(58)【調査した分野】(Int.Cl.,DB名)
前記外来核酸がSaccharomyces carlbergensisのα−ガラクトシダーゼ酵素またはAspergilus nigerのα−ガラクトシダーゼ酵素をコードする、請求項1に記載の組み換え微細藻類細胞。
スクロースインベルターゼ、脂肪アシル−ACPチオエステラーゼ、ケトアシル合成酵素およびデサチュラーゼからなる群より選択される酵素をコードする第2の核酸をさらに含む、請求項1および2のいずれかに記載の組み換え微細藻類細胞。
前記外来核酸がSaccharomyces carlbergensisのα−ガラクトシダーゼ酵素またはAspergilus nigerのα−ガラクトシダーゼ酵素をコードする、請求項10に記載の方法。
前記組み換え微細藻類細胞が、スクロースインベルターゼ、脂肪アシル−ACPチオエステラーゼ、ケトアシル合成酵素およびデサチュラーゼからなる群より選択される酵素をコードする第2の核酸をさらに含む、請求項10〜11のいずれかに記載の方法。
前記外来核酸がSaccharomyces carlbergensisのα−ガラクトシダーゼ酵素またはAspergilus nigerのα−ガラクトシダーゼ酵素をコードする、請求項16に記載の方法。
前記組み換え微細藻類細胞が、スクロースインベルターゼ、脂肪アシル−ACPチオエステラーゼ、ケトアシル合成酵素およびデサチュラーゼからなる群より選択される酵素をコードする第2の核酸をさらに含む、請求項16〜17のいずれかに記載の方法。
【発明を実施するための形態】
【0041】
(本発明の詳細な説明)
本発明は、Prototheca及び特定の関連する微生物が、油、燃料、他の炭化水素又は脂質組成物を経済的に大量に産生するという予測できない有利な性質を有しているという発見と、これらの性質を改良するために、上述の微生物を遺伝的に変えるための方法及び試薬の発見とから生じたものである。これらの微生物によって産生される油は、他の用途の中でも、輸送燃料、油脂化学、並びに/又は食品及び香粧品産業で使用することができる。脂質のトランスエステル化によって、バイオディーゼルに有用な長鎖脂肪酸エステルが得られる。他の酵素プロセス及び化学プロセスを、脂肪酸、アルデヒド、アルコール、アルカン、アルケンを生成するように調節することができる。いくつかの用途では、再生可能なディーゼル、ジェット燃料、又は他の炭化水素化合物を生成する。また、本発明は、生産性を高め、脂質収量を増やし、及び/又は、本明細書に記載される組成物を高い費用効率で生成するために、微細藻類を育てる方法を提供する。
【0042】
読者が読みやすいように、本発明の詳細な説明をいくつかの章に分けている。第I章は、本明細書で用いる用語の定義を記載している。第II章は、本発明の方法で有用な培養条件を記載している。第III章は、遺伝子操作の方法及び材料を記載している。第IV章は、ショ糖を利用することが可能となるように微生物(例えば、Prototheca)を遺伝子操作することを記載している。第V章は、脂質生合成を改変するためのProtothecaの遺伝子操作を記載している。第VI章は、燃料及び化学物質を製造する方法を記載している。第VII章は、本発明の実施例及び実施形態を開示している。本発明の詳細な説明の後に、本発明の種々の態様及び実施形態を説明する実施例が続く。
【0043】
(I.定義)
他の意味であると定義されていない限り、本明細書で用いられる全ての技術用語及び化学用語は、本発明が属する技術分野の当業者が一般的に理解している意味を有する。以下の参考文献は、本発明で用いられる多くの用語に関する一般的な定義に関する知識を与えるものである。Singleton et al.、Dictionary of Microbiology and Molecular Biology(第2版、1994);The Cambridge Dictionary of Science and Technology(Walker編集、1988);The Glossary of Genetics、第5版、R.Rieger et al.(編集)、Springer Verlag(1991);Hale & Marham、The Harper Collins Dictionary of Biology(1991)。本明細書で使用される場合、他の意味であると明記されていない限り、以下の用語は、それらに属する以下の意味を有する。
【0044】
「微細藻類内で活性」は、微細藻類内で機能を発揮する核酸を指す。例えば、トランスジェニック微細藻類に抗生物質耐性を付与するために、抗生物質耐性遺伝子を動かすために用いられるプロモーターは、微細藻類内で活性である。
【0045】
「アシルキャリアータンパク質」又は「ACP」は、脂肪酸合成中に成長していくアシル鎖に、4’−ホスホパンテテイン部分の末端チオールにおいてチオールエステルとして結合するタンパク質であり、脂肪酸シンターゼ複合体の成分を含む。
【0046】
「アシル−CoA分子」又は「アシル−CoA」は、補酵素Aの4’−ホスホパンテテイン部分の末端チオールの位置で、チオールエステル結合によって補酵素Aに共有結合したアシル部分を含む分子である。
【0047】
「面積百分率」は、サンプル中の全ての脂肪酸を、検出前に脂肪酸メチルエステル(FAME)に変換し、FAME GC/FID検出法を用いて観察したピークの面積を指す。例えば、炭素原子14個で、不飽和部のない脂肪酸(C14:0)について、分離したピークが、任意の他の脂肪酸、例えば、C14:1と比較すると観察される。それぞれの種類のFAMEに対するピーク面積は、混合物中のその組成物における割合と正比例しており、サンプル中に存在する全ピークの合計に基づいて算出される(すなわち、[特定のピークの面積/測定した全ピークの合計面積]×100)。本発明の油及び細胞の脂質プロフィールについて述べる場合、「C8〜C14が少なくとも4%」は、細胞中、又は抽出したグリセロ脂質組成物中の総脂肪酸のうち、少なくとも4%が、炭素原子が8個、10個、12個又は14個の鎖長を有することを意味している。
【0048】
「純培養」は、他の生物によって汚染されていない、微生物の培養物である。
【0049】
「バイオディーゼル」は、ディーゼルエンジンの燃料として使用するのに適した、生物によって生成された脂肪酸アルキルエステルである。
【0050】
「バイオマス」は、細胞の成長及び/又は増殖によって生成する物質である。バイオマスは、細胞及び/又は細胞内成分、並びに、限定されないが、細胞によって分泌された化合物のような細胞外物質を含有していてもよい。
【0051】
「バイオリアクター」は、細胞を場合により懸濁物の状態で培養する、閉じられた筐体又は部分的に閉じられた筐体である。
【0052】
「触媒」は、生成物の一部分とならずに、反応剤の化学反応を容易にするか、又は促進することができる、分子又は高分子複合体のような薬剤である。触媒は、反応速度を高め、その後で、同じ触媒が、生成物を得るための別の反応剤として作用してもよい。触媒は、一般的に、反応に必要な合計活性化エネルギーを小さくするため、反応がすばやく進行するか、又は低い温度で進行する。従って、反応の平衡状態にすばやく達し得る。触媒の例としては、生体触媒である酵素;生体触媒ではない熱;石油精製プロセスで用いる金属が挙げられる。
【0053】
「セルロース系材料」は、セルロースを消化して得られる物質であり、グルコース及びキシロース、場合により、二糖類、オリゴ糖、リグニン、フルフラール類及び他の化合物のようなさらなる化合物を含む。セルロース系材料の供給源の非限定的な例としては、サトウキビの絞りかす、テンサイパルプ、トウモロコシ茎葉、木片、おがくず、スイッチグラスが挙げられる。
【0054】
「共生培養」、及び「共生生育」及び「共生発酵」などのこの用語の変形は、同じバイオリアクター内に2種類以上の細胞が存在することを指す。2種類以上の細胞は、全てが微細藻類のような微生物であってもよく、異なる細胞種と共に培養された微細藻類細胞であってもよい。培養条件は、2種類以上の細胞の成長及び/又は増殖を進めるような条件であってもよく、又は、2種類以上の細胞のうち1種類、又は部分的な集合の成長及び/又は繁殖を容易にしつつ、残りの細胞の成長を維持する条件であってもよい。
【0055】
「補因子」は、酵素がその酵素活性を発揮するのに必要な、基質以外の任意の分子である。
【0056】
「相補的DNA」又は「cDNA」は、メッセンジャーRNA(mRNA)の逆転写又は増幅(例えば、ポリメラーゼ連鎖反応(「PCR」)を介する)によって通常得られるmRNAのDNA複写物である。
【0057】
「育てられた」、及びこの語句の別の言い方である「培養された」、「発酵された」は、選択した条件及び/又は制御された条件を利用することによって、1つ以上の細胞の成長(細胞の大きさ、細胞成分が増え、及び/又は細胞活性が高まる)及び/又は増殖(有糸分裂によって細胞の数が増える)を意図的に進めることを指す。成長と増殖を組み合わせて、繁殖と呼ぶ場合もある。選択した条件及び/又は制御された条件の例としては、十分に定義されている培地(pH、イオン強度、炭素源のような既知の特徴を有する)、特定の温度、酸素圧、二酸化炭素濃度、バイオリアクター内の成長を用いることが挙げられる。育てることは、微生物の成長又は増殖が自然に起こること、又は人の介入なしに起こることを指さず、例えば、微生物が地中で最終的に化石化し、未精製油を生成するような天然の成長は、育てられたとは言わない。
【0058】
「細胞溶解」は、低張な環境における細胞の溶解である。細胞溶解は、細胞内側への過剰な浸透作用、又は水の移動によって生じる(水分過剰)。細胞は、内部の水の浸透圧に耐えられず、爆発する。
【0059】
「脱脂食」及び「脱脂微生物バイオマス」は、機械的な力を使って(すなわち、連続圧搾機で圧縮して)、又は溶媒抽出を利用して、又は両者を使って油(脂質を含む)を抽出するか、又は単離した後の微生物バイオマスである。脱脂した食料は、微生物バイオマスから油/脂質を抽出又は単離する前と比較して、油/脂質の量が減っているが、油/脂質はいくらか残っている。
【0060】
「発現ベクター」、「発現構築物」、「プラスミド」又は「組み換えDNA構築物」は、例えば、組み換え手段又は直接的な化学合成によって、人の介入によって発生した核酸を指し、一連の特定の核酸エレメントは、宿主細胞内で特定の核酸を転写及び/又は翻訳することができる。発現ベクターは、プラスミド、ウイルス又は核酸フラグメントの一部分であってもよい。典型的には、発現ベクターは、プロモーターに動作可能に連結した、転写されるべき核酸を含む。
【0061】
「外来遺伝子」は、細胞に導入された(「形質転換された」)RNA及び/又はタンパク質を発現するようなコードを有する核酸である。形質転換された細胞は、組み換え細胞と呼ばれることもあり、この細胞に、さらなる外来遺伝子が導入されてもよい。外来遺伝子は、形質転換される細胞と異なる種に由来していてもよく(つまり、異種)、同じ種に由来していてもよい(つまり、同種)。従って、外来遺伝子は、この細胞のゲノムでは異なる位置にあるような同種遺伝子を含んでいてもよく、内在する遺伝子複製物と比較して、異なる制御下にある同種遺伝子を含んでいてもよい。外来遺伝子は、この細胞の2種類以上の複製物中に存在していてもよい。外来遺伝子は、ゲノムへの挿入物として細胞中に維持されてもよく、又はエピソーム分子として細胞中に維持されてもよい。
【0062】
「外部から与えられた」は、細胞培養物の培地に与えられた分子を指す。
【0063】
「連続圧搾機で圧縮する」は、大豆や菜種のような原材料から油を抽出する機械的な方法である。連続圧搾機は、スクリュー型の機械であり、ケージで覆われた円筒形の空洞を通すことによって材料を圧縮する。原材料は、圧搾機の片側から入り、ケーキが他方から出ていく間に、ケージ内にあるバーの間から油がしみ出て、集められる。この機械は、スクリューからの摩擦及び連続的な圧力を利用し、原材料を動かし、圧縮する。油は、固形物が通過することができない小さな開口部からしみ出る。原材料が圧縮されていくと、典型的には、摩擦によって熱が発生する。
【0064】
「脂肪酸アシル−ACPチオエステラーゼ」は、脂質合成中に、アシルキャリアータンパク質(ACP)から脂肪酸が開裂するのを触媒する酵素である。
【0065】
「脂肪酸アシル−CoA/アルデヒド還元酵素」は、アシル−CoA分子から一級アルコールへの還元を触媒する酵素である。
【0066】
「脂肪酸アシル−CoA還元酵素」は、アシル−CoA分子からアルデヒドへの還元を触媒する。
【0067】
「脂肪族アルデヒド脱炭酸酵素」は、脂肪族アルデヒドからアルカンへの変換を触媒する酵素である。
【0068】
「脂肪族アルデヒド還元酵素」は、アルデヒドから一級アルコールへの還元を触媒する酵素である。
【0069】
「固定炭素源」は、培地中で、周囲温度及び周囲圧力で固体又は液体の形態として存在し、培地で培養されている微生物が利用することが可能な、炭素を含有する分子、典型的には有機分子である。
【0070】
「炭化水素」は、水素原子と炭素元素のみを含む分子であり、炭素原子は、直鎖、分枝鎖、環状、又は部分的に環状の骨格になるように共有結合しており、この骨格に水素原子が接続している。炭化水素化合物の分子構造は、最も単純で天然ガスの構成成分であるメタン(CH
4)から、未精製油、石油、ビチューメン中にみられるアスファルテンのようなある種の分子のように、非常に重く、非常に複雑なものまでさまざまである。炭化水素は、気体、液体又は固体の形態であってもよく、これらの形態を任意に組み合わせた形態であってもよく、骨格内の隣接する炭素原子間に1つ以上の二重結合又は三重結合を有していてもよい。従って、この用語には、直鎖、分枝鎖、環状、又は部分的に環状のアルカン、アルケン、脂質、パラフィンが含まれる。例としては、プロパン、ブタン、ペンタン、ヘキサン、オクタン、スクアレンが挙げられる。
【0071】
「水素:炭素比」は、原子単位であらわした、分子中の水素原子と炭素原子との比率である。この比率は、炭化水素分子中の炭素原子及び水素原子の数を述べるときに用いられ得る。例えば、最も大きな比率を有する炭化水素は、メタンCH
4である(4:1)。
【0072】
「疎水性画分」は、水系相への溶解度よりも、疎水性相への溶解性が高いような、物質の一部分又は画分である。疎水性画分は、実質的に水には溶解せず、通常は非極性である。
【0073】
「脂質収量の増加」は、例えば、培養物1リットルあたりの細胞乾燥重量が増加すること、脂質を構築する細胞の割合が増えること、又は、単位時間あたりの培養容積1リットルあたり、脂質の合計量が増えることのような、微生物培養物の生産性の増加を指す。
【0074】
「誘発性プロモーター」は、特定の刺激に応答し、動作可能に連結した遺伝子の転写に介在するプロモーターである。このようなプロモーターの例は、pHまたは窒素レベルの変化という条件で誘発されるプロモーター配列であり得る。
【0075】
「動作可能に連結した状態で」は、制御配列(典型的には、プロモーター)、連結した配列(典型的には、タンパク質をコードする配列、コード配列とも呼ばれる)のような、2個の核酸配列間の機能的な連結である。プロモーターは、遺伝子の転写に介在することができる場合、外来遺伝子と動作可能に連結した状態である。
【0076】
「系中」は、「その場で」又は「その元々の位置で」という意味である。
【0077】
「栄養物の制限濃度」は、培養している微生物の増殖を制限するような、培養物中の化合物の濃度である。「栄養物の非制限濃度」は、所与の培養期間中に、最大限の増殖を支援するような濃度である。従って、所与の培養期間中に生成する細胞の数は、栄養物が非制限濃度である場合よりも、制限濃度存在する場合には少なくなる。最大限の増殖を支援する濃度よりも多く栄養物が存在する場合には、培養物中に栄養物が「過剰で」あると言われる。
【0078】
「リパーゼ」は、水に不溶性の脂質基質内のエステル結合を加水分解するのを触媒する水溶性酵素である。リパーゼは、脂質がグリセロール及び脂肪酸に加水分解されるのを触媒する。
【0079】
「脂質改変酵素」は、脂質の共有結合構造を変える酵素を指す。脂質改変酵素の例としては、リパーゼ、脂肪族アシル−ACPチオエステラーゼ、脂肪酸アシル−CoA/アルデヒド還元酵素、脂肪酸アシル−CoA還元酵素、脂肪族アルデヒド還元酵素、ステアロイルキャリアータンパク質デサチュラーゼ(SAD)および脂肪族アシルデサチュラーゼ(FAD)を含めたデサチュラーゼ、脂肪族アルデヒド脱炭酸酵素、が挙げられる。
【0080】
「脂質経路に関連する酵素」は、脂質代謝、すなわち、脂質合成、改変又は変性においてなんらかの役割をはたす任意の酵素であり、脂質を化学的に改変するタンパク質、及びキャリアータンパク質である。
【0081】
「脂質」は、非極性溶媒(例えば、エーテル及びクロロホルム)に可溶性であり、水には比較的溶けないか、完全に不溶性の分子種である。脂質分子は、主に、疎水性の性質を有する長い炭化水素鎖かららなるため、これらの性質を有している。脂質の例としては、脂肪酸(飽和及び不飽和);グリセリド又はグリセロ脂質(例えば、モノグリセリド、ジグリセリド、トリグリセリド又は天然の脂肪、ホスホグリセリド、グリセロリン脂質);グリセリド以外のもの(スフィンゴ脂質、コレステロール及びステロイドホルモンを含むステロール脂質、テルペノイド、脂肪族アルコール、ワックス、ポリケツドを含むプレノール脂質);複雑な脂質誘導体(糖に連結した脂質、又は糖脂質、タンパク質に連結した脂質)が挙げられる。「脂肪」は、「トリアシルグリセリド」と呼ばれる脂質の下位集団である。
【0082】
「溶解物」は、溶解した細胞内容物を含む溶液である。
【0083】
「溶解」は、生物有機体の原形質膜、場合により、細胞壁を、多くは生物有機体の一体性を失わせるような機械的な機構、ウイルスによる機構、又は浸透力による機構によって、細胞内成分を少なくともいくらか放出させるのに十分な程度まで破壊することである。
【0084】
「溶解すること」は、細胞内成分を少なくともいくらか放出させるのに十分な程度まで、生物有機体又は細胞の原形質膜、場合により、細胞壁を分断することである。
【0085】
「微細藻類」は、葉緑体又はプラスチドを含み、場合により、光合成を行うことができる真核性微生物であるか、又は、光合成を行うことができる原核性微生物である。微細藻類には、固定炭素源をエネルギーとして代謝することができない偏性光合成独立栄養生物と、単に固定炭素源がないと生存することができない従属栄養生物とが存在する。微細藻類には、細胞分裂の直後に、妹細胞から分離するChlamydomonasのような単細胞有機体、2種類の別個の細胞型を有する単純な多細胞光合成細菌である、例えば、Volvoxのような細菌が含まれる。微細藻類は、Chlorella、Dunaliella、Protothecaのような細胞を含む。また、微細藻類には、Agmenellum、Anabaena、Pyrobotrysのような、細胞−細胞接着性を示す他の細菌の有機体も含まれる。また、微細藻類には、特定のdinoflagellate algae種、及びPrototheca属の種のような、光合成を行う能力が失われている偏性従属栄養微生物も含まれる。
【0086】
「微生物」及び「細菌」は、微細な単細胞有機体である。
【0087】
「自然に共発現する」は、2種類のタンパク質あるいは遺伝子に関する際、例えば、2種類のタンパク質をコードする遺伝子が、共通の制御配列の制御下にあるため、又は、上述の2種類のタンパク質をコードする遺伝子が、同じ刺激に応答して発現するため、そのタンパク質又は遺伝子が、これらが誘導される組織又は有機体で自然に共発現することを意味する。
【0088】
「浸透圧衝撃」は、浸透圧が突然下がることによって、細胞が溶液中で破裂することである。浸透圧衝撃は、時に、誘発されてこのような細胞の細胞成分が溶液内に放出される。
【0089】
「多糖分解酵素」は、任意の多糖の加水分解又は糖化を触媒することができる任意の酵素である。例えば、セルラーゼは、セルロースの加水分解を触媒する。
【0090】
「多糖類」又は「グリカン」は、単糖類がグリコシド結合によって接続したもので構成される炭水化物である。セルロースは、特定の植物細胞壁を構成する多糖である。セルロースは、酵素によって解重合し、キシロース及びグルコースのような単糖類や、これより大きな二糖類及びオリゴ糖を生成し得る。
【0091】
「プロモーター」は、核酸の転写に関連する核酸制御配列である。本明細書で使用される場合、プロモーターは、転写開始部位の近くに、必要な核酸配列を含み、例えば、ポリメラーゼII型プロモーターの場合には、TATAエレメントを含む。また、プロモーターは、場合により、遠位エンハンサーエレメント又はリプレッサーエレメントを含み、これらは、転写開始部位から数千塩基対離れた位置にあってもよい。
【0092】
「組み換え体」は、外来の核酸を導入するか、又は天然の核酸を変えることによって改変された細胞、核酸、タンパク質又はベクターである。従って、例えば、組み換え細胞は、この細胞の天然の(組み換えされていない)形態にはみられない遺伝子を発現するか、又は、組み換えされていない細胞によって発現する遺伝子とは異なる天然遺伝子を発現する。「組み換え核酸」は、例えば、in vitroで、一般的に核酸を操作することによって元々作られている核酸が、ポリメラーゼ及びエンドヌクレアーゼ、又はそれ以外のものを用いて、天然には通常みられない形態になっているような核酸である。組み換え核酸は、例えば、動作可能に連結した状態にある2種類以上の核酸を配置することによって生成させてもよい。従って、天然では通常は接続していないDNA分子を結合させることによってin vitroで生成した核酸又は発現ベクターの単離物は、両方とも本発明の目的で組み換えであると考える。組み換え核酸が作られ、宿主細胞又は有機体に導入されると、宿主細胞の細胞機構を用いてin vivoで複製し得るが、このような核酸は、いったん組み換え状態で産生すると、その後に細胞内で複製されたものであっても、本発明の目的で組み換えと考える。同様に、「組み換えタンパク質」は、組み換え技術によって、すなわち、組み換え核酸の発現によって作られるタンパク質である。
【0093】
「再生可能なディーゼル」は、脂質の水素化及び脱酸素によって生成するアルカン混合物(例えば、C10:0、C12:0、C14:0、C16:0、C18:0)である。
【0094】
「糖化」は、バイオマス、通常はセルロース系バイオマス又はリグノセルロース系バイオマスを、グルコース及びキシロースのような単糖類に変換するプロセスである。「糖化された」又は「解重合された」セルロース系材料又はバイオマスは、糖化によって単糖類に変換されたセルロース系材料又はバイオマスを指す。
【0095】
用語「類似した」は、天然に存在する油との比較という文脈で、さらなる限定なしに使用される場合、天然に存在する油と比較した油が、天然に存在する油の上位2つのトリグリセリドの約+/−15%又は+/−10%を含有することを意味する。例えば、シアバター(B.Parkiiの油)は、最も多く存在する2つのトリグリセリド成分として41.2〜56.8%のC18:0及び34.0〜46.9%のC18:1を含有する(表5を参照)。+/−10%以内にある「類似した」油は、最も多く存在する2つのトリグリセリド成分として、約37%〜約62%のC18:0及び31%〜約52%のC18:1を含み得る。この文脈で使用される場合、用語「類似した」は、+/−9%、+/−8%、+/−7%、+/−6%、+/−5%、+/−4%、+/−3%、+/−2%又は+/−1%を包含し、また天然に存在する油の上位3つ若しくは上位4つのトリグリセリド、又は上位3つのトリグリセリドのうちの2つ、又は上位4つのトリグリセリドのうちの3つとの比較をさらに表し得る。
【0096】
「超音波処理」は、音波エネルギーを用いることによって、細胞のような生体材料を破壊する過程である。
【0097】
「フルフラール種」は、2−フランカルボキサアルデヒド、又は同じ基本構造の特徴を保持した誘導体である。
【0098】
「茎葉」は、穀物を収穫した後に残る、作物の茎及び葉を乾燥させたものである。
【0099】
「ショ糖利用遺伝子」は、発現すると、ショ糖をエネルギー源として利用する能力を補助する遺伝子である。ショ糖利用遺伝子によってコードされるタンパク質は、本明細書では「ショ糖利用酵素」と呼ばれ、ショ糖トランスポーター、ショ糖インベルターゼ、グルコキナーゼやフルクトキナーゼのようなヘキソキナーゼを含む。
【0100】
(II.育てること)
本発明は、一般的には、脂質を生成させるために、微生物(例えば、微細藻類、油産生酵母、真菌及び細菌)、特にPrototheca株を含めた組み換え微細藻類株を育てることに関する。読者が読みやすいように、この章をいくつかの節に分けている。第1節は、Prototheca種及びPrototheca株と、新しいProtothecaの種及び株、関連する微細藻類、並びに他の微生物をゲノムDNA比較によって同定するやり方について記載している。第2節は、育てるのに有用なバイオリアクターについて記載している。第3節は、育てるための培地について記載している。第4節は、本発明の例示的な育てる方法に従って油を生成することについて記載している。これらの記載は、さらに一般的に他の微生物にも適用される。
【0101】
(1.Protothecaの種及び株、並びに他の微生物)
Protothecaは、高濃度の脂質を産生することができ、特に、燃料生成に適した脂質を産生することができるため、脂質の生成に使用するのに卓越した微生物である。Protothecaによって産生される脂質は、他の微細藻類によって産生される脂質よりも鎖長が短く、飽和度が高い炭化水素鎖を含んでいる。さらに、Protothecaの脂質は、一般的に、色素を含まず(クロロフィル及び特定のカロチノイドの濃度が検出不可能なほど低く)、いかなる状況でも、他の微細藻類から得られる脂質よりもかなり色素の含有量が低い。さらに、本発明によって与えられる組み換えPrototheca細胞を用い、他の微生物から脂質を産生する場合と比較して、低コストで、高収率及び高効率で脂質を生成させることができる。本発明の方法で用いる具体的なPrototheca株としては、が挙げられる。それに加え、この微細藻類は、従属栄養性で成長し、Prototheca wickerhamii、Prototheca stagnora(UTEX 327を含む)、Prototheca portoricensis、Prototheca moriformis(UTEX株1441、1435を含む)、Prototheca zopfiiとして遺伝子操作することができる。Prototheca属の種は、偏性従属栄養生物である。
【0102】
本発明で使用するProtothecaの種は、ゲノムの特定標的領域を増幅させることによって同定することができる。例えば、特定のPrototheca種又はPrototheca株の同定は、プライマーと、任意のゲノム領域を用いた方法とを用い、例えば、Wu et al.、Bot.Bull.Acad.Sin.(2001)42:115−121 Identification of Chlorella spp.isolates using ribosomal DNA Sequencesに記載されている方法を用いて、核及び/又は葉緑体のDNAを増幅させ、塩基配列を決定することによって行うことができる。Protothecaだけではなく、同様の脂質プロフィール及び産生能を有する他の炭化水素及び脂質を産生する有機体の種を同定するために、リポソームの内部に転写されたスペーサー(ITS1及びITS2 rDNA)、23S rRNA、18S rRNA、及び他の保存されたゲノム領域を増幅させ、塩基配列を決定する、当業者によって十分に確率された系統発生解析の方法を用いてもよい。例えば、藻類を同定し、分類する方法は、例えば、Genetics、2005年8月;170(4):1601−10及びRNA、2005年4月;11(4):361−4を参照。
【0103】
従って、ゲノムDNA比較を用い、本発明で使用すべき微細藻類の適切な種を同定することができる。保存されたゲノムDNA領域、例えば、限定されないが、23S rRNAをコードするDNAを、微細藻類の種から増幅させ、本発明で使用する好ましい微細藻類に分類学的に関連する微細藻類の種をスクリーニングするために、コンセンサス配列を比較することができる。Prototheca属に含まれる種に対し、このようなDNA配列比較を行った例を以下に示す。ゲノムDNA比較は、株の収集中にうまく同定できなかった微細藻類の種を同定するのにも有用な場合がある。株の収集では、表現型及び形態学的特徴に基づいて、微細藻類の種を同定することが多いだろう。これらの特徴を使用すると、微細藻類の種又は属を間違ってカテゴリー分けしてしまうことがある。ゲノムDNA比較を用いることは、系統発生的関係に基づいて微細藻類種をカテゴリー分けする良好な方法であろう。
【0104】
本発明で使用する微細藻類は、典型的には、配列番号11〜19に列挙されている少なくとも1つの配列に対するヌクレオチド同一性が少なくとも99%、少なくとも95%、少なくとも90%、又は少なくとも85%の23S rRNAをコードするゲノムDNA配列を有する。
【0105】
ヌクレオチド同一性又はアミノ酸同一性の割合を決定するために配列を比較する場合、典型的には、ある配列を参照配列として作用させ、これと試験配列とを比較する。配列比較アルゴリズムを用いた場合、試験配列及び参照配列をコンピュータに入力し、部分配列の座標を指定し、必要な場合、配列アルゴリズムプログラムのパラメーターを指定する。次いで、配列比較アルゴリズムが、指定したプログラムパラメーターに基づいて、試験配列を参照配列と比較して配列同一性の割合を算出する。
【0106】
比較のために、例えば、Smith & Waterman、Adv.Appl.Math.2:482(1981)による局地的ホモロジーアルゴリズムによって、Needleman & Wunsch、J.Mol.Biol.48:443(1970)によるホモロジーアラインメントアルゴリズムによって、Pearson & Lipman、Proc.Nat’l.Acad.Sci.USA 85:2444(1988)と同様の方法で検索することによって、これらのアルゴリズムをコンピュータ制御によって実施することによって(Wisconsin Genetics Software Package、Genetics Computer Group、575 Science Dr.、Madison、WIの、GAP、BESTFIT、FASTA、TFASTA)、又は、視覚的な観察(一般的に、上記のAusubel et al.を参照)によって、配列の最適アラインメントを行うことができる。
【0107】
配列同一性の割合及び配列類似性を決定するのに適した他のアルゴリズムの例は、BLASTアルゴリズムであり、Altschul et al.、J.Mol.Biol.215:403−410(1990)に記載されている。BLAST分析を行うためのソフトウェアは、National Center for Biotechnology Information(ウェブアドレスはwww.ncbi.nlm.nih.gov)に公開されている。このアルゴリズムは、検索配列の中で、データベース配列中の同じ長さの文字列と整列させたときに、ある正の値である閾値Tとマッチするか、又は閾値Tを満足するような長さWの短い文字列を特定することによって、スコアが最も大きくなる配列対(HSP)をまず特定することを含む。Tは、近隣の文字列スコアの閾値と呼ばれる(Altschul et al.、上記)。これらの初期の近隣の文字列ヒットが、これらの配列に含まれるもっと長いHSPを見つけるための初期検索の出発点として作用する。この文字列のヒットを、累積アラインメントスコアが増加していく限りは、それぞれの配列に沿って両方向に拡張していく。累積スコアは、ヌクレオチド配列の場合、パラメーターM(マッチングした残基対に対するリワードスコア;常に0より大きい)及びパラメーターN(マッチングしない残基に対するペナルティースコア;常に0より小さい)を用いて算出される。アミノ酸配列の場合、スコアの行列を用いて累積スコアを算出する。それぞれの方向への文字列ヒットの拡張は、累積アラインメントスコアが、到達した最大値からXの大きさだけ下がった場合、1つ以上のマイナス値のスコアをもつ残基のアラインメントの累積のため、累積スコアが0又は0未満になった場合、又は、いずれかの配列が末端まできた場合に中止される。核酸又はポリペプチドが本発明の範囲内にあるかどうかを特定するためには、BLASTプログラムのデフォルトパラメーターが適している。BLASTNプログラム(ヌクレオチド配列の場合)は、文字列長(W)11、期待値(E)10、M=5、N=−4をデフォルトとして用い、両鎖を比較する。アミノ酸配列の場合、BLASTPプロフラムを、文字列長(W)3、期待値(E)10、BLOSUM62スコア行列をデフォルトとして用いる。TBLATNプログラム(ヌクレオチド配列のタンパク質配列を用いる)は、文字列長(W)3、期待値(E)10、BLOSUM62スコア行列をデフォルトとして用いる(Henikoff & Henikoff、Proc.Natl.Acad.Sci.USA 89:10915(1989)を参照)。
【0108】
BLASTアルゴリズムは、配列同一性の割合を算出することに加え、2つの配列間の類似性の統計分析も行う(例えば、Karlin & Altschul、Proc.Nat’l.Acad.Sci.USA 90:5873−5787(1993)を参照)。BLASTアルゴリズムによって与えられる類似性の測定値は、ひとつには最小合計確率(P(N))があり、この値は、2つのヌクレオチド又はアミノ酸配列が偶然マッチする確率の指標を与える。例えば、試験核酸と参照核酸とを比較したときの最小合計確率が、0.1未満、より好ましくは、約0.01未満、最も好ましくは、約0.001未満であるときに、この核酸は、参照配列と類似していると考える。
【0109】
本発明で用いるための微生物の選択に影響を及ぼす他の考慮事項としては、油、燃料、油脂化学品を生成するのに適した脂質又は炭化水素の生成に加え、(1)細胞重量を基準とした割合で脂質含有量が高いこと;(2)成長が容易であること;(3)遺伝子操作が容易であること;(4)バイオマスの処理が容易であることが挙げられる。特定の実施形態では、野生型の微生物又は遺伝子操作された微生物から、少なくとも40%、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、又は少なくとも70%、又はそれ以上が脂質である細胞が得られる。好ましい有機体は、従属栄養的に成長する有機体である(光が存在しない状態で、糖を用いる)。
【0110】
本発明を実施するために使用し得る藻類の例としては、限定されないが、表1に記載の以下の藻類が挙げられる。
【0111】
【表1】
[この文献は図面を表示できません]
【0112】
本発明を実施するために使用し得る油産生酵母の例としては、限定されないが、表26に記載の以下の油産生酵母が挙げられる。
【0113】
【表26】
[この文献は図面を表示できません]
【0114】
本発明を実施するために使用し得るその他の真菌の例としては、限定されないが、表27に記載の以下の真菌が挙げられる。
【0115】
【表27】
[この文献は図面を表示できません]
【0116】
本発明のある実施形態では、微生物は細菌である。大腸菌(E.coli)のような細菌内での外来遺伝子発現の例はよく知られており、例えば、Molecular Cloning;A Laboratory Manual,Sambrook et al.(第3版,2001,Cold Spring Harbor Press)を参照されたい。
【0117】
(2.バイオリアクター)
微生物を、遺伝子操作を行うという目的で、及び炭化水素(例えば、脂質、脂肪酸、アルデヒド、アルコール、アルカン)を生成するという目的で培養する。前者の種類の培養では、小スケールで実施し、最初は、少なくとも、原料微生物が成長可能な条件下で実施する。炭化水素を生成させるための培養は、通常は、バイオリアクター中、大スケールで実施する(例えば、10,000リットル、40,000リットル、100,000リットル、又はそれより大きなバイオリアクター)。Prototheca種を含めた微細藻類を、典型的には、バイオリアクター内の液体培地にて、本発明の方法で培養する。典型的には、バイオリアクターには光を入れない。
【0118】
バイオリアクター又は発酵槽を用い、生理学的周期の種々の段階を経て、油産生微生物細胞、好ましくは微細藻類細胞を培養する。バイオリアクターは、従属栄養を成長及び増殖させる方法で用いると、多くの利点を与える。食品において用いるためのバイオマスを生成させるために、微細藻類を、好ましくは、液体中で、一例として懸濁培養物中で、大量に発酵させる。鋼鉄製発酵槽のようなバイオリアクターは、非常に大きな容積の培養物を収容する(種々の本発明の実施形態では、40,000リットル以上の容量を有するバイオリアクターを用いる)。また、バイオリアクターによって、典型的には、温度、pH、酸素圧、二酸化炭素濃度のような培養条件を制御することができる。例えば、バイオリアクターは、典型的には、例えば、酸素又は窒素のような気体成分を液体培養物にバブリングすることが可能な配管に接続したポートを用いて構築することができる。また、培地のpH、微量元素が何であるか及びその濃度、他の培地構成要素のような他の培養パラメーターは、バイオリアクターを用いて簡単に操作することができる。
【0119】
バイオリアクターは、微細藻類が繁殖し、数が増える間、培地がバイオリアクターを流れるような構成であってもよい。ある実施形態では、例えば、播種した後であるが、細胞が所望の密度になる前に、培地をバイオリアクターに注入してもよい。別の状況では、培養開始時にバイオリアクターを培地で満たし、培養物を播種した後は、培地を注入しない。言い換えると、微細藻類のバイオマスを、微細藻類が繁殖され、数が増える間、水性媒体中で培養する。しかし、水性培地の量は、この期間全体でバイオリアクターを流れていない。従って、ある実施形態では、水性培地は、播種した後に、バイオリアクターを流れない。
【0120】
スピニングブレード、インペラー、揺動機構、攪拌棒、加圧気体を注入する手段のようなデバイスを備えるバイオリアクターを用い、微細藻類の培養物を混合することができる。混合は、連続的であってもよく、断続的であってもよい。例えば、ある実施形態では、微細藻類が望ましい数に増えるまで微細藻類を繁殖させるために、気体及び培地を入れるのに乱流を用いる形態は維持されない。
【0121】
気体、固体、半固体、液体を、微細藻類を含むバイオリアクターチャンバーに入れるため、又は抽出するために、バイオリアクターポートを用いてもよい。多くのバイオリアクターは、2個以上のポートを備えているが(例えば、1つは培地を入れるため、他方はサンプリングのため)、1種類の基質だけを1個のポートから入れたり、出したりする必要はない。例えば、バイオリアクターに培地を流し、その後で、サンプリングしたり、ガスを入れたり、ガスを出したり、又は他の目的のために1個のポートを使用してもよい。好ましくは、培養物の純培養性を損なうことなく、サンプリングポートを繰り返し用いることができる。サンプリングポートは、サンプルの流れを止めるか、開始させるか、又は連続的なサンプリング手段を与えるようなバルブ又は他のデバイスを備えるような構成であってもよい。バイオリアクターは、典型的には、培養物を播種することができるような少なくとも1個のポートを備えており、このようなポートを、培地又は気体を入れるような他の目的で用いることもできる。
【0122】
バイオリアクターポートによって、微細藻類の培養物の気体内容物を操作することができる。説明のために、バイオリアクターの容積の一部分は、液体ではなく気体であってもよく、バイオリアクターの気体注入口から、ポンプによって気体をバイオリアクターに入れることができる。ポンプによってバイオリアクターへと有益に入れることが可能な気体としては、空気、空気/CO
2混合物、アルゴンのような希ガス、他の気体が挙げられる。バイオリアクターは、典型的には、バイオリアクターにガスを入れる速度をユーザーが制御することができるように取り付けられている。上述のように、バイオリアクターへの気体の流れを増やすことによって、培養物の混合性を高めることができる。
【0123】
気体の流れを増やすことは、培地の濁度にも影響を及ぼす。乱流は、バイオリアクターに入った気体が培地表面でバブリングするように、水性培地の液量より低いところに気体注入ポートを配置することによって起こすことができる。1種類以上の気体がポートを出て行き、気体が外に逃げ、それにより、バイオリアクター中に圧力が蓄積されるのを防ぐ。好ましくは、気体流出ポートは、バイオリアクターに微生物が入り込んで汚染されることを防ぐような「一方向」バルブにつながっている。
【0124】
(3.培地)
微細藻類の培地は、典型的には、固定窒素源、固定炭素源、微量元素、場合により、pHを維持するためのバッファー、ホスフェート(典型的には、リン酸塩として与えられる)のような成分を含有する。他の成分は、特に、海水微細藻類の場合には、塩化ナトリウムのような塩を含んでいてもよい。窒素源としては、有機窒素源及び無機窒素源が挙げられ、例えば、限定されないが、分子状窒素、硝酸エステル、硝酸塩、アンモニア(純水なもの、又は塩形態、例えば、(NH
4)
2SO
4及びNH
4OH)、タンパク質、大豆ミール、コーンスティープリカー、酵母抽出物が挙げられる。微量元素の例としては、例えば、それぞれZnCl
2、H
3BO
3、CoCl
2・6H
2O、CuCl
2・2H
2O、MnCl
2・4H
2O、(NH
4)
6Mo
7O
24・4H
2Oのような形態の亜鉛、ホウ素、コバルト、銅、マンガン、モリブデンが挙げられる。
【0125】
本発明の方法で有用な微生物は、世界中の種々の場所及び環境で発見されている。他の種からの単離、及び得られる進化多様性の結果として、最適な成長、及び脂質及び/又は炭化水素構成要素の最適な発生のための特定の成長培地は、予測することが困難な場合がある。ある場合には、特定の微生物株は、ある種の阻害成分が存在するか、又は、特定の微生物株が必要とするある種の必須栄養分が必要量存在しないために、特定の成長培地上で成長することができない場合がある。
【0126】
固体及び液体の成長培地は、一般的に、さまざまな供給源から入手可能であり、さまざまな微生物株に適した特定の培地を調製する方法の説明は、例えば、オンラインでは、藻類の培養物を収集するためのAustin、1 University Station A6700、Austin、Texas、78712−0183のテキサス大学によって運営されているサイトhttp://www.utex.org/で見つけることができる(UTEX)。例えば、種々の淡水培地及び塩水培地としては、PCT公開番号第2008/151149号に記載されているものが挙げられ、この文献は、参照により組み込まれる。
【0127】
特定の例では、プロテオース培地は、純培養の培地に適しており、培地1リットル(pH約6.8)は、プロテオースペプトン1gを、Bristol Medium 1リットルに加えることによって調製することができる。Bristol mediumは、水溶液中に、2.94mMのNaNO
3、0.17mMのCaCl
2・2H
2O、0.3mMのMgSO
4・7H
2O、0.43mM、1.29mMのKH
2PO
4、1.43mMのNaClを含む。1.5%寒天培地の場合、寒天15gを上述の溶液1リットルに加えればよい。この溶液に蓋をし、オートクレーブにかけ、次いで、使用するまで冷蔵温度で保存する。別の例は、Prototheca単離培地(PIM)であり、10g/Lのフタル酸水素カリウム(KHP)、0.9g/Lの水酸化ナトリウム、0.1g/Lの硫酸マグネシウム、0.2g/Lのリン酸水素カリウム、0.3g/Lの塩化アンモニウム、10g/Lのグルコース、0.001g/Lの塩酸チアミン、20g/Lの寒天、0.25g/Lの5−フルオロシトシンを含み、pH範囲が5.0〜5.2である(Pore、1973、App.Microbiology、26:648−649を参照)。本発明の方法と共に用いるのに適した他の培地は、上に特定したURLを閲覧することによって、又はSAG、CCAP又はCCALAのような、微生物の培地を保有している他の機関に助言を求めることによって、簡単に特定することができる。SAGは、ゲッティンゲン大学(ドイツ、ゲッティンゲン)のCulture Collection of Algaeを指し、CCAPは、Scottish Association for Marine Science(英国、スコットランド)によって管理されている藻及び原生動物の培養株保存機関を指し、CCALAは、Institute of Botany(トシェボニュ、チェコ共和国)の藻研究所の培養株保存機関を指す。さらに、米国特許第5,900,370号は、Prototheca種の従属栄養性発酵に適した培地の処方及び条件について記載している。
【0128】
油の生成について、固定炭素源の費用は、油生成を経済的なものにするには十分低くなければならないため、固定炭素源の選択が重要である。従って、適切な炭素源は、例えば、アセテート、フロリドシド、フルクトース、ガラクトース、グルクロン酸、グルコース、グリセロール、ラクトース、マンノース、N−アセチルグルコサミン、ラムノース、ショ糖、及び/又はキシロースを含むが、これらの化合物を含有する原材料の選択は、本発明の方法の重要な態様である。本発明の方法で有用な適切な原材料としては、例えば、黒液、トウモロコシデンプン、解重合されたセルロース系材料、乳清、糖液、ジャガイモ、ソルガム、ショ糖、テンサイ、サトウキビ、イネ、小麦が挙げられる。また、炭素源は、混合物として、例えば、ショ糖と解重合されたテンサイパルプの混合物として与えられてもよい。1つ以上の炭素源は、1つ以上の外から与えられた固体炭素源の少なくとも約50μM、少なくとも約100μM、少なくとも約500μM、少なくとも約5mM、少なくとも約50mM、少なくとも約500mMの濃度で供給されてもよい。本発明のための特に関心のある炭素源としては、セルロース(解重合された形態で)、グリセロール、ショ糖、ソルガムが挙げられ、これらについては、以下にさらに詳細に記載する。
【0129】
