発熱したが、これはPETの融点に相当する。
【0075】
実施例52に、室温から1000℃まで熱重量分析試験を実施した。試料は300℃未満では質量減少はほとんど起こらず、335℃で質量減少が始まり、400℃までに約40%の質量を失った。実施例52に、室温から300℃まで示差走査熱量測定試験も実施した。室温から266℃で起こる(250℃で始まる)急激な発熱まではほとんど何の兆候も見られなかったが、この急激な発熱はPETの融点に相当する。つまり、グラフでは、PETマイクロファイバの溶融以外何の兆候も表れなかった。
【0076】
アラミド系試料
さらに、実施例52および53に類似した別の試料をロトフォーマ機上で製作した。
【0077】
実施例61では、4種の繊維を、水7000ガロン中約60 lbsの低希釈にして極めて高い剪断条件で混合した。その繊維は、
・EFTec A−010−04 20 lbs
・EFTec L−010−04 20 lbs
・帝人 1094 ウェットパルプ 10 lbs
・0.3dpf PET 5mm 10 lbs
シートを18グラム/平方メートルで製作し、2200ポンド/インチ、カ氏250度でカレンダ処理した。表NNはシートの特性を示す。
【0078】
実施例62および63では、3種の繊維を実施例61と同様に混合した。その繊維は、
・EFTec L−010−04 20 lbs
・帝人 1094 ウェットパルプ 20 lbs
・0.3dpf PET 5mm 10 lbs
シートを18グラム/平方メートルで製作し実施例62とし、15グラム/平方メートルで製作し実施例63とした。下の表6はシートの特性を示す。
【0079】
アラミド含有シート特性
【0080】
【表6】
【0081】
上記でわかるように、帝人1094アラミドパルプをはじめとするアラミドパルプなどの耐熱性繊維を使用すれば、高温であっても収縮性は極めて低い。電池は熱劣化する可能性があり、その劣化が熱暴走の原因にもなるため、構造形状および構造完全性を保ち、熱暴走を防ぎ、またはスローダウンさせ得る構成要素を電池内に備えることは非常に望ましい。そのため、200Cで5%未満の収縮、または3%未満の収縮ともなる材料を備えることが望ましい。また、240Cで5%未満の収縮、または3%未満の収縮ともなる材料を備えることが望ましい場合もある。これを達成するためには、摂氏300度未満では融点がなく、ガラス転移温度もなく、熱劣化も無いセパレータ構成要素であることが望ましい。バッテリセパレータ自体に熱安定性を持たせるためには、セパレータの全構成要素の5%超、または10%超、さらにまたは20%超が熱的に安定したこの繊維要素であることが望ましい。
【0082】
電池形成および実際の電池試験結果
図8は、外筐体12を含む一般的な電池10の構造を示し、その外筐体12は他の全ての構成要素を内包し、セル環境の汚染およびセルからの電解質の漏れを防ぐよう確実に密閉される。アノード14は、カソード16とタンデムに設けられ、その2極の間に少なくとも一つのバッテリセパレータ18が配置される。必要なイオン発生ができるよう密閉前にセルに電解質20を付加する。セパレータ18は、アノード14とカソード16の接触を防止するのに役立ち、選択されたイオンが電解質20からセパレータ18を通過してマイグレーションするのを可能にする。電池セルの一般的な構成はここに記載した構造ではあるが、電池セル自体のサイズや構造により内部構成要素の構造体のサイズや構成は異なる。そこで、該セル内でのセパレータの有効性を適切に試験するため、略円筒状固形構成要素のボタン型電池を製作した。
【0083】
他の電池製品および試験
さらに、パウチセル電池を次のように製作した:標準的な携帯電話電池用電極は約2.5mAh/cm
2の量で被覆されている。セパレータの能力限界が比率容量に関係しており実施基準を超えていることを証明するために、電極を4mAh/cm
2(NCA)の量で被覆を行い試験手順用に製作した。Celgard2325(下記実施例54)および実施例53(下記実施例55)を使用し、各セパレータタイプに1つのセル(手製)を製作した。電極に被覆、カレンダ処理、乾燥、およびタブへの溶接を実施し、ラミネート包装し、1MのLi塩を含んだ標準的な電池用溶媒電解質で満たし、密封した。そのセルを、C/10、C/4、C/2およびCの各レートで複数回放電して放電容量を試験し、その結果を、成形後C/10での最初の放電に対する割合にして下記表7に示す。実施例54のセルをC/10で行う比放電容量は141mAh/g、実施例55のセルの場合は145mAh/gであった。
【0084】
パウチ電池測定
【0085】
【表7】
【0086】
これらの実施例、および実施例32から35に対する電池試験からわかるように、本発明のセパレータを使用して製作された電池は、レートが高いほど放電容量が大きくなり、C/4では効果はそれほどではないが、C/2レートおよびCレートでは大きく顕著に効果が表れていた。
【0087】
当業者であれば本発明の趣旨から逸脱することなく、本発明の範囲において様々な変形を製作可能なことは理解されたい。そのため、先行技術が許す限り広く、また必要であれば明細書も考慮して、添付の請求項の範囲により本発明が特定されることを望む。