本発明によれば、原材料として解重合されたセルロース系バイオマスを用い、微生物を培養してもよい。セルロース系バイオマス(例えば、トウモロコシ茎葉のような茎葉)は安価であり、入手が容易であるが、この物質を酵母のための原材料として使用する試みは長年失敗している。特定的には、このような原材料は、酵母の成長を阻害することがわかっており、酵母は、セルロース系材料から生成した五炭糖(例えば、ヘミセルロースから生成したキシロース)を用いることができない。対照的に、微細藻類は、処理したセルロース系材料を用いて成長することができる。セルロース系材料は、一般的に、約40〜60%のセルロースと;約20〜40%のヘミセルロースと;10〜30%のリグニンとを含む。
【0130】
適切なセルロース系材料としては、草及び木のエネルギー作物、及び農業用作物から得られた残渣、すなわち、主要な食品又は繊維製品の分野から除去されなかった植物の一部、主に茎及び葉が挙げられる。例としては、農業廃棄物、例えば、サトウキビの絞りかす、モミ殻、トウモロコシ繊維(茎、葉、皮及び穂軸を含む)、麦わら、稲わら、テンサイパルプ、シトラスパルプ、柑橘類の皮;森林の廃棄物、例えば、硬材及び軟材の間伐、伐採作業から得られる硬材及び軟材の残渣;木材廃棄物、例えば、製材工場の廃棄物(木片、おがくず)、パルプ工場の廃棄物;都市廃棄物、例えば、都市固形廃棄物の紙片、都会の廃材、都市の伐採した草のような、都市の緑廃棄物;木材製造の廃棄物が挙げられる。さらなるセルロース含有材料としては、スイッチグラス、ハイブリッドポプラ材、Miscanthus、テンサイ繊維、ソルガム繊維のような専用のセルロース含有作物が挙げられる。このような材料から生成する五炭糖としては、キシロースが挙げられる。
【0131】
細菌が上述の材料を含む糖類を利用することができる効率を高めるために、セルロース系材料を処理する。本発明は、上述の材料を、細菌(例えば、微細藻類及び油産生酵母)の従属栄養性培養物で用いるのに適しているように酸爆発させた後、セルロース系材料を処理するための新規方法を提供する。上述のように、リグノセルロース系バイオマスは、セルロース、β1,4結合したグルコース(六炭糖)の結晶性ポリマー、ヘミセルロース、主にキシロース(五炭糖)で構成され、少量のマンノース、ガラクトース、アラビノース、リグニンで構成されている、ゆるく会合したポリマー、シナピルアルコール及びその誘導体で構成される複雑な芳香族ポリマー、α1,4結合したポリガラクツロン酸の直鎖であるペクチンのような、種々の画分で構成されている。セルロース及びヘミセルロースがポリマー構造であるため、これらの中に含まれる糖類(例えば、単糖類のグルコース及びキシロース)は、多くの細菌によって有効に使用する(代謝する)ことができるような形態ではない。このような細菌の場合、セルロース系バイオマスをさらに処理し、このポリマーを構成している単糖類を作成することは、セルロース系材料を原材料(炭素源)として有効に利用するのに非常に役立つ場合がある。
【0132】
セルロース又はセルロース系バイオマスに、「爆発」と呼ばれるプロセスを行い、このプロセスで、バイオマスは、高温高圧で、希硫酸(又は他の酸)で処理される。このプロセスは、セルロース系及びヘミセルロース系の画分をグルコースモノマー及びキシロースモノマーにする酵素加水分解を効率よく行うことができるようにバイオマスを調節する。得られた単糖類は、セルロース系糖と呼ばれる。その後に、セルロース系糖が微生物に利用され、種々の代謝物(例えば、脂質)が生成される。酸爆発工程によって、ヘミセルロース画分が、構成成分である単糖類へと部分的に加水分解する。これらの糖類を、さらなる処理によって、バイオマスから完全に遊離させることができる。ある実施形態では、さらなる処理は、爆発した材料を熱水で洗浄することを含む熱水処理であり、これによって、塩のような混入物質が除去される。この工程は、セルロース系エタノール発酵では、このようなプロセスで用いられる糖の濃度はもっと薄いため、必要ではない。他の実施形態では、さらなる処理は、さらなる酸処理である。さらに他の実施形態では、さらなる処理は、爆発した材料の酵素加水分解である。また、これらの処理を任意の組み合わせで用いてもよい。この種の処理は、遊離する糖の種類(例えば、五炭糖対六炭糖)、このプロセス中で糖類が遊離する段階に影響を及ぼす場合がある。その結果、五炭糖又は六炭糖のどちらかが主成分の異なる糖の流れを作成することができる。これらの五炭糖又は六炭糖を豊富に含む流れは、異なる炭素利用能を有する特定の微生物用に向けることができる。
【0133】
本発明の方法は、典型的には、エタノール発酵で達成されるよりも高い細胞密度になるまで発酵することを含む。従属栄養セルロース系の油を生成するための培養物の密度が高いため、固定炭素源(例えば、セルロース系から誘導される糖の流れ)は、好ましくは、濃縮された形態である。解重合されたセルロース系材料のグルコース濃度は、好ましくは、育てる工程の前に、少なくとも300g/L、少なくとも400g/L、少なくとも500g/L、又は少なくとも600g/Lであり、場合により、細胞が成長し、脂質を蓄積する間ずっと、上述の物質を細胞に供給するような流加回分式で育てる。セルロース系糖の流れは、セルロース系エタノールの生成においては、この濃度範囲又はこの濃度範囲付近で用いられない。従って、リグノセルロース系の油を生成している間、非常に高密度の細胞を生成し、維持するために、炭素原材料を、非常に濃縮された形態で従属栄養培養物に運ばなければならない。しかし、油産生微生物の基質ではなく、油産生微生物によって代謝されないような供給物流中の任意の成分は、バイオリアクター中に蓄積し、その成分が、毒性であるか、又は望ましい最終産物を生成するのを阻害する場合には、問題となり得るであろう。リグニン及びリグニンから誘導される副産物、フルフラール類及びヒドロキシメチルフルフラール類のような炭水化物から誘導される副産物、セルロース系材料の生成から誘導される塩(爆発プロセス及びその次の中和プロセスの両方で)、さらに、代謝されていないペントース/ヘキソース糖ですら、エタノール発酵では問題となり得る場合があり、これらの影響は、初期原材料中のこれらの物質の濃度が高いプロセスでは、顕著に大きくなる。本明細書に記載されるリグノセルロース系の油を大量生成するのに用いることが可能な六炭糖について、300g/Lの範囲(又はそれ以上)の糖濃度を達成するために、これらの毒性のある物質の濃度は、典型的には、セルロース系バイオマスのエタノール発酵中に存在する濃度の20倍より高くなり得る。
【0134】
セルロース系材料の爆発プロセスによる処理は、かなりの量の硫酸、熱、圧力を利用するため、炭水化物の副産物、つまり、フルフラール類及びヒドロキシメチルフルフラール類が遊離する。フルフラール類及びヒドロキシメチルフルフラール類は、ヘミセルロースの加水分解中に、キシロースを水和してフルフラール及び水にすることによって生成する。本発明のある実施形態では、これらの副産物(例えば、フルフラール類及びヒドロキシメチルフルフラール類)は、バイオリアクターに入れる前に、糖化されたリグノセルロース系材料から除去される。本発明の特定の実施形態では、炭水化物の副産物を除去するプロセスは、爆発したセルロース系材料の熱水処理である。それに加え、本発明は、リグノセルロース系の油を生成するのに、フルフラール類又はヒドロキシメチルフルフラール類のような化合物に耐え得る株を用いる方法を提供する。別の実施形態では、本発明は、発酵培地中のフルフラール類に耐え得るだけでなく、リグノセルロース系の油を生成させている間に、実際には、これらの副産物を代謝することができるような方法及び微生物も提供する。
【0135】
また、この爆発プロセスは、顕著な量の塩も生じる。例えば、爆発の典型的な条件によって、爆発したセルロース系バイオマスを、水:固形分(乾燥重量)を10:1の比率で再び懸濁させた場合、5mS/cmを超える導電率が生じ得る。本発明の特定の実施形態では、爆発したバイオマスを希釈したものに対し、酵素による糖化を行い、得られた上澄みを、バイオリアクター中で使用するために最大25倍まで濃縮する。濃縮した糖の流れ中の塩濃度(導電率で測定した場合)は、許容できないほど高い場合がある(最大1.5M Na
+に相当)。同様に、その後の酵素による糖化プロセスのために、爆発した物質を中和すると、さらなる塩が生成する。本発明は、上のようにして得られる濃縮したセルロース系糖の流れを、リグノセルロース系の油を生成するための従属栄養プロセスで使用することができるように、これらの塩を除去する方法を提供する。ある実施形態では、これらの塩を除去する方法は、限定されないが、DOWEX Marathon MR3のような樹脂を用いた脱イオン化である。特定の実施形態では、樹脂を用いた脱イオン化工程は、糖の濃縮前に行うか、又は、糖化の前のバイオマスのpH調節及び熱水処理の前に行うか、又はこれらの任意の組み合わせであってもよく、他の実施形態では、この工程は、これらの1つ以上のプロセスの後に行う。他の実施形態では、爆発プロセス自体を、塩が許容されない高濃度で生成するのを避けるように変更する。例えば、セルロース系バイオマスを硫酸(又は他の酸)で爆発させるのに代わる代替法は、セルロース系バイオマスが酵素加水分解(糖化)を受けやすくなるような機械的なパルプ化である。さらに他の実施形態では、高濃度の塩に耐性の天然微生物株、又は高濃度の塩に耐性を有するように遺伝子操作された株を用いる。
【0136】
油産生細菌を用いて従属栄養性のリグノセルロース系油の生成で使用するための、爆発したセルロース系バイオマスを調製するプロセスに好ましい実施形態。第1の工程は、爆発したセルロース系バイオマスを再懸濁させたもののpHを、5.0〜5.3の範囲に調節した後、セルロース系バイオマスを3回洗浄することを含む。この洗浄工程は、脱塩性及びイオン交換性の樹脂、逆浸透膜、熱水処理(上述のようなもの)の使用、又は、脱イオン水に再懸濁させ、遠心分離するのを単に繰り返す、といった種々の手段によって達成することができる。この洗浄工程によって、セルロース系の流れの導電率が100〜300μS/cmになり、かなりの量のフルフラール類及びヒドロキシメチルフルフラール類が除去される。この洗浄工程からデカンテーションを行い、ヘミセルロース画分から遊離した五炭糖を濃縮するために残しておいてもよい。第2の工程は、洗浄したセルロース系バイオマスを酵素によって糖化することを含む。好ましい実施形態では、Accellerase(Genencor)を用いる。第3の工程は、糖化されたバイオマスを遠心分離するか、又はデカンテーションし、次いですすぐことによる、糖の回収を含む。得られたバイオマス(固形分)は、エネルギー密度が高く、リグニンを豊富に含む成分であり、これを燃料として使用してもよく、廃棄するために送ってもよい。遠心分離/デカンテーション及びすすぎを行うプロセス中で回収された糖の流れを集める。第4の工程は、透過物を回収しつつ、混入している固形物を除去する精密濾過を含む。第5の工程は、濃縮工程を含み、この工程は、減圧エバポレーターを用いることによって達成されてもよい。この工程は、場合により、P’2000(Sigma/Fluka)のような消泡剤の添加を含んでいてもよく、この作業は、得られる糖原料のタンパク質含有量によっては、時に必要である。
【0137】
本発明の方法の別の実施形態では、炭素源は、バイオディーゼルのトランスエステル化から得られる、酸性化されたグリセロール及び酸性化されていないグリセロールを含むグリセロールである。一実施形態では、炭素源は、グリセロールと、少なくとも1つの他の炭素源とを含んでいる。ある場合には、グリセロール及び少なくとも1つの他の固定炭素源の全てが、発酵開始時に微生物に与えられる。ある場合には、グリセロール及び少なくとも1つの他の固定炭素源が、微生物に対して所定の比率で同時に与えられる。ある場合には、グリセロール及び少なくとも1つの他の固定炭素源が、発酵している間、所定の速度で細菌に供給される。
【0138】
ある種の微細藻類は、グルコースが存在する状態よりも、グリセロールが存在する状態ですばやく細胞分裂を受ける(PCT公開番号第2008/151149号)。これらの状況では、細胞に、細胞の密度をすばやく上げるためにグリセロールを供給し、次いで、脂質の蓄積を高めるためにグルコースを供給するような二段階成長プロセスによって、脂質が産生する効率を高めることができる。トランスエステル化プロセスのグリセロール副産物を使用することによって、この物質が生成プロセスに戻されると、経済的に顕著な利点を与える。例えば、グリセロール及びグルコースの混合物のような他の供給方法も同様に与えられる。また、このような混合物を供給することによって、同じ経済的な利点が得られる。それに加え、本発明は、ショ糖のような代わりとなる糖をグリセロールとの種々の組み合わせで微細藻類に供給する方法を提供する。
【0139】
本発明の方法の別の実施形態では、炭素源は転化糖である。転化糖は、ショ糖をその単糖成分であるフルクトースとグルコースに分解することにより生成される。転化糖の生成は、当該技術分野で知られているいくつかの方法により達成することができる。このような方法の1つが、ショ糖水溶液の加熱である。ショ糖から転化糖への変換を促進するために触媒を用いることが多い。このような触媒は、生物学的なもの、例えば、インベルターゼのような酵素であってよく、スクラーゼを添加して加水分解反応を促進し、転化糖を生成することができる。酸は非生物学的触媒の例であり、加熱と組み合わせて加水分解反応を促進することができる。転化糖が生成されると、転化糖はショ糖に比べて結晶化しにくいため保管に有利であり、またバッチ発酵において、微細藻類を含めた微生物の従属栄養培養の場合、濃縮された炭素源が必要である。一実施形態では、炭素源は、培養工程の前に、好ましくは少なくとも800g/リットル、少なくとも900g/リットル、少なくとも1000g/リットル又は少なくとも1100g/リットルに濃縮された形態であることが好ましく、培養工程は、場合によりフェドバッチ培養である。好ましくは濃縮形態の転化糖を、細胞が成長し、脂質を蓄積するように、時間をかけて細胞に供給する。
【0140】
本発明の方法の別の実施形態では、炭素源はショ糖であり、ショ糖を含む複雑な原材料、例えば、サトウキビの処理から得られる濃いサトウキビ汁を含む。従属栄養的な油生成のための培養の密度が高いため、固定炭素源(例えば、ショ糖、グルコースなど)は、培養工程の前に、好ましくは少なくとも500g/リットル、少なくとも600g/リットル、少なくとも700g/リットル又は少なくとも800g/リットルの固定炭素源である濃縮形態であり、培養工程は場合により、細胞が成長し、脂質を蓄積するように、時間をかけて細胞に原料を供給するフェドバッチ培養である。いくつかの場合には、炭素源は、好ましくは培養工程の前に、好ましくは固体が少なくとも60%若しくは糖が約770g/リットル、固体が少なくとも70%若しくは糖が約925g/リットル、又は固体が少なくとも80%若しくは糖が約1125g/リットルの濃縮形態である、濃いサトウキビ汁の形態のショ糖であり、培養工程は場合によりフェドバッチ培養である。濃縮された濃いサトウキビ汁を、細胞が成長し、脂質を蓄積するように、時間をかけて細胞に供給する。
【0141】
一実施形態では、培地は、少なくとも1つのショ糖利用酵素をさらに含む。ある場合には、培地は、ショ糖インベルターゼを含む。一実施形態では、ショ糖インベルターゼ酵素は、微生物の集合が発現する外来のショ糖インベルターゼ遺伝子によってコードされる分泌可能なショ糖インベルターゼ酵素である。従って、いくつかの状況では、以下の第IV章にさらに詳細に記載されるように、微細藻類は、ショ糖トランスポーター、ショ糖インベルターゼ、ヘキソキナーゼ、グルコキナーゼ、又はフルクトキナーゼのようなショ糖利用酵素を発現するように遺伝子操作されている。
【0142】
ショ糖を含有する複雑な原材料としては、サトウキビの処理から得られる廃棄糖液が挙げられ、サトウキビ処理の価値の低い上述の廃棄生成物によって、炭化水素及び他の油の生成において、顕著に費用を節約することができる。本発明の方法で有用な、ショ糖を含有する別の複雑な原材料は、ソルガムであり、ソルガムシロップ及び純粋なソルガムを含む。ソルガムシロップは、甘いソルガムの茎の汁から生成する。ソルガムシロップの糖プロフィールは、主に、グルコース(デキストロース)、フルクトース、ショ糖からなる。
【0143】
(4.油の生成)
本発明の方法に従って油を生成する場合、例えば、光が培養物にあたらないような、きわめて大きな(40,000リットル以上の)発酵槽の場合のように、細胞を暗い場所で培養することが好ましい。Prototheca種は、固定炭素源を含有する培地内で、光が存在しない状態で、油を生成するように成長し、増殖する。このような成長は、従属栄養性の成長として知られている。
【0144】
一例として、脂質を生成する油産生微生物細胞、好ましくは微細藻類細胞の播種物質が培地に入れられ、細胞が増殖し始めるまでに遅延期間(遅延期)が存在する。遅延期間の後、増殖速度は徐々に上がっていき、対数期すなわち指数増殖期に入る。次いで、指数増殖期の後、窒素のような栄養物が少なくなったり、毒性基質が増えたり、菌体数感知機構のために増殖が遅くなる。このように増殖が遅くなった後、増殖が止まり、細胞は、細胞に与えられている特定の環境に依存して、静止期又は安定成長状態に入る。脂質を豊富に含むバイオマスを得るために、培養物は、典型的には、指数増殖期が終わった後に良好に収穫され、指数増殖期は、窒素又は別の鍵となる栄養物(炭素以外のもの)を枯渇させることによって初期に終わらせてもよく、細胞は、過剰に存在する炭素源を脂質に変換する。培養条件のパラメーターは、油の合計生成量、生成する脂質種の組み合わせ、及び/又は特定の油の生成を最適にするように操作することができる。
【0145】
上述のように、細胞が成長周期の種々の期間を経るように、バイオリアクター又は発酵槽を用いる。一例として、脂質を生成する細胞の播種物質が培地に入れられ、細胞が増殖し始めるまでに遅延期間(遅延期)が存在する。遅延期間の後、増殖速度は徐々に上がっていき、対数期すなわち指数増殖期に入る。次いで、指数増殖期の後、栄養物が少なくなったり、及び/又は毒性基質が増えたりするために増殖が遅くなる。このように増殖が遅くなった後、増殖が止まり、細胞は、細胞に与えられている特定の環境に依存して、静止期又は安定成長状態に入る。本明細書に開示されている細胞による脂質の生成は、対数期の間に行ってもよく、細胞分裂しない状態で、脂質を生成し続けるように、栄養物を供給するか、又は栄養物がまだ利用可能であるような静止期を含め、log期の後に行ってもよい。
【0146】
好ましくは、本明細書に記載されている条件及び当該技術分野で既知の条件を用いて成長させた微生物は、脂質を少なくとも約20重量%、好ましくは、少なくとも約40重量%、より好ましくは、少なくとも約50重量%、最も好ましくは、少なくとも約60重量%含む。プロセスの条件は、特定の用途に適した脂質の収量を高めるように、及び/又は、生成費用を減らすように調節することができる。例えば、特定の実施形態では、微細藻類を、グルコースのような固定炭素エネルギーを過剰量与えつつ、制限濃度の1つ以上の栄養物、例えば、窒素、リン又は硫黄が存在する状態で培養する。窒素による制限は、窒素が過剰に与えられている培地における微生物脂質収量よりも、微生物脂質収量を増やす傾向がある。特定の実施形態では、脂質収量の増加は、少なくとも約10%、約50%、約100%、約200%、又は約500%である。全培養期間の一部又は全期間にわたって、制限量の栄養物が存在する状態で細菌を培養してもよい。特定の実施形態では、栄養物の濃度は、全培養期間の間に、制限濃度及び非制限濃度を少なくとも2回繰り返す。過剰量の炭素を与えつつ、窒素量を制限するか、又はまったく窒素を含まない状態で、時間を延長させて培養を続けることによって、細胞の脂質含有量を増やすことができる。
【0147】
別の実施形態では、脂質経路に関連する酵素(例えば、脂肪酸合成酵素)のための1つ以上の補因子が存在する状態で、脂質を産生する細菌(例えば、微細藻類)を培養することによって、脂質収量を増やす。一般的に、補因子の濃度は、補因子が存在しない状態での微生物脂質収量よりも、微生物脂質(例えば、脂肪酸)の量を増やすのに十分な濃度である。特定の実施形態では、補因子をコードする外来遺伝子を含む細菌(例えば、微細藻類)を培養物に含むことによって、培養物に補因子を与える。又は、補因子の合成に関与するタンパク質をコードする外来遺伝子を含有する細菌(例えば、微細藻類)を含むことによって、培養物に補因子を与えてもよい。特定の実施形態では、適切な補因子は、ビオチン、パントテン酸化合物のような、脂質経路に関連する酵素に必要な任意のビタミンを含む。本発明で使用するのに適した補因子をコードする遺伝子、又はこのような補因子の合成に関与する遺伝子は、十分に知られており、上述のような構築物及び技術を用い、細菌(例えば、微細藻類)に導入することができる。
【0148】
本明細書に記載されているバイオリアクター、培養条件、従属栄養性成長及び増殖方法の特定の例を任意の適切な様式で組み合わせ、微生物の成長効率、及び脂質及び/又はタンパク質の生成効率を高めることができる。
【0149】
乾燥重量で、高い割合の油/脂質が蓄積した微細藻類のバイオマスは、異なる培養方法を用いて作成されており、この方法は、当該技術分野で知られている(PCT公開番号第2008/151149号)。本明細書に記載されている培養方法で作成され、本発明で有用な微細藻類のバイオマスは、乾燥重量で、少なくとも10%の微細藻類の油を含む。ある実施形態では、微細藻類のバイオマスは、乾燥重量で、微細藻類の油を少なくとも25%、少なくとも50%、少なくとも55%、又は少なくとも60%含む。ある実施形態では、微細藻類のバイオマスは、乾燥重量で、微細藻類の油を10〜90%、25〜75%、40〜75%、又は50〜70%含む。
【0150】
本明細書に記載されているバイオマスの微細藻類の油、又は本発明の方法及び組成物で使用するために、バイオマスから抽出された微細藻類の油は、1つ以上の別個の脂肪酸エステル側鎖を有するグリセロ脂質を含む。グリセロ脂質は、1個、2個又は3個の脂肪酸分子でエステル化されたグリセロール分子から成り、脂肪酸分子は、長さはさまざまであってもよく、種々の飽和度を有していてもよい。脂肪酸分子(及び微細藻類の油)の長さ及び飽和度の特徴によって、以下の第IV章にさらに詳細に記載されるように、培養条件又は脂質経路の操作によって、本発明の微細藻類の油中の脂肪酸分子の性質又は比率を改変するように操作することができる。従って、藻類油の特定のブレンドは、2種類以上の微細藻類に由来するバイオマス又は藻類油を混合することによって、1種類の藻の中で調製されてもよく、又は、本発明の藻類油と、大豆、菜種、キャノーラ、パーム、パーム核、ココナツ、トウモロコシ、野菜くず、ナンキンハゼ、オリーブ、ヒマワリ、綿実、鶏脂、牛脂、豚脂、微細藻類、大型藻類、クフェア、亜麻、ピーナッツ、上質のホワイトグリース、ラード、カメリナ・サティバ、カラシの種子、カシューナッツ、オーツ麦、ハウチワマメ、ケナフ、キンセンカ、麻、コーヒー、亜麻仁(亜麻)、ヘーゼルナッツ、ユーホルビア、カボチャの種、コリアンダー、ツバキ、ゴマ、ベニバナ、イネ、アブラギリ、ココア、コプラ、ケシ(pium poppy)、トウゴマの実、ピーカン、ホホバ、ジャトロファ、マカダミア、ブラジルナッツ、アボカド、石油、又は上述のいずれかの油の留分のような他の供給源に由来する油とをブレンドすることによって調製されてもよい。
【0151】
油の組成、すなわち、グリセロ脂質の脂肪酸構成要素の性質及び比率も、少なくとも2種類の別個の微細藻類に由来するバイオマス又は油を混ぜあわせることによって操作することができる。ある実施形態では、少なくとも2種類の別個の微細藻類は、異なるグリセロ脂質プロフィールを有している。この別個の種類の微細藻類を、好ましくは、それぞれの油を生成するような従属栄養条件下で、本明細書に記載されるように一緒に培養してもよく、又は別個に培養してもよい。異なる種類の微細藻類は、細胞のグリセロ脂質の構成成分である別個の脂肪酸を異なる割合で含有していてもよい。
【0152】
一般的に、Prototheca株は、鎖長がC8〜C14の脂肪酸をほとんど含まないか、まったく含まない。例えば、Prototheca moriformis(UTEX 1435)、Prototheca krugani(UTEX 329)、Prototheca stagnora(UTEX 1442)、Prototheca zopfii(UTEX 1438)は、C8脂肪酸をまったく含まず(又は検出可能な量含まず)、C10脂肪酸を0〜0.01%、C12脂肪酸を0.03〜2.1%、C14脂肪酸を1.0〜1.7%含んでいる。
【0153】
ある場合には、鎖長がC8又はC8〜10の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C8の脂肪酸を少なくとも1%、少なくとも1.5%、少なくとも2%、少なくとも3%、少なくとも4%、少なくとも5%、少なくとも10%、少なくとも12%又は少なくとも15%以上有している。他の場合には、鎖長がC10の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C10の脂肪酸を少なくとも1%、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも24%又は少なくとも25%以上有している。他の場合には、鎖長がC12の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C12の脂肪酸を少なくとも1%、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも34%、少なくとも35%又は少なくとも40%以上有している。他の場合には、鎖長がC14の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C14の脂肪酸を少なくとも1%、少なくとも2%、少なくとも3%、少なくとも4%、少なくとも5%、少なくとも6%、少なくとも7%、少なくとも10%、少なくとも15%、少なくとも30%、少なくとも43%又は少なくとも45%以上有している。
【0154】
非限定的な例では、鎖長がC8の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C8の脂肪酸を1%〜25%、又は1%〜15%、好ましくは1.8〜12.29%有している。他の非限定的な例では、鎖長がC10の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C10の脂肪酸を1%〜50%、又は1%〜25%、好ましくは1.91〜23.97%有している。他の非限定的な例では、鎖長がC12の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C12の脂肪酸を5%〜50%、又は10%〜40%、好ましくは13.55〜34.01%有している。他の非限定的な例では、鎖長がC14の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長C14の脂肪酸を1%〜60%、又は2%〜45%、好ましくは2.59〜43.27%有している。他の非限定的な例では、様々な炭素鎖長の脂肪酸アシル−ACP基質に対する広範な特異性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長がC16の脂肪酸を最大30%、最大35%、又は好ましくは最大39.45%まで有している。ある場合には、鎖長がC8及びC14の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、中鎖(C8〜C14)脂肪酸を1%〜75%、又は2%〜60%、好ましくは2.69〜57.98%有している。ある場合には、鎖長がC12〜C14の脂肪酸アシル−ACP基質に対する活性を有する脂肪族アシル−ACPチオエステラーゼをコードするトランス遺伝子を含むPrototheca株は、鎖長がC12〜C14の脂肪酸を少なくとも30%、少なくとも40%、又は少なくとも49%有している。ある場合には、トランスジェニックPrototheca株を、外来遺伝子を保持するような一定で高選択的な圧力下で保持することは、特定の鎖長を有する望ましい脂肪酸が増えるため、有益である。また、高濃度の外来遺伝子を保持することは、本明細書に開示されている相同組み換えベクター及び相同組み換え法を用い、細胞の核染色体に外来遺伝子を挿入することによっても達成することができる。外来遺伝子が核染色体に組み込まれた組み換え細胞は、本発明の目的のひとつである。
【0155】
また微細藻類の油は、微細藻類が産生する他の構成要素、又は培地から微細藻類の油に組み込まれた他の構成要素を含んでいてもよい。これらの他の構成要素は、微細藻類を培養するために用いられる培養条件、微細藻類の種、バイオマスから微細藻類の油を回収するのに用いられる抽出方法、微細藻類の油組成に影響を与え得る他の因子に応じて、様々な量で存在してもよい。このような構成要素の非限定的な例としては、0.01〜0.5mcg/油g、0.025〜0.3mcg/油g、好ましくは0.05〜0.244mcg/油gで存在するカロチノイド;0.01〜0.5mcg/油g、0.025〜0.3mcg/油g、好ましくは0.045〜0.268mcg/油gで存在するクロロフィルA;0.1mcg/油g未満、0.05mcg/油g未満、好ましくは0.025mcg/油g未満の総クロロフィル;1〜300mcg/油g、35〜175mcg/油g、好ましくは38.3〜164mcg/油gで存在するγ−トコフェロール;10〜500mcg/油g、50〜300mcg/油g、好ましくは60.8〜261.7mcg/油gで存在する総トコフェロール;1%未満、0.5%未満、好ましくは0.25%未満のブラシカステロール、カンペステロール、スチグマステロール若しくはβ−シトステロール;400mcg/油g未満、好ましくは300mcg/油g未満の総トコトリエノール;又は100〜500mcg/油g、225〜350mcg/油g、好ましくは249.6〜325.3mcg/油gで存在する総トコトリエノールが挙げられる。
【0156】
他の構成要素としては、限定されないが、リン脂質、トコフェロール、トコトリエノール、カロチノイド(例えば、α−カロチン、β−カロチン、リコピンなど)、キサントフィル(例えば、ルテイン、ゼアキサンチン、α−クリプトキサンチン及びβ−クリトキサンチン(crytoxanthin))、様々な有機又は無機化合物が挙げられる。ある場合には、Prototheca種から抽出される油は、0.001〜0.01mcg/油g、0.0025〜0.05mcg/油g、好ましくは0.003〜0.039mcg/油gの間のルテイン、0.01mcg/油g未満、0.005mcg/油g未満、好ましくは0.003mcg/油gのリコピン;及び0.01mcg/油g未満、0.005mcg/油g未満、好ましくは0.003mcg/油g未満のβ−カロチンを含む。
【0157】
ある実施形態では、本発明は、トリグリセリド油を含む油産生微生物細胞を提供し、ここで、トリグリセリド油の脂肪酸プロフィールは、少なくとも約1%、少なくとも約2%、少なくとも約5%、少なくとも約7%、少なくとも約10%又は少なくとも約15%のC8:0;少なくとも約1%、少なくとも約5%、少なくとも約15%、少なくとも約20%、少なくとも約25%又は少なくとも約30%のC10:0;少なくとも約1%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%又は少なくとも約80%のC12:0;少なくとも約2%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC14:0;少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC16:0;少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC18:0;少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC18:1;約7%未満、約5%未満、約3%未満、約1%未満又は約0%のC18:2;及び少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%の飽和脂肪酸からなる群から選択される。
【0158】
ある実施形態では、油産生微生物細胞は、少なくとも約10%、少なくとも約20%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%であるC8:0とC10:0の総合計量;少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%であるC10:0とC12:0とC14:0の総合計量;少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%であるC16:0とC18:0とC18:1の総合計量;少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%であるC18:0とC18:1とC18:2の総合計量;少なくとも約60%、少なくとも約70s%、少なくとも約80%、少なくとも約90%又は約100%であるC14:0とC16:0とC18:0とC18:1の総合計量;及び約30%未満、約25%未満、約20%未満、約15%未満、約10%未満、約5%未満又は約0%であるC18:1とC18:2の総合計量からなる群から選択される脂肪酸プロフィールを含むトリグリセリド油を含む。
【0159】
ある実施形態では、油産生微生物細胞は、少なくとも約5〜1、少なくとも6〜1、少なくとも7〜1、少なくとも8〜1、少なくとも9〜1又は少なくとも10〜1であるC8:0とC10:0の比;少なくとも約6〜1、少なくとも7〜1、少なくとも8〜1、少なくとも9〜1又は少なくとも10〜1であるC10:0とC12:0の比;少なくとも約5〜1、少なくとも6〜1、少なくとも7〜1、少なくとも8〜1、少なくとも9〜1又は少なくとも10〜1であるC12:0とC14:0の比;少なくとも7〜1、少なくとも8〜1、少なくとも9〜1又は少なくとも10〜1であるC14:0とC12:0の比;及び少なくとも1〜2、少なくとも1〜3、少なくとも1〜4、少なくとも1〜5、少なくとも1〜6、少なくとも1〜7、少なくとも1〜8、少なくとも1〜9又は少なくとも1〜10であるC14:0とC16:0の比からなる群から選択される脂肪酸比を含む脂肪酸プロフィールを有するトリグリセリド油を含む。
【0160】
ある実施形態では、本発明は、油産生微生物トリグリセリド油組成物を提供し、ここで、トリグリセリド油の脂肪酸プロフィールは、少なくとも約1%、少なくとも約2%、少なくとも約5%、少なくとも約7%、少なくとも約10%又は少なくとも約15%のC8:0;少なくとも約1%、少なくとも約5%、少なくとも約15%、少なくとも約20%、少なくとも約25%又は少なくとも約30%のC10:0;少なくとも約1%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%又は少なくとも約80%のC12:0;少なくとも約2%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC14:0;少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC16:0;少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC18:0;少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC18:1;約7%未満、約5%未満、約3%未満、約1%未満又は約0%のC18:2;及び少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%の飽和脂肪酸からなる群から選択される。
【0161】
ある実施形態では、油産生微生物トリグリセリド油組成物は、C10:0とC12:0とC14:0の総合計量が少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C16:0とC18:0とC18:1の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C18:0とC18:1とC18:2の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C14:0とC16:0とC18:0とC18:1の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C8:0とC10:0の総合計量が約50%未満、約45%未満、約40%未満、約35%未満、約30%未満、約25%未満、約20%未満、約15%未満、約10%未満、約5%未満又は約0%であるという脂肪酸プロフィールを含むトリグリセリド油を含む。
【0162】
ある実施形態では、油産生微生物トリグリセリド油組成物は、少なくとも約5〜1、少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC8:0とC10:0の比;少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC10:0とC12:0の比;少なくとも約5〜1、少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC12:0とC14:0の比;少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC14:0とC12:0の比;少なくとも約1〜2、少なくとも約1〜3、少なくとも約1〜4、少なくとも約1〜5、少なくとも約1〜6、少なくとも約1〜7、少なくとも約1〜8、少なくとも約1〜9又は少なくとも約1〜10であるC14:0とC16:0の比からなる群から選択される脂肪酸比を含む脂肪酸プロフィールを有するトリグリセリド油を含む。
【0163】
ある実施形態では、本発明は、少なくとも約1%、少なくとも約2%、少なくとも約5%、少なくとも約7%、少なくとも約10%又は少なくとも約15%のC8:0;少なくとも約1%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%又は少なくとも約30%のC10:0;少なくとも約1%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%又は少なくとも約80%のC12:0;少なくとも約2%、少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC14:0;少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC16:0;少なくとも約5%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約35%、少なくとも約40%、少なくとも約45%又は少なくとも約50%のC18:0;少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%のC18:1;約7%未満、約5%未満、約3%未満、約1%未満又は約0%のC18:2;及び少なくとも約35%、少なくとも約40%、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%又は少なくとも約90%の飽和脂肪酸からなる群から選択される脂肪酸プロフィールを有する油産生微生物トリグリセリド油組成物を生成する方法を提供し、この方法は、(a)油産生微生物細胞の細胞乾燥重量の少なくとも10%がトリグリセリド油になるまで油産生微生物細胞の集団を培地中で育てる工程と、(b)油産生微生物細胞からトリグリセリド油組成物を単離する工程とを含む。
【0164】
ある実施形態では、油産生微生物トリグリセリド油組成物を生成する方法により、C10:0とC12:0とC14:0の総合計量が少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C16:0とC18:0とC18:1の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C18:0とC18:1とC18:2の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C14:0とC16:0とC18:0とC18:1の総合計量が少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%又は約100%である;C8:0とC10:0の総合計量が約50%未満、約45%未満、約40%未満、約35%未満、約30%未満、約25%未満、約20%未満、約15%未満、約10%未満、約5%未満又は約0%であるという脂肪酸プロフィールを含むトリグリセリド油が得られる。
【0165】
ある実施形態では、油産生微生物トリグリセリド油組成物を生成する方法により、少なくとも約5〜1、少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC8:0とC10:0の比;少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC10:0とC12:0の比;少なくとも約5〜1、少なくとも約6〜1、少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC12:0とC14:0の比;少なくとも約7〜1、少なくとも約8〜1、少なくとも約9〜1又は少なくとも約10〜1であるC14:0とC12:0の比;及び少なくとも約1〜2、少なくとも約1〜3、少なくとも約1〜4、少なくとも約1〜5、少なくとも約1〜6、少なくとも約1〜7、少なくとも約1〜8、少なくとも約1〜9又は少なくとも約1〜10であるC14:0とC16:0の比からなる群から選択されるトリグリセリド油比を含む脂肪酸プロフィールを有するトリグリセリド油が得られる。
【0166】
(III.遺伝子操作方法及び材料)
本発明は、本発明の方法で有用なPrototheca細胞、及び限定されないが、組み換えPrototheca moriformis、Prototheca zopfii、Prototheca krugani、Prototheca stagnora宿主細胞を含む組み換え宿主細胞を含めた微生物を遺伝的に改変する方法及び材料を提供する。読者が読みやすいように、これらの方法及び材料の記載をいくつかの節に分けている。第1節では、形質転換方法について記載している。第2節では、相同組み換えを用いた遺伝子操作方法について記載している。第3節では、発現ベクター及び成分について記載している。
【0167】
本発明の特定の実施形態では、微生物を遺伝的に改変して、脂質産生を増強する、微生物により生成される成分の特性若しくは割合を改変する、又は各種の原材料物質でのde novo成長特性を向上させる若しくはこれをもたらすことが望ましい。Chlorella、特に、Chlorella protothecoides、Chlorella minutissima、Chlorella sorokiniana、Chlorella ellipsoidea、Chlorella sp.及びChlorella emersoniiが本明細書に記載の遺伝子操作方法で使用するのに好ましい微生物であるが、他のChlorella種及びその他の様々な微生物も使用することができる。
【0168】
天然の入手源から単離されるフラグメントを用いたクローン化技術により、プロモーター、cDNA及び3’UTR、並びに他のベクターのエレメントを作製することができる(例えば、Molecular Cloning:A Laboratory Manual,Sambrook et al.(第3版,2001,Cold Spring Harbor Press);及び米国特許第4,683,202号を参照)。あるいは、既知の方法を用いて合成により、エレメントを作製することができる(例えば、Gene.1995 Oct 16;164(1):49−53を参照)。
【0169】
(1.操作方法−形質転換)
細胞を、例えば、微粒子銃、エレクトロポレーション(Maruyama et al.(2004)、Biotechnology Techniques 8:821−826)、ガラスビーズによる形質転換、及び炭化ケイ素ウィスカーによる形質転換のような任意の適切な技術によって形質転換することができる。使用可能な別の方法は、プロトプラストを作成し、CaCl
2及びポリエチレングリコール(PEG)を用い、組み換えDNAを微細藻類細胞に導入することを含む(Kim et al.(2002)、Mar.Biotechnol.4:63−73、この論文は、Chorella ellipsoideaを形質転換するために、この方法を用いることを報告している)。微細藻類の共形質転換を利用し、2種類の別個のベクター分子を細胞に同時に導入することができる(例えば、Protist 2004 Dec;155(4):381−93)。
【0170】
微粒子銃による方法(例えば、Sanford、Trends In Biotech.(1988)6:299 302、米国特許第4,945,050号;エレクトロポレーション(Fromm et al.、Proc.Nat’l.Acad.Sci.(USA)(1985)82:5824 5828);レーザービーム、マイクロインジェクション、又はDNAを微細藻類に導入することが可能な任意の他の方法の使用を、Prototheca細胞を形質転換するために用いることができる。
【0171】
Chorellaのような微生物にトランス遺伝子を導入するのに都合の良い任意の技術を本発明で使用することができる。Dawson et al.(1997)(上記)は、微小発射ボンバードメント(micro−projectile bombardment)を使用して、Chlorella vulgaris由来の酸還元酵素(NR)遺伝子をNR欠損Chlorella sorokiniana変異体に導入し、安定な形質転換体を得ることについて記載している。簡潔には、0.4ミクロンのタングステンビーズをプラスミドでコーティングし、3×10
7個のC.sorokiniana細胞を非選択寒天培地の中央の1/3に播種し、PDS−1000/He Biolistic Particle Delivery(登録商標)システム(Bio−Rad)で粒子を撃ち込んだ。
【0172】
Chlorellaのような微生物にトランス遺伝子を導入するための好ましい方法は、Kim et al.(2002),Mar.Biotechnol.4:63−73により記載されている方法である。Kimは、CaCl
2とポリエチレングリコール(PEG)を用いたChorella ellipsoideaのプロトプラストの形質転換について報告している。具体的には、C.ellipsoidea細胞を1〜2×10
8/mlの密度まで増殖させてプロトプラストを作製した。1600gで5分間の遠心分離により細胞を回収及び洗浄し、0.6Mのソルビトール、0.6Mのマンニトール、4%(重量/容積)のセルロース(Calbiochem)、2%(重量/容積)のマセラーゼ(Calbiochem)及び50単位のペクチナーゼ(Sigma)を含有する5mlのリン酸緩衝液(pH6.0)中に再び懸濁させた。細胞懸濁物を25℃で16時間、暗所で穏やかに振とうしながらインキュベートした。得られたプロトプラストを、400gで5分間の遠心分離により回収した。ペレットを0.6Mのソルビトールと0.6Mのマンニトールを含有する5mlのf/2培地中に穏やかに再び懸濁させ、400gで5分間遠心分離した。このペレットを、50mMのCaCl
2を含有する0.6Mソルビトール/マンニトール溶液1ml中に再び懸濁させた。次いで、0.4ml中10
7〜10
8個のプロトプラストに、5mgのトランス遺伝子DNAを25μgの仔ウシ胸腺DNA(Sigma)とともに加えた。室温で15分後、200μLのPNC(40%のポリエチレングリコール4000、0.8MのNaCl、50MmのCaCl
2)を加え、室温で30分間、穏やかにかき混ぜた。この後、0.6Mソルビトール/マンニトール溶液、1%酵母抽出物及び1%グルコースを添加した0.6mlのf/2培地を加え、細胞壁再生のために、形質転換細胞を25℃で12時間、暗所でインキュベートした。Huang et al.(2007)(上記)は同様の方法を用いて、水銀還元酵素をコードするトランス遺伝子をChlorella sp.DT.に導入した。
【0173】
Chorellaのような微生物を形質転換するために、エレクトロポレーションも用いられてきた。Maruyama et al.(2004),Biotechnology Techniques 8:821−826(その内容全体が参照により組み込まれる)の報告によれば、静止期の細胞から作製したChlorella saccharophila c−211−1aのプロトプラストにトランス遺伝子を導入するためにこの技術が用いられた。600〜900V/cmの間の電界強度及び約400msのパルス持続時間で、導入プラスミドの一過性発現が見られ、70kDaのFITC−デキストランに対する高い膜透過性が確認された。
【0174】
Chlorellaのような微生物におけるトランス遺伝子発現の例が文献に見いだされる(例えば、Current Microbiology Vol.35(1997),pp.356−362;Sheng Wu Gong Cheng Xue Bao.2000 Jul;16(4):443−6;Current Microbiology Vol.38(1999),pp.335−341;Appl Microbiol Biotechnol(2006)72:197−205;Marine Biotechnology 4,63−73,2002;Current Genetics 39:5,365−370(2001);Plant Cell Reports 18:9,778−780,(1999);Biologia Plantarium 42(2):209−216,(1999);Plant Pathol.J 21(1):13−20,(2005)を参照)。また本明細書の実施例も参照されたい。
【0175】
油産生酵母(例えば、Yarrowia lipolytica)におけるトランス遺伝子発現の例が文献に見いだされる(例えば、Bordes et al.、J Microbiol Methods,Jun 27(2007)を参照)。真菌(例えば、Mortierella alpine、Mucor circinelloides及びAspergillus ochraceus)におけるトランス遺伝子発現の例も文献に見いだされる(例えば、Microbiology,Jul;153(Pt.7):2013−25(2007);Mol Genet Genomics,Jun;271(5):595−602(2004);Curr Genet,Mar;21(3):215−23(1992);Current Microbiology,30(2):83−86(1995);Sakuradani,NISR Research Grant,”Studies of Metabolic Engineering of Useful Lipid−producing Microorganisms”(2004);及び国際出願PCT/JP2004/012021号を参照)。大腸菌(E.coli)のような細菌における外来遺伝子発現の例がよく知られており、例えば、Molecular Cloning:A Laboratory Manual,Sambrook et al.(第3版,2001,Cold Spring Harbor Press)を参照されたい。
【0176】
本発明による微生物の形質転換のためのベクターを、当業者によく知られた既知の技術により調製することができる。複数のChlorella種の形質転換に使用される構築物のヌクレオチド配列は配列番号8に対応する。一実施形態では、微細藻類のような微生物内でのリパーゼ遺伝子発現のための例示的なベクターの設計は、リパーゼをコードする遺伝子を、微細藻類内で活性なプロモーターと動作可能に連結した状態で含む。あるいは、ベクターが、目的の遺伝子と動作可能に連結した状態でプロモーターを含まない場合、遺伝子を、ベクターの組み込み位置で内在するプロモーターに動作可能に連結するように、細胞内で形質転換してもよい。プロモーターを用いずに形質転換する方法は、微細藻類でうまく働くことがわかっている(例えば、Plant Journal 14:4,(1998),pp.441−447を参照)。またベクターは、例えば抗生物質又は除草剤、すなわち選択マーカーに対する耐性を付与するタンパク質をコードする第2の遺伝子も含み得る。場合により、一方又は両方の遺伝子の後に、ポリアデニル化シグナルを含む3’非翻訳配列が続く。2つの遺伝子をコードする発現カセットは、ベクター内で物理的に連結されていても、別々のベクター上にあってもよい。また微細藻類の共形質転換を利用することもでき、この方法では、別個のベクター分子を用いて細胞を同時に形質転換する(例えば、Protist 2004 Dec;155(4):381−93を参照)。耐性カセットを欠く細胞が成長しない条件下、抗生物質などの選択マーカーの存在下で成長する能力に基づいて、形質転換細胞を任意に選択することができる。
【0177】
(2.操作方法−相同組み換え)
相同組み換えは、相補的DNA配列を整列させ、相同領域の置き換えを可能にすることである。標的となるゲノム配列(「テンプレート」)と同種の配列を含むトランスジェニックDNA(「ドナー」)を有機体に導入し、次いで、対応するゲノム同種配列の部位にあるゲノムで組み換えが起こる。このプロセスの機構的な工程は、ほとんどの場合、(1)同種DNAセグメントを対にすることと;(2)ドナーDNA分子内に二本鎖開裂部分を導入することと;(3)自由になったドナーDNA末端が、テンプレートDNA分子に侵入した後、DNA合成が起こることと;(4)二本鎖開裂部分の修復事象が起こり、最終的な組み換え産物が得られることとを含む。
【0178】
宿主又は有機体で相同組み換えを行う能力は、分子の遺伝子レベルで行うことができ、用途に応じた油を産生することができる油産生細菌の生成に有用であるといった多くの実用的意義がある。相同組み換えは、それ自体の本来の性質により、正確な遺伝子標的事象であり、従って、同じ標的配列を用いて作られたほとんどのトランスジェニック系は、表現型の観点では本質的に同一であり、それほど多くの形質転換事象をスクリーニングする必要はない。また、相同組み換えは、遺伝子が宿主の染色体に挿入される事象を標的としており、これにより、遺伝子の選択が存在しない状態であっても、優れた遺伝子安定性が得られる。染色体上の遺伝子座が異なることは、異種プロモーター/UTRに由来するものであっても、遺伝子発現に影響を与えると考えられるため、相同組み換えは、よく知られていないゲノム環境にある遺伝子座を検索し、これらの環境が遺伝子発現に与える影響を評価する方法になり得る。
【0179】
相同組み換えを用いる特に有用な遺伝子操作は、プロモーター/UTRのような選択特異的な宿主制御エレメントが、非常に特異的な様式で異種遺伝子を発現させることである。例えば、選択マーカーをコードする異種遺伝子を用いたデサチュラーゼ遺伝子/遺伝子ファミリーの切除又はノックアウトにより、宿主細胞内で産生される飽和脂肪酸の全体的な百分率が増加すると予想される。実施例11は、相同組み換え標的構築物、及びPrototheca moriformisにおいて生じるこのようなデサチュラーゼ遺伝子の切除またはノックアウトの実施例を記載している。
【0180】
相同組み換えが、正確な遺伝子標的事象であるため、十分なフランキング領域が特定されていれば、目的の遺伝子又は領域の中にある任意のヌクレオチドを正確に改変するために用いることができる。従って、相同組み換えは、RNA及び/又はタンパク質の遺伝子発現に影響を及ぼす制御配列を改変する手段として用いることもできる。また、相同組み換えは、基質特異性、親和性及びKmのような酵素活性を改変する試みにおいて、タンパク質コード領域を改変するために用いることもでき、これにより、宿主細胞の代謝に望ましい変化を起こすことができる。相同組み換えは、遺伝子標的化、遺伝子変換、遺伝子欠失、遺伝子重複、遺伝子反転を生じるようにホストゲノムを操作し、プロモーター、エンハンサー、3’UTRのような遺伝子発現制御エレメントを交換するための強力な手段を与える。
【0181】
相同組み換えは、内在する宿主細胞ゲノム内にある目的の遺伝子又は領域を「標的とする」ために、内在する配列の一部を含む標的構築物を用いることによって行うことができる。このような標的配列は、目的の遺伝子又は領域の5’末端に位置していてもよく、目的の遺伝子/領域の3’末端に位置していてもよく、目的の遺伝子/領域に隣接していてもよい。このような標的構築物を、さらなるベクター骨格を有する超らせん構造のプラスミドDNAとして、ベクター骨格を有さないPCR産物として、又は線状分子として宿主細胞内で形質転換してもよい。ある場合には、まず、制限酵素を用いて、トランスジェニックDNA(ドナーDNA)内にある同種配列にさらすことが有益な場合がある。この工程によって、組み換え効率が増し、望ましくない事象の発生を減らすことができる。組み換え効率を高める他の方法としては、処理されるゲノム配列に対して同種の線状末端を含有する形質転換されたトランスジェニックDNAを作成するためにPCRを用いることが挙げられる。
【0182】
非限定的な例示の目的で、相同組み換えに有用なドナーDNA配列の領域としては、Prototheca moriformisのDNAのKE858領域が挙げられる。KE858は1.3kbのゲノムフラグメントであり、タンパク質のトランスファーRNA(tRNA)ファミリーと相同性を共有するタンパク質のコード領域の一部を含む。Prototheca moriformis(UTEX 1435)ゲノム内にKE858配列が単一コピーで存在することが、サザンブロット法により示されている。この領域及びこの領域を相同組み換え標的化で使用した例が、国際出願PCT/US2009/66142号に記載されている。ドナーDNAの別の有用な領域は、6S領域ゲノム配列の一部分である。Prototheca morifomisの相同組み換えにおけるこの配列の使用を、以下の実施例に記載する。
【0183】
(3.ベクター及びベクター成分)
本発明に従う微生物を形質転換するためのベクターは、本明細書の開示を考慮して、当業者には有名な既知の技術によって調製することができる。ベクターは、典型的には、1つ以上の遺伝子を含有しており、それぞれの遺伝子は、望ましい生成物(遺伝子産物)を発現するようにコードしており、この遺伝子発現を制御し、組み換え細胞内の特定の位置に向かうように遺伝子産物を標的化するような1つ以上の制御配列に動作可能に連結している。読者の助けとなるように、この節をいくつかの副節に分けている。A副節は、制御配列、典型的には、ベクター上に含まれている制御配列、及び本発明によって提供される新規制御配列について記載している。B副節は、遺伝子、典型的には、ベクターに含まれる遺伝子、及び新規コドン最適化方法、及び本発明によって提供される方法によって調製される遺伝子について記載している。
【0184】
(A.制御配列)
制御配列は、コード配列の発現を制御するか、又は遺伝子産物を、細胞内又は細胞外の特定の位置に向かわせる核酸である。発現を制御する制御配列としては、例えば、コード配列の転写を制御するプロモーター、コード配列の転写を止めるターミネーターが挙げられる。別の制御配列は、コード配列の末端に位置する3’非翻訳配列であり、ポリアデニル化シグナルをコードする。遺伝子産物を特定の位置に向かわせる制御配列としては、シグナルペプチドをコードする配列が挙げられ、この配列は、細胞内又は細胞外の特定の位置に、この配列が結合したタンパク質を向かわせる。
【0185】
従って、微細藻類において外来遺伝子を発現するような例示的なベクターの設計は、望ましい遺伝子産物(例えば、選択可能なマーカー、脂質経路改変酵素、又はショ糖利用酵素)のためのコード配列を、微細藻類内で活性なプロモーターと動作可能に連結した状態で含む。又は、ベクターが、目的のコード配列と動作可能に連結した状態でプロモーターを含まない場合、コード配列を、ベクターの組み込み位置で内在するプロモーターに動作可能に連結するように、細胞内で形質転換してもよい。プロモーターを用いずに形質転換する方法は、微細藻類でうまく働くことがわかっている(例えば、Plant Journal 14:4、(1998)、pp.441−447)。
【0186】
多くのプロモーターは、微細藻類内で活性であり、形質転換される藻に内在するプロモーター、形質転換される藻に内在しないプロモーター(すなわち、他の藻に由来するプロモーター、高等植物に由来するプロモーター、植物ウイルス又は藻ウイルスに由来するプロモーター)を含む。微細藻類内で活性な、具体的な外来のプロモーター及び/又は内在するプロモーター(微細藻類中で機能する抗生物質耐性のある遺伝子)は、PCT公開番号第2008/151149号及びこの明細書に引用されている参考文献に記載されている)。
【0187】
外来遺伝子を発現させるために用いられるプロモーターは、その外来遺伝子に天然で連結しているプロモーターであってもよく、又は、異種遺伝子であってもよい。ある種のプロモーターは、1つより多い微細藻類において活性である。他のプロモーターは、種に特異的である。具体的なプロモーターとしては、以下の実施例で用いられる、Chlamydomonas reinhardtiiに由来するβ−チューブリンのようなプロモーター、カリフラワーモザイクウイルス(CMV)及びクロレラウイルスのような、微細藻類の複数の種の中で活性であることが示されているウイルスプロモーターが挙げられる(例えば、Plant Cell Rep.2005 Mar;23(10−11):727−35;J Microbiol.2005 Aug;43(4):361−5;Mar Biotechnol(NY).2002 Jan;4(1):63−73)。Prototheca内で外来遺伝子を発現させるのに適切な別のプロモーターは、Chlorella sorokinianaグルタミン酸脱水素酵素プロモーター/5’UTRである。場合により、これらの配列のうち、プロモーターを含有し、少なくとも10、20、30、40、50、又は60ヌクレオチド、又はそれ以上が使用される。Prototheca内で外来遺伝子を発現させるのに有用な代表的なプロモーターは、本明細書の配列表に列挙されており、例えば、Chlorella HUP1遺伝子のプロモーター(配列番号1)、Chlorella ellipsoidea硝酸還元酵素プロモーター(配列番号2)がある。Chlorellaウイルスプロモーターを、Prototheca内で遺伝子を発現させるために用いることもでき、例えば、米国特許第6,395,965号の配列番号1〜7が挙げられる。Prototheca内で活性なさらなるプロモーターは、例えば、Biochem Biophys Res Commun.1994 Oct 14;204(1):187−94;Plant Mol Biol.1994 Oct;26(1):85−93;Virology.2004 Aug 15;326(1):150−9;及び、Virology.2004 Jan 5;318(1):214−23に見いだすことができる。他の有用なプロモーターは、下の実施例に詳細に記載されている。
【0188】
プロモーターは、一般的に、構成的であるか、又は誘発性であると特徴づけることができる。構成的プロモーターは、一般的に、いつでも(又は、細胞周期の特定の時期に)同じレベルで活性であるか、又は発現を起こすように機能する。誘発性プロモーターは、これとは異なり、刺激に応答したときのみ、活性である(又は不活性化する)か、又は顕著に上方調節されるか、又は下方調節される。どちらの種類のプロモーターも、本発明の方法での用途がある。本発明で有用な誘発性プロモーターとしては、例えば、外から与えられる低分子(例えば、配列番号1の場合には、グルコース)、温度(熱いか、又は冷たい)、培地中の窒素不足などの刺激に応答して、動作可能に連結した遺伝子の転写に介在するプロモーターが挙げられる。適切なプロモーターは、本質的にサイレント遺伝子である遺伝子の転写を活性化させることができるか、又は、低濃度で転写されるような動作可能に連結した遺伝子の転写を上方調節し、好ましくは、かなり上方調節することができる。以下の実施例は、Prototheca細胞において有用なさらなる誘発性プロモーターを記載している。
【0189】
停止領域の制御配列の包含は任意であり、利用される場合には、停止領域は比較的置き換え可能であるため、その選択は、主に簡便なものである。停止領域は、転写開始領域(プロモーター)に由来するものであってもよく、目的のDNA配列に由来するものであってもよく、又は、別の供給源から得られるものであってもよい。例えば、Chen and Orozco、Nucleic Acids Res.(1988)16:8411。
【0190】
また、本発明は、制御配列及び組み換え遺伝子、及び目的の遺伝子を区画化して発現するための、これらを含むベクターを提供する。標的とするための細胞小器官は、葉緑体、プラスチド、ミトコンドリア、小胞体である。それに加え、本発明は、制御配列及び組み換え遺伝子、細胞の外側にタンパク質を分泌するための、これらを含むベクターを提供する。
【0191】
Protothecaの核ゲノム内で発現するタンパク質は、プラスチド標的シグナルを用い、プラスチドを標的としてもよい。Chlorellaに内在するプラスチド標的配列は知られており、例えば、プラスチドを標的とするタンパク質をコードする、Chlorella核ゲノム内の遺伝子、例えば、GenBank寄託番号AY646197及びAF499684が挙げられ、一実施形態では、このような制御配列は、Protothecaプラスチドでタンパク質を発現させることを標的とするために、本発明のベクター内で使用される。
【0192】
以下の実施例は、宿主細胞の正しい区画に異種タンパク質を向かわせるために、プラスチド標的配列を使用することを記載している。cDNAライブラリーは、Prototheca moriformis細胞及びChlorella protothecodies細胞を用いて作られ、国際出願PCT/US2009/066142号に記載されている。
【0193】
本発明の別の実施形態では、Prototheca内でのポリペプチドの発現は、小胞体を標的としている。発現ベクター内の適切な保持シグナル又は選別シグナルによって、タンパク質が確実に小胞体(ER)に保持され、ゴルジ体の下流には行かない。例えば、Wageningen UR−Plant Research InternationalのIMPACTベクター1.3ベクターは、よく知られているKDEL保持シグナル又は選別シグナルを含んでいる。このベクターを用い、ERを保持することは、発現レベルが5倍以上に高まることが報告されているという点で、実益がある。この現象の主な理由は、ERが、細胞質に存在するプロテアーゼより低い濃度のプロテアーゼを含んでいるか、及び/又は、細胞質に存在するプロテアーゼとは異なる、発現したタンパク質の翻訳後の分解に関与するプロテアーゼを含んでいるからだと思われる。緑色微細藻類内で機能するER保持シグナルが知られている。例えば、Proc Natl Acad Sci USA.2005 Apr 26;102(17):6225−30を参照。
【0194】
本発明の別の実施形態では、ポリペプチドは、細胞から出て、培地に分泌することを標的としている。本発明の方法に従ってProtothecaで使用することが可能な、Chlorella内で活性な分泌シグナルの例については、Hawkins et al.、Current Microbiology Vol.38(1999)、pp.335−341を参照。
【0195】
多くのプロモーターは微細藻類内で活性であり、形質転換される藻類に内在するプロモーター、形質転換される藻に内在しないプロモーター(すなわち、他の藻類由来のプロモーター、高等植物由来のプロモーター、植物ウイルス又は藻ウイルス由来のプロモーター)を含む。微細藻類内で活性な外来のプロモーター及び/又は内在するプロモーター、並びに微細藻類中で機能する抗生物質耐性遺伝子は、例えば、Curr Microbiol.1997 Dec;35(6):356−62(Chlorella vulgaris);Mar Biotechnol(NY).2002 Jan;4(1):63−73(Chlorella ellipsoidea);Mol Gen Genet.1996 Oct 16;252(5):572−9(Phaeodactylum tricornutum);Plant Mol Biol.1996 Apr;31(1):1−12(Volvox carteri);Proc Natl Acad Sci U S A.1994 Nov 22;91(24):11562−6(Volvox carteri);Falciatore A,Casotti R,Leblanc C,Abrescia C,Bowler C,PMID:10383998,1999 May;1(3):239−251(Laboratory of Molecular Plant Biology,Stazione Zoologica,Villa Comunale,I−80121 Naples,Italy)(Phaeodactylum tricornutum及びThalassiosira weissflogii);Plant Physiol.2002 May;129(1):7−12.(Porphyridium sp.);Proc Natl Acad Sci U S A.2003 Jan 21;100(2):438−42.(Chlamydomonas reinhardtii);Proc Natl Acad Sci U S A.1990 Feb;87(3):1228−32.(Chlamydomonas reinhardtii);Nucleid Acids Res.1992 Jun 25;20(12):2959−65;Mar Biotechnol(NY).2002 Jan;4(1):63−73(Chlorella);Biochem Mol Biol Int.1995 Aug;36(5):1025−35(Chlamydomonas reinhardtii);J Microbiol.2005 Aug;43(4):361−5(Dunaliella);Yi Chuan Xue Bao.2005 Apr;32(4):424−33(Dunaliella);Mar Biotechnol(NY).1999 May;1(3):239−251.(Thalassiosira及びPhaedactylum);Koksharova,Appl Microbiol Biotechnol 2002 Feb;58(2):123−37(様々な種);Mol Genet Genomics.2004 Feb;271(1):50−9(Thermosynechococcus elongates);J.Bacteriol.(2000),182,211−215;FEMS Microbiol Lett.2003 Apr 25;221(2):155−9;Plant Physiol.1994 Jun;105(2):635−41;Plant Mol Biol.1995 Dec;29(5):897−907(Synechococcus PCC 7942);Mar Pollut Bull.2002;45(1−12):163−7(Anabaena PCC 7120);Proc Natl Acad Sci U S A.1984 Mar;81(5):1561−5(Anabaena(様々な株));Proc Natl Acad Sci U S A.2001 Mar 27;98(7):4243−8(Synechocystis);Wirth,Mol Gen Genet 1989 Mar;216(1):175−7(様々な種); Mol Microbiol,2002 Jun;44(6):1517−31及びPlasmid,1993 Sep;30(2):90−105(Fremyella diplosiphon);Hall et al.(1993)Gene 124:75−81(Chlamydomonas reinhardtii);Gruber et al.(1991).Current Micro.22:15−20;Jarvis et al.(1991)Current Genet.19:317−322(Chlorella)により記載されており、さらなるプロモーターに関しては、米国特許第6,027,900号のTable1も参照されたい。
【0196】
外来遺伝子を発現させるために用いられるプロモーターは、その外来遺伝子に天然で連結しているプロモーターであっても、異種遺伝子であってもよい。ある種のプロモーターは、微細藻類の2つ以上の種において活性である。他のプロモーターは種特異的である。好ましいプロモーターとしては、Chlamydomonas reinhardtiiに由来するRBCS2のようなプロモーター、並びにカリフラワーモザイクウイルス(CMV)及びクロレラウイルスのようなウイルスプロモーターが挙げられ、これらは複数種の微細藻類において活性であることが示されている(例えば、Plant Cell Rep.2005 Mar;23(10−11):727−35;J Microbiol.2005 Aug;43(4):361−5;Mar Biotechnol(NY).2002 Jan;4(1):63−73を参照)。他の実施形態では、Botryococcusリンゴ酸デヒドロゲナーゼプロモーター、配列番号150の任意の部分を含む核酸、又はChlamydomonas reinhardtii RBCS2プロモーター(配列番号151)を使用することができる。場合により、これらの配列のうち、プロモーターを含有する少なくとも10、20、30、40、50又は60ヌクレオチド、又はそれ以上のものが使用される。Chlorella属の種に内在する好ましいプロモーターは、配列番号1及び配列番号2である。
【0197】
Chlorella内で外来遺伝子を発現させるのに有用な好ましいプロモーターは、本願の配列表に列挙されており、例えば、Chlorella HUP1遺伝子のプロモーター(配列番号1)及びChlorella ellipsoidea硝酸還元酵素プロモーター(配列番号2)がある。Chlorellaウイルスプロモーターを、Chlorella内で遺伝子を発現させるために用いることもでき、例えば、米国特許第6,395,965号の配列番号1〜7が挙げられる。Chlorella内で活性なさらなるプロモーターは、例えば、Biochem Biophys Res Commun.1994 Oct 14;204(1):187−94;Plant Mol Biol.1994 Oct;26(1):85−93;Virology.2004.2004 Aug 15;326(1):150−9;及びVirology.2004 Jan 5;318(1):214−23に見いだすことができる。
【0198】
(B.遺伝子及びコドンの最適化)
典型的には、遺伝子は、プロモーターと、コード配列と、停止制御配列とを含む。組み換えDNA技術によって組み立てられる場合、遺伝子は、発現カセットと呼ばれることもあり、組み換え遺伝子を宿主細胞に導入するために使用されるベクターに簡便に挿入するために、制限配列に隣接していてもよい。発現カセットは、ゲノム由来のDNA配列、又は相同組み換えにいよって発現カセットをゲノムに安定に組み込みやすくすることを標的とした他の核酸に隣接していてもよい。又は、ベクター及びその発現カセットは、組み込まれないままであってもよく、この場合には、ベクターは、典型的には、異種ベクターDNAを複製するために与えることができるような、複製起源を含んでいてもよい。
【0199】
ベクター上に存在する共通の遺伝子は、タンパク質をコードする遺伝子であり、この発現によって、このタンパク質を含有する組み換え細胞が、このタンパク質を発現しない細胞と分化する。このような遺伝子、及びその対応する遺伝子産物は、選択可能なマーカーと呼ばれる。任意のさまざまな選択可能なマーカーが、Protothecaを形質転換するのに有用なトランス遺伝子構築物中で用いられてもよい。適切な選択可能なマーカーの例としては、G418耐性遺伝子、硝酸還元酵素遺伝子(Dawson et al.(1997)、Current Microbiology 35:356−362を参照)、ハイグロマイシンホスホトランスフェラーゼ遺伝子(HPT;Kim et al.(2002)、Mar.Biotechnol.4:63−73を参照)、ネオマイシンホスホトランスフェラーゼ遺伝子、フレオマイシン対する耐性を付与するble遺伝子(Huang et al.(2007)、Appl.Microbiol.Biotechnol.72:197−205)、及びカナマイシンに対する耐性を付与するアミノグリコシド−3’−O−ホスホトランスフェラーゼ(配列番号194)が挙げられる。微細藻類の抗生物質に対する感度を決める方法はよく知られている。例えば、Mol Gen Genet.1996 Oct 16;252(5):572−9。
【0200】
抗生物質系でない他の選択マーカーも、一般にPrototheca種を含めた微細藻類を形質転換するのに有用なトランス遺伝子構築物中で用いることができる。微細藻類がこれまで利用することができなかった特定の炭素源を利用する能力を付与する遺伝子も、選択マーカーとして用いることができる。例として、Prototheca moriformis株は典型的には、ショ糖では、たとえ成長しても良好ではない。ショ糖インベルターゼ遺伝子を含む構築物を用いることにより、陽性の形質転換体がショ糖を炭素基質として成長する能力を付与することができる。他の選択マーカーとともに選択マーカーとしてショ糖利用を用いることに関するさらなる詳細は、以下の第4節で述べられている。
【0201】
本発明の目的のために、本発明の組み換え宿主細胞を調製するために用いられる発現ベクターは、遺伝子のひとつが選択可能なマーカーである場合、少なくとも2個、多くは3個の遺伝子を含んでいるだろう。例えば、本発明の遺伝子改変されたProtothecaは、選択可能なマーカーに加え、例えば、ショ糖インベルターゼ遺伝子又はアシルACP−チオエステラーゼ遺伝子のような1つ以上の外来遺伝子を含む本発明のベクターで形質転換させることによって作られてもよい。1個又は全部の遺伝子が、誘発性プロモーターを用いて発現してもよく、これにより、これらの遺伝子が発現する相対的なタイミングを制御し、脂質収量及び脂肪酸エステルへの変換を高めることができる。2種以上の外来遺伝子の発現は、同じ誘発性プロモーターで制御されていてもよく、異なる誘発性(又は構成的)プロモーターで制御されていてもよい。後者の状況では、第1の外来遺伝子の発現は、第1の期間に誘発されてもよく(この間に、第2の外来遺伝子の発現が誘発されてもよく、誘発されなくてもよく)、第2の外来遺伝子の発現は、第2の期間に誘発されてもよい(この間に、第1の外来遺伝子の発現が誘発されてもよく、誘発されなくてもよい)。
【0202】
他の実施形態では、2種以上の外来遺伝子(任意の選択可能なマーカーに加えて)は、脂肪族アシル−ACPチオエステラーゼ及び脂肪酸アシル−CoA/アルデヒド還元酵素、アルコール産物を与えるこれらの組み合わせ作用である。さらに、限定されないが、アルデヒドを生成するための脂肪族アシル−ACPチオエステラーゼ及び脂肪酸アシル−CoA還元酵素のような他の外来遺伝子の組み合わせも提供される。一実施形態では、ベクターは、アルカンを生成するための、脂肪族アシル−ACPチオエステラーゼ、脂肪酸アシル−CoA還元酵素、脂肪族アルデヒド脱炭酸酵素の組み合わせを与える。これらのそれぞれの実施形態では、1つ以上の外来遺伝子が、誘発性プロモーターを用いて発現してもよい。
【0203】
2種以上の外来遺伝子を発現する、他の代表的な本発明のベクターとしては、ショ糖トランスポーター及びショ糖インベルターゼ酵素の両方をコードするベクター、選択可能なマーカーと、分泌されたショ糖インベルターゼとの両方をコードするベクターが挙げられる。いずれかの種類のベクターで形質転換された組み換えProtothecaは、サトウキビ(サトウキビから誘導される糖類)を炭素源として使用する能力が操作されているため、低い製造コストで脂質を産生する。上述の2種類の外来遺伝子の挿入は、定方向変異誘発法及び/又はランダム変異導入法によって多糖生合成を乱すことと組み合わせることができ、脂質産生へと進む炭素の流れが大きくなる方向に進む。個々に、及び組み合わせて、栄養転換、脂質の産生を変えるような操作、外来の酵素を用いた処理によって、微生物が産生する脂質の組成が変わる。この変化によって、産生する脂質の量、他の脂質に対する的な1つ以上の炭化水素種の相対量、及び/又は微生物が産生する脂質種の種類を変えることができる。例えば、微細藻類を、TAGの量及び/又は割合を増やすように操作することができる。
【0204】
組み換えタンパク質の最適な発現のために、形質転換されるべき宿主細胞で優先的に用いられるコドンを用いてmRNAを生成するコード配列を利用することが有益である。従って、トランス遺伝子の適切な発現は、トランス遺伝子のコドンの使用が、トランス遺伝子を発現する有機体の特定のコドンの偏りと適合していることが必要な場合がある。この影響の元になる正確な機構は多くあるが、利用可能なアミノアシル化されたtRNAプールと、細胞内で合成されるタンパク質との適切なバランス、この要求を満たす場合に、トランスジェニックメッセンジャーRNA(mRNA)をもっと効果的な翻訳との組み合わせを含む。トランス遺伝子内のコドンの使用が最適化されていない場合、利用可能なtRNAプールは、異種mRNAの効率的な翻訳を可能にするのに十分ではなく、その結果、リボソームが失速し、停止し、トランスジェニックmRNAが不安定になる場合がある。
【0205】
本発明は、Prototheca内で組み換えタンパク質が首尾よく発現するのに有用な、コドンが最適化された核酸を提供する。Prototheca種内のコドンの使用を、Prototheca moriformisから単離されたcDNA配列を研究することによって分析した。この分析から、24,000を超えるコドンを調べ、以下の表2にその結果を示す。
【0206】
【表2】
[この文献は図面を表示できません]
【0207】
他の実施形態では、組み換えベクター内の遺伝子は、Prototheca株以外の微細藻類株に関して言うと、コドンが最適化されている。例えば、微細藻類内で発現させるために遺伝子を記録する方法は、米国特許第7,135,290号に記載されている。コドンの最適化に関するさらなる情報は、例えば、GenBankのコドン利用に関するデータベースが利用可能である。
【0208】
Chlorella pyrenoidosa、Dunaliella salina及びChlorella protothecoides内での他の非限定的なコドンの使用の例を、それぞれ表28、29及び30に挙げる。
【0209】
【表28】
[この文献は図面を表示できません]
【0210】
【表29】
[この文献は図面を表示できません]
【0211】
【表30】
[この文献は図面を表示できません]
【0212】
(C.誘発性的発現)
また本発明は、目的の遺伝子を発現させる誘発性プロモーターの使用も提供する。具体的には、必要に応じて、例えば細胞の破壊、反応混合物の水含有量の減少、及び/又はTAGから脂肪酸エステルへの変換を促進するための十分なアルコールの添加の後のエステル転移反応を増強するように条件が調節されていれば、リパーゼ遺伝子を発現させる誘発性プロモーターの使用により、微生物の成長後にリパーゼの産生が可能となる。
【0213】
本発明で有用な誘発性プロモーターとしては、例えば、外から与えられる低分子(例えば、配列番号1の場合には、グルコース)、温度(熱いか、又は冷たい)、光などの刺激に応答して、動作可能に連結した遺伝子の転写に介在するプロモーターが挙げられる。適切なプロモーターは、本質的にサイレントな遺伝子の転写を活性化させることができるか、又は、低レベルで転写される動作可能に連結した遺伝子の転写を上方調節する、好ましくは大幅に上方調節することができる。後者の場合には、リパーゼの転写レベルが、リパーゼを発現する微生物の成長をあまり阻害しないことが好ましい。
【0214】
Chlorellaヘキソーストランスポーター遺伝子(配列番号1)を駆動するプロモーターのようなプロモーターにより、Chlorellaでのトランス遺伝子発現を誘発的に行うことができる。このプロモーターは、培地中にグルコースが存在することにより強力に活性化される。
【0215】
(D.2種以上の外来遺伝子の発現)
さらに、遺伝子操作された微細藻類のような微生物は、例えば一方が多糖分解酵素をコードする、例えばリパーゼ遺伝子と溶解遺伝子のような2種以上の外来遺伝子を含み、発現し得る。誘発性プロモーターを用いて一方又は両方の遺伝子を発現させてもよく、これにより、これらの遺伝子が発現する相対的なタイミングを制御して、脂質収量及び脂肪酸エステルへの変換を高めることができる。2種以上の外来遺伝子の発現は、同じ誘発性プロモーターの制御下にあっても、異なる誘発性プロモーターの制御下にあってもよい。後者の場合、第1の外来遺伝子の発現が第1の期間に誘発され(この間、第2の外来遺伝子の発現は誘発されても、されなくてもよい)、第2の外来遺伝子の発現が第2の期間に誘発され得る(この間、第1の外来遺伝子の発現は誘発されても、されなくてもよい)。ショ糖を代謝するように脂質産生微生物を操作するためのベクター及び方法が本明細書に提供されるが、このような形質は、操作された細胞がサトウキビ原材料を脂質に変換することを可能にするため、有利な形質である。
【0216】
例えば、脂肪族アシル−ACPチオエステラーゼと脂肪族アシル−CoA/アルデヒド還元酵素の作用の組み合わせによりアルコール産物が生成されるが、このような2種以上の外来遺伝子を発現する、遺伝子操作された微生物株(例えば、微細藻類、油産生酵母、細菌又は真菌)も本明細書に提供される。さらに、アルデヒドを生成するための脂肪族アシル−ACPチオエステラーゼと脂肪族アシル−CoA還元酵素を非限定的に含めた、外来遺伝子の他の組み合わせが提供される。さらに、本願は、アルカンを生成するための脂肪族アシル−ACPチオエステラーゼと脂肪族アシル−CoA還元酵素と脂肪族アルデヒド脱炭酸酵素の組み合せを提供する。1種以上の外来遺伝子が誘発性プロモーターを用いて発現され得る。
【0217】
本発明での使用に適したさらなる改変の例としては、1つの遺伝子が固定炭素源(ショ糖など)のトランスポーターをコードし、第2の遺伝子がショ糖インベルターゼ酵素をコードする2種以上の外来遺伝子を発現するように、微細藻類株を遺伝子操作することが挙げられる。得られた発酵性微生物は、既に知られている生物学的炭化水素生成の方法により得られるものよりも低い製造コストで炭化水素を生成する。上記2種の外来遺伝子の挿入を、定方向及び/又はランダム変異誘発法によって多糖生合成を乱すことと組み合わせてもよく、これにより炭水化物産生へと進む炭素の流れが大きくなる方向に進む。個々の及び組み合わせた、栄養転換、炭水化物の産生を変える操作、外来の酵素を用いた処理によって、微生物が産生する炭水化物の組成が変わる。この変化は、産生する炭水化物の量、1つ以上の産生された炭化水素種の他の炭水化物に対する量、及び/又は微生物が産生する炭化水素種の種類の変化であり得る。例えば、微細藻類を、TAGの量及び/又は割合を増やすように操作することができる。
【0218】
(E.区画化された発現)
また本発明は、目的遺伝子の区画化された発現も提供する。具体的には、特定の実施形態では、リパーゼの発現を1つ以上の細胞内区画に標的化することが有利であり、この場合、リパーゼがエステル転移反応の開始まで大部分の細胞内脂質から隔離されている。標的とするのに好ましい細胞小器官は、葉緑体、ミトコンドリア及び小胞体である。
【0219】
(1)葉緑体での発現
本発明の一実施形態では、微生物内でのポリペプチド発現は、葉緑体を標的とする。異種遺伝子を葉緑体に対して標的化する方法は既知であり、これを本発明で使用することができる。外来遺伝子産物を葉緑体内に標的化する方法は、Shrier et al.、EMBO J.(1985)4:25 32に記載されている。また、核遺伝子産物を葉緑体内に移動させるためのトランジットペプチドの使用に関して、Tomai et al.、Gen.Biol.Chem.(1988)263:15104 15109及び米国特許第4,940,835号も参照されたい。タンパク質の輸送を葉緑体に方向付ける方法もKenauf TIBTECH(1987)5:40 47で概説されている。Chlorellaに内在する葉緑体標的配列、例えば、葉緑体を標的とするタンパク質をコードする、Chlorella核ゲノム内の遺伝子などが知られており、例えば、GenBank寄託番号AY646197及びAF499684を参照されたい。
【0220】
IMPACTVECTOR1.4ベクターがWageningen UR−Plant Research Internationalにより販売されており、これはChrysanthemum morifoliumの小サブユニットタンパク質の分泌シグナルを用いて、二重膜系を横切って往復しながら異種タンパク質を葉緑体基質(細胞質)環境中に送達するものである。シグナルペプチドの適切なプロセシングを可能にするために、タンパク質が成熟rubiscoタンパク質の最初の11のアミノ酸と融合されている(Wong et al.、Plant Molecular Biology 20:81−93(1992))。シグナルペプチドは、RbcS遺伝子由来の天然のイントロンを含んでいる。
【0221】
別のアプローチでは、異種タンパク質を発現するように葉緑体ゲノムを遺伝子操作する。外来DNAでコーティングした高速タングステン微粒子のレシピエント細胞への撃ち込みを用いたChlamydomonas reinhardtii(緑藻類)葉緑体の安定な形質転換が記載されている。例えば、Boynton et al.、Science(1988)240:1534 1538;Blowers et al.Plant Cel(1989)1:123−132及びDebuchy et al.、EMBO J.(1989)8:2803−2809を参照。タングステン微粒子を用いた形質転換技術は、Klein et al.、Nature(London)(1987)7:70 73により記載されている。植物及び微細藻類の両方の葉緑体形質転換のその他の方法が知られている。例えば、米国特許第5,693,507号;第6,680,426号;及びPlant Physiol.2002 May;129(1):7−12;及びPlant Biotechnol J.2007 May;5(3):402−12を参照。
【0222】
米国特許第6,320,101号(Kaplanらに対し、2001年11月20日発行;参照により組み込まれる)に記載されているように、細胞あたりの葉緑体数を約1に減少するように細胞を化学的に処理することができる。次いで、葉緑体内に少なくとも1つの異種核酸分子を導入する目的で、異種核酸を粒子撃ち込みにより細胞内に導入することができる。葉緑体に内在する酵素により容易に達成される相同組み換えにより葉緑体ゲノム内に組み込まれるように異種核酸を選択する。この目的のために、異種核酸は、目的の遺伝子に加え、葉緑体ゲノムに由来する少なくとも1つの核酸配列を含む。さらに、異種核酸は典型的には、選択マーカーを含む。この技術に関連したさらなる詳細は、参照により組み込まれる米国特許第4,945,050号及び第5,693,507号に見いだされる。このようにして、葉緑体のタンパク質発現系によりポリペプチドが産生され得る。
【0223】
米国特許第7,135,620号(Daniellらに対し、2006年11月14日発行;参照により組み込まれる)には、葉緑体発現ベクター及び関連する方法が記載されている。発現カセットは、コード配列と、葉緑体内でコード配列を適切に発現させるための適当な制御配列とを含むDNA構築物である。典型的な発現カセットは、以下の構成要素を含む:目的のポリペプチドをコードするDNA配列を葉緑体内で転写及び翻訳させる、微生物遺伝子又はpsbAのような葉緑体遺伝子由来の5’非翻訳領域;目的のポリペプチドをコードするDNA配列;並びに導入遺伝子のRNAを安定化して外来遺伝子発現を増加させることができる、葉緑体遺伝子の3’逆方向反復領域のような翻訳及び転写停止領域。カセットは、場合により、抗生物質耐性遺伝子を含み得る。
【0224】
典型的には、発現カセットは、適当なゲノム内への挿入に好都合な制限部位に隣接している。発現カセットは、特に相同組み換えによって発現カセットをゲノムに安定に組み込みやすくするために、葉緑体DNA由来のDNA配列に隣接していてもよい。あるいは、発現カセットは組み込まれていなくてもよく、この場合には、発現カセットは、典型的には、葉緑体内での異種DNAの複製をもたらすことができる葉緑体の複製起源を含む。
【0225】
発現カセットは一般に、葉緑体内で発現可能な遺伝子由来のプロモーター領域を含む。プロモーター領域は、葉緑体遺伝子から入手可能なプロモーター、例えばホウレンソウ若しくはエンドウマメ由来のpsbA遺伝子又はトウモロコシ由来のrbcL及びatpBプロモーター領域、並びにRrnaプロモーターなどを含み得る。Hanley−Bowdoin及びChua,TIBS(1987)12:67 70;Mullet et al.、Plant Molec Biol.(1985)4:39 54;Hanley−Bowdoin(1986)PhD.Dissertation,the Rockefeller University;Krebbers et al.、Nucleic Acids Res.(1982)10:4985 5002;Zurawaki et al.、Nucleic Acids Res.(1981)9:3251 3270;並びにZurawski et al.、Proc.Nat’l Acad Sci.U.S.A.(1982)79:7699 7703にプロモーターの例が記載されている。プロモーターを含まないマーカー遺伝子の5’側に目的のプロモーターを置き、その有効性を、例えば比較的強力な葉緑体プロモーターであるpsbA遺伝子由来プロモーターから得られる転写と比較して観察することにより、他のプロモーターを同定し、そのように同定されたプロモーターの相対的強度を評価することができる。任意の各種技術により、さらに異種遺伝子発現の効率を高めることができる。異種遺伝子の5’側に直列に挿入した複数のプロモーター、例えば2つのpsbAプロモーターの使用、エンハンサー配列の付加などがこれに含まれる。
【0226】
GenBank寄託番号NC_001865(Chlorella vulgaris葉緑体、完全ゲノム)に見いだされるプロモーターのような、Chlorella葉緑体内で活性な多数のプロモーターを、Chlorella葉緑体内での外来遺伝子発現に使用することができる。
【0227】
異種遺伝子の誘発的発現を生じさせることが望ましい場合、転写及び/又は翻訳レベルでの調節をもたらす配列を(3’末端に)含む誘発性プロモーター及び/又は5’非翻訳領域が発現カセットに含まれていてもよい。例えば、5’非翻訳領域は、光により発現が制御可能な遺伝子由来であってよい。同様に、3’逆方向反復領域を用いて、異種遺伝子のRNAを安定化してもよい。誘発性遺伝子は、目的の特定刺激に応答して発現が増加すること、及び刺激の非存在下で発現が低下する、又は発現しないことにより同定され得る。例えば、光誘発性の遺伝子は、光照射時に発現の増加が見られ、低光又は無光では発現の実質的に減少するか、発現しない場合に同定され得る。緑色微細藻類由来の光制御プロモーターが知られている(例えば、Mol Genet Genomics.2005 Dec;274(6):625−36を参照)。
【0228】
停止領域は葉緑体及び細菌の間で比較的互換性がるあると考えられるため、これを用いることは、主に簡便なものであろう。停止領域は、転写開始領域に由来するものであってもよく、目的のDNA配列に由来するものであってもよく、又は別の供給源から得られるものであってもよい。例えば、Chen and Orozco,Nucleic Acids Res.(1988)16:8411を参照されたい。
【0229】
発現カセットを、多数ある方法のいずれかにより目的の植物細胞内に形質転換してもよい。このような方法としては、例えば、微粒子銃による方法(例えば、Sanford、Trends In Biotech.(1988)6:299 302、米国特許第4,945,050号を参照);エレクトロポレーション(Fromm et al.、Proc.Nat’l.Acad.Sci.(USA)(1985)82:5824 5828);レーザービーム、マイクロインジェクション、又はDNAを葉緑体に導入することが可能な任意の他の方法の使用が挙げられる。
【0230】
微細藻類のような微生物での使用に適した葉緑体発現ベクターに関するさらなる記載は、米国特許第7,081,567号(Xueらに対し、2006年7月25日発行);第6,680,426号(Daniellらに対し、2004年1月20日発行);及び第5,693,507号(Daniellらに対し、1997年12月2日発行)に見いだされる。
【0231】
葉緑体標的シグナルを用いて、Chlorellaの核ゲノム内で発現されるタンパク質を葉緑体に対して標的化することができる。Chlorellaに内在する葉緑体標的配列が知られており、例えば、葉緑体を標的とするタンパク質をコードする、Chlorella核ゲノム内の遺伝子などがある(例えば、GenBank寄託番号AY646197及びAF499684を参照)。また、葉緑体ゲノムに遺伝子を直接挿入することにより、タンパク質をChlorella葉緑体内で発現させることもできる。葉緑体の形質転換は、典型的には相同組み換えによって起こり、葉緑体ゲノム配列が、標的化ベクターの作製で知られていれば行うことができる(例えば、Chlorella葉緑体の完全ゲノム配列;Genbank寄託番号NC_001865)。葉緑体の形質転換に関する詳細は、本明細書の前の節を参照されたい。
【0232】
(2)ミトコンドリアでの発現
本発明の別の実施形態では、微生物内でのポリペプチドの発現は、ミトコンドリアを標的とする。外来遺伝子産物をミトコンドリア内に標的化する方法(Boutry et al.、Nature(London)(1987)328:340 342)が記載されており、緑色微細藻類における方法がこれに含まれる(例えば、Mol Gen Genet.1993 Jan;236(2−3):235−44を参照)。
【0233】
例えば、適当な分泌シグナルをコードする発現ベクターは、異種タンパク質をミトコンドリアに対して標的化することができる。Wageningen UR−Plant Research InternationalのIMPACTVECTOR1.5ベクターは、ミトコンドリア基質内にタンパク質を送達することが示されている酵母CoxIV分泌シグナルを使用する。シグナルペプチドの適切なプロセシングを可能にするために、タンパク質が酵母CoxIVタンパク質の最初の4アミノ酸と融合されている(Kohler et al.、Plant J 11:613−621(1997))。緑色微細藻類内で機能するものを含めた他のミトコンドリア標的配列が知られている。例えば、FEBS Lett.1990 Jan 29;260(2):165−8;及びJ Biol Chem.2002 Feb 22;277(8):6051−8を参照。
【0234】
ミトコンドリア標的シグナルを用いて、Chlorellaの核ゲノム内で発現されるタンパク質をミトコンドリアに対して標的化することができる。ミトコンドリアのタンパク質標的化及び形質転換に関する詳細は、本明細書の前の節を参照されたい。
【0235】
(3)小胞体での発現
本発明の別の実施形態では、微生物内でのポリペプチド発現は、小胞体を標的とする。発現ベクター内に適切な保持シグナル又は選別シグナルを含むことにより、タンパク質が確実に小胞体(ER)に保持され、下流のゴルジ体には行かない。例えば、Wageningen UR−Plant Research InternationalのIMPACTベクター1.3ベクターは、よく知られているKDEL保持シグナル又は選別シグナルを含んでいる。このベクターを用いてERに保持すれば、これが発現レベルを5倍以上向上させることが報告されていることから、実用上の利点がある。この現象の主な理由は、ERが、発現タンパク質の翻訳後の分解に関与するプロテアーゼを細胞質に存在するプロテアーゼよりも低い濃度で含んでいるか、及び/又は、細胞質に存在するプロテアーゼとは異なるプロテアーゼを含んでいるからだと思われる。緑色微細藻類内で機能するER保持シグナルが知られている。例えば、Proc Natl Acad Sci USA.2005 Apr 26;102(17):6225−30を参照。
【0236】
本発明の方法及び材料によって、外来遺伝子を微生物、例えばProtothecaに導入することが可能な場合、ショ糖の利用及び脂質経路の改変に関する遺伝子は、以下の章で記載するように、特に興味深い。
【0237】
(IV.選択マーカー)
(1.ショ糖の利用)
実施形態では、本発明の組み換えPrototheca細胞は、1つ以上の外来のショ糖利用遺伝子をさらに含む。種々の実施形態では、1つ以上の遺伝子は、フルクトキナーゼ、グルコキナーゼ、ヘキソキナーゼ、ショ糖インベルターゼ、ショ糖トランスポーターからなる群から選択される1つ以上のタンパク質をコードする。例えば、ショ糖トランスポーター及びショ糖インベルターゼの発現によって、Protothecaは、ショ糖を培地から細胞に移動させ、ショ糖を加水分解し、グルコース及びフルクトースを得ることができる。場合により、フルクトキナーゼは、内在するヘキソキナーゼ活性が、フルクトースの最大リン酸化には不十分であるような状況でも同様に発現することができる。適切なショ糖トランスポーター典枝は、Genbank寄託番号CAD91334、CAB92307、CAA53390である。適切なフルクトキナーゼの例は、寄託番号P26984、P26420、CAA43322である。
【0238】
一実施形態では、本発明は、ショ糖インベルターゼを分泌するPrototheca宿主細胞を提供する。ショ糖インベルターゼの分泌は、ショ糖を細胞に移動させることが可能なトランスポーターを発現する必要性をなくす。というのは、分泌されたインベルターゼが、ショ糖分子をグルコース分子及びフルクトース分子に変換するのを触媒し、これらの分子が運ばれ、本発明によって提供される最近によって利用されるからである。例えば、分泌シグナル(例えば、配列番号4(酵母に由来する)、配列番号5(高等植物に由来する)、配列番号6(真核性のコンセンサス分泌シグナルなど)、配列番号7(高等植物及び真核性のコンセンサスに由来するシグナル配列の組み合わせ)を用いたショ糖インベルターゼ(例えば、配列番号3)の発現によって、インベルターゼ活性が細胞外で発生する。このようなタンパク質の発現は、本明細書に開示されている遺伝子操作方法によって可能となるが、それによって細胞外グルコースをエネルギー源としてすでに利用可能な細胞が、ショ糖を細胞外エネルギー源として利用することができる。
【0239】
ショ糖を含有する培地中でインベルターゼを発現するPrototheca種は、油を生成するのに好ましい微細藻類の種である。この完全に活性なタンパク質の発現及び細胞外での標的化によって、得られた宿主細胞がショ糖を用いて成長し、一方、形質転換されていない対応する細胞は、ショ糖を用いて成長することができない。従って、本発明は、コドンが最適化されたインベルターゼ遺伝子、限定されないが、酵母インベルターゼ遺伝子が、インベルターゼ活性及びショ糖の加水分解によって評価される場合に、インベルターゼ遺伝子が発現するようにゲノムに組み込まれたものを含むPrototheca組み換え細胞を提供する。また、本発明は、Prototheca組み換え細胞がショ糖を用いて成長することが可能であり、形質転換されていない対応する細胞は、ショ糖を用いて成長することができないため、Prototheca組み換え細胞内で選択可能なマーカーとして有用なインベルターゼ遺伝子も提供し、さらに、藻の分子の遺伝子学のために選択可能な強力なマーカーとしてインベルターゼを用いて、組み換え宿主細胞を選別する方法も提供する。
【0240】
Prototheca内でショ糖インベルターゼを首尾よく発現することも、異種(組み換え)タンパク質を、藻の細胞内で発現させることができ、細胞から外に出し、完全に活性で機能的な形態で培地に首尾よく移すことができるという点で、本発明の別の態様を示している。従って、本発明は、微細藻類内でさまざまで多様なタンパク質を発現させ、これらのタンパク質を宿主細胞の外で集める方法及び試薬を提供する。このようなタンパク質としては、例えば、工業用酵素、例えば、リパーゼ、プロテアーゼ、セルラーゼ、ペクチナーゼ、アミラーゼ(例えば、配列番号190〜191)、エステラーゼ、酸化還元酵素、トランスフェラーゼ、ラクターゼ、異性化酵素、インベルターゼ、及び治療用タンパク質、例えば、成長因子、サイトカイン、2個の軽鎖と2個の重鎖を含む全長抗体、Fab、scFv(一本鎖可変フラグメント)、camellid型抗体、抗体フラグメント、抗体フラグメント融合物、抗体−受容体重合物、インスリン、インターフェロン、インスリン様成長因子が挙げられる。
【0241】
Prototheca内でショ糖インベルターゼを首尾よく発現させることも、Prototheca内でタンパク質を分泌させるために、藻の中で真菌トランジットペプチドを使用するための方法及び試薬を提供し、あるペプチドを機能させるかどうかを決定する方法及び試薬、また、Prototheca細胞内でトランジットペプチドとして機能させる能力を提供するという点で、本発明の別の態様を示している。本発明の方法及び試薬を、タンパク質を細胞の外側に首尾よく移動させることができ、酵母インベルターゼがこれらの方法で大きな有用性を有するような他のトランジットペプチドを同定するためのツール及びプラットフォームとして用いることができる。この例で示されているように、内在する酵母インベルターゼトランジットペプチドの除去、及び宿主である藻に内在するか、又は他の供給源(真核性、原核性、ウイルス)に由来する他のトランジットペプチドによる置き換えによって、任意の目的のペプチドが、細胞から出て行くタンパク質を導くトランジットペプチドとして機能させることが可能かどうかを特定することができる。
【0242】
適切なショ糖インベルターゼの例としては、Genbank寄託番号CAB95010、NP_012104、CAA06839で特定されるものが挙げられる。適切なインベルターゼの非限定的な例を以下の表3に列挙している。それぞれの列挙したインベルターゼのアミノ酸配列は、以下の配列表に含まれている。ある場合には、本発明の方法及びベクターで使用するのに適した外来のショ糖利用遺伝子は、表3から選択されるショ糖インベルターゼとのアミノ酸同一性が少なくとも40%、50%、60%、75%、又は90%、又はそれ以上であるショ糖インベルターゼをコードする。
【0243】
【表3】
[この文献は図面を表示できません]
【0244】
Protothecaによって、インベルターゼを培地に分泌させると、細胞は、純粋な試薬グレードのグルコースを用いても成長するため、サトウキビの処理から得た廃棄糖液を用いても同様に細胞を成長させることができる。サトウキビ処理の価値の低い廃棄産物を用いることによって、脂質及び他の油の生成において、費用を顕著に節約することができる。従って、本発明は、Prototheca微生物の集合を含む微生物の培養物を提供し、この培養物は、(i)ショ糖と、(ii)ショ糖インベルターゼ酵素とを含む。種々の実施形態では、培養物中のショ糖は、ソルガム、テンサイ、サトウキビ、糖液、又は解重合されたセルロース系材料に由来するものである(場合により、リグニンを含んでいてもよい)。別の態様では、本発明の方法及び試薬は、組み換えProtothecaが利用可能な原材料の数及び種類を顕著に増やす。ここに例示した細菌は、ショ糖を利用することができるように変えられているが、セルロース系のような原材料を、セルラーゼ、ペクチナーゼ、異性化酵素などを分泌する能力を有する本発明の操作された宿主細菌が利用することができるように、本発明の方法及び試薬を適用してもよく、その結果、酵素反応の分解産物に単純に耐え得るというだけではなく、宿主が炭素源として利用する。この一例が、以下に、並びに分泌型α−ガラクトシダーゼを発現するように操作され、農業廃棄物流中に見られる2つのオリゴ糖であるラフィノース及びスタキオースに含まれるようなオリゴ糖内のα−ガラクトシル結合を加水分解する能力を付与された微生物の実施例に記載されている。
【0245】
(2.α−ガラクトシダーゼ発現)
上記のように、ショ糖インベルターゼの発現により、炭素源としてショ糖をより効率的に利用する(二糖類であるショ糖のフルクトース分子とグルコース分子の間のα結合を加水分解する酵素を介した)能力がPrototheca細胞に付与されるのに対し、オリゴ糖の他の種類のα結合を加水分解する他の酵素の発現により、他の炭素源を利用する能力がPrototheca細胞に付与され得る。これらの炭素源で成長することができる陽性クローンの選択を可能にすることによって、これらの酵素の発現(及び結果として得られる、Protothecaなどの微細藻類細胞が本来利用することができなかった炭素源を利用する能力)を、上記のトランスジェニックPrototheca細胞の選択マーカーとして用いることができる。
【0246】
ある実施形態では、本発明の組み換えPrototheca細胞は、多糖分解酵素をコードする1種以上の外来遺伝子をさらに含む。様々な実施形態では、多糖分解酵素をコードする1種以上の遺伝子は、分泌型α−ガラクトシダーゼをコードする遺伝子である。Prototheca細胞での外来の分泌型α−ガラクトシダーゼの発現により、単糖単位のガラクトースとグルコースの間のα結合のようなD−ガラクトシル結合を含む糖(炭素源)で成長する能力がこのような形質転換株に付与される。外来の分泌型α−ガラクトシダーゼを発現するPrototheca株は、メリビオース(α−D−ガラクトース−グルコースからなる二糖)のような二糖類を利用することができる。
【0247】
テンサイパルプ(ラフィノース)及び大豆ミール(スタキオース)のような農業廃棄物流中には、ラフィノース(α結合したガラクトース−グルコース−フルクトースからなる三糖)及びスタキオース(α結合した2つのD−ガラクトース単位と、それに続くα結合したグルコースとフルクトースとからなる四糖)のような糖がかなりの割合で存在する。このような農業残渣には、それを利用することができる微生物(Prototheca)が油へ変換するための未利用の炭素源がかなり存在する。
【0248】
Prototheca株は、ラフィノース及びスタキオースのようなオリゴ糖をあまり利用することができないか、又はまったく利用することができない。ラフィノース及びスタキオースの場合、ショ糖インベルターゼを発現するトランスジェニック株(上記のような)は、ショ糖のα−ガラクトシル誘導体のフルクトースとグルコースの間のα結合を加水分解する能力はあるが、ショ糖インベルターゼはそのような糖の残りのα結合を切断せず、生じた二糖が利用できないため、残りのオリゴ糖は未利用のままである。別の実施形態では、本発明の組み換えPrototheca細胞は、ショ糖インベルターゼをコードする外来遺伝子とα−ガラクトシダーゼをコードする外来遺伝子の両方を含む。したがって、ショ糖インベルターゼとα−ガラクトシダーゼの両方を発現する株は、ラフィノース及びスタキオースのようなオリゴ糖を完全に加水分解することが可能となり、モノマー成分を消費することができる。さらに、α−ガラクトシダーゼをコードする遺伝子を、形質転換の選択マーカーとして用いてもよい。外来性α−ガラクトシダーゼ遺伝子を含むクローンは、メリビオースで成長する能力を有する。Prototheca株での使用に適したα−ガラクトシダーゼ遺伝子の例としては、Saccharomyces carlbergensis由来のMEL1遺伝子、Aspergilus niger由来のAglC遺伝子が挙げられる。興味深いことに、Prototheca株において好ましいコドンの使用に従って遺伝子を最適化しても、すべてのα−ガラクトシダーゼ遺伝子がPrototheca種で機能するわけではない。下の実施例は、高等植物のCyamopsis tetragonobola(グァー豆)由来のα−ガラクトシダーゼをコードする遺伝子ではなく、コドンが最適化されたS.carlbergensis由来のMEL1遺伝子及びA.niger由来のAglC遺伝子で形質転換した場合にトランスジェニックPrototheca細胞がメリビオースで成長する能力を有することを示している。
【0249】
(3.チアミン栄養要求性の補完)
Protothca moriformisを含めたPrototheca株は、チアミン栄養要求性であることが知られており(例えば、Ciferri,O.(1956)Nature,v.178,pp.1475−1476を参照)、このことは、これらの株が成長するためには栄養培地中にチアミンを必要とするということを意味する。チアミン栄養要求性は、チアミン生合成経路の酵素の変異又は発現欠如の結果であり得る。そこで、チアミン生合成経路で欠けている酵素(1つ又は複数)を発現する補完されたトランスジェニック株はチアミンを添加しなくても成長することができるため、栄養培地のコストが低減されるだけでなく、得られる微細藻類バイオマスは動物栄養の観点からもより望ましいものとなる。またトランスジェニック遺伝子が、チアミンを含有しないプレート/培地で成長する能力を付与することから、チアミン生合成経路酵素による補完を選択マーカーとして用いてもよい。
【0250】
ある実施形態では、本発明の組み換えPrototheca細胞は、チアミン生合成経路の酵素をコードする1種以上の外来遺伝子をさらに含む。別の実施形態では、本発明の組み換えPrototheca細胞は、藻類、植物又はラン藻の供給源由来のヒドロキシメチルピリミジンホスフェート合成酵素をコードする外来遺伝子(例えば、配列番号192)を含む。さらに他の実施形態では、ヒドロキシメチルピリミジンホスフェート合成酵素は、THIC遺伝子によりコードされている。さらに他の実施形態では、THIC遺伝子は、Coccomyxa C−169 THIC、Arabidopsis thaliana THIC、Synechocystis sp.PCC 6803 THIC又はSalmonella enterica subsp.enterica serovar Typhimurium str.THIC(配列番号193)である。下の実施例では、チアミン原栄養性を回復したPrototheca moriformis UTEX 1435の操作について詳述されている。
【0251】
(4.その他の選択マーカー)
多種多様な選択マーカーのいずれも、Chlorellaのような微生物の形質転換に有用なトランス遺伝子構築物に用いることができる。適当な選択マーカーの例としては、硝酸還元酵素遺伝子、ヒグロマイシンホスホトランスフェラーゼ遺伝子(HPT)、ネオマイシンホスホトランスフェラーゼ遺伝子、及びフレオマイシン耐性を付与するble遺伝子が挙げられる。微細藻類の抗生物質に対する感度を決める方法はよく知られている。例えば、Mol Gen Genet.1996 Oct 16;252(5):572−9。
【0252】
より具体的には、Dawsonら(1997),Current Microbiology 35:356−362(その内容全体が参照により組み込まれる)は、NR欠損Chlorella sorokiniana変異株の選択マーカーとしてChlorella vulgaris由来の硝酸還元酵素(NR)遺伝子を使用することを記載している。Kimら(2002),Mar.Biotechnol.4:63−73(その内容全体が参照により組み込まれる)は、Chorella ellipsoideaの形質転換のための選択マーカーとしてHPT遺伝子を使用することを開示している。Huang et al.(2007),Appl.Microbiol.Biotechnol.72:197−205(その内容全体が参照により組み込まれる)は、Chlorella sp.DTの選択マーカーとしてSh bleforを使用することを報告している。
【0253】
(V.脂質経路の操作)
ショ糖を含有する原材料のような原材料をProtothecaのような微生物(例えば、油産生酵母、真菌または細菌)が利用する能力を変えることに加え、本発明は、産生する脂質の性質及び/又は割合を変えるように改変された組み換え微生物(例えば、Prototheca)も提供する。上述の経路は、さらに、又は上述のことに変えて、脂質の酵素処理によって産生する種々の脂質分子及び脂肪酸経路の中間体の性質及び/又は割合を変えるように改変されてもよい。種々の実施形態では、本発明の組み換え微生物(例えば、Prototheca細胞)は、形質転換されていない対応する細胞と比較して、単位容積あたり及び/又は単位時間あたりの脂質収量が最適化されており、炭素鎖長(例えば、再生可能なディーゼルを生成するための、又は、脂質原材料を必要とする産業的な化学用途のための)を有しており、二重結合又は三重結合の数が減っており、場合によりゼロになっており、特定の脂質種又は個々の脂質の集合について、水素:炭素比が大きくなっている。さらに、このような高品質の又は特異性の高い成分を生成するように、所望の炭化水素を生成する微生物を操作してもよい。
【0254】
微細藻類の場合、ある野性型細胞は既に良好な成長特性を有しているが、所望の種類又は量の脂質を産生しない。例としては、限定されないが、Pyrobotrys、Phormidium、Agmenellum、Carteria、Lepocinclis、Pyrobotrys、Nitzschia、Lepocinclis、Anabaena、Euglena、Spirogyra、Chlorococcum、Tetraedron、Oscillatoria、Phagus及びChlorogoniumが挙げられ、これらは都市の下水又は廃水で成長するという望ましい成長特性を有する。このような細胞、及びChlorella、Protothecaなどの種を操作して、脂質産生特性を向上させることができる。所望の特性としては、単位容積あたり及び/又は単位時間あたりの脂質収量が最適化されており、炭素鎖長(例えば、バイオディーゼル生成のための、又は、炭化水素原材料を必要とする産業用途のための)を有しており、二重結合又は三重結合の数が減っており、場合によりゼロになっており、環及び環状構造が除去されており、特定の脂質種又は個々の脂質の集合について、水素:炭素比が大きくなっている。さらに、適当な炭化水素を産生する微細藻類を操作して、炭化水素生産量をさらに望ましいものとすることができる。このような微細藻類の例としては、Chlorella属及びPrototheca属の種が挙げられる。
【0255】
特定の実施形態では、脂肪酸の合成に対し、代謝における分岐点を制御するような1つ以上の鍵となる酵素を上方調節するか、又は下方調節し、脂質の産生を高める。上方調節は、例えば、転写を増やす強力なプロモーターエレメント及び/又はエンハンサーエレメントを用い、例えば、目的の酵素をコードする遺伝子が発現するような発現構築物を用いて細胞を形質転換することによって達成することができる。このような構築物は、形質転換体を選択することができるような選択可能なマーカーを含んでいてもよく、それにより、構築物が増幅され、コードされた酵素の発現量が増える。本発明の方法に従って上方調節するのに適した酵素の例としては、ピルビン酸をアセチル−CoAに変換する役割を担うピルビン酸脱水素酵素(例えば、微細藻類由来のもの、Genbank寄託番号NP_415392;AAA53047;Q1XDM1;CAF05587を含む)が挙げられる。ピルビン酸脱水素酵素を上方調節すると、アセチル−CoAの産生量が増え、それによって脂肪酸の合成量が増える。アセチル−CoAカルボキシラーゼは、脂肪酸合成の最初の工程を触媒する。従って、この酵素を上方調節すると、脂肪酸の産生量を増やすことができる(例えば、微細藻類由来のもの、Genbank寄託番号BAA94752;AAA75528;AAA81471;YP_537052;YP_536879;NP_045833;BAA57908を含む)。また、脂肪酸合成中に、アシル鎖を成長させるアシルキャリアータンパク質(ACP)を上方調節することによって、脂肪酸産生量を増やすこともできる(例えば、微細藻類由来のもの、Genbank寄託番号A0T0F8;P51280;NP_849041;YP_874433を含む)。グリセロール−3−ホスフェートアシルトランスフェラーゼは、脂肪酸合成の律速工程を触媒する。この酵素を上方調節すると、脂肪酸の産生量を増やすことができる(例えば、微細藻類由来のもの、Genbank寄託番号AAA74319;AAA33122;AAA37647;P44857;ABO94442を含む)。
【0256】
遺伝子の上方調節及び/又は下方調節は、脂肪酸の生合成経路に関する遺伝子の発現を制御する包括的な制御因子に適用することができる。従って、脂肪酸合成の1つ以上の包括的な制御因子を、適切な場合に上方調節するか、又は下方調節し、それぞれ、複数の脂肪酸合成遺伝子の発現を阻害するか、又は高め、最終的に、脂質の産生量を増やすことができる。例としては、ステロール制御エレメント結合タンパク質(SREBP)、例えば、SREBP−1a及びSREBP−1c(例えば、Genbank寄託番号NP_035610及びQ9WTN3を参照)。
【0257】
また、本発明は、脂質改変酵素、例えば、脂肪族アシル−ACPチオエステラーゼ(例えば、C.callophylla(配列番号145および配列番号146;表4も参照))、脂肪酸アシル−CoA/アルデヒド還元酵素(表6を参照)、脂肪酸アシル−CoA還元酵素(表7を参照)、脂肪族アルデヒド脱炭酸酵素(表8を参照)、脂肪族アルデヒド還元酵素、デサチュラーゼ(ステアロイル−ACPデサチュラーゼ(例えば、コドンが最適化されたR.communisの SAD、配列番号147および配列番号148)、及びスクアレンシンターゼ(GenBank寄託番号AF205791を参照)をコードする1つ以上の外来遺伝子を含むように改変された組み換え微生物(例えば、Prototheca細胞)を提供する。ある実施形態では、脂肪族アシル−ACPチオエステラーゼと、自然に共発現するアシルキャリアータンパク質とをコードする遺伝子が、場合により、他の脂質改変酵素をコードする1つ以上の遺伝子とともに、Prototheca細胞内で形質転換される。他の実施形態では、ACP及び脂肪族アシル−ACPチオエステラーゼは、これらが特定の組織及び有機体で自然に共発現するか否かにかかわらず、両者が本発明の細菌及び方法で一緒に用いられると、利点を付与するような親和性を互いに有していてもよい。従って、本発明は、自然に共発現するこれらの酵素対、及び、ACPから特定の長さの炭素鎖が開裂しやすくなるように、互いに相互作用する親和性を有している酵素対を包含している。
【0258】
さらに他の実施形態では、デサチュラーゼをコードする外来遺伝子を、脂質の飽和度を変える他の脂質改変酵素をコードする1つ以上の遺伝子とともに、微生物(例えば、Prototheca細胞)内で形質転換する。他の実施形態では、微生物(例えば、Prototheca細胞)内で、内在するデサチュラーゼ遺伝子を過剰発現させる(例えば、遺伝子の追加のコピーを導入することにより)。ステアロイル−ACPデサチュラーゼ(例えば、Genbank寄託番号AAF15308;ABM45911;AAY86086)は、例えば、ステアロイル−ACPからオレイル−ACPへの変換を触媒する。この遺伝子を上方調節すると、細胞が産生する一価飽和脂肪酸の比率を増やす事ができ、一方、下方調節すると、一価不飽和物の比率を減らすことができる。例示目的で挙げれば、ステアロイル−ACPデサチュラーゼ(SAD)は、C18:0前駆体からC18:1脂肪酸の合成に関与する。デサチュラーゼのもう1つのファミリーは、デルタ12脂肪酸デサチュラーゼ(Δ12FAD)を含めた脂肪族アシルデサチュラーゼ(FAD)である。これらのデサチュラーゼも脂質飽和に関する改変をもたらす。例示目的で挙げれば、デルタ12脂肪酸デサチュラーゼは、C18:1前駆体からC18:2脂肪酸の合成に関与する。同様に、例えば、ω−6脂肪酸デサチュラーゼ、ω−3脂肪酸デサチュラーゼ、又はω−6−オレイン酸デサチュラーゼのような1つ以上のグリセロ脂質デサチュラーゼの発現によって、飽和脂肪酸に対する不飽和脂肪酸の比率を変えるように制御することができる。ある実施形態では、デサチュラーゼは、望ましい炭素鎖長によって選択することができ、デサチュラーゼは、特定の炭素鎖を有する基質、又は特定の範囲内にある炭素長を有する基質の中で、位置特異的に改変させることができる。別の実施形態では、所望の脂肪酸プロフィールが一価不飽和物(C16:1 及び/又はC18:1)の増加である場合、SADの過剰発現または異種SADの発現を、脂肪族アシルデサチュラーゼ(FAD)のサイレンシング又は不活性化(例えば、内在するデサチュラーゼ遺伝子の変異、RNAi、ノックアウトにより)と組み合わせてもよい。
【0259】
他の実施形態では、微生物(例えば、Prototheca細胞)は、変異内在性デサチュラーゼ遺伝子を有するように改変されており、ここで、変異により遺伝子又はデサチュラーゼ酵素が不活性になっている。ある場合には、変異内在性デサチュラーゼ遺伝子は脂肪酸デサチュラーゼ(FAD)である。他の場合には、変異内在性デサチュラーゼ遺伝子はステアロイルアシルキャリアータンパク質デサチュラーゼ(SAD)である。下の実施例11では、ステアロイル−ACPデサチュラーゼ及びデルタ12脂肪酸デサチュラーゼの標的化された削除又はノックアウトについて記載されている。
【0260】
ある場合には、所望の脂質プロフィールを生じるトランスジェニック細胞を得るために、1つ以上の遺伝子操作技術を組み合わせることが有利であり得る。一実施形態では、微生物(例えば、Prototheca細胞)は、変異内在性デサチュラーゼ遺伝子と1種以上の外来遺伝子とを含む。非限定的な例では、変異内在性デサチュラーゼ遺伝子を有するPrototheca細胞は、外来の脂肪族アシル−ACPチオエステラーゼ遺伝子及び/又はショ糖インベルターゼ遺伝子も発現することができる。下の実施例11では、内在するSADの標的化された削除又はノックアウトを含み、またCinnamomum camphora C14選択性のチオエステラーゼ及びショ糖インベルターゼも発現するトランスジェニックPrototheca細胞について記載されている。この場合、獣脂で見られる脂質プロフィールに極めて近い脂質プロフィールが、トランスジェニックPrototheca細胞から生じる。獣脂は、典型的には、溶かした牛肉脂肪又は羊肉脂肪から得られ、室温下で固体であり、食品、化粧品及び化学産業の各種用途で利用される。獣脂の脂肪酸プロフィールは、4%のC14:0;26%のC16:0;3%のC16:1;14%のC18:0;41%のC18:1;3%のC18:2;及び1%のC18:3である。下の実施例11に示されるように、内在するSADの標的化された削除又はノックアウトを有し、C.camphora C14選択性のチオエステラーゼを発現するトランスジェニックPrototheca細胞のクローンは、1%未満のC12及びこれより短い炭素鎖長の脂肪酸;2.74%〜6.13%のC14:0;23.07%〜25.69%のC16:0;7.02%〜11.08%のC18:0;42.03%〜51.21%のC18:1;及び9.37%〜13.45%のC18:2(面積百分率で表した)という脂質プロフィールを有する。ある場合には、トランスジェニックPrototheca細胞は、3〜5%のC14:0;25〜27%のC16:0;10〜15%のC18:0;及び40〜45%のC18:1という脂質プロフィールを有する。
【0261】
従って、特定の実施形態では、本発明の細菌を、アシル−ACPチオエステラーゼ、アシル−CoA/アルデヒド還元酵素、脂肪酸アシル−CoA還元酵素、脂肪族アルデヒド還元酵素、脂肪族アルデヒド脱炭酸酵素、又は自然に共発現するアシルキャリアータンパク質から選択される1つ以上の外来遺伝子を発現するように遺伝子操作する。適切な発現方法は、リパーゼ遺伝子の発現に関して上に記載されており、他の方法の中で、特に、誘発的発現及び区画化された発現が挙げられる。脂肪族アシル−ACPチオエステラーゼは、脂質合成中に、アシルキャリアータンパク質(ACP)から脂肪酸を開裂させる。さらなる酵素処理によって、開裂した脂肪酸と補酵素とが組み合わさって、アシル−CoA分子が得られる。このアシル−CoAは、脂肪酸アシル−CoA還元酵素が酵素活性を発揮してアルデヒドを生じるための基質であり、脂肪酸アシル−CoA/アルデヒド還元酵素が酵素活性を発揮してアルコールを生じるための基質である。上述のように特定した、脂肪酸アシル−CoA還元酵素の作用によって産生するアルデヒドは、さらに、脂肪族アルデヒド還元酵素が酵素活性を発揮してアルコールを生じるための基質であるか、又は、脂肪族アルデヒド脱炭酸酵素が酵素活性を発揮してアルカン又はアルケンを生じるための基質である。
【0262】
ある実施形態では、本明細書に記載の方法によって生成する脂肪酸、グリセロ脂質、又は対応する一級アルコール、アルデヒド、アルカン又はアルケンは、8個、10個、12個、又は14個の炭素原子を含む。ディーゼル、バイオディーゼル、再生可能なディーゼル又はジェット燃料を生成するために好ましい脂肪酸、又は工業用途のための、対応する一級アルコール、アルデヒド、アルカン及びアルケンは、8〜14個の炭素原子を含む。特定の実施形態では、上述の脂肪酸、及び他の対応する炭化水素分子は、飽和であり(炭素−炭素二重結合又は三重結合を含まない);一価飽和であり(二重結合が1個);多価不飽和であり(2種以上の二重結合);直鎖であるか(環状ではない)、又は分枝鎖である。燃料生成の場合、飽和度が高い方が好ましい。
【0263】
すぐ上に記載されている酵素は、特定の数の炭素原子を含む基質の加水分解に対し、優先的な特異性を有する。例えば、脂肪族アシル−ACPチオエステラーゼは、炭素原子を12個含む脂肪酸をACPから優先的に開裂させ得る。ある実施形態では、ACP及び長さ特異的なチオエステラーゼは、組み合わせると特に有用なような、お互いに対する親和性を有する場合がある(例えば、外来のACP及びチオエステラーゼ遺伝子は、これらが誘導される特定の組織又は有機体で自然に共発現する場合がある)。従って、種々の実施形態では、本発明の組み換えPrototheca細胞は、酵素活性(例えば、ACPからの脂肪酸開裂、アシル−CoAをアルデヒド又はアルコールに還元すること、又は、アルデヒドからアルカンへの変換)を、基質に含まれる炭素原子の数によって特異的に触媒するようなタンパク質をコードする外来遺伝子を含んでいてもよい。この酵素の特異性は、種々の実施形態では、炭素原子を8〜34個、好ましくは、8〜18個、より好ましくは、8〜14個有する基質に対する特異性であり得る。好ましい特異性は、炭素原子が少ない、すなわち12個から、多い、すなわち18個含む基質に対する特異性である。
【0264】
本発明の細菌及び方法とともに用いるのに適した他の脂肪族アシル−ACPチオエステラーゼとしては、限定されないが、表4に列挙されたものが挙げられる。
【0265】
【表4-1】
[この文献は図面を表示できません]
【表4-2】
[この文献は図面を表示できません]
【0266】
以下の実施例は、Prototheca種のCuphea hookeriana、Umbellularia californica、Cinnamomun camphora、Cuphea palustris、Cuphea lanceolata、Iris germanica、Myristica fragrans及びUlmus americanaに由来する異種脂肪族アシル−ACPチオエステラーゼを首尾よく標的化し、発現させることについて記載している。さらに、宿主細胞で異種脂肪族アシル−ACPチオエステラーゼを発現させると、脂肪酸プロフィールが変わることが確認された。これらの結果は、一般的には、藻と高等植物のチオエステラーゼとの配列同一性がなく、Prototheca moriformisの脂肪族アシル−ACPチオエステラーゼと、上に列挙した異種脂肪族アシル−ACPチオエステラーゼとにも配列同一性がないことから、本当に予想できない結果であった。実施例で示されるように、Protothecaにおけるこれらの異種チオエステラーゼの発現により、複数の種子作物油をブレンドしても現在のところ市販の種子作物から入手不可能な極めて固有の脂肪酸プロフィールを有する油/脂質を生成することができる、トランスジェニック藻類が生じる。一般的な市販の種子油の脂肪酸プロフィールを表5に示す。下の市販の種子油はすべて、US Pharmacopeias Food and Chemicals Codes、第7版、2010−2011から集めたものである。獣脂のデータは、National Research Council:Fat Content and Composition of Animal Products(1976)のものである。
【0267】
【表5-1】
[この文献は図面を表示できません]
【表5-2】
[この文献は図面を表示できません]
【0268】
例として、これらの一般的な種油でC8又はC10脂肪酸の含有量が高いものはなく、ココナツ油及びパーム核油は最大の供給源であるが、ともに1:1(C8:C10脂肪酸)の比である。実施例で示されているように、Cuphea palustris C:8選択性のチオエステラーゼで形質転換されたProtothecaでは、12%を超えるC8脂肪酸レベルが達成されたことに加え、C8:C10脂肪酸の比が約5:1であった。脂肪酸レベルの変化は、各種の商業的用途に応じた脂肪酸プロフィールを含む油の生成に有用である。さらに、異なる脂肪酸鎖長間の比の変化は、さらにコストのかかる化学プロセス(例えば、エステル化、蒸留、分別及び再エステル化など)を経ていない油では商業的に得られなかったことである。別の例として、パーム油は最も高いC16:0脂肪酸(32〜47%)を含有する油であるが、C14:0脂肪酸が極めて少ない。U.americanaチオエステラーゼを含むProtothecaでは、約33〜38%のC16:0脂肪酸及び約10〜16%のC14:0脂肪酸(約2:1のC16:0:C14:0比)が達成された。高16:0脂肪酸の種油は通常、14:0脂肪酸をあまり含まないため、この脂肪酸プロフィールは、既存する油をブレンドすることにより商業レベルで達成されるものではない。
【0269】
また下の実施例では、1つのクローンにおいて少なくとも2種の脂肪族アシル−ACPチオエステラーゼを首尾よく標的化し、発現させることについても、始めて記載されている。これらのクローンにおいて脂肪酸プロフィールの変化が確認され、また1つのクローンにおいてどの2種のチオエステラーゼが共発現されたかによって、脂肪酸プロフィールが様々な影響を受けた。例として、上の表5では、ココナツ油及びパーム核油はともに、約3:1のC12:C14比である。下の実施例に記載されているように、2種の異種チオエステラーゼ遺伝子を含むPrototheca形質転換体は、約5:1の比のC12:C14脂肪酸レベルを生成することができた。このようなC12:C14脂肪酸比は、商業レベルで(すなわち、種油のブレンドによって)はこれまで達成不可能であった。
【0270】
トランスジェニック微細藻類により生成される油の別の新たな側面は、脂肪酸の飽和度である。パーム油は現在、飽和油の最大の供給源であり、飽和油と不飽和油の合計は52%と48%である。下の実施例で示されるように、U.americana及びC.camphora由来の異種チオエステラーゼを有するProtothecaでは、生成された油中、60%を超える総飽和油レベルが達成された。また下の実施例では、U.americana由来の異種チオエステラーゼを有するProtothecaにおいて、生成された油中、86%を超える総飽和レベルが達成されたことも示されている。
【0271】
本発明の細菌及び方法とともに用いるのに適した脂肪酸アシル−CoA/アルデヒド還元酵素としては、限定されないが、表6に列挙したものが挙げられる。
【0272】
【表6】
[この文献は図面を表示できません]
【0273】
本発明の細菌及び方法とともに用いるのに適した脂肪酸アシル−CoA還元酵素としては、限定されないが、表7に列挙したものが挙げられる。
【0274】
【表7】
[この文献は図面を表示できません]
【0275】
本発明の細菌及び方法とともに用いるのに適した脂肪族アルデヒド脱炭酸酵素としては、限定されないが、表8に列挙したものが挙げられる。
【0276】
【表8】
[この文献は図面を表示できません]
【0277】
自然に共発現する脂肪族アシル−ACPチオエステラーゼ及びアシルキャリアータンパク質の組み合わせは、本発明の細菌及び方法とともに用いるのに適している。
【0278】
炭化水素改変酵素又は脂質改変酵素のさらなる例としては、以下のいずれかの米国特許に含まれるか、以下のいずれかの米国特許で参照されているか、又は以下のいずれかの米国特許に含まれるか又は参照されている核酸配列によってコードされるアミノ酸配列が挙げられる:第6,610,527号;第6,451,576号;第6,429,014号;第6,342,380号;第6,265,639号;第6,194,185号;第6,114,160号;第6,083,731号;第6,043,072号;第5,994,114号;第5,891,697号;第5,871,988号;第6,265,639号、さらに、以下のGenBank寄託番号で記載されているもの:AAO18435;ZP_00513891;Q38710;AAK60613;AAK60610;AAK60611;NP_113747;CAB75874;AAK60612;AAF20201;BAA11024;AF205791;CAA03710。
【0279】
脂質生合成経路のその他の酵素も、本発明の微生物及び方法での使用に適している。例えば、ケトアシル−ACP合成酵素(Kas)は、脂質生合成経路において、上に挙げたいくつかの酵素とともに働く。異なる種類のKas酵素が存在し、KasIは、増加し続けるアシルACPとマロニル−ACPの間の連続的な縮合段階に関与する。KasIIは、典型的には最終的な縮合段階に関与し、マロニル−ACPを組み込みながら、C16:0−ACPからC18:0−ACPを生じる。したがって、主としてC16〜C18:0脂肪酸(及びその不飽和誘導体)を合成する高等植物及び一部の微細藻類種/株では、KasII酵素は、FatA遺伝子の産物(アシル−ACPチオエステラーゼ)と相互作用する。
【0280】
アシル−ACPチオエステラーゼは、高等植物(及び一部の微細藻類種)の脂肪酸生合成のターミネーターであり、大部分の植物種では、これは、C16:0〜C18:0段階において伸長を停止させる役割のFatA遺伝子ファミリーのメンバーによって行われる。短鎖脂肪酸を合成する種(例えば、Cuphea、Elaeis、Myristica又はUmbellulariaなど)では、FatB遺伝子によりコードされている異なるグループのアシル−ACPチオエステラーゼがこの停止段階を行う(例えば、コドンが最適化されたCocos nucifera FatB3−Bのコード領域、配列番号189を参照)。KasII酵素とアシル−Acpチオエステラーゼの間の相互作用は、脂肪酸鎖の伸長を的確に停止させるのに重要である。その結果、短鎖脂質の生合成が可能なFatB遺伝子を進化させた高等植物種(及び微細藻類種)では、これに対応する、KasIV遺伝子と呼ばれるさらなる種類のKas遺伝子の共進化が起こった。KasIV遺伝子は、長さが4〜14個の炭素である特定の大きさの範囲の脂肪酸の鎖長伸長に関与する。
【0281】
本発明の細菌及び方法とともに用いるのに適した他の酵素としては、表4、6〜8に列挙したタンパク質の1つとのアミノ酸同一性が少なくとも70%であり、対応する望ましい酵素活性(例えば、アシルキャリアータンパク質からの脂肪酸の開裂、アシル−CoAからアルデヒド又はアルコールへの還元、又はアルデヒドからアルカンへの変換)を示すものが挙げられる。さらなる実施形態では、酵素活性は、上述の望ましい配列の1つとの同一性が少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約99%の配列に存在し、これらは全て、完全に記載されているかのように、参照により組み込まれる。
【0282】
発現させるべき外来遺伝子の望ましい組み合わせを選択することによって、細菌が生成する産物を用途に応じて調節することができ、次いで、この産物を水系バイオマスから抽出してもよい。例えば、細菌は、(i)脂肪族アシル−ACPチオエステラーゼをコードする外来遺伝子と;場合により、(ii)自然に共発現するアシルキャリアータンパク質、又は脂肪族アシル−ACPチオエステラーゼとの親和性を有する(又はその逆の)それ以外のアシルキャリアータンパク質と;場合により、(iii)脂肪酸アシル−CoA/アルデヒド還元酵素又は脂肪酸アシル−CoA還元酵素をコードする外来遺伝子と;場合により、(iv)脂肪族アルデヒド還元酵素又は脂肪族アルデヒド脱炭酸酵素をコードする外来遺伝子とを含んでいてもよい。細菌は、本明細書に記載の培養条件で、ACPに結合した脂肪酸を合成し、脂肪族アシル−ACPチオエステラーゼは、ACPから脂肪酸を開裂させることを触媒し、さらなる酵素処理によって脂肪酸アシル−CoA分子を与える。存在する場合、脂肪酸アシル−CoA/アルデヒド還元酵素は、アシル−CoAからアルコールへの還元を触媒する。同様に、脂肪酸アシル−CoA還元酵素が存在する場合、この酵素は、アシル−CoAからアルデヒドへの還元を触媒する。脂肪酸アシル−CoA還元酵素をコードする外来遺伝子が存在し、発現してアルデヒド産物を与えるような実施形態では、第3の外来遺伝子によってコードされる脂肪族アルデヒド還元酵素が、アルデヒドからアルコールへの還元を触媒する。同様に、脂肪族アルデヒド脱炭酸酵素が存在する場合、この触媒は、アルデヒドからアルカン又はアルケンへの変換を触媒する。
【0283】
別の実施形態では、微生物は、(i)脂肪族アシル−ACPチオエステラーゼをコードする外来遺伝子と;場合により、(ii)自然に共発現するアシルキャリアータンパク質、又は脂肪酸アシル−ACPチオエステラーゼとの親和性を有するアシルキャリアータンパク質と;(iii)デサチュラーゼノックアウトのような変異によりデサチュラーゼ遺伝子又はデサチュラーゼタンパク質が不活性となっている変異内在性デサチュラーゼ遺伝子;(iv)内在するステアロイルアシルキャリアータンパク質デサチュラーゼの過剰発現又は異種SADの発現と;(v)上記の任意の組み合わせとを含んでいてもよい。
【0284】
肪酸アシル−ACPチオエステラーゼのような酵素をコードするこのような遺伝子は、Chlorella protothecoidesのような、顕著な量の脂質産生を示すことがすでに知られている細胞から得ることができる。脂質産生の役割を担うことがすでに知られている遺伝子、例えば、二重結合を飽和させる酵素をコードする遺伝子は、レシピエント細胞内で個々に形質転換されてもよい。しかし、本発明を実施するために、どの遺伝子が必要となるかといった推測的仮定を行う必要はない。微細藻類において脂質産生を変える(向上させる)ことが可能な遺伝子を特定する方法は、PCT公開番号第2008/151149号に記載されている。
【0285】
従って、本発明は、同じ種の野生型細胞と比較して、異なるレベルで脂質経路に関連する酵素を発現するように遺伝子操作された微生物(例えば、Prototheca細胞)を提供する。ある場合には、遺伝子操作された細胞は、野生型細胞と同じ条件で成長させた場合に、野生型細胞と比べて脂質を多く産生する。ある場合には、上述の細胞は、野生型細胞よりも高いレベルで脂質経路に関連する酵素を発現するように遺伝子操作されているか、及び/又は、野生型細胞よりも高いレベルで脂質経路に関連する酵素を発現するように選択される。ある場合には、脂質経路に関連する酵素は、ピルビン酸脱水素酵素、アセチル−CoAカルボキシラーゼ、アシルキャリアータンパク質、グリセロール−3ホスフェートアシルトランスフェラーゼからなる群から選択される。ある場合には、上述の細胞は、野生型細胞よりも低いレベルで脂質経路に関連する酵素を発現するように遺伝子操作されているか、及び/又は、野生型細胞よりも低いレベルで脂質経路に関連する酵素を発現するように選択される。細胞が、脂質経路に関連する酵素を低いレベルで発現する少なくとも1つの実施形態では、脂質経路に関連する酵素は、クエン酸シンターゼを含む。
【0286】
ある実施形態では、上述の細胞は、野生型細胞と比べ、異なるレベルで脂肪酸合成の包括的な制御因子を発現するように遺伝子操作されている、及び/又は、異なるレベルで脂肪酸合成の包括的な制御因子を発現するように選択され、それにより、複数の脂肪酸合成遺伝子の発現レベルは、野生型細胞と比べて変化している。ある場合では、脂質経路に関連する酵素は、脂肪酸を改変する酵素を含む。ある場合では、脂質経路に関連する酵素は、ステアロイル−ACPデサチュラーゼ、グリセロ脂質デサチュラーゼから選択される。ある場合には、細胞は、脂質経路に関連する酵素を低レベルで発現するか、又は特定の脂質経路に関連する酵素を全く発現しないように、遺伝子操作されている、及び/又は選択されている(すなわち、脂質経路に関連する酵素がノックアウトされているか、又は外来遺伝子に置き換わっている)。
【0287】
ある微細藻類は、かなりの量の、例えば多糖のような非脂質代謝産物を産生する。多糖生合成では、細胞が利用可能な全代謝エネルギーのかなりの割合が使用され得るため、脂質産生細胞の変異誘発と、それに続く多糖産生の減少又は削除のスクリーニングにより、高収量で脂質を産生することができる新規な株が得られる。
【0288】
他の実施形態では、本発明は、1つ以上の外来遺伝子を含有する油産生細菌に関し、ここで、外来遺伝子は、脂肪族アシル−ACPチオエステラーゼ、脂肪酸アシル−CoA還元酵素、脂肪族アルデヒド還元酵素、脂肪酸アシル−CoA/アルデヒド還元酵素、脂肪族アルデヒド脱炭酸酵素、デサチュラーゼ及びアシルキャリアータンパク質からなる群から選択されるタンパク質をコードする。別の実施形態では、内在するデサチュラーゼ遺伝子は、1つ以上の上記外来遺伝子を含む微生物内で過剰発現される。一実施形態では、外来遺伝子は、プロモーターに動作可能に連結した状態であり、刺激に応答して、誘発的であるか、又は抑制的である。ある場合では、刺激は、外から与えられる低分子、熱さ、冷たさ、培地中の窒素が制限されていること、又は窒素がないことからなる群から選択される。ある場合では、外来遺伝子は、細胞内のある区画で発現する。ある実施形態では、細胞内の区画は、葉緑体、プラスチド、ミトコンドリアからなる群から選択される。ある実施形態では、細菌は、Prototheca moriformis、Prototheca krugani、Prototheca stagnora、又はPrototheca zopfiiである。
【0289】
一実施形態では、外来遺伝子は、脂肪酸アシル−ACPチオエステラーゼをコードする。ある場合では、外来遺伝子によってコードされるチオエステラーゼは、アシルキャリアータンパク質(ACP)から、炭素が8〜18の脂肪酸が開裂することを触媒する。ある場合では、外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が10〜14の脂肪酸が開裂することを触媒する。一実施形態では、外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が12の脂肪酸が開裂することを触媒する。
【0290】
一実施形態では、外来遺伝子は、脂肪酸アシル−CoA/アルデヒド還元酵素をコードする。ある場合では、外来遺伝子によってコードされる還元酵素は、炭素が8〜18の脂肪酸アシル−CoAを、対応する一級アルコールへと還元することを触媒する。ある場合では、外来遺伝子によってコードされる還元酵素は、炭素が10〜14の脂肪酸アシル−CoAを、対応する一級アルコールへと還元することを触媒する。一実施形態では、外来遺伝子によってコードされる還元酵素は、炭素が12の脂肪酸アシル−CoAをドデカノールへと還元することを触媒する。
【0291】
また、本発明は、2個の外来遺伝子を含有する組み換えPrototheca細胞も提供しており、第1の外来遺伝子は、脂肪族アシル−ACPチオエステラーゼをコードし、第2の外来遺伝子は、脂肪酸アシル−CoA還元酵素、脂肪酸アシル−CoA/アルデヒド還元酵素、アシルキャリアータンパク質からなる群から選択されるタンパク質をコードする。ある場合では、この2個の外来遺伝子は、それぞれプロモーターに動作可能に連結した状態であり、刺激に応答して誘発的である。ある場合では、それぞれのプロモーターは、培地中の窒素が制限されているか、又は窒素がないといった同じ刺激に応答して誘発的である。培地中の窒素が制限されているか、又は全くないことによって、Prototheca種のようなある種の微生物では油の産生が刺激され、油をより高いレベルで産生のを誘発する引き金として用いることができる。本明細書に開示されている遺伝子操作方法と組み合わせて用いる場合、脂質量は、細胞乾燥重量の割合として、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも75%のような高いレベルまで引き上げられ得;本明細書に開示されている方法は、このようなレベルの脂質を有する細胞を提供し、ここで、脂質は、C8〜C14が少なくとも1%〜5%、好ましくは少なくとも4%であり、C8が少なくとも0.25%〜1%、好ましくは少なくとも0.3%であり、C10が少なくとも1%〜5%、好ましくは少なくとも2%であり、C12が少なくとも1%〜5%、好ましくは少なくとも2%であり、C14が少なくとも1%〜5%、好ましくは少なくとも2%である。ある実施形態では、細胞は、細胞乾燥重量で脂質が10%を超えるか、15%を超えるか、20%を超えるか、又は25%を超え、C8〜C14が少なくとも5%、少なくとも10%、又は少なくとも15%、C8〜C14が少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、又は少なくとも30%、C8〜C14が少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、又は少なくとも40%、C8〜C14が5%〜40%、好ましくは10〜30%、及びC8〜C14が10%〜40%、好ましくは20〜30%である脂質を含む。
【0292】
本明細書に開示されている新しい油は、ヤシ油、パーム核油、ココナツ油のような中鎖脂肪酸が多い他の天然に存在する油とは明らかに異なっている。例えば、カロチノイドのような混入物質の濃度は、ヤシ油やパーム核油において、本発明の油におけるよりもはるかに高い。パーム油及びパーム核油は、特に、本発明の油よりも、α−カロチン、β−カロチン、リコピンを非常に多く含んでいる。それに加え、パーム油及びパーム核油では、20種類を超える異なるカロチノイドが見つかっているが、一方、実施例からは、本発明の油は、含有するカロチノイド種の種類が非常に少なく、濃度も非常に低いことが示されている。それに加え、トコトリエノールのようなビタミンE化合物の濃度は、パーム油、パーム核油、ココナツ油では、本発明の油と比べてかなり大きい。
【0293】
一実施形態では、第1の外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が8〜18の脂肪酸が開裂することを触媒する。ある実施形態では、第2の外来遺伝子は、脂肪酸アシル−CoA/アルデヒド還元酵素をコードし、この酵素は、炭素が8〜18の脂肪酸アシル−CoAを、対応する一級アルコールへと還元するのを触媒する。ある場合では、第1の外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が10〜14の脂肪酸が開裂することを触媒し、第2の外来遺伝子によってコードされる還元酵素は、炭素が10〜14の脂肪酸アシル−CoAを、対応する一級アルコールへと還元するのを触媒し、ここで、チオエステラーゼと還元酵素は、同じ炭素鎖長に作用する。一実施形態では、第1の外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が12の脂肪酸が開裂することを触媒し、第2の外来遺伝子によってコードされる還元酵素は、炭素が12の脂肪酸アシル−CoAをドデカノールへと還元することを触媒する。ある実施形態では、第2の外来遺伝子は、脂肪酸アシル−CoA還元酵素をコードし、この酵素は、炭素が8〜18の脂肪酸アシル−CoAを、対応するアルデヒドへと還元することを触媒する。ある実施形態では、第2の外来遺伝子は、脂肪族アシル−ACPチオエステラーゼ内で必然的に一緒に発現するアシルキャリアータンパク質をコードする。
【0294】
ある実施形態では、第2の外来遺伝子は、脂肪酸アシル−CoA還元酵素をコードし、細菌は、脂肪族アルデヒド脱炭酸酵素をコードする第3の外来遺伝子をさらに含む。ある場合では、第1の外来遺伝子によってコードされるチオエステラーゼは、ACPから、炭素が8〜18の脂肪酸が開裂することを触媒し、第2の外来遺伝子によってコードされる還元酵素は、炭素が8〜18の脂肪酸アシル−CoAを、対応する一級アルデヒドへと還元するのを触媒し、第3の外来遺伝子によってコードされる脱炭酸酵素は、炭素が8〜18の脂肪族アルデヒドから対応するアルカンへの変換を触媒し、ここで、チオエステラーゼ、還元酵素、脱炭酸酵素は、同じ炭素鎖長に作用する。
【0295】
ある実施形態では、第2の外来遺伝子は、アシルキャリアータンパク質をコードし、細菌は、脂肪酸アシル−CoA還元酵素、脂肪酸アシル−CoA/アルデヒド還元酵素からなる群から選択されるタンパク質をコードする第3の外来遺伝子をさらに含む。ある場合では、第3の外来遺伝子は、脂肪酸アシル−CoA還元酵素をコードし、細菌は、脂肪族アルデヒド脱炭酸酵素をコードする第4の外来遺伝子をさらに含む。
【0296】
また、本発明は、培地中で、組み換え微生物(例えば、Prototheca細胞)の集合を培養することを含む、アルコールを生成する方法を提供し、ここで、細胞は、(i)脂肪族アシル−ACPチオエステラーゼをコードする第1の外来遺伝子と、(ii)脂肪酸アシル−CoA/アルデヒド還元酵素をコードする第2の外来遺伝子とを含み、細胞は、アシルキャリアータンパク質(ACP)に結合した脂肪酸を合成し、脂肪族アシル−ACPチオエステラーゼは、ACPから脂肪酸が開裂するのを触媒し、さらなる処理によって脂肪酸アシル−CoAが得られ、脂肪酸アシル−CoA/アルデヒド還元酵素は、アシル−CoAからアルコールへの還元を触媒する。
【0297】
また、本発明は、Prototheca細胞内で脂質分子を生成する方法を提供する。一実施形態では、この方法は、培地中で微生物(例えば、Prototheca細胞)の集合を培養することを含み、ここで、この細胞は、(i)脂肪族アシル−ACPチオエステラーゼをコードする第1の外来遺伝子と、(ii)脂肪酸アシル−CoA/アルデヒド還元酵素をコードする第2の外来遺伝子とを含み、細菌は、アシルキャリアータンパク質(ACP)に結合した脂肪酸を合成し、脂肪族アシル−ACPチオエステラーゼは、ACPから脂肪酸が開裂するのを触媒し、さらなる処理によって脂肪酸アシル−CoAが得られ、脂肪酸アシル−CoA還元酵素は、アシル−CoAからアルデヒドへの還元を触媒する。
【0298】
また、本発明は、Prototheca細胞内で、特定の炭素鎖長を有する脂肪酸分子を生成する方法を提供する。一実施形態では、この方法は、培地中で微生物(例えば、Prototheca細胞)の集合を培養することを含み、ここで、この細胞は、脂肪族アシル−ACPチオエステラーゼをコードする外来遺伝子を含み、特定の炭素鎖長、例えば、炭素原子が8個、10個、12個、又は14個の炭素鎖長に対して特異的であるか、これらの鎖長を好む活性を有しており、細菌は、アシルキャリアータンパク質(ACP)に結合した脂肪酸を合成し、チオエステラーゼは、脂肪酸が特定の炭素鎖長を有するように合成された場合には、ACPから、その脂肪酸を開裂することを触媒する。
【0299】
上述の種々の実施形態では、微生物(例えば、Prototheca細胞)は、脂質経路に関連する酵素をコードする少なくとも1つの外来遺伝子を含むことができる。ある場合では、脂質経路に関連する酵素は、ステアロイル−ACPデサチュラーゼ、グリセロ脂質デサチュラーゼ、ピルビン酸脱水素酵素、アセチル−CoAカルボキシラーゼ、アシルキャリアータンパク質、グリセロール−3ホスフェートアシルトランスフェラーゼからなる群から選択される。他の場合では、微生物(例えば、Prototheca細胞)は、脂肪族アシル−ACPチオエステラーゼ、脂肪酸アシル−CoA/アルデヒド還元酵素、脂肪酸アシル−CoA還元酵素、脂肪族アルデヒド還元酵素、脂肪族アルデヒド脱炭酸酵素、及び/又はアシルキャリアータンパク質からなる群から選択される脂質改変酵素を含有する。
【0300】
本明細書で述べられている各種の脂質経路に関連する酵素及び脂質改変酵素を発現させるために使用される、数多くの例示的な形質転換カセット又は構築物が実施例に記載されている。その他の有用な構築物を、限定されないが、下の表37に列挙する。
【0301】
【表37】
[この文献は図面を表示できません]
【0302】
(VI.燃料及び化学物質の生成)
本発明の方法に従って燃料を生成する場合、本発明の細胞が産生する細胞を収穫するか、又は任意の従来の方法によって、それ以外の方法で集める。全細胞の抽出によって脂質を単離することができる。まず、細胞を破壊し、次いで、例えば、上述のような遠心分離を用いることによって、細胞内の脂質及び細胞膜/細胞壁に関連する脂質、及び細胞外の炭化水素を細胞塊から分けることができる。微生物中で生成する細胞内脂質を、ある実施形態では、微生物の細胞を溶解させた後に抽出する。抽出したら、脂質をさらに精製し、油、燃料又は油脂化学品を作り出す。
【0303】
培養が終了したら、微生物を発酵ブロスから分離することができる。場合により、分離は、遠心分離によって行い、濃縮ペーストを作成する。遠心分離によって、微生物に由来するかなりの量の細胞内の水が除去されず、この工程は乾燥工程ではない。次いで、バイオマスを場合により、洗浄溶液(例えば、脱イオン水)を用いて洗浄し、発酵ブロス及び発酵片を取り除く。場合により、洗浄した微生物バイオマスを乾燥させ(乾燥機で乾燥させる、凍結乾燥させる、など)、その後に細胞を破壊してもよい。又は、発酵が完全に終わっている場合には、細胞を発酵ブロスの一部又は全部と分離することなく溶解させてもよい。例えば、細胞を溶解させたときに、細胞と細胞外の液体とのv:v比が1:1未満であってもよい。
【0304】
脂質を含有する微生物を溶解し、溶解物を作成してもよい。本明細書で詳細に記載するように、微生物を溶解する工程(細胞溶解とも呼ばれる)は、熱による溶解、塩基を加えること、酸を加えること、プロテアーゼのような酵素、アミラーゼのような多糖分解酵素を用いること、超音波を用いること、機械的な溶解、浸透圧衝撃を用いること、溶解性ウイルスに感染させること、及び/又は1つ以上の溶解遺伝子の発現を含む、任意の簡便な手段によって行うことができる。溶解を行い、微生物によって産生された細胞内分子を放出させる。微生物を溶解させるための、これらのそれぞれの方法を単独の方法として用いてもよく、同時又は連続して、組み合わせとして用いてもよい。細胞の破壊度は、顕微鏡分析によって観察することができる。本明細書に記載した1つ以上の方法を用い、典型的には、70%を超える細胞の破壊が観察される。好ましくは、細胞の破壊は、80%を超えており、より好ましくは、90%を超えており、最も好ましくは、約100%である。
【0305】
特定の実施形態では、成長した後に微生物を溶解させ、例えば、抽出又はさらなる処理のために、細胞内の脂質及び/又は炭化水素がさらされる程度を増やす。リパーゼ発現(例えば、誘発性プロモーターによる)又は細胞溶解のタイミングは、脂質及び/又は炭水化物の収量を最適化するように調節することができる。以下に、いくつかの溶解技術を記載している。これらの技術を個々に用いてもよく、組み合わせて用いてもよい。
【0306】
本発明の一実施形態では、微生物を溶解する工程は、微生物を含有する細胞懸濁物を加熱することを含む。この実施形態では、微生物を含む発酵ブロス(又は、発酵ブロスから単離した微生物の懸濁物)を、微生物、すなわち、微生物の細胞壁及び細胞膜が分解するか、又は破壊するまで加熱する。典型的には、かけられる温度は、少なくとも50℃である。もっと効率よく細胞を溶解させるために、もっと高い温度、例えば、少なくとも30℃、少なくとも60℃、少なくとも70℃、少なくとも80℃、少なくとも90℃、少なくとも100℃、少なくとも110℃、少なくとも120℃、少なくとも130℃、又はそれ以上の温度を使用する。熱処理によって細胞を溶解することは、微生物を沸騰させることによって行ってもよい。又は、熱処理(沸騰させない)をオートクレーブ中で行ってもよい。熱処理された溶解物を、さらなる処理のために冷却してもよい。また、細胞の破壊は、蒸気による処理によって、すなわち、加圧した蒸気を加えることによって行ってもよい。細胞を破壊するための微細藻類の蒸気処理は、例えば、米国特許第6,750,048号に記載されている。ある実施形態では、蒸気処理は、蒸気を発酵槽に吹き込み、ブロスを所望の温度に約90分未満、好ましくは約60分未満、より好ましくは約30分未満維持することによって行ってもよい。
【0307】
本発明の別の実施形態では、微生物を溶解する工程は、微生物を含有する細胞懸濁物に塩基を加えることを含む。塩基は、少なくとも、使用した微生物の水系タンパク質化合物の一部分を加水分解するのに十分なほど強いことが必要である。タンパク質を溶解するのに有用な塩基は、化学分野で知られている。本発明の方法で有用な、例示的な塩基としては、限定されないが、リチウム、ナトリウム、カリウム、カルシウムの水酸化物、炭酸塩、炭酸水素塩、及びこれらの混合物が挙げられる。好ましい塩基はKOHである。細胞を破壊するための微細藻類の塩基処理は、例えば、米国特許第6,750,048号に記載されている。
【0308】
本発明の別の実施形態では、微生物を溶解する工程は、微生物を含有する細胞懸濁物に酸を加えることを含む。酸による溶解は、10〜500mNの濃度、又は好ましくは、40〜160nMの濃度の酸を用いて行うことができる。酸による溶解は、好ましくは、室温より高い温度(例えば、40〜160℃、好ましくは、50〜130℃の温度)で行われる。中程度の温度(例えば、室温〜100℃、特に、室温〜65℃)の場合、酸による処理は、有益には、超音波処理又は他の細胞破壊方法と組み合わせてもよい。
【0309】
本発明の別の実施形態では、微生物を溶解する工程は、酵素を用いることによって微生物を溶解することを含む。微生物を溶解するのに好ましい酵素は、プロテアーゼ、及びヘミセルラーゼのような多糖分解酵素(例えば、Aspergillus nigerに由来するヘミセルラーゼ;Sigma Aldrich、セントルイス、モントリオール;#H2125)、ペクチナーゼ(例えば、Rhizopus sp.に由来するペクチナーゼ;Sigma Aldrich、セントルイス、モントリオール;#P2401)、Mannaway 4.0L(Novozymes)、セルラーゼ(例えば、Trichoderma virideに由来するセルロース;Sigma Aldrich、セントルイス、モントリオール;#C9422)、ドリセラーゼ(例えば、Basidiomycetes sp.に由来するドリセラーゼ;Sigma Aldrich、セントルイス、モントリオール;#D9515)である。
【0310】
本発明の他の実施形態では、溶解は、例えば、多糖分解酵素のようなセルラーゼ、場合により、Chlorella又はChlorellaウイルスに由来するもの、又は、プロテアーゼ、例えば、Streptomyces griseusプロテアーゼ、キモトリプシン、プロテイナーゼK、Degradation of Polylactide by Commercial Proteases、Oda Yet al.、Journal of Polymers and the Environment、第8巻、Number 1、2000年1月、pp.29−32(4)、Alcalase 2.4 FG(Novozymes)、に列挙されているプロテアーゼ、Flavourzyme 100L(Novozymes)のような酵素によって行われる。先に示したプロテアーゼ及び多糖分解酵素の任意の組み合わせを含む、プロテアーゼと多糖分解酵素の任意の組み合わせを用いてもよい。
【0311】
別の実施形態では、溶解は、連続圧搾機を用いて行うことができる。このプロセスでは、バイオマスに、高圧状態で、スクリュー型デバイスを用いて力を加え、細胞を溶解させ、細胞内脂質を放出させ、細胞内のタンパク質及び繊維(及び他の成分)と分離させる。
【0312】
本発明の別の実施形態では、微生物を溶解する工程は、超音波を用いて、すなわち、超音波処理によって行われる。従って、高周波数の音を用いて細胞を溶解させることができる。音は、電子的に発生させ、適切に濃縮した細胞懸濁物に対し、金属片を介して伝搬させてもよい。この超音波処理は、細胞懸濁物中に空洞を作り出すことに基づいて、細胞の一体性を破壊する。
【0313】
本発明の別の実施形態では、微生物を溶解する工程は、機械的な溶解によって行われる。細胞は、機械的に溶解されてもよく、場合により、炭化水素(例えば、脂質)を集めやすいように均質化してもよい。例えば、加圧による破壊を利用し、細胞を含有するスラリーを制水型オリフィス弁にポンプで圧送してもよい。高圧(1500barまで)をかけ、その後、出口ノズルを通して瞬間的に拡散させてもよい。細胞の破壊は、弁での衝撃、オリフィス内での大きな液体剪断力、放出による急な圧力低下といった3種類の異なる機構によって行われ、これにより、細胞が爆発する。この方法によって、細胞内の分子が放出される。又は、ボールミルを用いてもよい。ボールミルの場合、ビーズのような小さな研磨粒子を含む懸濁物中で細胞を攪拌する。細胞は、剪断力、ビーズ間で研磨されること、ビーズと衝突することによって破壊される。ビーズは、細胞を破壊して、細胞内容物を放出させる。また、細胞は、細胞を破壊するためのブレンド(例えば、例として高速ブレンダー又はWaringブレンダー)を用いるか、フレンチプレスを用いるか、又は細胞壁が弱い場合には、遠心分離を用い、剪断力によって破壊されてもよい。
【0314】
本発明の別の実施形態では、微生物を溶解する工程は、浸透圧衝撃を与えることによって行われる。
【0315】
本発明の別の実施形態では、微生物を溶解する工程は、微生物を溶解性ウイルスに感染させることを含む。本発明で用いるのに微生物を溶解するのに適したさまざまなウイルスが知られており、特定の微生物に特定の溶解性ウイルスを選択し、使用することは、当業者の知識の範囲内である。例えば、paramecium bursaria chlorellaウイルス(PBCV−1)は、特定の単細胞性の、真核性のクロレラに似た緑色の藻の中で複製し、溶解させる、大きな20面体のプラークを形成する二本鎖DNAウイルスのグループ(Phycodnaviridae科、クロロウイルス属)の原型である。従って、培養物を任意の適切なクロレラウイルスに感染させることによって、任意の感染しやすい微細藻類を溶解させることができる。Chlorella種を、クロレラウイルスを用いて感染させる方法は知られている。例えば、Adv.Virus Res.2006;66:293−336;Virology、1999年4月25日;257(1):15−23;Virology、2004年1月5日;318(1):214−23;Nucleic Acids Symp.Ser.2000;(44):161−2;J.Virol.2006年3月;80(5):2437−44;Annu.Rev.Microbiol.1999;53:447−94を参照。
【0316】
本発明の別の実施形態では、微生物を溶解する工程は、自己消化を含む。この実施形態では、本発明の微生物を、微生物を溶解する溶解性タンパク質を生成するように遺伝子操作する。この溶解遺伝子を、誘発性プロモーターを用いて発現させ、まず、細胞は、発酵槽内で望ましい密度まで成長し、その後、プロモーターの誘発によって、細胞を溶解させる溶解遺伝子が発現する。一実施形態では、溶解遺伝子は、多糖分解酵素をコードしている。特定の他の実施形態では、溶解遺伝子は、溶解性ウイルスに由来する遺伝子である。従って、例えば、Chlorellaウイルスに由来する溶解遺伝子を、藻の細胞中で発現させてもよい。Virology 260、308−315(1999);FEMS Microbiology Letters 180(1999)45−53;Virology 263、376−387(1999);Virology 230、361−368(1997)を参照。溶解遺伝子の発現は、好ましくは、誘発性プロモーター、例えば、低分子、光、熱及び他の刺激の存在のような刺激によって誘発される、微細藻類内で活性なプロモーターを用いてなされる。
【0317】
上述の方法によって生成した細胞溶解物から脂質を分離するための種々の方法が利用可能である。例えば、脂質及び脂質誘導体、例えば、脂肪族アルデヒド、脂肪族アルコール、アルカンのような炭化水素を、疎水性溶媒、例えば、ヘキサンで抽出してもよい(Frenz et al.1989、Enzyme Microb.Technol.、11:717を参照)。また、脂質及び脂質誘導体を、液化によって抽出してもよく(例えば、Sawayama et al.1999、Biomass and Bioenergy 17:33−39、及びInoue et al.1993、Biomass Bioenergy 6(4):269−274を参照);油の液化によって抽出してもよく(例えば、Minowa et al.1995、Fuel 74(12):1735−1738を参照);超臨界CO
2抽出によって抽出してもよい(例えば、Mendes et al.2003、Inorganica Chimica Acta 356:328−334を参照)。Miao及びWuは、Chlorella prototheocoidesの培養物から、微細藻類の脂質を回収するプロトコルを記載しており、このプロトコルでは、細胞を遠心分離処理によって集め、蒸留水で洗浄し、凍結乾燥によって乾燥させた。得られた細胞粉末を乳鉢で細かく粉砕し、次いで、n−ヘキサンで抽出した。Miao及びWu、Biosource Technology(2006)97:841−846。
【0318】
従って、本発明の微生物によって生成した脂質、脂質誘導体、炭化水素を、有機溶媒を用いた抽出によって回収することができる。ある場合では、好ましい有機溶媒は、ヘキサンである。典型的には、事前に溶解物成分を分離させることなく、溶解物に有機溶媒を直接加える。一実施形態では、上述の1つ以上の方法によって生成した溶解物を、脂質及び/又は炭化水素成分が有機溶媒と溶液を形成するのに十分な時間、有機溶媒と接触させる。ある場合では、溶液をその後にさらに精製し、特定の望ましい脂質成分又は炭化水素成分を回収する。ヘキサンによる抽出方法は、当該技術分野でよく知られている。
【0319】
本明細書に記載されるように、細胞によって産生される脂質及び脂質誘導体、例えば、脂肪族アルデヒド、脂肪族アルコール、アルカンのような炭化水素を、上述のように、リパーゼのような1つ以上の酵素を用いて改変してもよい。炭化水素が、細胞の外の環境に存在する場合、1つ以上の酵素を、この酵素が炭化水素を改変しするか、又は炭化水素前駆体からの合成を完結させるような条件下で、この環境に加えてもよい。又は、炭化水素を、細胞材料から部分的又は完全に単離してから、酵素のような1つ以上の触媒を加えてもよい。このような触媒は、外から加えられ、触媒の活性は、細胞の外で生じるか、又はin vitroで生じる。
【0320】
従って、in vivoで細胞によって産生されるか、又は、in vitroで酵素によって改変される脂質及び炭化水素は、本明細書に記載されるように、従来の手段によってさらに処理されてもよい。処理は、「クラッキング」して、炭化水素分子を小さくし、水素:炭素比を大きくすることを含んでいてもよい。触媒によるクラッキング方法及び熱によるクラッキング方法は、炭化水素及びトリグリセリド油の処理において通常用いられる。触媒による方法は、固体酸触媒のような触媒の使用を含む。触媒は、シリカ−アルミナ又はゼオライトであってもよく、この触媒により、炭素−炭素結合が不均衡又は非対称に破壊され、カルボカチオンとヒドリドアニオンが生じる。これらの反応性中間体は、次いで、転移するか、又は別の炭化水素にヒドリドが移動する。このように、この反応によって、中間体が再生し、自己連鎖的な機構を生じ得る。また、炭化水素を処理し、炭化水素中の炭素−炭素二重結合又は三重結合を減らしてもよく、場合によりゼロにしてもよい。また、炭化水素を処理し、炭化水素中の環又は環状構造を除去するか、又は取り除いてもよい。また、水素:炭素比が大きくなるように、炭化水素を処理してもよい。この処理は、水素添加(「水素化」)及び/又は炭化水素を小さな炭化水素にする「クラッキング」を含んでいてもよい。
【0321】
熱による方法は、炭化水素を小さくするために、高温及び高圧の使用を含む。約800℃の高温及び約700kPaの高圧を用いてもよい。これらの条件によって「軽質」のものが発生し、軽質との用語は、水素を多く含む炭化水素分子を指すために用いられ(光量子束によって区別する場合)、また、縮合により、水素が相対的に失われた、重い炭化水素分子によっても生成する。この方法によって、均衡、又は対称的に破壊され、アルケンを生じ、このアルケンは、場合により、上述のように酵素によって飽和になってもよい。
【0322】
触媒による方法及び熱による方法は、植物において、炭化水素の処理及び油の精製を行うのに標準的な方法である。従って、本明細書に記載されるような細胞が産生した炭化水素を集め、従来の手段によって処理するか、又は精製することができる。微細藻類が産生した炭化水素のハイドロクラッキングに関する論文は、Hillen et al.(Biotechnology and Bioengineering、Vol.XXIV:193−205(1982))を参照。代替的な実施形態では、画分を、有機化合物、熱及び/又は無機化合物のような別の触媒で処理する。バイオディーゼル内の脂質を処理する場合、本章の以下に記載されているトランスエステル化プロセスを使用する。
【0323】
本発明の方法によって生成する炭化水素は、さまざまな工業用途で有用である。例えば、ほぼあらゆる種類の洗浄剤及び洗浄調製物で用いられるイオン系界面活性剤である直鎖アルキルベンゼンスルホネート(LAS)の生成は、一般的に、炭素原子が10〜14の鎖を含む炭化水素を利用する。例えば、米国特許第6,946,430号;第5,506,201号;第6,692,730号;第6,268,517号;第6,020,509号;第6,140,302号;第5,080,848号;第5,567,359号を参照。例えば、米国特許第5,942,479号;第6,086,903号;第5,833,999号;第6,468,955号;第6,407,044号に記載されるように、界面活性剤、例えば、LASを、パーソナルケア組成物及び洗浄剤で用いてもよい。
【0324】
再生可能な生物由来の出発物質を、化石燃料から誘導される出発物質と置き換えて利用可能であり、その使用が望ましいために、バイオディーゼル、再生可能なディーゼル、ジェット燃料といった燃料に、生物由来の炭化水素成分を用いることに関心が高まっている。生物由来の材料から炭化水素成分を生成する方法が緊急に必要とされている。本発明は、本明細書に記載の方法によって生成した脂質を生物由来の原料として用い、バイオディーゼル、再生可能なディーゼル、ジェット燃料を生成するような、バイオディーゼル、再生可能なディーゼル、ジェット燃料を生成する方法を提供することによって、この要求を満たす。
【0325】
従来のディーゼル燃料は、パラフィン系炭化水素を豊富に含む石油留分である。これらの沸点範囲は、370°F〜780°F(約188°C〜約416°C)と広範囲であり、ディーゼルエンジン車のような圧縮点火エンジンでの燃焼に適している。American Society of Testing and Materials(ASTM)は、例えば、セタン価、曇り点、引火点、粘度、アニリン点、硫黄含有量、含水量、灰分、銅板腐食、炭素残渣のような他の燃料特性の許容範囲とともに、沸点範囲に従って、ディーゼルのグレードを確立している。技術的には、バイオマス、又は適切なASTM仕様を満たすそれ以外のものから誘導される任意の炭化水素留分を、ディーゼル燃料(ASTM D975)、ジェット燃料(ASTM D1655)、又は脂肪酸メチルエステルである場合にはバイオディーゼル(ASTM D6751)と定義できる。
【0326】
抽出の後、本明細書に記載されているような微生物バイオマスから回収した脂質成分及び/又は炭化水素成分を、化学処理し、ディーゼル車及びジェットエンジン用の燃料を製造することができる。
【0327】
バイオディーゼルは、生成物の原材料に依存して、金色から濃い褐色までの色をした液体である。実質的に水には混和せず、高い沸点を有し、蒸気圧が低い。バイオディーゼルは、ディーゼルエンジン車で使用するために、ディーゼルと等価な処理した燃料を指す。バイオディーゼルは、生分解性であり、毒性がない。従来のディーゼル燃料に比べて、バイオディーゼルのさらなる利点は、エンジンの摩耗が少ないことである。典型的には、バイオディーゼルは、C14〜C18のアルキルエステルを含む。種々のプロセスによって、バイオマス又は脂質が生成し、本明細書に記載されるように、単離してディーゼル燃料にする。バイオディーゼルを生成する好ましい方法は、本明細書に記載されるような脂質のトランスエステル化である。バイオディーゼルで用いるのに好ましいアルキルエステルは、メチルエステル又はエチルエステルである。
【0328】
本明細書に記載の方法によって生成するバイオディーゼルは、単独で用いてもよく、ほとんどのディーゼルエンジン車における任意の濃度で、従来のディーゼル燃料とブレンドしてもよい。従来のディーゼル燃料(石油ディーゼル)とブレンドする場合、バイオディーゼルは、約0.1%〜約99.9%存在してもよい。世界のほとんどで、燃料混合物中のバイオディーゼルの量を述べるために、「B」ファクターとして知られるシステムを用いる。例えば、20%のバイオディーゼルを含む燃料は、B20というラベルが付けられる。純粋なバイオディーゼルは、B100と呼ばれる。
【0329】
また、バイオディーゼルを、家庭用ボイラ及び商業用ボイラの加熱燃料として用いてもよい。既存の灯油式ボイラは、ゴム部材を備える可能性があり、バイオディーゼルで動かすために改造する必要がある。改造プロセスは、通常は、比較的単純なものであり、バイオディーゼルが強い溶媒であるため、ゴム部材を合成部材と交換することを含む。バイオディーゼルの溶媒力が強いため、バイオディーゼルを燃やすと、ボイラの効率は上がるだろう。バイオディーゼルを、純粋な超低硫黄ディーゼル(ULSD)燃料の潤滑性を向上させるために、ディーゼル配合物の添加剤として用いてもよく、バイオディーゼルは硫黄を含有しないため、有益である。バイオディーゼルは、石油系ディーゼルよりも良好な溶媒であり、石油系ディーゼルで走っていた車両の燃料ラインに残る残留分の沈殿を分解するために用いてもよい。
【0330】
バイオディーゼルは、油を豊富に含むバイオマスに含まれるトリグリセリドのトランスエステル化によって生成することができる。従って、本発明の別の態様では、バイオディーゼルを生成する方法が提供されている。好ましい実施形態では、バイオディーゼルを生成する方法は、(a)本明細書に開示されている方法を用い、脂質を含有する微生物を育てる工程と、(b)脂質を含有する微生物を溶解させ、溶解物を生成する工程と、(c)溶解した微生物から脂質を単離する工程と、(d)脂質組成物をトランスエステル化する工程とを含み、これによってバイオディーゼルが生成する。微生物を成長させ、微生物を溶解させ、溶解物を生成し、有機溶媒を含む培地中、溶解物を処理し、不均一な混合物を生成し、処理した溶解物を脂質組成物に分離する方法は、上に記載されており、バイオディーゼルを生成する方法でも用いることができる。
【0331】
バイオディーゼルの脂質プロフィールは、通常は、原材料である油の脂質プロフィールと類似している。本発明の方法及び組成物によって与えられる他の油をトランスエステル化し、(a)C8〜C14が少なくとも1%〜5%、好ましくは少なくとも4%であり;(b)C8が少なくとも0.25%〜1%、好ましくは少なくとも0.3%であり;(c)C10が少なくとも1%〜5%、好ましくは少なくとも2%であり;(d)C12が少なくとも1%〜5%、好ましくは少なくとも2%であり;(3)C8〜C14が少なくとも20%〜40%、好ましくは少なくとも30%である脂質プロフィールを有するバイオディーゼルを得ることができる。
【0332】
脂質組成物をトランスエステル化し、バイオディーゼルとして有用な長鎖脂肪酸エステルを得ることができる。好ましいトランスエステル化反応について、以下に概略を説明しており、塩基触媒によるトランスエステル化と、組み換えリパーゼを用いたトランスエステル化を含む。塩基触媒によるトランスエステル化プロセスでは、トリアシルグリセリドを、アルカリ触媒、典型的には、水酸化カリウム存在下、メタノール又はエタノールのようなアルコールと反応させる。この反応から、メチルエステル又はエチルエステルと、副生成物としてグリセリン(グリセロール)とが生成する。
【0333】
動物性油及び植物性油は、典型的には、遊離脂肪酸と三価アルコールであるグリセロールとのエステルであるトリグリセリドから作られる。トランスエステル化において、トリアシルグリセリド(TAG)中のグリセロールを、メタノール又はエタノールのような短鎖アルコールと交換する。典型的な反応スキームは、以下の通りである。
【化1】
[この文献は図面を表示できません]
【0334】
この反応では、アルコールを塩基で脱プロトン化し、もっと強い求核試薬にする。一般的に、エタノール又はメタノールを大過剰に用いる(最大50倍まで)。通常は、この反応は、非常にゆっくりと進むか、まったく進まないであろう。反応をもっとすばやく進めるために、熱とともに、酸又は塩基を用いてもよい。トランスエステル化反応によって酸又は塩基は消費されず、従って、これらは反応剤ではなく、触媒である。ほとんど全てのバイオディーゼルは、低い温度及び低い圧力のみを必要とし、変換収率が98%を超えるため、塩基触媒による技術を用いて生成されている(但し、出発原料の油は、水分量が低く、遊離脂肪酸の量が少ないことを条件とする)。
【0335】
また、トランスエステル化は、塩基の代わりに、リパーゼのような酵素を用いて上述のように行われる。リパーゼによって触媒されるトランスエステル化は、例えば、TAGと低級アルコールとのモル比が、1:1より大きく、好ましくは約3:1の比率で、室温〜80℃の温度で行われて得る。トランスエステル化で用いるのに適したリパーゼとしては、限定されないが、表9に列挙されるものが挙げられる。トランスエステル化に有用なリパーゼの他の例は、例えば、米国特許第4,798,793号;第4,940,845号、第5,156,963号;第5,342,768号;第5,776,741号、WO89/01032号に見いだされる。このようなリパーゼとしては、限定されないが、Rhizopus、Aspergillus、Candida、Mucor、Pseudomonas、Rhizomucor、Candida、Humicolaの微生物によって産生されるリパーゼ及び膵臓リパーゼが挙げられる。
【0336】
【表9】
[この文献は図面を表示できません]
【0337】
バイオディーゼルに適した脂肪酸エステルを生成するために、リパーゼを用いることの課題の1つは、リパーゼの価格が、強塩基プロセスで用いる水酸化ナトリウム(NaOH)の価格よりもかなり高いことである。この課題は、リサイクル可能な固定化されたリパーゼを用いることによって対処される。しかし、固定化されたリパーゼの活性は、生成費用の観点で、リパーゼによるプロセスが、強塩基プロセスと匹敵するようになるような最低限のサイクル数リサイクルした後にも維持されていなければならない。固定化されたリパーゼは、典型的には、トランスエステル化で用いられる低級アルコールによって毒化されやすい。米国特許第6,398,707号(Wu et al.に対し、2002年6月4日発行)は、固定化されたリパーゼを高める方法、及び活性が低下した、固定化されたリパーゼを再生する方法を記載している。いくつかの適切な方法は、固定化されたリパーゼを、炭素原子数が3個未満のアルコールに所定時間、好ましくは、0.5〜48時間、より好ましくは、0.5〜1.5時間浸すことを含む。また、いくつかの適切な方法は、不活性化した、固定化されたリパーゼを、炭素原子が3個を超えないアルコールで洗浄し、次いで、この不活性化した、固定化されたリパーゼを、植物油に0.5〜48時間浸すことを含む。
【0338】
特定の実施形態では、組み換えリパーゼを、リパーゼが作用して脂質を産生する同じ微生物中で発現する。適切な組み換えリパーゼとしては、上の表9に列挙されているもの、及び/又は上の表9に列挙されているGenbank寄託番号を有するもの、又は、上の表9に列挙されているリパーゼの1つとのアミノ酸同一性が少なくとも70%であり、リパーゼ活性を示すポリペプチドが挙げられる。さらなる実施形態では、酵素活性は、上に記載した配列の1つとの同一性が少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約99%の配列に存在し、これらは全て、完全に記載されているかのように参照により組み込まれる。リパーゼ及び選択可能なマーカーをコードするDNAは、好ましくは、コドンが最適化されたcDNAである。微細藻類において発現させるための遺伝子を書き換える方法は、米国特許第7,135,290号に記載されている。
【0339】
バイオディーゼルに関する一般的な国際標準は、EN 14214である。ASTM D6751は、米国及びカナダで参照されている最も一般的なバイオディーゼル標準である。ドイツは、DIN EN 14214を使用しており、英国は、BS EN 14214の順守が必要である。上述の製品がこれらの標準を満たしているか否かを決定するための基本的な工業用試験としては、典型的には、ガスクロマトグラフィー、HPLCなどが挙げられる。上述の品質表寿を満たすバイオディーゼルは、非常に毒性が低く、毒性の評価(LD
50)は、50mL/kgより大きい。
【0340】
ASTM標準を満たすバイオディーゼルは、毒性が低くなければならないが、堆積物として溶液から結晶化し、及び/又は沈殿し、沈む傾向のある混入物質が存在している場合がある。堆積物の生成は、バイオディーゼルが低い温度で使用される場合、特に問題である。堆積物又は沈殿は、燃料の流れを減らし、燃料ラインを詰まらせ、フィルターを詰まらせるなどの問題を引き起こす場合がある。もっと品質の高い製品を製造するために、バイオディーゼル中の上述の混入物質及び堆積物を除去することに特に対処するプロセスが、当該技術分野でよく知られている。このようなプロセスの例としては、限定されないが、リン脂質及び遊離脂肪酸のような混入物質を除去するための、油の前処理(例えば、ガム状物質の除去、苛性ソーダによる精製、シリカ吸着剤による濾過)及び冷却状態での濾過が挙げられる。冷却状態での濾過は、生成した後のバイオディーゼル中に存在する任意の粒状物及び堆積物を除去するために特に開発されたプロセスである。このプロセスは、バイオディーゼルを冷却し、低い温度で燃料を用いる場合に生成するかもしれない任意の堆積物又は沈殿を濾別する。このようなプロセスは、当該技術分野でよく知られており、米国特許公開第2007−0175091号に記載されている。適切な方法は、バイオディーゼルを約38℃より低い温度まで冷却し、不純物及び混入物質をバイオディーゼル液体中、粒状物として析出させる。次いで、この冷却したバイオディーゼル材料に、珪藻土又は他の濾過材料を加えてスラリーを作成し、次いで、これを葉状圧力フィルター又は他の種類のフィルターで濾過し、粒状物を除去する。次いで、濾過したバイオディーゼルを、最終的なバイオディーゼル製品が得られるように、研磨フィルターに通し、残った任意の堆積物及び珪藻土を除去する。
【0341】
実施例13は、Prototheca moriformisに由来するトリグリセリド油を用いた、バイオディーゼルの生成について記載している。実施例13で生成したバイオディーゼルのASTM D6751 A1法による、Cold Soak Filterabilityは、容積300mlで120秒であった。この試験は、B100 300mlを濾過し、40°F(約4.5°C)で16時間冷却し、室温まで加温し、減圧下、ステンレス鋼の支持材を取り付けた0.7マイクロメートルガラス繊維を用いて濾過する。本発明の油を、トランスエステル化し、冷状態浸漬時間が、120秒未満、100秒未満、90秒未満のバイオディーゼルを得ることができる。
【0342】
バイオディーゼルが、特定の冷温で使用される場合、次のプロセスを用いてもよい。このようなプロセスは、脱ろう及び画分化を含む。両プロセスは、曇り点(バイオディーゼルが結晶化し始める温度)を下げることによって、冷状態での流動性を高め、冬の燃料の性能を高める。バイオディーゼルを脱ろうするために、いくつかのアプローチが存在する。アプローチのひとつは、バイオディーゼルと、石油ディーゼルとをブレンドすることである。別のアプローチは、バイオディーゼルの曇り点を下げることが可能な添加剤を使用することである。別のアプローチは、添加剤中で混合し、飽和物質を結晶化させ、次いで結晶を濾別することによって、飽和メチルエステルを無差別に除去することである。画分化は、メチルエステルを個々の成分又は画分に選択的に分離し、これにより、特定のメチルエステルを除去するか、又は含むようにすることができる。画分化方法は、尿素による画分化、溶媒による画分化、熱による蒸留が挙げられる。
【0343】
本発明の方法によって提供される別の価値の高い燃料は、再生可能なディーゼルであり、C10:0、C12:0、C14:0、C16:0及びC18:0のようなアルカンを含み、従って、バイオディーゼルとは区別することができる。高品質の再生可能なディーゼルは、ASTM D975の標準に適合している。本発明の方法によって生成する脂質は、再生可能なディーゼルを製造する原材料として役立たせることができる。従って、本発明の別の態様では、再生可能なディーゼルを製造する方法が提供される。再生可能なディーゼルは、熱水で処理すること(熱水処理);水素化処理;間接的な液化といった、少なくとも3種類のプロセスで製造することができる。これらのプロセスによって、エステルではない留分が得られる。これらのプロセスの間、本明細書に記載されるように生成し、単離されたトリアシルグリセリドを、アルカンへと変換する。
【0344】
一実施形態では、再生可能なディーゼルを生成する方法は、(a)脂質を含有する微生物を本明細書に開示されている方法を用いて育てることと、(b)微生物を溶解させ、溶解物を生成する工程と、(c)溶解した微生物から脂質を単離する工程と、(d)脂質を脱酸素し、熱水処理してアルカンを生成することとを含み、これによって再生可能なディーゼルが得られる。再生可能なディーゼルを製造するのに適した脂質は、ヘキサンのような有機溶媒を用い、微生物バイオマスから抽出することによって、又は米国特許第5,928,696号に記載されるような他の方法によって得ることができる。いくつかの適切な方法は、機械的に加圧し、遠心分離処理することを含んでいてもよい。
【0345】
いくつかの方法では、まず、微生物脂質を、熱処理と組み合わせてクラッキングし、それぞれ、炭素鎖長を短くし、二重結合を飽和させる。次いで、この物質を異性化し、これも熱水処理と組み合わせる。次いで、ナフサ画分を蒸留によって除去し、次いで、さらに蒸留し、ASTM D975の標準を満たすように、ディーゼル燃料中の望ましい成分を蒸気にし、蒸留しつつ、D975の標準を満たすのに望ましいものよりも重い成分は残す。トリグリセリド油を含む油を化学的に改変する熱水処理方法、ハイドロクラッキング方法、脱酸素方法、異性化方法は、当該技術分野でよく知られている。例えば、European patent applications EP1741768(A1);EP1741767(A1);EP1682466(A1);EP1640437(A1);EP1681337(A1);EP1795576(A1);米国特許第7,238,277号;第6,630,066号;第6,596,155号;第6,977,322号;第7,041,866号;第6,217,746号;第5,885,440号;第6,881,873号を参照。
【0346】
再生可能なディーゼルを生成する方法の一実施形態では、脂質を処理してアルカンを得ることは、脂質組成物の熱水処理によって行われる。熱水処理において、典型的には、バイオマスを、高温高圧下、水中で反応させて、油と残留する固体を生成させる。変換温度は、典型的には、300°F〜660°F(約149°C〜約349°C)であり、圧力は、水が主に液体のままであるのに十分な圧力であり、100〜170標準大気圧(atm)である。反応時間は、15〜30分程度である。反応が終了した後、有機物を水から分離する。それにより、ディーゼルに適した留分が得られる。
【0347】
再生可能なディーゼルを製造するいくつかの方法では、トリグリセリドを処理する第1の工程は、二重結合を飽和させる水素化処理であり、次いで、水素及び触媒存在下、高温で脱酸素させる。いくつかの方法では、水素化及び脱酸素は、同じ反応中に起こる。他の方法では、水素化の前に脱酸素が起こる。次いで、場合により、これも水素及び触媒が存在する条件で、異性化を行う。ナフサ成分は、好ましくは、蒸留によって除去される。例えば、米国特許第5,475,160号(hydrogenation of triglycerides);第5,091,116号(deoxygenation,hydrogenation and gas removal);第6,391,815号(hydrogenation);第5,888,947号(isomerization)を参照。
【0348】
トリグリセリドを水素化するのに適した方法のひとつは、銅、亜鉛、マグネシウム、ランタニウムの塩の水溶液と、アルカリ金属、又は好ましくは、炭酸アンモニウムの別の溶液とを調製することを含む。この2種類の溶液を、約20℃〜約85℃の温度まで加熱し、触媒を生成させるために、沈殿容器のpHが5.5〜7.5に維持されるように、沈殿容器に秤量しながら一緒に加える。沈殿容器にさらなる水を最初に入れておいてもよく、又は、塩溶液及び沈殿溶液と同時に入れてもよい。得られた沈殿を十分に洗浄し、乾燥させ、約300℃で焼結し、約100℃〜約400℃の範囲の温度で、水素で活性化する。次いで、容器中、1つ以上のトリグリセリドを接触させ、上述の触媒存在下、水素と反応させてもよい。この反応槽は、トリクルベッド反応槽、固定床気体−固体反応槽、充填気泡反応槽、連続攪拌型タンク反応槽、スラリー相反応槽、又は当該技術分野で既知の任意の他の適切な反応槽であってもよい。このプロセスは、バッチ式で行ってもよく、連続的な様式で行ってもよい。反応温度は、典型的には、約170℃〜約250℃の範囲であり、一方、反応圧力は、典型的には、約300psig(約2,000kPha)〜約2,000psig(約13,000kPha)の範囲内にある。さらに、本発明のプロセスにおいて、水素とトリグリセリドとのモル比は、典型的には、約20:1〜約700:1の範囲にある。このプロセスは、典型的には、約0.1hr
−1〜約5hr
−1の範囲の重量空間速度(WHSV)で行われる。当業者は、反応に必要な時間は、使用する温度、水素とトリグリセリドとのモル比、水素の分圧によってさまざまであることを認識するだろう。このような水素化プロセスで生成する生成物は、脂肪族アルコール、グリセロール、微量のパラフィン及び未反応のトリグリセリドを含む。これらの生成物を、典型的には、例えば、蒸留、抽出、濾過、結晶化などの従来の手段によって分離する。
【0349】
石油精製業者は、水素化処理を利用し、原料を水素で処理することによって不純物を除去する。水素化処理による変換温度は、典型的には、300°F〜700°F(約149°C〜約371°C)である。圧力は、典型的には、40〜100atmである。反応時間は、典型的には、10〜60分程度である。固体触媒を利用し、特定の反応速度を上げ、特定の生成物の選択性を上げ、水素の消費量を最適化する。
【0350】
油を脱酸素するのに適した方法は、油を約350°F〜約550°F(約177°C〜約288°C)の範囲の温度まで加熱することと、少なくとも大気圧よりも高い圧力で、少なくとも5分間、加熱した油を窒素と連続的に接触させることとを含む。
【0351】
異性化に適した方法は、アルカリ異性化、及び当該技術分野で既知の他の油異性化を含む。
【0352】
熱水処理及び水素化処理によって、最終的に、トリグリセリド供給物の分子量が低下する。トリグリセリド分子は、水素化処理条件で、プロパン分子と、3種類のこれより重い炭化水素分子、典型的には、C8〜C18の範囲の炭化水素分子の4種類の炭化水素へと還元される。
【0353】
従って、一実施形態では、本発明の脂質組成物で行われる1つ以上の化学反応の生成物は、ASTM D975の再生可能なディーゼルを有するアルカン混合物である。微生物による炭化水素の産生は、Metzger et al.Appl Microbiol Biotechnol(2005)66:486−496及びA Look Back at the U.S.Department of Energy’s Aquatic Species Program:Biodiesel from Algae、NREL/TP−580−24190、John Sheehan、Terri Dunahay、John Benemann and Paul Roessler(1998)にまとめられている。
【0354】
ディーゼル燃料の蒸留特性は、T10−T90(それぞれ、容積で10%及び90%が留出した温度)の観点で記載される。再生可能なディーゼルは、Prototheca moriformisトリグリセリド油から作られ、実施例13に記載されている。実施例13で作られた物質のT10−T90は、57.9℃であった。本明細書に開示されている油の水素化処理、異性化、他の共有結合の改変、及び、本明細書に開示されている蒸留及び画分化(例えば、冷状態での濾過)を利用し、本明細書に開示されている方法に従って作られるトリグリセリド油を用い、他のT10−T90範囲、例えば、20℃、25℃、30℃、35℃、40℃、45℃、50℃、60℃、65℃の再生可能なディーゼル組成物を生成することができる。
【0355】
実施例13で作られる材料のT10は、242.1℃であった。本明細書に開示されている油の方法水素化処理、異性化、他の共有結合の改変、及び、本明細書に開示されている蒸留及び画分化(例えば、冷状態での濾過)を利用し、他のT10値、例えば、T10が180〜295、190〜270、210〜250、225〜245、少なくとも290の再生可能なディーゼル組成物を生成してもよい。
【0356】
実施例13で作られる材料のT90は、300℃であった。本明細書に開示されている油の方法水素化処理、異性化、他の共有結合の改変、及び、本明細書に開示されている蒸留及び画分化(例えば、冷状態での濾過)を利用し、他のT90値、例えば、T90が280〜380、290〜360、300〜350、310〜340、少なくとも290の再生可能なディーゼル組成物を生成してもよい。
【0357】
実施例13で作られる材料の最終沸点(FBP)は、300℃であった。本明細書に開示されている油の方法は、水素化処理、異性化、他の共有結合の改変、及び、本明細書に開示されている蒸留及び画分化(例えば、冷状態での濾過)を利用し、他のFBP値、例えば、FBPが290〜400、300〜385、310〜370、315〜360、少なくとも300の再生可能なディーゼル組成物を生成してもよい。
【0358】
本発明の方法及び組成物によって提供される他の油に、水素化処理、異性化、他の共有結合の改変を組み合わせて行ってもよく、(a)C8〜C14が少なくとも1%〜5%、好ましくは少なくとも4%;(b)C8が少なくとも0.25%〜1%、好ましくは少なくとも0.3%;(c)C10が少なくとも1%〜5%、好ましくは少なくとも2%;(d)C12が少なくとも1%〜5%、好ましくは少なくとも2%;(3)C8〜C14が少なくとも20%〜40%、好ましくは少なくとも30%の脂質プロフィールを有する油を含む。
【0359】
従来の超低硫黄ディーゼルは、2工程プロセスによって、バイオマスの任意の形態から製造してもよい。第1に、バイオマスを、水素及び一酸化炭素を豊富に含む気体状混合物である合成ガスに変換する。次いで、この合成ガスを、触媒によって液体に変換する。典型的には、液体の生成は、Fischer−Tropsch(FT)合成を用いて行われる。この技術は、石炭、天然ガス、重油に応用される。従って、再生可能なディーゼルを製造する方法のさらに別の好ましい実施形態では、脂質組成物を処理し、アルカンを得ることは、脂質組成物を間接的に液状化することによって行われる。
【0360】
また、本発明は、ジェット燃料を生成する方法を提供する。ジェット燃料は、透明から麦わら色である。最も一般的な燃料は、航空機A−1と分類される、鉛を含んでいない/パラフィン油系の燃料であり、国際的な標準化された一連の仕様を満たすように製造される。ジェット燃料は、多種類の異なる炭化水素の混合物であり、おそらく、数千種類以上が含まれているだろう。これらの物質の大きさの範囲(分子量又は炭素数)は、例えば、凍結点又は発煙点のような生成物の要求によって制限される。ケロシン(Kerosone)型の航空機燃料(Jet A及びJet A−1を含む)は、炭素数が約8〜16の炭素分布を有する。ワイドカット型又はナフサ型の航空機燃料(Jet Bを含む)は、典型的には、炭素数が約5〜15の炭素分布を有する。
【0361】
両方の航空機燃料(Jet A及びJet B)は、多くの添加剤を含み得る。有用な添加剤としては、限定されないが、酸化防止剤、帯電防止剤、腐食阻害剤、燃料計凍結阻害(FSII)剤が挙げられる。酸化防止剤は、ガム化を防ぎ、通常は、アルキル化フェノール系のものであり、例えば、AO−30、AO−31又はAO−37である。帯電防止剤は、静電気を発散させ、火花を防ぐ。ジノニルナフチルスルホン酸(DINNSA)を活性な成分として含むStadis 450は、一例である。腐食阻害剤、例えば、DCI−4Aは、民間用燃料及び軍事用燃料に用いられ、DCI−6Aは、軍事用燃料に用いられる。FSII剤としては、例えば、Di−EGMEが挙げられる。
【0362】
本発明の一実施形態では、ジェット燃料は、藻の燃料と、既存のジェット燃料とをブレンドすることによって作られる。本発明の方法によって生成した脂質を、原材料として使い、ジェット燃料を製造する。従って、本発明の別の態様では、ジェット燃料を生成する方法が提供される。これとともに、本発明の方法によって生成される脂質からジェット燃料を製造する、流体触媒クラッキング(FCC)及び水素化脱酸素(HDO)の2つの方法が提供される。
【0363】
流体触媒クラッキング(FCC)は、重い未精製画分から、オレフィン、特にプロプレンを製造するのに用いられる方法のひとつである。本発明の方法によって生成した脂質を、オレフィンへと変換することができる。このプロセスは、生成した脂質をFCCゾーンに流すことと、ジェット燃料として有用な、オレフィンを含む生成物流を集めることとを含む。生成した脂質を、クラッキング条件で、クラッキング触媒と接触させ、ジェット燃料として有用なオレフィン及び炭化水素を含む生成物流を得る。
【0364】
一実施形態では、ジェット燃料を生成する方法は、(a)脂質を含有する微生物を、本明細書に開示されている方法を用いて育てることと、(b)微生物を溶解させ、溶解物を生成する工程と、(c)溶解した微生物から脂質を単離する工程と、(d)脂質組成物を処理することとを含み、それによって、ジェット燃料が作られる。ジェット燃料を生成する方法の一実施形態では、脂質組成物は、流体触媒クラッキングゾーンへと流れてもよく、一実施形態では、脂質組成物と、クラッキング触媒とをクラッキング条件で接触させ、C
2〜C
5オレフィンを含む生成物流を得てもよい。
【0365】
この方法の特定の実施形態では、脂質組成物に存在し得る任意の混入物質を除去することが望ましい場合がある。従って、脂質組成物を、流体触媒クラッキングゾーンに流す前に、脂質組成物を前処理する。前処理は、脂質組成物と、イオン交換樹脂とを接触させることを含み得る。イオン交換樹脂は、Amberlyst
TM−15のような酸性イオン交換樹脂であり、脂質組成物が上向又は下向に流れる、反応槽中の床として用いてもよい。他の前処理は、脂質組成物を、硫酸、酢酸、硝酸又は塩酸のような酸と接触させることによる、穏和な酸洗浄を含んでいてもよい。接触は、通常は、周囲温度及び周囲圧力で、希釈酸溶液を用いて行われる。
【0366】
脂質組成物は、場合により前処理されており、これをFCCゾーンに流し、このゾーンで、炭化水素系成分をクラッキングしてオレフィンにする。触媒クラッキングは、反応ゾーンで、脂質組成物を、細かく分割した粒状物質で構成される触媒と接触させることによって行われる。反応は、ハイドロクラッキングとは対照的な触媒クラッキングであり、水素を加えない状態で行われるか、又は水素を消費する状態で行われる。クラッキング反応が進むにつれて、かなりの量のコークスが触媒上に蓄積する。再生ゾーンで、触媒から高温でコークスを燃焼させることによって、触媒は再生する。コークスを含有する触媒は、本明細書では「コークス化触媒」と呼ばれ、反応ゾーンから再生ゾーンへと連続的に移動し、再生し、再生ゾーンから、本質的にコークスを含まない再生された触媒に置き換わる。種々の気体流によって触媒粒子を流動化すると、反応ゾーンと再生ゾーンとの間を触媒が移動することができる。炭化水素をクラッキングする方法、例えば、流動化した触媒流の中で本明細書に記載の脂質組成物の炭化水素をクラッキングし、反応ゾーンと再生ゾーンとの間を触媒が移動し、再生槽でコークスを燃焼させる方法は、FCCプロセスの分野で当業者には周知である。例示的なFCC用途、及びC
2〜C
5オレフィンを得るために、脂質組成物をクラッキングするのに有用な触媒は、米国特許第6,538,169号、第7,288,685号に記載されており、これらの文献は、内容全体が参照により組み込まれる。
【0367】
適切なFCC触媒は、一般的に、少なくとも2つの成分を含み、この2つの成分は、同じマトリックス上にあってもよく、同じマトリックス上になくてもよい。ある実施形態では、2つの成分は、両方とも、反応容器全体を循環していてもよい。第1の成分は、一般的に、流動化した触媒クラッキングの分野で用いられる、よく知られている任意の触媒、例えば、活性アモルファスクレイ型触媒及び/又は高い活性を有する結晶性分子ふるいを含んでいる。分子ふるい触媒は、望ましい生成物に対する選択性がかなり向上しているため、アモルファス触媒よりも好ましい場合がある。いくつかの好ましい実施形態では、ゼオライトを、FCCプロセスの分子ふるいとして用いてもよい。好ましくは、第1の触媒成分は、大きな孔のゼオライト、例えば、Y型ゼオライト、活性アルミナ材料、シリカ又はアルミナのいずれかを含むバインダー材料、カオリンのような不活性フィラーを含んでいる。
【0368】
一実施形態では、本発明の脂質組成物のクラッキングは、FCCゾーンのライザー部分、又はリフト部分で起こる。脂質組成物は、ノズルによってライザー部分に導入され、その結果、脂質組成物がすばやく蒸気になる。触媒を接触させる前に、脂質組成物は、一般的には、約149℃〜約316℃(300°F〜600°F)の温度を有しているであろう。この触媒は、ブレンド容器からライザー部分に流れ、この部分で、約2秒又はそれより短い時間、脂質組成物と接触する。
【0369】
ブレンドされた触媒及び反応した脂質組成物の蒸気は、出口を通って、ライザー上部から排出され、オレフィンを含むクラッキングした生成物の蒸気流の中で分離し、かなりの量のコークスで覆われた、一般的に「コークス触媒」と呼ばれる触媒粒子を集める。望ましい生成物が望ましくない他の生成物にさらに変換されるのを促進するおそれがある、脂質組成物と触媒とが接触している時間を最小限にする試みにおいて、旋回アームの配置のような、セパレーターの配置を利用し、生成物流からコークス化触媒をすばやく離すことができる。セパレーター、例えば、旋回アームセパレーターは、チャンバの下側部分に位置するストリッピングゾーンを備えるチャンバの上側部分に位置している。旋回アームの配置から離れた触媒は、ストリッピングゾーンに落ちる。軽質オレフィン及びいくつかの触媒を含む、クラッキングした炭化水素を含むクラッキングした生成物の蒸気流は、サイクロンとつながった管を通ってチャンバを出る。サイクロンは、生成物の蒸気流から、残留する触媒粒子を除去し、粒子の濃度を非常に低いレベルまで下げる。次いで、生成物の蒸気流は、分離容器の上側を出る。サイクロンによって分離された触媒は、分離容器に戻り、次いで、ストリッピングゾーンに戻る。ストリッピングゾーンは、蒸気と向流で接触させることによって、触媒表面から吸着した炭化水素を除去する。
【0370】
炭化水素の分圧は、低い状態で軽質オレフィンを生成しやすくするように働く。従って、ライザーの圧力は、約172〜約241kPa(25〜35psia)に設定し、炭化水素の分圧は約35〜172kPa(5〜25psia)に設定し、好ましい炭化水素の分圧は、約69〜138kPa(10〜20psia)である。このように比較的低い炭化水素の分圧は、希釈剤が脂質組成物の10〜55wt%、好ましくは、約15wt%になる程度まで、蒸気を希釈剤として用いることによって達成される。同等な炭化水素分圧を達成するために、乾燥ガスのような他の希釈剤を用いてもよい。
【0371】
ライザー出口でのクラッキングした蒸気の温度は、約510℃〜621℃(950°F〜1150°F)であろう。しかし、ライザー出口の温度が566℃(1050°F)より高いと、もっと気体は乾燥し、もっとオレフィンが増える。一方、ライザー出口の温度が566℃(1050°F)より低いと、エチレン及びプロピレンが減る。従って、約566℃〜約630℃の好ましい温度で、約138kPa〜約240kPa(20〜35psia)の好ましい圧力で、FCCプロセスを行うことが好ましい。このプロセスの別の条件は、脂質組成物に対する触媒の比率であり、この比率は、約5〜約20、好ましくは、約10〜約15の間で異なる。
【0372】
ジェット燃料を生成する方法の一実施形態では、脂質組成物は、FCC反応槽のリフト部分に導入される。リフト部分での温度は、非常に熱く、約700℃(1292°F)〜約760℃(1400°F)の範囲であり、脂質組成物に対する触媒の比率は、約100〜約150であろう。脂質組成物をリフト部分に導入すると、かなりの量のプロピレン及びエチレンを生成するであろうことが予測される。
【0373】
本明細書で記載されるように生成した脂質組成物及び脂質を用い、ジェット燃料を生成する方法の別の実施形態では、脂質組成物又は脂質の構造は、水素化脱酸素(HDO)と呼ばれるプロセスによって破壊される。HDOは、水素を用いて酸素を除去することを意味し、つまり、この材料の構造を破壊しつつ、酸素を除去することを意味する。オレフィン系二重結合を水素化し、任意の硫黄化合物及び窒素化合物を除去する。硫黄の除去は、水素化脱硫黄(HDS)と呼ばれる。原材料(脂質組成物又は脂質)の前処理及び純度は、触媒の寿命に関わる。
【0374】
一般的に、HDO/HDS工程において、水素を、供給原料(脂質組成物又は脂質)と混合し、この混合物を、並流として、単一成分又は二成分の供給原料として触媒床に流す。HDO/MDS工程の後、生成物の画分を分離し、別個の異性化反応槽に流す。生物学的出発物質のための異性化反応槽は、並流反応槽として文献に記載されている(FI 100 248)。
【0375】
供給される炭化水素、例えば、本明細書の脂質組成物又は脂質を水素化することによって燃料を生成するプロセスは、脂質組成物又は脂質を、第1の水素化ゾーンを通って水素ガスとともに並流として流すことによって行われ、その後に、水素ガスを、炭化水素流出物に対して向流で第2の水素化ゾーンに流すことによって、炭化水素流出物を第2の水素化ゾーンでさらに水素化する。C
2〜C
5オレフィンを生成するために、脂質組成物をクラッキングするのに有用な、例示的なHDO用途及び触媒は、米国特許第7,232,935号に記載されており、内容全体が参照により組み込まれる。
【0376】
典型的には、水素化脱酸素工程において、本明細書の脂質組成物又は脂質のような生物学的成分の構造は分解され、酸素化合物、窒素化合物、リン化合物、硫黄化合物、軽質炭化水素が気体として除去され、オレフィン性結合は水素化される。このプロセスの第2の工程、すなわち、いわゆる異性化工程では、炭化水素鎖を分岐させ、低温でパラフィンの性能を向上させるために、異性化が起こる。
【0377】
クラッキングプロセスの第1の工程、すなわち、HDO工程では、水素ガス及び水素化されるべき本明細書の脂質組成物又は脂質は、HDO触媒床系に向かって並流又は向流で流れ、この触媒床系は、1つ以上の触媒床、好ましくは、1〜3個の触媒床を有する。HDO工程は、典型的には、並流の様式で操作される。2種以上の触媒床を含むHDO触媒床系の場合には、床のうち1つ以上を、向流の原理を用いて操作してもよい。HDO工程では、圧力は、20〜150barを変動し、好ましくは、50〜100barを変動し、温度は、200〜500℃で変動し、好ましくは、300〜400℃の範囲で変動する。HDO工程では、周期律表のVII族及び/又はVIB族の金属を含む既知の水素化触媒を用いてもよい。好ましくは、水素化触媒は、担持されたPd、Pt、Ni、NiMo又はCoMoの触媒であり、担持体は、アルミナ及び/又はシリカである。典型的には、NiMo/Al
2O
3触媒及びCoMo/Al
2O
3触媒を用いる。
【0378】
HDO工程の前に、本明細書の脂質組成物又は脂質を、場合により、穏和な条件下で前水素化することにより処理し、二重結合の副作用を避けることができる。このような前水素化は、前水素化触媒存在下、温度が50〜400℃、水素圧が1〜200bar、好ましくは、150〜250℃の温度で、水素圧が10〜100barで行われる。触媒は、周期律表のVIII族及び/又はVIB族の金属を含んでいてもよい。好ましくは、前水素化触媒は、担持されたPd、Pt、Ni、NiMo又はCoMoの触媒であり、担持体は、アルミナ及び/又はシリカである。
【0379】
HDO工程からの水素を含む気体の流れを冷却し、次いで、一酸化炭素、二酸化炭素、窒素化合物、リン化合物、硫黄化合物、気体状軽質炭化水素及び他の不純物をここから除去する。圧縮した後、精製された水素又はリサイクルされた水素を第1の触媒床に戻すか、及び/又は、触媒床の間に戻し、抜き取られた気体の流れを構成する。圧縮された液体から水が取り除かれる。この液体を第1の触媒又は触媒床の間に流す。
【0380】
HDO工程の後、生成物に対し、異性化工程を行う。このプロセスにとって、炭化水素を異性化触媒と接触させる前に、可能な限り完全に不純物が除去されることが重要である。異性化工程は、場合により、ストリッピング工程を含んでおり、HDO工程の反応生成物を、水蒸気又は軽質炭化水素、窒素又は水のような適切な気体を用いてストリッピングすることによって精製してもよい。この場合によって行われるストリッピング工程は、異性化触媒の上流にあるユニットで、向流様式で行われ、気体及び液体が互いに接触するか、又は向流の原理を利用する別個のストリッピングユニット中、実際の異性化反応槽の前に行われる。
【0381】
ストリッピング工程の後、水素ガス及び本明細書の水素化された脂質組成物又は脂質と、場合により、n−パラフィン混合物は、1個又は複数個の触媒床を含む反応異性化ユニットを通る。異性化工程の触媒床は、並流又は向流の様式で操作されてもよい。
【0382】
このプロセスについて、異性化工程に向流の原理が適用されることが重要である。異性化工程では、このことは、場合により行われるストリッピング工程、又は異性化反応工程、又はこの両方の工程を向流の様式で行うことによってなされる。異性化工程では、圧力は、20〜150bar、好ましくは、20〜100barの範囲で変動し、温度は、200〜500℃、好ましくは、300〜400℃である。異性化工程では、当該技術分野で知られている異性化触媒を用いてもよい。適切な異性化触媒は、分子ふるい及び/又はVII属の金属及び/又はキャリアを含んでいる。好ましくは、異性化触媒は、SAPO−11又はSAPO41又はZSM−22又はZSM−23又はフェライト、Pt、Pd又はNi、Al
2O
3又はSiO
2を含む。典型的な異性化触媒は、例えば、Pt/SAPO−11/Al
2O
3、Pt/ZSM−22/Al
2O
3、Pt/ZSM−23/Al
2O
3、Pt/SAPO−11/SiO
2である。異性化工程及びHDO工程は、同じ加圧容器で行われてもよく、別個の加圧容器で行われてもよい。場合により行われる前水素化は、HDO工程及び異性化工程と加圧容器で行われてもよく、別個の加圧容器で行われてもよい。
【0383】
従って、一実施形態では、1つ以上の化学反応の生成物は、HRJ−5を含むアルカン混合物である。別の実施形態では、1つ以上の化学反応の生成物は、ASTM D1655ジェット燃料を含むアルカン混合物である。ある実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、硫黄含有量が10ppm未満である。他の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、蒸留曲線のT10値が、205℃未満である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、最終沸点(FBP)が300℃未満である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、引火点が少なくとも38℃である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、密度が775K/M
3〜840K/M
3である。さらに別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、凍結点が−47℃未満である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、正味の燃焼熱が、少なくとも42.8MJ/Kである。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、水素含有量が、少なくとも13.4質量%である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、定量重量分析JFTOTで、260℃で試験した場合、熱安定性を有し、Hg3mm未満である。別の実施形態では、ASTM 1655ジェット燃料の仕様に適合する組成物は、存在するガム状物が7mg/dl未満である。
【0384】
したがって、本発明は、微細藻類脂質の化学的改変を行って、各種の工業などの用途に有用な生成物を得るための各種方法を開示する。本明細書に開示される方法により生成された油を改変するプロセスの例としては、限定されないが、油の加水分解、油の水素化処理、及び油のエステル化が挙げられる。微細藻類脂質のその他の化学的改変としては、限定されないが、エポキシ化、酸化、加水分解、硫酸化、スルホン化、エトキシル化、プロポキシル化、アミド化及び鹸化が挙げられる。微細藻類油の改変により、所望の機能のために選択された誘導体の油脂化学品へとさらに改変することが可能な、基本的な油脂化学品が得られる。燃料生成プロセスに関して上で述べたもの同様の様式で、これらの化学的な改変を、本明細書に記載されている微生物の培養物から生成した油に対して行ってもよい。基本的な油脂化学品の例としては、限定されないが、石鹸、脂肪酸、脂肪族エステル、脂肪族アルコール、脂肪族窒素化合物、脂肪酸メチルエステル及びグリセロールが挙げられる。誘導体の油脂化学品としては、限定されないが、脂肪族ニトリル、エステル、ダイマー酸、四級アンモニウムカチオン、界面活性剤、脂肪族アルカノールアミド、脂肪族アルコールサルフェート、樹脂、乳化剤、脂肪族アルコール、オレフィン、掘削泥水、ポリオール、ポリウレタン、ポリアクリル酸、ゴム、ろうそく、化粧品、金属石鹸、石鹸、α−スルホン化メチルエステル、脂肪族アルコールサルフェート、脂肪族アルコールエトキシレート、脂肪族アルコールエーテルサルフェート、イミダゾリン、界面活性剤、洗剤、エステル、四級アンモニウムカチオン、オゾン分解産物、脂肪族アミン、脂肪族アルカノールアミド、エトキシサルフェート、モノグリセリド、ジグリセリド、トリグリセリド(中鎖脂肪酸トリグリセリドを含む)、滑沢剤、油圧油、グリース、誘電性流体、離型剤、金属加工油剤、熱媒体流体、その他の機能液、工業化学製品(例えば、洗浄剤、繊維加工助剤、可塑剤、安定化剤、添加剤)、表面塗装剤、塗料及びラッカー、電気配線絶縁体、並びに高級アルカンが挙げられる。
【0385】
本発明の方法によって生成するグリセロ脂質に由来する脂肪酸構成要素を加水分解することによって、他の有用な化学物質を生成するように誘導体化することが可能な遊離脂肪酸が得られる。加水分解は、水及び触媒の存在下で起こり、触媒は、酸であっても、塩基であってもよい。以下に報告されているように、放出された遊離脂肪酸を誘導体化して、種々の生成物を得ることができる。米国特許第5,304,664号(Highly sulfated 脂肪酸s);第7,262,158号(Cleansing compositions);第7,115,173号(Fabric softener compositions);第6,342,208号(Emulsions for treating skin);第7,264,886号(Water repellant compositions);第6,924,333号(Paint additives);第6,596,768号(Lipid−enriched ruminant feedstock);第6,380,410号(Surfactants for detergents and cleaners)。
【0386】
加水分解に関し、本発明の一実施形態では、トリグリセリド油を、場合により、まず、水又は水酸化ナトリウムのような液体培地中で加水分解し、グリセロール及び石鹸を得る。種々の適切なトリグリセリド加水分解方法が存在し、限定されないが、鹸化、酸加水分解、アルカリ加水分解、酵素加水分解(本明細書で、分解とも呼ばれる)、加圧熱水を用いた加水分解が挙げられる。当業者は、油脂化学品を生成するためにトリグリセリド油を加水分解する必要はないことを理解するだろう。むしろ、油を、他の既知のプロセスによって、望ましい油脂化学品に直接変換してもよい。例えば、トリグリセリド油を、エステル化によって、メチルエステル脂肪酸に直接変換してもよい。
【0387】
ある実施形態では、本明細書に開示されている方法によって生成した油の触媒的加水分解は、油をグリセロールと脂肪酸とに分解することによって起こる。上述のように、脂肪酸を、誘導体の油脂化学品を得るためのいくつかの他の改変によって、さらに処理してもよい。例えば、一実施形態では、脂肪酸は、アミノ化反応を受け、脂肪族窒素化合物を生成してもよい。別の実施形態では、脂肪酸は、オゾン分解を受け、一塩基酸及び二塩基酸を生成してもよい。
【0388】
他の実施形態では、加水分解は、本明細書で生成した油の分解によって起こり、油脂化学品を生成してもよい。いくつかの本発明の好ましい実施形態では、トリグリセリド油を分解してから、他のプロセスを行ってもよい。当業者は、限定されないが、酵素分解及び加圧分解を含む多くの適切なトリグリセリド分解方法が存在することを認識しているであろう。
【0389】
一般的に、酵素による油分解方法は、酵素リパーゼを、水/油混合物に作用する生体触媒として使用する。次いで、酵素分解によって、油又は脂肪を、それぞれグリセロールと遊離脂肪酸とに分解する。次いで、グリセロールは、水相に移動し、一方、有機相には、遊離脂肪酸が豊富に含まれる。
【0390】
酵素分解反応は、一般的に、有機相と水相との間の相の境界で起こり、酵素は、相の境界にしか存在しない。相の境界に来たトリグリセリドが、分解反応に寄与するか、又は分解反応に参加する。反応が進むにつれて、脂肪酸の占有密度又は濃度が、遊離脂肪酸と比較すると、まだグリセリドと化学的に結合しており、相の境界での占有密度又は濃度が低くなり、その結果、反応が遅くなる。特定の実施形態では、酵素分解を室温で行ってもよい。当業者は、所望な脂肪酸へと分解するのに適切な条件を知っているであろう。
【0391】
例として、反応速度は、界面の境界面が増えることによって速くすることができる。反応が終了したら、遊離脂肪酸を、有機相から酵素を含まずに分離し、まだグリセリドと化学的に結合した脂肪酸を含む残渣を、再び再び供給するか、又はリサイクルし、分解させるべき新しい油又は脂肪と混合する。この様式で、リサイクルされたグリセリドについて、次いで、さらなる酵素分解プロセスを行う。ある実施形態では、遊離脂肪酸を、このような様式で部分的に分解した油又は脂肪から抽出する。この様式で、化学的に結合している脂肪酸(トリグリセリド)が、分解プロセスに戻されるか、又は再び供給される場合、酵素の消費を顕著に減らすことができる。
【0392】
分解度は、測定した酸価を、所与の油又は脂肪からコンピュータで割り出すことが可能な理論的に可能な酸価で割った比率として決定される。好ましくは、酸価は、標準的な一般的な方法による滴定手段によって測定される。又は、グリセロール水相の密度は、分解度の測定値として測ることができる。
【0393】
一実施形態では、本明細書に記載されているような分解プロセスは、生成した油のアルカリ精製プロセスから得られる、いわゆる石鹸ストックに含まれるモノグリセリド、ジグリセリド、トリグリセリドを分解するのにも適している。このように、石鹸ストックは、それより前に天然の油が脂肪酸へと鹸化されることなく、定量的に変換することができる。この目的で、石鹸に化学的に結合している脂肪酸は、好ましくは、酸を加えることによって、分解の前に放出される。特定の実施形態では、分解プロセスのために、水及び酵素に加えて、緩衝溶液を用いる。
【0394】
一実施形態では、本発明の方法に従って生成した油に対し、加水分解方法として鹸化を行うことができる。動物性油及び植物性油は、典型的には、遊離脂肪酸と三価アルコールであるグリセロールとのエステルであるトリグリセリド(TAG)から作られる。アルカリ加水分解反応において、TAG中のグリセロールが除去され、ナトリウム又はカリウムのようなアルカリ金属と会合し、脂肪酸塩を生成することができる、3個のカルボン酸アニオンが残る。このスキームで、カルボン酸の構成要素が、グリセロール部分から開裂し、ヒドロキシル基によって置き換えられる。この反応で用いられる塩基(例えば、KOH)の量は、望ましい鹸化度によって決定される。目的が、例えば、TAG組成物に元も存在している油をいくらか含んでいる石鹸を生成することである場合、TAGの全てを脂肪酸に変換するのには十分でない塩基の量が、反応混合物に入れられる。通常は、この反応は水溶液中で行われ、ゆっくりと進むが、熱を加えて反応を速め得る。脂肪酸塩の沈殿は、例えば、水溶性のアルカリ金属ハロゲン化物(例えば、NaCl又はKCl)のような塩を反応混合物に加えることによって促進され得る。好ましくは、塩基は、NaOH又はKOHのようなアルカリ金属の水酸化物である。又は、例えば、トリエタノールアミン及びアミノメチルプロパノールを含め、アルカノールアミンのような他の塩基を反応スキームで用いてもよい。ある場合では、これらの代替法は、透明な石鹸製品を作るのに好ましい場合がある。一実施形態では、鹸化を施す液体組成物は、本明細書に記載されている通りに生成された獣脂模倣物(すなわち、獣脂の液体組成物に類似した液体組成物)、又は獣脂と別のトリグリセリド油とのブレンドである。
【0395】
いくつかの方法では、化学的な改変の第1の工程は、二重結合を飽和させるための水素化処理であってもよく、次いで、水素及び触媒が存在する条件下、高温で脱酸素を行う。他の方法では、水素化及び脱酸素は、同じ反応で行ってもよい。さらに他の方法では、脱酸素は、水素化の前に行う。次いで、場合により、異性化を行ってもよく、これも水素及び触媒の存在下で行ってもよい。最後に、所望の場合、気体及びナフサ成分を除去することができる。例えば、米国特許第5,475,160号(hydrogenation of triglycerides);第5,091,116号(deoxygenation,hydrogenation and gas removal);第6,391,815号(hydrogenation);第5,888,947号(isomerization)を参照。
【0396】
本発明のある実施形態では、トリグリセリド油を、部分的に脱酸素するか、又は完全に脱酸素する。脱酸素反応によって、限定されないが、脂肪酸、脂肪族アルコール、ポリオール、ケトン、アルデヒドのような所望な生成物が得られる。一般的に、いかなる特定の理論によっても限定されないが、脱酸素反応は、限定されないが、水素化分解、水素化、連続的な水素化−水素化分解、連続的な水素化分解−水素化、水素化−水素化分解反応の組み合わせを含む種々の異なる反応経路の組み合わせを含んでおり、その結果、脂肪酸又は脂肪酸エステルから酸素が少なくとも部分的に除去され、脂肪族アルコールのような反応生成物が生成し、さらなるプロセスによって、この生成物を所望な化学物質へと簡単に変換することができる。例えば、一実施形態では、脂肪族アルコールを、FCC反応によってオレフィンへと変換してもよく、縮合反応によって高級アルカンへと変換してもよい。
【0397】
このような化学的な改変のひとつは水素化であり、水素化は、グリセロ脂質又は遊離脂肪酸の脂肪酸構成要素中にある二重結合に水素を添加することである。水素化プロセスによって、液体の油が、特定の用途ではさらに適切な場合がある半固体又は固体の脂肪へと変換される。
【0398】
本明細書に記載の方法によって生成する油の水素化は、米国特許第7,288,278号(Food additives or medicaments);第5,346,724号(Lubrication products);第5,475,160号(Fatty alcohols);第5,091,116号(Edible oils);第6,808,737号(Structural fats for margarine and spreads);第5,298,637号(Reduced−calorie fat substitutes);第6,391,815号(Hydrogenation catalyst and sulfur adsorbent);第5,233,099号及び第5,233,100号(Fatty alcohols);第4,584,139号(Hydrogenation catalysts);第6,057,375号(Foam suppressing agents);第7,118,773号(Edible emulsion spreads)に報告されているように、本明細書で提供している1つ以上の方法及び/又は材料と組み合わせて行うことができる。
【0399】
当業者は、種々のプロセスを用いて炭水物を水素化してもよいことを認識するだろう。適切な方法のひとつは、炭水化物を、水素化反応槽中で、水素化生成物を得るのに十分な条件で、水素又は適切な気体と混合した水素及び触媒と接触させることを含む。水素化触媒は、一般的に、Cu、Re、Ni、Fe、Co、Ru、Pd、Rh、Pt、Os、Ir、及びこれらの合金又は任意の組み合わせを、単独で、又は、W、Mo、Au、Ag、Cr、Zn、Mn、Sn、B、P、Bi、及びこれらの合金又は任意の組み合わせのようなプロモーターとともに含んでいてもよい。他の有効な水素化触媒材料としては、レニウムで改変された、担持されたニッケル又はルテニウムが挙げられる。一実施形態では、水素化触媒も、触媒の望ましい機能性に依存して、任意の担持体を含んでいてもよい。水素化触媒を、当業者に既知の方法によって調製してもよい。
【0400】
ある実施形態では、水素化触媒は、担持されたVIII属の金属触媒、金属スポンジ材料(例えば、スポンジニッケル触媒)を含んでいる。ラネーニッケルは、本発明で用いるのに適した、活性化されたスポンジニッケルの一例である。他の実施形態では、本発明の水素化反応は、ニッケル−レニウム触媒又はタングステンによって改変されたニッケル触媒を含む触媒を用いて行われる。本発明の水素化反応に適切な触媒の一例は、炭素に担持されたニッケル−レニウム触媒である。
【0401】
一実施形態では、適切なラネーニッケル触媒を、適切な等重量のニッケル及びアルミニウムの合金を、アルカリ水溶液、例えば、約25重量%の水酸化ナトリウムを含むアルカリ水溶液で処理することによって調製し得る。アルミニウムを、アルカリ水溶液によって選択的に溶解し、ほとんどがニッケルで、少量のアルミニウムを含むスポンジ型の材料を得る。最初の合金は、生成したスポンジニッケル触媒に約1〜2重量%が残るような量で、プロモーター金属(すなわち、モリブデン又はクロム)を含んでいる。別の実施形態では、水素化触媒は、ニトロシル硝酸ルテニウム(III)、塩化ルテニウム(III)の水溶液を用い、適切な支持材料に含浸させて調製する。次いで、この溶液を乾燥させ、含水量が約1重量%未満の固体を得る。次いで、回転式のボール型炉で、水素を流しつつ、300℃(焼成しない)〜400℃(焼成する)で4時間かけて、この固体を大気圧で還元してもよい。冷却し、触媒を窒素で不活性化した後、窒素中、5容積%の酸素を触媒に2時間流す。
【0402】
特定の実施形態では、記載されている触媒は、触媒担持体を含む。触媒担持体は、触媒を安定化し、担持する。使用される触媒担持体の種類は、選択した触媒及び反応条件に依存する。本発明に適した担持体としては、限定されないが、炭素、シリカ、シリカ−アルミナ、ジルコニア、チタニア、セリア、バナジア、窒化物、窒化ホウ素、ヘテロポリ酸、ヒドロキシアパタイト、酸化亜鉛、クロミア、ゼオライト、カーボンナノチューブ、炭素フラーレン、及びこれらの任意の組み合わせが挙げられる。
【0403】
本発明で用いられる触媒は、当業者に既知の従来の方法を用いて調製することができる。適切な方法としては、限定されないが、初期湿潤法、蒸発させ、含浸させる方法、化学蒸着法、洗浄−コーティング、マグネトロンスパッタリング技術などが挙げられる。
【0404】
水素化反応を行う際の条件は、出発物質及び望ましい生成物の種類によって変わるだろう。当業者は、本開示の利益とともに、適切な反応条件を認識しているであろう。一般的に、水素化反応は、80℃〜250℃の温度で行われ、好ましくは、90℃〜200℃、最も好ましくは、100℃〜150℃の温度で行われる。ある実施形態では、水素化反応は、500KPa〜14000KPaの圧力で行われる。
【0405】
本発明の水素化分解反応で用いられる水素としては、外から加えられる水素、リサイクルした水素、系中で生成した水素、及びこれらの任意の組み合わせが挙げられる。本明細書で使用される場合、用語「外から加えられる水素」は、バイオマス反応自体に由来する水素ではなく、別の供給源からシステムに加えられた水素を指す。
【0406】
本発明のある実施形態では、出発物質の炭水化物を、小さな分子に変換することが望ましく、この小さな分子は、望ましい高級炭化水素へと簡単に変換されるだろう。この変換の適切な方法のひとつは、水素化分解反応によるものである。炭水化物の水素化分解を行う種々のプロセスが知られている。適切な方法のひとつは、水素化分解反応槽中で、小さな分子又はポリオールを含む反応生成物を得るのに十分な条件で、水素又は適切な気体と混合した水素及び水素化分解触媒と接触させることを含む。本明細書で使用される場合、用語「小さな分子又はポリオール」は、小さな分子量を有する任意の分子を含み、出発の炭水化物よりも炭素原子又は酸素原子の数が少ないものを含み得る。一実施形態では、この反応生成物は、ポリオール及びアルコールを含む小さな分子を含む。当業者は、水素化分解反応を行うのに適切な方法を選択することができるであろう。
【0407】
ある実施形態では、5炭糖及び/又は6炭糖又は糖アルコールを、水素化分解触媒を用い、プロピレングリコール、エチレングリコール、グリセロールに変換してもよい。水素化分解触媒としては、Cr、Mo、W、Re、Mn、Cu、Cd、Fe、Co、Ni、Pt、Pd、Rh、Ru、Ir、Os及びこれらの合金又は任意の組み合わせを、単独で、又は、Au、Ag、Cr、Zn、Mn、Sn、Bi、B、O、及びこれらの合金又は任意の組み合わせのようなプロモーターとともに含んでいてもよい。また、水素化分解触媒は、遷移金属(例えば、クロム、モリブデン、タングステン、レニウム、マンガン、銅、カドミウム)又はVIII族の金属(例えば、鉄、コバルト、ニッケル、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム)を含む炭素系パイロポリマー触媒を含んでいてもよい。特定の実施形態では、水素化分解触媒は、上述の金属を、アルカリ土類金属酸化物と組み合わせたもの、又は、触媒活性のある担持体に接着したものを含んでいてもよい。特定の実施形態では、水素化分解反応で記載されている触媒は、水素化反応について上に記載したような触媒担持体を含んでいてもよい。
【0408】
水素化分解反応を行う際の条件は、出発物質及び望ましい生成物の種類によって変わるだろう。当業者は、本開示の利益とともに、この反応を行うのに適切な反応条件を認識しているであろう。一般的に、水素化分解反応は、110℃〜300℃の温度で行われ、好ましくは、170℃〜220℃、最も好ましくは、200℃〜225℃の温度で行われる。ある実施形態では、水素化分解反応は、塩基性条件で行われ、好ましくは、pHが8〜13、さらにより好ましくは、pHが10〜12の条件で行われる。ある実施形態では、水素化分解反応は、60KPa〜16500KPaの範囲の圧力で、好ましくは、1700KPa〜14000KPa、さらにより好ましくは、4800KPa〜11000KPaの圧力で行われる。
【0409】
本発明の水素化分解反応で用いられる水素としては、外から加えられる水素、リサイクルした水素、系中で生成した水素、及びこれらの任意の組み合わせが挙げられる。
【0410】
ある実施形態では、上述の反応生成物を、縮合反応槽中、縮合反応によって高級な炭化水素へと変換されてもよい。このような実施形態では、反応生成物の縮合は、高級な炭化水素を生成することが可能な触媒が存在する条件で行われる。理論によって限定されることを意図していないが、高級な炭化水素の生成は、炭素−炭素結合、又は炭素−酸素結合の生成を含む、段階的な付加反応によって進むと考えられる。得られた反応生成物は、以下にさらに詳細に記載されるように、これらの部分を含む任意の数の化合物を含んでいる。
【0411】
特定の実施形態では、適切な縮合触媒としては、酸触媒、塩基触媒、又は酸/塩基触媒が挙げられる。本明細書で使用される場合、用語「酸/塩基触媒」は、酸と塩基の両方の機能を有する触媒を指す。ある実施形態では、縮合触媒としては、限定されないが、ゼオライト、カーバイド、窒化物、ジルコニア、アルミナ、シリカ、アルミノシリケート、ホスフェート、酸化チタン、酸化亜鉛、酸化バナジウム、酸化ランタン、酸化イットリウム、酸化スカンジウム、酸化マグネシウム、酸化セリウム、酸化バリウム、酸化カルシウム、水酸化物、ヘテロポリ酸、無機酸、酸で改変された樹脂、塩基で改変された樹脂、及びこれらの任意の組み合わせが挙げられる。ある実施形態では、縮合触媒としては、改変剤も含まれる。適切な改変剤としては、La、Y、Sc、P、B、Bi、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、及びこれらの任意の組み合わせが挙げられる。ある実施形態では、縮合触媒は、金属を含んでいてもよい。適切な金属としては、Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os、合金、及びこれらの組み合わせが挙げられる。
【0412】
特定の実施形態では、縮合反応で記載されている触媒は、水素化反応について上に記載した触媒担持体を含んでいてもよい。特定の実施形態では、縮合触媒は、自立型である。本明細書で使用される場合、用語「自立型」は、触媒が、担持体として機能する別の材料を必要としないことを意味する。他の実施形態では、縮合触媒を、触媒を担持するのに適した別個の担持体と組み合わせて使用する。一実施形態では、縮合触媒担持体は、シリカである。
【0413】
縮合反応が起こる条件は、出発物質及び望ましい生成物の種類によって変わるだろう。当業者は、本開示の利益とともに、この反応を行うのに適切な反応条件を認識しているであろう。ある実施形態では、縮合反応は、提示されている反応の熱力学が好ましくなるような温度で行われる。縮合反応の温度は、出発物質の特定のポリオール又はアルコールによって変わるだろう。ある実施形態では、縮合反応の温度は、80℃〜500℃の範囲であり、好ましくは、125℃〜450℃、最も好ましくは、125℃〜250℃の範囲である。ある実施形態では、縮合反応は、0Kpa〜9000KPaの範囲の圧力で行われ、好ましくは、0KPa〜7000KPa、さらにより好ましくは、0KPa〜5000KPaの範囲の圧力で行われる。
【0414】
本発明で得られる高級なアルカンとしては、限定されないが、炭素原子が4〜30個の分枝鎖又は直鎖のアルカン、炭素原子が4〜30個の分枝鎖又は直鎖のアルケン、炭素原子が5〜30個のシクロアルカン、炭素原子が5〜30個のシクロアルケン、アリール、縮合アリール、アルコール、ケトンが挙げられる。適切なアルカンとしては、限定されないが、ブタン、ペンタン、ペンテン、2−メチルブタン、ヘキサン、ヘキセン、2−メチルペンタン、3−メチルペンタン、2,2,−ジメチルブタン、2,3−ジメチルブタン、ヘプタン、ヘプテン、オクタン、オクテン、2,2,4−トリメチルペンタン、2,3−ジメチルヘキサン、2,3,4−トリメチルペンタン、2,3−ジメチルペンタン、ノナン、ノネン、デカン、デセン、ウンデカン、ウンデセン、ドデカン、ドデセン、トリデカン、トリデセン、テトラデカン、テトラデセン、ペンタデカン、ペンタデセン、ノニルデカン、ノニルデセン、エイコサン、エイコセン、ウンエイコサン、ウンエイコセン、ドエイコサン、ドエイコセン、トリエイコサン、トリエイコセン、テトラエイコサン、テトラエイコセン、及びこれらの異性体が挙げられる。これらの生成物のいくつかは、燃料として用いるのに適し得る。
【0415】
ある実施形態では、シクロアルカン及びシクロアルケンは置換されていない。他の実施形態では、シクロアルカン及びシクロアルケンは、一置換されている。さらに他の実施形態では、シクロアルカン及びシクロアルケンは、多置換されている。置換されたシクロアルカン及びシクロアルケンを含む実施形態では、置換された基としては、限定されないが、炭素原子が1〜12個の分枝鎖又は直鎖のアルキル、炭素原子が1〜12個の分枝鎖又は直鎖のアルキレン、フェニル、及びこれらの任意の組み合わせが挙げられる。適切なシクロアルカン及びシクロアルケンとしては、限定されないが、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、メチル−シクロペンタン、メチル−シクロペンテン、エチル−シクロペンタン、エチル−シクロペンテン、エチル−シクロヘキサン、エチル−シクロヘキセン、及びこれらの異性体、及び任意のこれらの組み合わせが挙げられる。
【0416】
ある実施形態では、生成したアリールは、置換されていない。別の実施形態では、生成したアリールは、一置換されている。置換アリールを含む実施形態では、置換された基としては、限定されないが、炭素原子が1〜12個の分枝鎖又は直鎖のアルキル、炭素原子が1〜12個の分枝鎖又は直鎖のアルキレン、フェニル、及び任意のこれらの組み合わせが挙げられる。本発明に適したアリールとしては、限定されないが、ベンゼン、トルエン、キシレン、エチルベンゼン、パラキシレン、メタキシレン、及び任意のこれらの組み合わせが挙げられる。
【0417】
本発明で生成したアルコールは、炭素原子を4〜30個有している。ある実施形態では、アルコールは環状である。他の実施形態では、アルコールは、分岐している。別の実施形態では、アルコールは、直鎖である。本発明に適したアルコールとしては、限定されないが、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプチルデカノール、オクチルデカノール、ノニルデカノール、エイコサノール、ウンエイコサノール、ドエイコサノール、トリエイコサノール、テトラエイコサノール、及びこれらの異性体が挙げられる。
【0418】
本明細書で生成するケトンは、炭素原子を4〜30個有している。一実施形態では、ケトンは環状である。別の実施形態では、ケトンは、分岐している。別の実施形態では、ケトンは、直鎖である。本発明に適したケトンとしては、限定されないが、ブタノン、ペンタノン、ヘキサノン、ヘプタノン、オクタノン、ノナノン、デカノン、ウンデカノン、ドデカノン、トリデカノン、テトラデカノン、ペンタデカノン、ヘキサデカノン、ヘプチルデカノン、オクチルデカノン、ノニルデカノン、エイコサノン、ウンエイコサノン、ドエイコサノン、トリエイコサノン、テトラエイコサノン、及びこれらの異性体が挙げられる。
【0419】
別のこのような化学的な改変は、インターエステル化である。天然で生成するグリセロ脂質は、脂肪酸の構成要素が均一に分布していない。油に関しては、インターエステル化は、異なるグリセロ脂質の2個のエステル間のアシル基が交換することを指す。インターエステル化のプロセスは、グリセロ脂質の混合物の脂肪酸構成要素を、分布パターンを改変するように再配置することができるという機構を与える。インターエステル化は、よく知られている化学プロセスであり、一般的には、アルカリ金属又はアルカリ金属アルキレート(例えば、ナトリウムメトキシド)のような触媒存在下、油混合物を所定時間(例えば、30分)加熱すること(約200℃まで)を含む。このプロセスを用い、油混合物の脂肪酸構成要素の分布パターンをランダム化することができ、又は、望ましい分布パターンを作成するようにすることができる。このような脂質の化学的な改変方法は、本明細書に与えられている材料、例えば、細胞乾燥重量の割合で、脂質として少なくとも20%含む微生物バイオマスで行うことができる。
【0420】
脂肪酸の特定の分布パターンを求める、方向性を持ったインターエステル化は、油混合物を、融解が起こり得るいくつかのTAGの融点よりも低い温度に維持することによって行うことができる。これにより、これらのTAGが選択的に結晶化し、それらが結晶化する際に、反応混合物から効果的に除去される。このプロセスを、例えば、油中のほとんどの脂肪酸が沈殿するまで行ってもよい。方向性を持ったインターエステル化を、例えば、長鎖脂肪酸を、これよりも鎖が短い対応する脂肪酸と置き換えることによって、カロリー含有量が低い生成物を得るために使用してもよい。また、方向性を持ったインターエステル化を用い、望ましくないtrans異性体を生じてしまう可能性がある水素化を行うことなく、所望の融解特性を有しており、食品添加物又は製品(例えば、マーガリン)中で求められている構造的特徴を有するような脂肪混合物を含む生成物を得ることができる。
【0421】
本明細書で記載されている方法によって生成する油のインターエステル化は、1つ以上の方法及び/又は材料、又は米国特許第6,080,853号(Nondigestible fat substituted);第4,288,378号(Peanut butter stabilizer);第5,391,383号(Edible spray oil);第6,022,577号(Edible fats for food products);第5,434,278号(Edible fats for food products);第5,268,192号(Low calorie nut products);第5,258,197号(Reduce calorie edible compositions);第4,335,156号(Edible fat product);第7,288,278号(Food additives or medicaments);第7,115,760号(Fractionation process);第6,808,737号(Structural fats);第5,888,947号(Engine lubricants);第5,686,131号(Edible oil mixtures);第4,603,188号(Curable urethane compositions)で報告されているように、生成物を生成するための1つ以上の方法及び材料と組み合わせて行うことができる。
【0422】
一実施形態では、本発明によれば、上に記載されているように、油をトランスエステル化した後に、米国第6,465,642号で報告されているように、ポリオールポリオールを用いてトランスエステル化した生成物の反応を行う。このようなエステル化及び分離プロセスは、石鹸存在下、低級アルキルエステルとポリオールとを反応させる工程と;生成物の混合物から、残った石鹸を除去する工程と;生成物の混合物を水で洗浄し、乾燥させ、不純物を取り除く工程と;生成物の混合物を精製のために漂白する工程と;生成物の混合物中のポリオール脂肪酸ポリエステルから、未反応の低級アルキルエステルの少なくとも一部分を分離する工程と;未反応の低級アルキルエステルを分離させたものをリサイクルする工程とを含んでいてもよい。
【0423】
また、トランスエステル化は、米国特許第6,278,006号に報告されているように、短鎖脂肪酸エステルを有する微生物バイオマスを用いて行ってもよい。一般的に、トランスエステル化は、適切な触媒存在下、短鎖脂肪酸エステルを、油に加え、この混合物を加熱することによって行われてもよい。ある実施形態では、油は、反応混合物の約5重量%〜約90重量%含まれる。ある実施形態では、短鎖脂肪酸エステルは、反応混合物の約10重量%〜約50重量%含まれていてもよい。触媒の非限定的な例としては、塩基触媒、ナトリウムメトキシド、硫酸及び酸性クレイのような無機酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸のような有機酸、Amberlyst 15のような酸性樹脂を含む酸触媒が挙げられる。ナトリウム及びマグネシウムのような金属、金属ヒドリドも有用な触媒である。
【0424】
別のこのような化学的な改変は、ヒドロキシル化であり、二重結合に水を付加し、飽和状態にし、ヒドロキシル部分を組み込むことを含む。ヒドロキシル化プロセスは、グリセロ脂質の1つ以上の脂肪酸構成要素をヒドロキシ脂肪酸に変換する機構を与える。ヒドロキシル化は、例えば、米国特許第5,576,027号に報告されている方法によって行うことができる。ヒマシ油及びその誘導体を含むヒドロキシル化脂肪酸は、食品添加物、界面活性剤、色素湿潤剤、消泡剤、撥水添加剤、可塑剤、香粧品用乳化剤及び/又は消臭剤、及びエレクトロニクス、医薬、塗料、インク、接着剤、滑沢剤のような、いくつかの工業用途での成分として有用である。グリセリドのヒドロキシル化をどのように行うかの一例を以下に示す。脂肪を、好ましくは、ヘプタンと組み合わせて約30〜50℃の温度まで加熱し、この温度に30分以上維持してもよく;次いで、この混合物に酢酸を加えた後、硫酸水溶液を加え、次いで、過酸化水素水溶液を1時間かけて混合物に少量ずつ加えてもよく;過酸化水素水溶液を加えた後、温度を少なくとも約60℃まで上げ、少なくとも6時間攪拌してもよく;攪拌した後、この混合物を静置し、反応によって生成した下側の水層を除去しつつ、反応によって生成した上側のヘプタン層を約60℃の温度を有する熱水で洗浄してもよく;次いで、洗浄したヘプタン層を水酸化カリウム水溶液でpHが約5〜7になるまで中和し、次いで、減圧下で蒸留によって除去してもよく;次いで、反応生成物を減圧下、100℃で乾燥させ、乾燥した生成物を、減圧条件下、蒸気で消臭し、珪藻土を用いて約50℃〜60℃で濾過してもよい。
【0425】
本明細書に記載されている微生物油のヒドロキシル化を、1つ以上の方法及び/又は材料と組み合わせて行ってもよく、米国特許第6,590,113号(Oil−based coatings and ink);第4,049,724号(Hydroxylation process);第6,113,971号(Olive oil butter);第4,992,189号(Lubricants and lube additives);第5,576,027号(Hydroxylated milk);第6,869,597号(Cosmetics)で報告されているように、生成物を生成するための1つ以上の方法及び材料と組み合わせて行ってもよい。
【0426】
ヒドロキシル化されたグリセロ脂質をエストライドに変換することができる。エストライドは、ヒドロキシル化された脂肪酸構成要素が、別の脂肪酸分子でエステル化されたグリセロ脂質からなる。ヒドロキシル化されたグリセロ脂質をエストライドに変換することは、Isbell et al.、JAOCS 71(2):169−174(1994)に記載されるように、グリセロ脂質及び脂肪酸の混合物を加熱し、この混合物を鉱物酸と接触させることによって行うことができる。エストライドは、米国特許第7,196,124号(エラストマー材料および床仕上げ材);第5,458,795号(高温度での用途のための濃化油);第5,451,332号(工業用途のための液体);第5,427,704号(燃料添加剤);第5,380,894号(潤滑油、グリース、可塑剤、印刷インク)で報告されているものに限定されないが、種々の用途で有用である。
【0427】
別のこのような化学的改変はオレフィンメタセシスである。オレフィンメタセシスでは、触媒がアルケン(オレフィン)内でアルキリデン炭素を与えてそれぞれを異なるアルキリジン炭素と組にすることにより、新たなアルケンを形成する。オレフィンメタセシス反応は、エテノリシスによるアルケンでの不飽和脂肪酸アルキル鎖の短縮、自己メタセシスによるアルケン結合を介した脂肪酸の架橋、及び誘導体化されたアルケンを用いたクロスメタセシスによる脂肪酸への新たな官能基の組み込みのようなプロセスの機序をもたらす。
【0428】
エステル転移反応及び水素化のような他の反応とともに、オレフィンメタセシスは、不飽和グリセロ脂質を多様な最終産物に変換することができる。このような産物としては、ワックス用のグリセロ脂質オリゴマー;滑沢剤用の短鎖グリセロ脂質;化学製品及びポリマー用のホモ及びヘテロ二官能性アルキル鎖;バイオ燃料用の短鎖エステル;並びにジェット燃料用の短鎖炭化水素が挙げられる。オレフィンメタセシスを、例えば、米国特許第7,119,216号、米国特許公開第2010/0160506号及び米国特許公開第2010/0145086号に報告されている触媒及び方法を用いて、トリアシルグリセロール及び脂肪酸誘導体に対して行ってもよい。
【0429】
バイオ油のオレフィンメタセシスは一般に、他のアルケンの存在下(クロスメタセシス)又は非存在下(自己メタセシス)で、不活性条件下、約10〜250ppmの負荷量で不飽和脂肪酸エステルにRu触媒の溶液を添加することを含む。典型的には、反応を数時間〜数日間進行させ、最終的には、ある配分のアルケン産物が得られる。脂肪酸誘導体に対してオレフィンメタセシスを行い得る方法の1つの例は以下の通りである:第1世代触媒Grubbs(ジクロロ[2(1−メチルエトキシ−α−O)フェニル]メチレン−α−C](トリシクロヘキシル−ホスフィン)をトルエンに溶かした、触媒負荷量が222ppmの溶液を、脱気し乾燥させたオレイン酸メチルを含む容器に加える。次いで、容器を約60psig(約410kPha)のエチレンガスで加圧し、3時間、約30℃以下に維持することにより、収率約50%の9−デセン酸メチルが生成される。
【0430】
本明細書に記載の方法により生成された油のオレフィンメタセシスを、1つ以上の方法及び/又は物質とともに、又は生成物を生成するために、以下で報告されている通りに行ってもよい:国際出願PCT/US07/081427号(α−オレフィン脂肪酸)及び米国特許出願第12/281,938号(石油クリーム)、第12/281,931号(ペイントボール銃カプセル)、第12/653,742号(可塑剤及び滑沢剤)、第12/422,096号(二官能性有機化合物)及び第11/795,052号(ろうそくのロウ)。
【0431】
微生物油で行うことが可能な他の化学反応としては、米国特許第6,051,539号で報告されているように、トリアシルグリセロールと、シクロプロパン化剤と反応させ、流動性及び/又は酸化安定性を高めること;米国特許第6,770,104号で報告されているように、トリアシルグリセロールからワックスを製造すること;「The effect of 脂肪酸 composition on the acrylation kinetics of epoxidized triacylglycerols」、Journal of the American Oil Chemists’Society、79:1、59−63(2001)及びFree Radical Biology and Medicine、37:1、104−114(2004)に報告されているように、トリアシルグリセロールをエポキシ化することが挙げられる。
【0432】
上述のような燃料及び化学製品のために、油を生み出す微生物バイオマスを作成すると、脱脂したバイオマス食料が生成される。脱脂した食料は、藻類油を調製したときの副産物であり、例えば、反すう動物、鳥類、ブタ、水産養殖のような農場動物用の動物の餌として有用である。得られた食料は、油含有量が減ってはいるが、高品質のタンパク質、炭水化物、繊維、灰分、残留油、及び動物の餌に適した他の栄養物はいまだ含まれている。油分離プロセスによって細胞は大部分が溶解しているため、脱脂した食料は、このような動物によって簡単に消化される。脱脂した食料を、場合により、例えば、動物の餌の中で、穀物のような他の成分と組み合わせてもよい。脱脂した食料は、均一な粉末であるため、押出機、エクスパンダー又は市販されている別の種類の機械を用いてペレットへと圧縮することができる。
【0433】
本発明について上に詳細に説明し、以下の実施例で例示するが、これらは説明のために与えられたものであり、特許請求の範囲に書かれた発明を限定するために与えられているのではない。
【実施例】
【0434】
(VII.実施例)
(実施例1:Protothecaを培養する方法)
細胞乾燥重量で高い割合の油を得るようにPrototheca株を育てた。凍結保存した細胞を室温で解凍し、細胞500μlを、2%グルコースを含む培地4.5ml(4.2g/L K
2HPO
4、3.1g/L NaH
2PO
4、0.24g/L MgSO
4・7H
2O、0.25g/L クエン酸一水和物、0.025g/L CaCl
2 2H
2O、2g/L 酵母抽出物)に入れ、6ウェルプレートで攪拌しつつ(200rpm)、28℃で7日間成長させた。細胞乾燥重量は、あらかじめ秤量しておいたエッペンドルフ管中、培養物1mlを14,000rpmで5分間遠心分離することによって決定した。培養物の上澄みを棄て、得られた細胞ペレットを脱イオン水1mlで洗浄した。培養物を再び遠心分離処理し、上澄みを棄て、細胞ペレットを凍結するまで−80℃に置いた。次いで、サンプルを24時間凍結乾燥し、細胞乾燥重量を算出した。培養物中の総脂質を決定するために、培養物3mlを取り出し、Ankomシステム(Ankom Inc.、マセドン、ニューヨーク)を用い、製造業者のプロトコルに従って分析した。サンプルを、Amkom XT10抽出機を用い、製造業者のプロトコルに従って、溶媒抽出した。酸によって加水分解して乾燥させたサンプルと、溶媒抽出して乾燥させたサンプルとの質量差として、総脂質を決定した。細胞乾燥重量での油の割合を測定した値を表10に示す。
【0435】
【表10】
[この文献は図面を表示できません]
【0436】
Prototheca属由来の複数の株の微細藻類サンプルに対して遺伝子型解析を行った。藻のバイオマスからゲノムDNAを以下のように単離した。液体培養物から、細胞(約200mg)を14,000×gで5分間遠心分離処理した。次いで、細胞を滅菌蒸留水に再び懸濁させ、14,000×gで5分間遠心分離処理し、上澄みを棄てた。このバイオマスに、直径約2mmの1個のガラスビーズを加え、この管を−80℃で少なくとも15分間置いた。サンプルを取り出し、研磨バッファー(1% Sarkosyl、0.25M ショ糖、50mM NaCl、20mM EDTA、100mM Tris−HCl、pH 8.0、RNase A 0.5ug/μl)150μlを加えた。ペレットを短時間ボルテックスすることによって再び懸濁させた後、5M NaCl 40μlを加えた。サンプルを簡単にボルテックスした後、5% CTAB(セチルトリメチルアンモニウムブロミド)66μlを加え、最後に短時間ボルテックスした。次いで、サンプルを65℃で10分間インキュベートした後、14,000×gで10分間遠心分離処理した。新しい管に上澄みを移し、フェノール:クロロホルム:イソアミルアルコール 12:12:1 300μlで1回抽出し、次いで、14,000×gで5分間遠心分離処理した。0.7体積部のイソプロパノール(約190μl)を含む新たな管に、得られた水相を移し、ひっくり返すことによって混合し、室温で30分間インキュベートするか、又は4℃で一晩インキュベートした。14,000×gで10分間遠心分離処理することによってDNAを回収した。次いで、得られたペレットを70%エタノールで2回洗浄した後、100%エタノールで最後に洗浄した。ペレットを室温で20〜30分風乾した後、10mM TrisCl、1mM EDTA(pH8.0)50μlで再び懸濁させた。
【0437】
上述のように調製した藻の全DNA5μlを、これを10mM Tris、pH8.0で1:50に希釈した。最終容積が20μlのPCR反応を以下のように設定した。2×iProof HFマスターミックス(BIO−RAD)10μlを、0.4μlのプライマーSZ02613(10mMストック濃度の5’−TGTTGAAGAATGAGCCGGCGAC−3’(配列番号9))に加えた。このプライマー配列は、Gen Bank寄託番号L43357の位置567〜588であり、高等植物及び藻のプラスチドゲノムにおいて高度に保存されている。次いで、これに0.4μlのプライマーSZ02615(10mMストック濃度の5’−CAGTGAGCTATTACGCACTC−3’(配列番号10))を加えた。このプライマー配列は、Gen Bank寄託番号L43357の位置1112〜1093と相補性であり、高等植物及び藻のプラスチドゲノムにおいて高度に保存されている。次いで、希釈した全DNA5μl及びdH
2O 3.2μlを加えた。PCR反応を以下のように行った。98℃、45秒;98℃、8秒;53℃、12秒;72℃、20秒を35サイクル繰り返した後、72℃で1分、25℃で保持。PCR産物を精製するために、核反応物に10mM Tris、pH8.0 20μlを加えた後、フェノール:クロロホルム:イソアミルアルコール 12:12:1 40μlで抽出し、ボルテックスし、14,000×gで5分間遠心分離処理した。PCR反応物をS−400カラム(GE Healthcare)に入れ、3,000×gで2分間遠心分離処理した。次いで、精製したPCR産物を、PCR8/GW/TOPOへとTOPOGRAPHYクローン化し、LB/Specプレートで陽性クローンを選択した。精製したプラスミドDNAについて、M13の順プライマー及び逆プライマーを用い、両方向で配列を決定した。23S rRNA DNAの配列が決定された全部で12種類のPrototheca株を選択し、これらの配列を、配列表に列挙している。株及び配列表の番号のまとめは、以下にある。UTEX 1435(配列番号15)配列との全体的な違いについて、配列を分析した。最も違う配列として、2対があらわれた(UTEX 329/UTEX 1533及びUTEX 329/UTEX 1440)。これら両者の場合で、ペアワイズアラインメントから、一対の配列同一性が75.0%であった。UTEX 1435の配列同一性の割合も、以下に示す。
【0438】
【化2】
[この文献は図面を表示できません]
【0439】
上に列挙した株の部分集合から得られた脂質サンプルについて、HPLCを用いて脂質プロフィールを分析した。結果を以下の表11に示す。
【0440】
【表11】
[この文献は図面を表示できません]
【0441】
溶媒抽出法により、又はエキスペラー圧搾機を用いてPrototheca moriformis UTEX 1435から抽出された油のカロチノイド、クロロフィル、トコフェロール、その他のステロール、及びトコトリエノールを分析した。その結果を下の表12にまとめる。
【0442】
【表12】
[この文献は図面を表示できません]
【0443】
4つの異なるロットのPrototheca moriformisから抽出された油を精製し、標準的な植物油処理法を用いて漂白した。簡潔には、Prototheca moriformisから抽出された未精製油を水平デカンターで清澄化して、油から固体を分離した。次いで、清澄化された油をクエン酸と水の入ったタンクに移し、約24時間、静置した。24時間後、タンク内の混合物は2つの別々の層を形成していた。下の層は水とゴムからなり、次いでガムをデカンテーションにより除去してから、脱ガム油を漂白タンクに移した。次いで、油をさらに1回分のクエン酸とともに加熱した。次いで、漂白タンクに漂白土を加え、混合物を真空下でさらに加熱して、存在する水をすべて蒸発させたた。次いで、混合物をポンプで葉状濾過器に通して、漂白土を除去した。次いで、濾過した油を最後の5μmの研磨フィルターに通した後、これを回収し、使用するまで保管した。次いで、精製及び漂白された(RB)油のカロチノイド、クロロフィル、ステロール、トコトリエノール及びトコフェロールを分析した。これらの分析結果を下の表13にまとめる。「Nd」は検出されなかったことを表し、検出感度を以下に挙げる。
検出感度
カロチノイド(mcg/g)nd=<0.003mcg/g
クロロフィル(mcg/g)nd=<0.03mcg/g
ステロール(%)nd=0.25%
トコフェロール(mcg/g);nd=3mcg/g
【0444】
【表13-1】
[この文献は図面を表示できません]
【表13-2】
[この文献は図面を表示できません]
【0445】
また、同じ4つのロットのPrototheca moriformis油の微量元素も分析し、その結果を下の表14にまとめる。
【0446】
【表14-1】
[この文献は図面を表示できません]
【表14-2】
[この文献は図面を表示できません]
【0447】
(実施例2:微粒子銃によりProtothecaを形質転換する一般的な方法)
Seashell Gold Microcarriers 550ナノメートルを、製造業者のプロトコルに従って調製した。プラスミド(20μg)を、結合バッファー50μl及びS550d金担体60μl(30mg)と混合し、氷中、1分間インキュベートした。沈殿バッファー(100μl)を加え、この混合物を氷中でさらに1分間インキュベートした。ボルテックスした後、DNAでコーティングされた粒子を、5415C微量遠心器で10,000rpmで10秒間回転させることによって、ペレット状にした。この金ペレットを冷たい100%エタノール500μlで洗浄し、微量遠心器で軽く攪拌することによってペレット状にし、氷冷したエタノール50μlで再び懸濁させた。軽く(1〜2秒)超音波処理した後、10μlのDNAコーティングされた粒子を、すぐにキャリア膜に移した。
【0448】
Prototheca株を、グルコース2%を含むプロテオース培地(2g/L 酵母抽出物、2.94mM NaNO3、0.17mM CaCl2・2H2O、0.3mM MgSO4・7H2O、0.4mM K2HPO4、1.28mM KH2PO4、0.43mM NaCl)中、旋回シェーカー上に置いて細胞密度が2×10
6細胞/mlになるまで成長させた。この細胞を収穫し、滅菌蒸留水で1回洗浄し、培地50μlに再び懸濁させた。非選択的なプロテオース培地プレートの中央の1/3に1×10
7細胞を広げた。この細胞を、PDS−1000/He Biolistic Particle Deliveryシステム(Bio−Rad)で撃った。破裂ディスク(1350psi(約9,300kPha))を用い、上述のプレートを、スクリーン/マクロキャリアの集合体から6cm下に置く。細胞を25℃で12〜24時間回復させた。回復したら、ゴム製スパチュラで細胞をプレートから掻き取り、培地100μlと混合し、適切に選別した抗生物質を含むプレートに広げた。播種してから25℃で7〜10日経過後、形質転換された細胞を示すコロニーがプレート上に目視で確認された。コロニーを取り出し、2回目の選択のために選択的な(抗生物質又は炭素源)寒天プレートにスポットした。
【0449】
(実施例3:Chlorellaの形質転換)
(ベクター構築)
CMVプロモーターと、ヒグロマイシン耐性cDNAと、CMV3’UTRとを含むBamHI−SacIIフラグメント(配列番号152、pCAMBIA1380ベクターの部分配列、Cambia、キャンベラ、オーストラリア)を、pBluescriptのBamHI及びSacIIサイト中にクローン化し、これを本明細書ではpHygと呼ぶ。
【0450】
(微粒子銃によるChlorellaの形質転換)
Seashell Technology製のS550d金担体を、製造業者のプロトコルに従って調製した。線状pHygプラスミド(20μg)を、結合バッファー50μl及びS550d金担体60μl(30mg)と混合し、氷中、1分間インキュベートした。沈殿バッファー(100μl)を加え、混合物を氷中でさらに1分間インキュベートした。ボルテックスした後、DNAでコーティングされた粒子を、エッペンドルフ5415C微量遠心器で10,000rpmで10秒間回転させることにより、ペレット状にした。この金ペレットを冷たい100%エタノール500μlで1回洗浄し、微量遠心器で短時間回転させてペレット状にし、氷冷したエタノール50μlで再び懸濁させた。短時間(1〜2秒)の超音波処理を行った後、10μlのDNAコーティングされた粒子を、すぐにキャリア膜に移した。
【0451】
Chlorella protothecoides培養物(テキサス大学Culture Collection 250)を、プロテオース培地(2g/L酵母抽出物、2.94mM NaNO3、0.17mM CaCl2・2H2O、0.3mM MgSO4・7H2O、0.4mM K2HPO4、1.28mM KH2PO4、0.43mM NaCl)中、75μmol光子m
−2秒
−1の連続光下、旋回シェーカー上で、細胞密度が2×10
6細胞/mlになるまで成長させた。この細胞を回収し、滅菌蒸留水で1回洗浄し、培地50μlに再び懸濁させた。非選択的なプロテオース培地プレートの中央の1/3に1×10
7個の細胞を広げた。この細胞を、PDS−1000/He Biolistic Particle Deliveryシステム(Bio−Rad)で撃った。破裂ディスク(1100psi(約7,600kPha)及び1350psi(約9,300kPha))を使用し、プレートをスクリーン/マクロキャリアの集合体から9cm及び12cm下に置いた。細胞を25℃で12〜24時間回復させた。回復したら、ゴム製スパチュラで細胞をプレートから掻き取り、培地100μlと混合し、ヒグロマイシンを含むプレートに広げた(200μg/ml)。25℃で7〜10日間インキュベートした後、形質転換された細胞を示すコロニーが、1100psi(約7,600kPha)及び1350psi(約9,300kPha)の破裂ディスクからプレート上にあるのが目視で確認され、距離は9cm及び12cmであった。コロニーを取り出し、2回目の選択のために選択的な寒天プレートにスポットした。
【0452】
(エレクトロポレーションによるChlorellaの形質転換)
Chlorella protothecoides培養物を、プロテオース培地中、75μmol光子m
−2秒
−1の連続光下、旋回シェーカー上で、細胞密度が2×10
6細胞/mlになるまで成長させた。細胞を回収し、滅菌蒸留水で1回洗浄し、4×10
8細胞/mlの密度になるように、50mMのショ糖を含有するtris−リン酸バッファー(20mM Tris−HCl、pH7.0;1mMリン酸カリウム)に再び懸濁させた。約250μlの細胞懸濁物(1×10
8個の細胞)を、4mmギャップの使い捨てエレクトロポレーションキュベットに入れた。この細胞懸濁物に、線状pHygプラスミドDNA5μg及び担体DNA(剪断サケ精子DNA)200μgを加えた。次いで、エレクトロポレーションキュベットを水浴中、16℃で10分間インキュベートした。次いで、Gene Pulser II(Bio−Rad Labs、Hercules、CA)エレクトロポレーション装置を用いて、キュベットに25μFのキャパシタンスで電気パルス(1100V/cm)をかけた(エレクトロポレーション分路抵抗器は使用しなかった)。次いで、キュベットを室温で5分間インキュベートした後、細胞懸濁物を50mlのプロテオース培地に移し、施回シェーカー上で2日間、振とうさせた。回復後、低速の遠心分離により細胞を回収し、プロテオース培地に再び懸濁させ、ヒグロマイシン200μg/mlを添加したプレートに低密度で播種した。プレートを75μmol光子m
−2秒
−1の連続光下でインキュベートした。1〜2週間で形質転換体がコロニーとして現れた。コロニーを取り出し、2回目の選択のために選択的な寒天プレートにスポットした。
【0453】
(遺伝子型同定)
2回目の選択を生き延びたコロニーの一部を小量で培養し、回収した。約5〜10μLの容積のペレットを、ボルテックスして50μLの10mM NaEDTAに再び懸濁させてから、100℃で10インキュベートした。次いで、チューブを軽くボルテックスし、10秒間の超音波処理を行った後、12,000×gで1分間遠心分離した。上澄み2μLを50μLのPCR反応で鋳型として使用した。遺伝子型同定に使用したプライマーは、配列番号153及び配列番号154であった。PCR条件は以下の通りであった:95℃で5分間×1サイクル;95℃で30秒間−58℃で30秒間−72℃で1分間30秒×35サイクル;72℃で10分間×1サイクル。予想された992bpフラグメントは、微粒子銃コロニー及び単一のエレクトロポレーションコロニー由来の10コロニーのうち6コロニーで見られた。大きさの小さい、非特異的なバンドがすべてのレーンで見られた。増幅された992bpフラグメントの同一性を確認するために、微粒子銃のバンド2つとエレクトロポレーションのバンドをゲルから切り出し、それぞれを配列決定した。3つのバンドすべての配列が、予想された992bpフラグメントと一致していた。(DNAラダー:Bionexus(登録商標)All Purpose Hi−LoR DNAラダー、カタログ番号BN2050)。
【0454】
(実施例4:藻類から誘導されるプロモーター及び微細藻類で使用するための遺伝子)
(A.Chlorella protothecoidesに由来する5’UTR及びプロモーターの配列)
混合栄養的に成長するChlorella protothecoides(UTEX 250)から、標準的な技術を用いてcDNAライブラリーを作成した。cDNA配列に基づいて、Seegene’s DNA Walkingキット(ロックビル、MD)を用い、コード領域の上流を「ウォーキングする」ために、特定の既知のハウスキーピング遺伝子においてプライマーを設計した。単離された配列は、アクチン(配列番号155)と、伸長因子−1a(EF1a)(配列番号156)プロモーター/UTRとを含み、これらは、両方とも、イントロン(小文字で示されているもの)と、エクソン(大文字のイタリックで示されている)と、予測開始部位(太字)と、2個のβ−チューブリンプロモーター/UTRエレメント:アイソフォームA(配列番号157)及びアイソフォームB(配列番号158)とを含む。
【0455】
(B.C.protothecoidesに由来する、脂質の生合成酵素及びプラスチド標的配列)
上述のcDNAライブラリーから、Chlorella protothecoides(UTEX 250)において、脂質代謝に機能するタンパク質をコードする3種類のcDNAを、上述の方法と同じ方法を用いてクローン化した。アシルACPデサチュラーゼ(配列番号159及び160)及び2種類のゲラニルゲラニルジホスフェートシンターゼ(配列番号161〜164)のヌクレオチド及びアミノ酸配列は、以下の配列表に含まれている。さらに、プラスチドを標的とする推定シグナル配列を有する3種類のcDNAもクローン化した。グリセルアルデヒド−3−ホスフェート脱水素酵素(配列番号165及び166)、酸素発生複合体タンパク質OEE33(配列番号167及び168)、Clpプロテアーゼ(配列番号169及び170)のヌクレオチド及びアミノ酸配列は、以下の配列表に含まれている。ヌクレオチド配列及びアミノ酸配列において、推定プラスチド標的配列には、下線を引いている。トランス遺伝子の産物が、細菌のプラスチド、例えば、脂質改変酵素を標的とするように仕向けるために、プラスチド標的配列を用いることができる。
【0456】
(実施例5:外来のショ糖インベルターゼを発現させるためのChlorella protothecoidesの遺伝子操作)
(株及び培地):テキサス大学のCulture Collection of Alga(オースチン、テキサス、米国)からChlorella protothecoides(UTEX 250)を入手した。保存培養株を改変プロテオース培地で維持した。改変プロテオース培地は、1リットルあたり(g/L)、NaNO
30.25g、K
2HPO
40.09g、KH
2PO
40.175g、CaCl
2・2H
2O0.025g、MgSO
4・7H
2O0.075及び酵母抽出物2gからなる。
【0457】
(プラスミド構築):分泌型のインベルターゼをChlorella protothecoidesで発現させるために、Saccharomyces cerevisiae
SUC2遺伝子を3つの異なるプロモーター:カリフラワーモザイクウイルス35Sプロモーター(CMV)、クロレラウイルスプロモーター(NC−1A)及びクロレラHUP1プロモーターの制御下に置いた。C.protothecoidesに対して最適化されたコドンの使用を調節するために酵母SUC2遺伝子を合成したが、これは、インベルターゼの細胞外分泌を指令するのに必要なシグナル配列を含む。各構築物をpBluescript KS+中で構築し、特異的プライマーを用いたPCR増幅により、EcoRI/AscI、AscI/XhoI及びXhoI/BamHIサイトを、それぞれのプロモーター、インベルターゼ遺伝子及びCMV 3’UTRに個別に導入した。精製したPCR産物を順次、クローン化した。
【0458】
(Chlorella protothecoidesの形質転換):Chlorella protothecoides培養物を、改変プロテオース培地中、75μmol光子m
−2秒
−1の連続光下、旋回シェーカー上で、細胞密度が6×10
6細胞/mlになるまで成長させた。
【0459】
微粒子銃による形質転換では、Seashell Technology製のS550d金担体を、製造業者のプロトコルに従って調製した。簡潔に述べれば、BsaIによる線状構築物(20μg)を、結合バッファー50μl及びS550d金担体60μl(3mg)と混合し、氷中、1分間インキュベートした。沈殿バッファー(100μl)を加え、混合物を氷中でさらに1分間インキュベートした。軽くボルテックスした後、DNAでコーティングされた粒子を、エッペンドルフ微量遠心器で10分間、10,000rpmで回転させることにより、ペレット状にした。この金ペレットを冷たい100%エタノール500μlで1回洗浄し、微量遠心器で短時間回転させることによりペレット状にし、氷冷したエタノール50μlで再び懸濁させた。短時間(1〜2秒)の超音波処理を行った後、10μlのDNAコーティングされた粒子を、すぐにキャリア膜に移した。細胞を回収し、滅菌蒸留水で1回洗浄し、培地50μlに再び懸濁させ(1×10
7個の細胞)、非選択的なプロテオースプレートの中央の1/3に細胞を広げた。この細胞を、PDS−1000/He Biolistic Particle Deliveryシステム(Bio−Rad)で撃った。破裂ディスク(1100psi(約7,600kPha)及び1350psi(約9,300kPha))を使用し、プレートをスクリーン/マクロキャリアの集合体から9cm〜12cm下に置いた。細胞を25℃で12〜24時間回復させた。回復したら、ゴム製スパチュラで細胞をプレートから掻き取り、培地100μlと混合し、ショ糖1%を含む改変プロテオースプレートに広げた(200μg/ml)。暗所で7〜10日間、25℃でインキュベートした後、形質転換された細胞を示すコロニーが、プレート上に目視で確認された。
【0460】
エレクトロポレーションによる形質転換では、細胞を回収し、滅菌蒸留水で1回洗浄し、4×10
8細胞/mlの密度になるように、50mMのショ糖を含有するTris−リン酸リン酸バッファー(20mM Tris−HCl、pH7.0;1mMリン酸カリウム)に再び懸濁させた。約250μlの細胞懸濁物(1×10
8個の細胞)を、4mmギャップの使い捨てエレクトロポレーションキュベットに入れた。この細胞懸濁物に、線状pHygプラスミドDNA5μg及び担体DNA(剪断サケ精子DNA)200μgを加えた。次いで、エレクトロポレーションキュベットを氷水浴中、16℃で10分間、インキュベートした。次いで、Gene Pulser II(Bio−Rad Labs、ハーキュリーズ、カリフォルニア)エレクトロポレーション装置を用いて、キュベットに25μFのキャパシタンスで電気パルス(1100V/cm)をかけた(エレクトロポレーション分路抵抗器は使用しなかった)。次いで、キュベットを室温で5分間インキュベートした後、細胞懸濁物を50mlの改変プロテオース培地に移し、施回シェーカー上で2日間、振とうさせた。回復後、低速(4000rpm)の遠心分離により細胞を回収し、改変プロテオース培地に再び懸濁させ、ショ糖1%を含む改変プロテオースプレートに低密度で播種した。暗所で7〜10日間、25℃でインキュベートした後、形質転換された細胞を示すコロニーが、プレート上に目視で確認された。
【0461】
(形質転換体のスクリーニング及び遺伝子型同定):暗所で成長させたショ糖1%を含む改変プロテオースプレートからコロニーを取り出し、ほぼ同じ量の細胞を、ショ糖1%を含む改変プロテオース液体培地1mlを含む24ウェルプレートに移した。培養物を暗所に置き、Labnet(バークシャー、英国)製のオービタルシェーカーで5日間、430rpmで攪拌した。
【0462】
Chlorella形質転換体に導入されたインベルターゼ遺伝子の存在を確認するために、各形質転換体のDNAを単離し、遺伝子特異的プライマーのセット(CMV構築物:順プライマー(CAACCACGTCTTCAAAGCAA)(配列番号153)/逆プライマー(TCCGGTGTGTTGTAAGTCCA)(配列番号171)、CV構築物:順プライマー(TTGTCGGAATGTCATATCAA)(配列番号172)/逆プライマー(TCCGGTGTGTTGTAAGTCCA)(配列番号171)及びHUP1構築物:順プライマー(AACGCCTTTGTACAACTGCA)(配列番号173)/逆プライマー(TCCGGTGTGTTGTAAGTCCA)(配列番号171))を用いて増幅した。迅速なDNA単離のために、ある量の細胞(約5〜10μLの大きさ)を50μLの10mM Na−EDTAに再び懸濁させた。細胞懸濁物を100℃で10分間インキュベートし、10秒間の超音波処理を行った。12000gで1分間遠心分離した後、上澄み3μLをPCR反応に用いた。DNAサーマルサイクラー(Perkin−Elmer GeneAmp 9600)でPCR増幅を行った。製造業者の指示に従って、反応混合物(50μL)は、3μLの抽出したDNA、それぞれ100pmolの上記の各プライマー、200uMのdNTP、0.5単位のTaq DNA ポリメラーゼ(NEB)、及びTaq DNAポリメラーゼバッファーを含んでいた。DNAの変性を、最初のサイクルでは、95℃で5分間、次いで30秒間行った。プライマーのアニーリング及び伸長反応を、それぞれ58℃で30秒間、72℃で1分間行った。次いで、臭化エチジウムで染色した1%アガロース上でPCR産物を可視化した。
【0463】
(液体培養での増殖):暗所で5日間成長させた後、遺伝子型が陽性の形質転換体は、暗所において、最小限の液体プロテオース培地+1%ショ糖で成長を示したのに対し、野性型細胞は、暗所において、同じで成長を示さなかった。
【0464】
(実施例6:S.cerevisiae由来の分泌型インベルターゼによる藻類株の形質転換)
(分泌型インベルターゼ):分泌型ショ糖インベルターゼをコードする遺伝子(Saccharomyces cerevisiae由来のGen Bank寄託番号NP_012104)を1599bpのAsc I−Xhoフラグメントとしてde−novo合成し、次いで、EcoRI/AscI及びXho/SacIカセットとして、それぞれカリフラワーモザイクウイルス35sプロモーター及び3’UTRを有するpUC19誘導体中にこれをサブクローン化した。
【0465】
(藻類細胞の成長):これらの実験で使用した培地は、液体基本培地(酵母抽出物2g/L、2.94mM NaNO
3、0.17mM CaCl
2・2H
2O、0.3mM MgSO
4・7H
2O、0.4mM K
2HPO
4、1.28mM KH
2PO
4、0.43mM NaCl)、及びショ糖又はグルコース(指定された)の形態の固定炭素を1%の最終濃度で含有する固体基本培地(+1.5%アガロース)であった。この実験で使用した株は、暗所において、追加の固定炭素源が存在しない基本培地では成長しなかった。複数の種をプレートに播き、暗所で28℃で成長させた。単一のコロニーを採取して、グルコース1%を含有する500mLの液体基本培地の播種に使用し、細胞数を毎日測定しながら、暗所で対数中期まで成長させた。以下に挙げる株はそれぞれ、既に暗所においてショ糖を唯一の炭素源とする成長を試験して、成長が示されなかった株であり、したがって、分泌型インベルターゼによる形質転換用に選択された:(1)Chlorella protothecoides(UTEX 31);(2)Chlorella minutissima(UTEX 2341);及び(3)Chlorella emersonii(CCAP 211/15)。
【0466】
(粒子撃ち込みによる藻類細胞の形質転換):約1〜5×10
8個の細胞総数を得るのに十分な培養物を遠心分離した。得られたペレットを、固定炭素源を加えていない基本培地で洗浄した。細胞を再び遠心分離し、5×10
7〜2×10
8細胞/mlを得るのに十分な量の基本培地で再び懸濁させた。次いで、細胞250〜l000μlを、1%ショ糖を添加した固体基本培地に播き、滅菌フード内で、プレート上で乾燥させた。プラスミドDNAを、製造業者(Seashell Technology、ラホヤ、カリフォルニア)の推奨に従って金粒子上に沈殿させた。BioRad PDS He−1000粒子送達システムを用いて、破裂ディスクホルダから9cmのところにマイクロキャリアを設置した1350psiの破裂ディスクにより形質転換を行った。形質転換後、プレートを暗所で28℃でインキュベートした。すべての株から複数の形質転換体コロニーが生じた。インベルターゼ挿入物を用いずに形質転換した以外は同じ方法で調製した形質転換の対照プレートは、コロニーを含んでいなかった。
【0467】
(Chlorella protothecoides形質転換体の分析):Chlorella protothecoides野性型細胞及び形質転換体コロニーから、ゲノムDNAを以下のように抽出した:細胞を抽出バッファー(87.5mM Tris Cl、pH8.0、50mM NaCl、5mM EDTA、pH8.0、0.25%SDS)100μlに再び懸濁させ、ときどき反転させて混ぜながら、60℃で30分間インキュベートした。PCR用に、試料を20mM Tris Cl、pH8.0で1:100に希釈した。
【0468】
WT、形質転換体及びプラスミドDNAから抽出したゲノムDNAに関して遺伝子型同定を行った。マーカー遺伝子に関して試料の遺伝子同定を行った。この遺伝子型同定PCRには、プライマー2383(5’CTGACCCGACCTATGGGAGCGCTCTTGGC 3’)(配列番号174)及び2279(5’CTTGACTTCCCTCACCTGGAATTTGTCG 3’)(配列番号175)を用いた。使用したPCRプロフィールは以下の通りであった:94℃での変性を5分間;94℃−30秒、60℃−30秒、72℃−3分を35サイクル;72℃−5分。陽性対照(プラスミド)及びChlorella protothecoides(UTEX 31)の2つの形質転換体から、大きさの同じバンドを増幅した。
【0469】
(Chlorella minutissima及びChlorella emersoniiの形質転換体の分析):Chlorella WT及び形質転換体から、ゲノムDNAを以下のように抽出した:細胞を抽出バッファー(87.5mM Tris Cl、pH8.0、50mM NaCl、5mM EDTA、pH8.0、0.25%SDS)100μlに再び懸濁させ、ときどき反転させて混ぜながら、60℃で30分間インキュベートした。PCR用に、試料を20mM Tris Cl、pH8.0で1:100に希釈した。WT、形質転換体及びプラスミドDNAから抽出したゲノムDNAに関して遺伝子型同定を行った。マーカー遺伝子に関して試料の遺伝子同定を行った。プライマー2336(5’GTGGCCATATGGACTTACAA 3’)(配列番号176)及び2279(5’CTTGACTTCCCTCACCTGGAATTTGTCG 3’)(配列番号175)は、設計されたプライマーセット2(1215bpの予想される産物)であったのに対し、プライマー2465(5’CAAGGGCTGGATGAATGACCCCAATGGACTGTGGTACGACG 3’)(配列番号177)及び2470(5’CACCCGTCGTCATGTTCACGGAGCCCAGTGCG 3’)(配列番号178)は、設計されたプライマーセット4(1442bpの予想される産物)であった。使用したPCRプロフィールは以下の通りであった:94℃での変性を2分間;94℃−30秒、60℃−30秒、72℃−1分30秒を29サイクル;72℃−5分。分泌型インベルターゼを含むプラスミド対照をPCR対照として用いた。
【0470】
インベルターゼ構築物の配列は配列番号8に対応する。
【0471】
(実施例7:Prototheca種における相同組み換え)
トランス遺伝子の相同組み換えは、いくつかの利点を有する。第1に、相同組み換えではないトランス遺伝子の導入は、細胞に導入されるプラスミドの複製数が制御されないので、予測不可能となり得る。また、相同組み換えではないトランス遺伝子の導入は、プラスミドがエピソームを保有し得、次の細胞分裂のときに失われるので、不安定となり得る。相同組み換えの別の利点は、遺伝子標的を「ノックアウト」し、エピトープタグを導入し、内在する遺伝子のプロモーターを切り替え、遺伝子標的をそれ以外の方法で変える(例えば、点変異の導入)ことができることである。
【0472】
KE858と呼ばれるPrototheca moriformis(UTEX 1435)ゲノムの特定領域を用い、2種類のベクターを構築した。KE858は、1.3kbのゲノムフラグメントであり、タンパク質のトランスファーRNA(tRNA)ファミリーに対する相同性が共通のタンパク質のコード領域の一部を包含している。サザンブロットは、KE858配列が、Prototheca moriformis(UTEX 1435)ゲノムの単一コピーに存在することを示した。構築され、SZ725(配列番号179)と呼ばれる第1の種類のベクターは、最適化された酵母インベルターゼ(suc2)遺伝子も含んでいるpUC19ベクター骨格にクローン化された全1.3kbのKE858フラグメントで構成されていた。KE858フラグメントは、標的構築物の他の場所のどこにも生じない固有のSnaB1部位を含んでいた。構築され、SZ726(配列番号180)と呼ばれる第2の種類のベクターは、KE858ゲノム配列のSnaB1部位に酵母インベルターゼ遺伝子(suc2)を挿入することによって破壊されたKE858配列で構成されていた。酵母インベルターゼ遺伝子に隣接するKE858配列を含む完全なDNAフラグメントは、ベクター骨格からEcoRIで消化することによって切り出され、KE858領域のどちらかの末端で切断されている。
【0473】
両方のベクターを用い、酵母インベルターゼ遺伝子(suc2)を、Prototheca moriformis(UTEX 1435)ゲノムの対応するKE858領域に直接的に相同組み換えした。相同組み換えで標的とされるゲノム領域と相同性の直鎖DNAを、ベクター構築物SZ725をSnaB1で消化し、ベクター構築物SZ726をEcoRIで消化することによって露出させた。次いで、消化されたベクター構築物を、上の実施例3に記載の方法を用い、Prototheca moriformis培養物に導入した。次いで、それぞれのベクター構築物から得た形質転換体を、ショ糖プレートを用いて選択した。それぞれのベクターの形質転換から得た、10種類の独立した、クローン的に純粋な形質転換体を、酵母インベルターゼ遺伝子が望ましいゲノム位置でうまく組み換えられているか(サザンブロットを用いる)、トランス遺伝子の安定性について分析した。
【0474】
SZ725形質転換体のサザンブロット分析は、分析用に取り出した10種類の形質転換耐のうち、4種類が、予想通りの組み換えバンドを含んでおり、このことは、ベクター上にあるKE858配列と、ゲノム内にあるKE858配列とで1箇所の交叉が起こったことを示している。対称的に、SZ726形質転換体の10種類全てが、予想通りの組み換えバンドを含んでおり、このことは、酵母インベルターゼトランス遺伝子に隣接するKE858配列を有するpSZ726のEcoRIフラグメントと、ゲノムの対応するKE858領域とで2箇所の交叉が起こったことを示している。
【0475】
選択せずに、15世代にわたって形質転換体を成長させることによって、ショ糖インベルターゼ発現及びトランス遺伝子の安定性を評価した。サザンブロットによってトランス遺伝子が陽性の4種類のSZ725形質転換体及び10種類のSZ276形質転換体を選択し、それぞれの形質転換体から、48個の単一コロニーを、まずはグルコースを含有する培地で選択せずに成長させ、次いで、唯一の炭素源としてショ糖を含有する培地で選択しつつ成長させた。10種類全てのSZ276形質転換体(100%)が、15世代後もショ糖を用いて成長する能力を保持しており、一方、SZ725形質転換体の約97%が、15世代後も、ショ糖を用いて成長する能力を保持していた。2箇所の交叉が起こる(SZ726ベクター)ことによって導入されたトランス遺伝子は、世代を超えて倍加していく間もきわめて高い安定性を有している。対称的に、1箇所の交叉が起こる(SZ725ベクター)ことによって導入されたトランス遺伝子は、トランス遺伝子がタンデムに複写されて導入され、トランス遺伝子に隣接する繰り返し相同領域が組み換えられ、その間に位置するトランスジェニックDNAを切断してしまうため、世代を超えて倍加していく間に、ある程度不安定になり得る。
【0476】
これらの実験は、相同組み換えをうまく使用して、異種ショ糖インベルターゼ遺伝子が有機体の核染色体に安定に組み込まれたPrototheca形質転換体を作成することを示している。相同組み換えが成功すると、遺伝子の欠失、点変異、望ましい遺伝子産物のエピトープタグ化のようなPrototheca内の他のゲノム改変も可能になる。また、これらの実験は、真核性微細藻類の核ゲノムにおける相同組み換えを最初に実証した系であることも示している。
【0477】
(A.内在するPrototheca moriformis遺伝子をノックアウトするための、相同組み換えの使用)
上の実施例4に記載さているようなPrototheca moriformis cDNA/ゲノムのスクリーニングでは、内在するステアロイルACPデサチュラーゼ(SAPD)cDNAが同定された。ステアロイルACPデサチュラーゼ酵素は、脂質合成経路の一部であり、脂肪酸アシル鎖に二重結合を導入する機能がある。ある場合では、脂肪酸プロフィールを変えるために、脂質経路に関連する酵素の発現をノックアウトするか、又は減らすことが有益な場合がある。内在するステアロイルACPデサチュラーゼ酵素の発現を減らす(又はノックアウトする)ことができるかどうか、そして、不飽和脂肪酸の対応する減少が、宿主細胞の脂質プロフィールでみられるかどうかを評価するために、相同組み換え構築物を作成した。Prototheca moriformis(UTEX 1435)に由来するステアロイルACPデサチュラーゼ遺伝子の約1.5kbのコード配列を同定し、クローン化した(配列番号181)。0.5kbのSAPDコード配列を5’末端(5’標的部位)で用い、次いでChlorella vulgaris 3’UTRを有するChlamydomonas reinhardtii コドンが最適化された酵母ショ糖インベルターゼsuc2遺伝子を駆動するβ−チューブリンプロモーターを用いて相同組み換え構築物を構築した。次いで、Prototheca moriformis SAPDコード配列の残り(約1kb)を、C.vulgaris 3’UTRの後に挿入し、3’標的部位を作った。この相同組み換えカセットの配列を配列番号182に列挙している。上に示されるように、微細藻類を形質転換する前にカセットを線状にし、露出されている末端を残すことによって、相同組み換えカセットを核ゲノムに組み込むのがうまくいく率が増す。Prototheca moriformisに内在するSAPD酵素を標的とする相同組み換えカセットを線状にし、次いで、宿主細胞(Prototheca moriformis、UTEX 1435)内で形質転換した。うまく組み込むと、二箇所の相互組み換えが起こることによって、宿主ゲノムから、内在するSAPD酵素のコード領域が失われ、一方、新しく挿入されたsuc2遺伝子の発現は、C.reinhardtii β−チューブリンプロモーターによって制御されるであろう。唯一の炭素源としてショ糖を含むプレート/培地を用い、得られたクローンをスクリーニングすることができる。相同組み換えカセットがうまく組み込まれたクローンは、唯一の炭素源としてショ糖を用いて成長する能力を有しており、脂質プロフィールにおける脂肪酸の最終的な飽和度が変わることは、二次的な確認因子として役立つであろう。さらに、酵母ショ糖インベルターゼsuc2遺伝子に特異的なプローブを用いたサザンブロットアッセイ、及びRT−PCRによって、陽性クローンにおけるインベルターゼ遺伝子の存在及び発現を確認することができる。代替法として、β−チューブリンプロモーターを含まない同じ構築物を用い、内在するSAPD酵素コード領域を切断することができる。この場合、新しく挿入された酵母ショ糖インベルターゼsuc2遺伝子は、内在するSAPDプロモーター/5’UTRによって制御されるであろう。
【0478】
(実施例8:Protothecaにおける様々なチオエステラーゼの発現)
Prototheca種における異種チオエステラーゼ遺伝子発現の方法及び効果は、参照により組み込まれる、国際出願PCT/US2009/66142号に既に記載されている。高等植物種由来の他のチオエステラーゼ遺伝子/遺伝子産物の効果をさらに調べた。これらのチオエステラーゼには、以下の高等植物のチオエステラーゼが含まれる。
【0479】
【化3】
[この文献は図面を表示できません]
【0480】
すべての場合において、上記の各チオエステラーゼ構築物を、微粒子銃による粒子撃ち込みを用いてPrototheca moriformis(UTEX 1435)内で形質転換した。国際出願PCT/US2009/66142号に開示されている相同組み換えを含めた、他の形質転換法も目的遺伝子の異種発現に適するであろう。上記の各チオエステラーゼ構築物によるPrototheca moriformis(UTEX 1435)の形質転換を、実施例2に記載されている方法を用いて行った。各構築物はNeoR遺伝子を含み、100μg/mlのG418を用いて陽性クローンの選択を行った。すべてのコード領域のコドンを最適化して、Prototheca moriformis UTEX 1435(表2を参照)核遺伝子に固有のコドンの偏りを反映した。構築物に使用したアミノ酸配列及びcDNA配列は、ともに配列表に記載されている。各高等植物チオエステラーゼのトランジットペプチドを、Prototheca moriformisデルタ12脂肪酸デサチュラーゼ(配列番号48)又はChlorella protothecoidesステアロイルACP デサチュラーゼ(配列番号49)由来の、コドンが最適化された藻類トランジットペプチドに置き換えた。すべてのチオエステラーゼ構築物は、Chlamydomanas reinhardtiiのβ−チューブリンプロモーター/5’UTRにより駆動された。選択された陽性クローンの成長及び脂質産生を、野生型(形質転換していない)Prototheca moriformis(UTEX 1435)と比較した。野性型及び選択された陽性クローンを、2%グルコースG418プレートで成長させた。選択された陽性クローンの各構築物に関する脂質プロフィール分析を、下の表15にまとめる(面積%として表す)。
【0481】
【表15】
[この文献は図面を表示できません]
【0482】
この結果は、発現されたすべてのチオエステラーゼが脂肪酸プロフィールにある程度の影響を及ぼすということを示している。「総飽和脂物」の行を見ると、U.californica、C.camphora、及び特にU.americana由来のものを含めたいくつかのチオエステラーゼの発現により、飽和度が大きな影響を受けている。総飽和物の百分率の変化は、高等植物由来のチオエステラーゼの異種発現が、脂質鎖長に明らかに影響を及ぼし得るだけでなく、微細藻類により得られる脂質プロフィールの他の特性、すなわち脂肪酸の飽和度にも影響を及ぼし得るという点で意外なことであった。
【0483】
C.palustris C8チオエステラーゼ、C.hookerianaチオエステラーゼ、U.californica及びC.camphoraチオエステラーゼで形質転換した選択されたクローンを、様々な量のG418(25mg/L〜50mg/L)及び様々な温度(22℃〜25℃)でさらに成長させ、これらのクローンの脂質プロフィールを決定した。各チオエステラーゼを含む代表的なクローンの脂質プロフィール(面積%)を表16にまとめる。U.americanaチオエステラーゼを含む第2の構築物を構築し、上記の微粒子銃による方法を用いて、Prototheca moriformis(UTEX 1435)内で形質転換した。この第2の構築物を相同組み換えにより細胞内に導入した。Prototheca種における相同組み換えの方法は、国際出願PCT/US2009/66142号に既に記載されている。使用した相同DNAは、Prototheca moriformis UTEX 1435の6S領域のゲノムDNA配列に由来するものであった。選択因子は、C.reinhardtiiのβ−チューブリンプロモーターにより駆動される、コドンが最適化されたsuc2遺伝子を利用して、ショ糖で成長する能力であった。天然のU.americanaトランジットペプチドをChlorella protothecoides(UTEX 250)ステアロイルACPデサチュラーゼトランジットペプチドに置き換えた。この構築物のcDNAは、配列番号50として配列表に記載されている。2%ショ糖プレートで陽性クローンの選択を行い、また脂質プロフィール決定のために得られた培養物も、ショ糖2%を含有する培地で成長させた。相同組み換えした異種U.americanaチオエステラーゼを含むこのPrototheca moriformis株の代表的な脂質プロフィールを表16にまとめる。
【0484】
【表16】
[この文献は図面を表示できません]
【0485】
上記クローンと同様に、異種チオエステラーゼ遺伝子を含むすべての形質転換体は、野性型(形質転換していない)Prototheca moriformisと比べて、ある程度の影響を受けた脂肪酸プロフィールを示し、また飽和脂肪酸の総百分率も変化していた。相同組み換えにより導入されたU.americanaチオエステラーゼを含むPrototheca moriformisは、総飽和物の増加が最も大きかった。
【0486】
さらに、外来のC.hookeriana、C.camphora、U.californica又はU.americanaチオエステラーゼを含むトランスジェニッククローンを新規な脂質プロフィールに関して評価した。22℃、2%グルコース、25mg/ml G418で成長させた、C.hookerianaチオエステラーゼを含むクローンでは、以下のような脂質プロフィールが得られた:5.10%のC8:0;18.28%のC10:0;0.41%のC12:0;1.76%のC14:0;16.31%のC16:0;1.40%のC18:0;40.49%のC18:1;及び13.16%のC18:2。25℃、2%ショ糖で成長させた、C.camphoraチオエステラーゼを含むクローン(外来のショ糖インベルターゼも含む)では、以下のような脂質プロフィールが得られた:0.04%のC10:0;6.01%のC12:0;35.98%のC14:0;19.42 C16:0;1.48%のC18:0;25.44%のC18:1;及び9.34%のC18:2。22℃、2%グルコース、25〜100mg/ml G418で成長させた、U.calfornicaチオエステラーゼを含むクローンでは、以下のような脂質プロフィールが得られた:0%のC8:0;0.11%のC10:0;34.01%のC12:0;5.75%のC14:0;14.02%のC16:0;1.10%のC18:0;28.93%のC18:1;及び13.01%のC18:2。28℃、2%グルコースで成長させた、U.americanaチオエステラーゼを含むクローンでは、以下のような脂質プロフィールが得られた:1.54%のC10:0;0.43%のC12:0;7.56%のC14:0;39.45%のC16:0;2.49%のC18:0;38.49%のC18:1;及び7.88%のC18:2。
【0487】
(実施例9:複数の外来異種チオエステラーゼ遺伝子によるProtothecaの形質転換)
微細藻類株Prototheca moriformis(UTEX 1435)を、上で開示されている方法を用いて形質転換し、単一クローン内で複数のチオエステラーゼを発現させた。単一クローン内での複数のチオエステラーゼの発現により、微細藻類は、いずれかの単一のチオエステラーゼが単独で発現されたときに産生されるもの(上記の実施例で示されている)とは全く異なる脂肪酸プロフィールの油を産生することが可能となる。最初に、Prototheca moriformis(UTEX 1435)を、相同組み換えを用いて、S.cerevisiae(ショ糖で成長する能力により選択)由来のショ糖インベルターゼ遺伝子であるsuc2とともにCinnamomum camphoraチオエステラーゼ(C14選択性のチオエステラーゼ)で形質転換する。この相同組み換え構築物に使用したDNAは、上の第3節に記載されているように、Prototheca moriformisゲノムDNAのKE858領域に由来するものである。この構築物の関連する部分は、配列番号51として配列表に記載されている。ショ糖含有プレートで陽性クローンをスクリーニングした。次いで、それぞれが抗生物質G418に対する耐性、及び追加のチオエステラーゼ:(1)Cuphea hookeriana(C8−10選択性)由来のチオエステラーゼ遺伝子、配列番号52;(2)Umbellularia californica(C12選択性)由来のチオエステラーゼ遺伝子、配列番号53;又はUlmus americana(広範;C10〜C16選択性)由来のチオエステラーゼ、配列番号54をコードする3つのカセットのうちの1つを用いて、陽性クローンを再び形質転換した。各構築物の関連する部分の配列が配列表に記載されている。両方のチオエステラーゼ遺伝子を発現するクローンを、50μg/mlのG418を含むショ糖含有培地でスクリーニングした。陽性クローンを選択し、成長及び脂質プロフィールをアッセイした。代表的な陽性クローンの脂質プロフィールを表17にまとめる(面積%として表す)。
【0488】
【表17】
[この文献は図面を表示できません]
【0489】
さらに、C.camphora及びU.californicaのチオエステラーゼを有する二重のチオエステラーゼクローンを、50mg/LのG418を含む2%ショ糖含有培地において、22℃で成長させた。このような成長条件下でこの株から得られた脂肪酸プロフィールは:C8:0(0);C10:0(0.10);C12:0(31.03);C14:0(7.47);C16:0(15.20);C18:0(0.90);C18:1(30.60);C18:2(12.44);及びC18:3α(1.38)であり、総飽和物は54.7であった。
【0490】
C.camphoraチオエステラーゼを含む2つの相同組み換え構築物(一方は6S領域を標的とし、他方はKE858領域を標的とする)を有する二重のチオエステラーゼクローンを作製した。代表的な陽性クローンの脂肪酸プロフィールは:0%のC8:0;0.06%のC10:0;5.91%のC12:0;43.27%のC14:0;19.63%のC16:0;0.87%のC18:0;13.96%のC18:1;及び13.78%のC18:2であり、総飽和物は69.74%であった。このクローンのC12〜C14レベルは49%を超え、これは野性型細胞のC12〜C14レベルの37倍以上である。
【0491】
上のデータは、複数のチオエステラーゼが微細藻類において首尾よく同時発現されることを示している。複数のチオエステラーゼの同時発現により、野性型株だけでなく、個々のエステラーゼのいずれか1つの発現により得られる脂肪酸プロフィールとも著しく異なる、変化した脂肪酸プロフィールが得られる。鎖長特異性が重複する複数のチオエステラーゼの発現により、これらの特定の脂肪酸の累積的増加が生じ得る。
【0492】
Prototheca moriformisにおける異種チオエステラーゼの発現(単独の、又は組み合わさった)が、宿主株の脂肪酸/脂質プロフィールを変化させるだけでなく、各種の種子作物から現在入手可能な油(表5)に比べて、これらのプロフィールは、現在入手可能な他の系では見られない極めて固有の油のものである。トランスジェニック株は、形質転換されていない野性型株との著しい相違を示すだけでなく、表5に示されるいずれの市販の油とも著しく異なるプロフィールを有する。例として、ココナツ油及びパーム核油はともに、C8〜C10脂肪酸のレベルが5.5〜17%の範囲にある。C.palustrisのC8選択性チオエステラーゼ又はC.hookerianaのC10選択性チオエステラーゼを発現するトランスジェニック株は、それぞれ3.66〜8.65%の範囲で蓄積する。このようなC8〜C10脂肪酸レベルは、ココナツ油及びパーム核油と類似しているが、トランスジェニック藻類株は、C12:0脂肪酸が著しく高いわけではなく、また極めて高いC16:0(それぞれ、ココナツ油又はパーム核油では11〜16%、トランスジェニック株では23%)及び/又は18:1(それぞれ、ココナツ油又はパーム核油では8〜19%、トランスジェニック株では50〜57%である)を有する。
【0493】
(実施例10:外来窒素依存性のProtothecaプロモーターの同定)
(A.外来窒素依存性プロモーターの同定及び特徴づけ)
Prototheca moriformis(UTEX 1435)から、標準的な技術を用いてcDNAライブラリーを作成した。Prototheca moriformis細胞を、窒素が枯渇した条件下で48時間成長させた。次いで、5%の播種物質(v/v)を低窒素環境に移し、細胞を24時間ごとに7日間採集した。培養して約24時間後、培地への窒素の供給を完全に絶った。集めたサンプルを、ドライアイス及びイソプロパノールですぐに凍結させた。次いで、凍結した細胞ペレットサンプルから全RNAを単離し、各サンプルの一部をRT−PCR試験のために残しておいた。サンプルから採集した全RNAの残りに、polyA選択を行った。それぞれの条件から、等モル量のpolyAで選択したRNAを保存しておき、ベクターpcDNA3.0(Invitrogen)でcDNAを作成するために使用した。このようにして得られた保存しておいたcDNAライブラリーから、ほぼ1200種類のクローンを無作為に取り出し、両方の鎖について塩基配列を決定した。これらの1200個の配列の中から、ほぼ68種類の異なるcDNAを選択し、リアルタイムRT−PCR試験で使用するためのcDNA特異的なプライマーを設計するのに使用した。
【0494】
保存容器に入れておいた細胞ペレットサンプルから単離したRNAを、上のように作成したcDNA特異的なプライマーセットを用い、リアルタイムRT−PCT試験で基質として使用した。この保存しておいたRNAをcDNAに変換し、68個の遺伝子特異的なプライマーセットそれぞれについて、RT−PCRの基質として使用した。閾値サイクル数、つまりC
T数を用い、68種のcDNAそれぞれについて、時間経過にともなって集めたそれぞれのRNAサンプル内の相対的な転写産物量を示した。窒素が豊富にある状態と、窒素が枯渇している状態との間で、顕著な増加を示す(3倍以上)cDNAを、窒素の枯渇によって発現を上方調節する有望な遺伝子としてフラグ付けした。本明細書で記載しているように、窒素の枯渇/制限は、油産生微生物が脂質産生する際の既知の誘発因子である。
【0495】
窒素の枯渇/制限の間、発現が上方調節されるような、cDNAから得た推定プロモーター/5’UTR配列を同定するために、窒素が枯渇した状態で成長させたPrototheca moriformis(UTEX 1435)から全DNAを単離し、次いで、454 sequencing technology(Roche)を用い、塩基配列を決定した。上のRT−PCR結果によって、上方調節されるとフラグ化されたcDNAを、454のゲノムシーケンシングリードから生じる、アセンブリしたコンティグに対し、BLASTを用いて比較した。cDNAの5’末端を特定のコンティグに対してマッピングし、可能な場合、5’フランキングDNAの500bpを超える部分を使用し、プロモーター/UTRを推定した。次いで、プロモーター/5’UTRの存在を確認し、ゲノムDNAのPCR増幅を用いてクローン化した。個々のcDNA 5’末端を用い、3’プライマーを設計し、454コンティグアセンブリの5’末端を使用し、5’遺伝子特異的なプライマーを設計した。
【0496】
第1のスクリーニングとして、推定プロモーターの1つである、Aat2(アンモニウムトランスポーター、配列番号63)から単離した5’UTR/プロモーターを、C.sorokinanaグルタミン酸脱水素酵素プロモーターの代わりに、Chlorella protothecoidesステアロイルACPデサチュラーゼトランジットペプチドを用い、Cinnamomum camphora C14チオエステラーゼ構築物内でクローン化した。この構築物を、配列番号81として列挙している。この推定プロモーターを試験するために、チオエステラーゼ構築物をPrototheca moriformis細胞内で形質転換し、上述の方法を用い、低/無窒素状態でC14/C12脂肪酸の増加についてスクリーニングすることによって、実際のプロモーター活性を確かめた。cDNA/ゲノムスクリーニングから単離した推定窒素制御プロモーターを、同じ方法を用いて同様に試験することができる。
【0497】
cDNA/ゲノムスクリーニングから単離した他の推定窒素制御プロモーター/5’UTRは、以下の通りであった。
【0498】
【化4】
[この文献は図面を表示できません]
【0499】
何倍増加したかは、低窒素培地で24時間培養した後のcDNA産出量が何倍増えたかを指す。
【0500】
これらの推定プロモーター/5’UTRの潜在的な調節に関してさらなる洞察を得るために、次の8つの配列をさらなる試験用に選択した:(1)FatB/A;(2)SulfRed亜硫酸塩還元酵素;(3)SugT Sugarトランスポーター;(4)Amt02−アンモニウムトランスポーター02;(5)Aat01−アミノ酸トランスポーター01;(6)Aat03−アミノ酸トランスポーター03;(7)Aat04−アミノ酸トランスポーター04;及び(8)Aat05−アミノ酸トランスポーター05。T0(種);種からの接種の20時間後;32時間後;48時間後;62時間後;及び114時間後の様々な時点でPrototheca moriformis細胞から単離したRNAに対して、Illuminaのシーケンシングリードを用いて、高分解度のトランスクリプトーム解析を行った。T0(種)における培地は富窒素の状態であったが、20時間以後の時点では培地に窒素がほとんど、又は全く含まれていなかった。次いで、各時点から単離されたRNAから作成された、アセンブリした転写産物のコンティグを、既に同定されている8つの各転写産物とのBLASTに独立して供した。その結果を下の表18にまとめる。
【0501】
【表18】
[この文献は図面を表示できません]
【0502】
上にまとめた結果から、いくつかの転写産物が蓄積の経時的な増加を示しているが、興味深いことに、亜硫酸塩還元酵素mRNAは、経時的なmRNA蓄積の明らかな減少を示している。
【0503】
これらの8つの推定プロモーター/5’UTR領域をC.camphoraチオエステラーゼコード領域の上流にクローン化し、その天然のトランジットペプチドを削除してChlorella protothecoides(UTEX 250)ステアロイルACPデサチュラーゼ由来のトランジットペプチドに置き換えた。各推定プロモーター/5’UTR領域構築物を、6S領域のゲノム配列由来のDNAを用いた相同組み換えによりPrototheca moriformis UTEX 1435に導入した。また構築物には、ショ糖含有培地/プレートでの陽性クローン選択のためのS.cerevisiae由来のsuc2ショ糖インベルターゼ遺伝子も含まれていた。Aat01に対する構築物の関連する部分のcDNA配列は、配列番号67として配列表に記載されている。他の構築物では、同じ骨格を使用し、唯一の可変部分は推定プロモーター/5’UTR配列であった。C.reinhardtii β−チューブリンプロモーターを用いてC.camphoraチオエステラーゼ遺伝子の発現を駆動させる、さらなる対照トランスジェニック株を作製した。このプロモーターは、目的の遺伝子の構成的発現を駆動することが示されているため、試験する様々な推定N−制御性プロモーター/5’UTRにより駆動されたとき、同じチオエステラーゼメッセージの発現を測定するのに有用な対照を提供する。
【0504】
トランスジェニッククローンを作製した後、3つの別個の実験を行った。最初の2つの実験は、培養物上澄みにおける、RT−PCRによる定常状態のチオエステラーゼmRNAレベル、脂肪酸プロフィール及びアンモニアレベルを測定することにより、8つのすべての推定プロモーターの潜在的な窒素による制御可能性を評価するものである。最初にクローンを富窒素播種培地(1g/L硝酸アンモニウム―アンモニアとしての窒素15mM、酵母抽出物4g/L)で、攪拌しながら(200rpm)24〜48時間、28℃で成長させ、この時点で、20OD単位(A
750)を用いて、低窒素培地(0.2g/L硫酸アンモニウム―アンモニアとしての窒素3mM、酵母抽出物0.2g/L)50mlを接種した。細胞を6日間、24時間ごとにサンプリングし、また低窒素条件へ切り替える直前にも試料を採取した。次いで、各試料由来の細胞の一部を、Trizol試薬を用いた(製造業者の指示に従って)全RNA抽出に使用した。アンモニアアッセイにより、低窒素培地では、24時間後に上澄みのアンモニアレベルが検出限界(約100μM)を下回ることが明らかとなった。
【0505】
リアルタイムRT−PCRでは、各時点に関して、すべてのRNAレベルを、Prototheca moriformis(UTEX 1435)で発現される内部の対照RNAのレベルに対して正規化した。cd189と呼ばれる内部の対照RNAは、N−アセチルオルニチンアミノトランスフェラーゼをコードするARG9遺伝子の産物である。これらの実験でリアルタイムRT−PCRに使用したプライマーセットは、以下の通りであった。
【0506】
【化5】
[この文献は図面を表示できません]
【0507】
各時点の各形質転換体の脂質プロフィールも作成し、RT−PCRの結果と比較した。アンモニアレベル、RT−PCRの結果、及びC12〜C14脂肪酸レベルの変化に基づき、アミノ酸トランスポーター01(Aat−01)、アミノ酸トランスポーター04(Aat−04)及びアンモニウムトランスポーター02(Amt−02)配列が、機能性の窒素制御プロモーター/5’UTRを確かに含むという結論が得られた。
【0508】
RT−PCRの結果から、Aat−01が、定常状態のC.camphoraチオエステラーゼmRNAレベルを対照(C.reinhardtii β−チューブリンプロモーター)の4倍まで駆動する能力が示された。またmRNAレベルは、窒素制限、及びC12〜C14脂肪酸レベルの著しい増加とも相関していた。これらの結果は、Aat−01プロモーターに付随する5’UTRが、脂質生合成下でのタンパク質合成の駆動において、対照のC.reinhardtiiプロモーターよりも効率的である可能性を示している。Aat−01プロモーターと同様に、Aat−04プロモーターは、C.reinhardtii対照プロモーターのmRNA蓄積の5倍までmRNA蓄積を促進することが可能であった。しかし、Aat−04プロモーター構築物がC12〜C14脂肪酸レベルに影響を及ぼす能力はわずかしかなかった。これらのデータは、Aat−04プロモーターは、窒素枯渇により明らかに制御されるが、プロモーターに付随するUTRは、翻訳エンハンサーとしての機能に乏しい可能性があることを示している。最後に、Amt−02プロモーターは、対照プロモーターの3倍までmRNA蓄積を促進することが可能であったという点で、Aat−01プロモーターと類似していた。またmRNAレベルは、窒素制限、及びC12〜C14脂肪酸レベルの著しい増加とも相関していた。まとめると、これら3つのプロモーターはすべて、窒素に制御されるということが示された。
【0509】
(B.アンモニウムトランスポーター3(amt03)プロモーターのさらなる特徴づけ及び様々なチオエステラーゼの発現)
上記のように、アンモニウムトランスポーター02及び03(amt02及びamt03)と呼ばれる部分的cDNAが同定された。これら2つの部分的cDNAsとともに、アンモニウムトランスポーター01(amt01)と呼ばれる第3の部分的cDNAも同定された。部分的cDNAと推定翻訳アミノ酸配列のアラインメントを比較した。結果は、amt01が3つの配列の中では遠縁であるのに対し、amt02とamt03はアミノ酸1個しか違わないことを示している。
【0510】
上記のように、部分的cDNA配列と、Roche 454ゲノムDNAアセンブリ及びIlluminaトランスクリプトームアセンブリとをBLAST比較することにより、最初にコンピュータによりプロモーター/5’UTRを作成した。amt01、amt02及びamt03をコードするcDNAとの同一性を示す転写産物コンティグが同定されたが、コンティグが3つすべてに共有する配列を含んでいたため、転写産物コンティグでは3つのmRNAの区別ができなかった。Roche 454ゲノムDNAアセンブリは、amt02及びamt03のcDNA配列にヒットし、N末端タンパク質配列を含んでいた。PCRを行って、5’フランキング領域をクローン化した。クローンのamt02及びamt03プロモーター/UTRを確認するために使用したPCRプライマーは以下の通りであった:
Amt03 順方向:5’−GGAGGAATTCGGCCGACAGGACGCGCGTCA−3’(配列番号85)
Amt03 逆方向:5’−GGAGACTAGTGGCTGCGACCGGCCTGTG−3’(配列番号86)
Amt02 順方向:5’−GGAGGAATTCTCACCAGCGGACAAAGCACCG−3’(配列番号87)
Amt02 逆方向:5’−GGAGACTAGTGGCTGCGACCGGCCTCTGG−3’(配列番号88)。
どちらの場合も、5’及び3’プライマーは、これらのプロモーター/5’UTR領域の機能性を確認するための発現ベクター中への予測されるクローン化に有用な制限部位を含んでいた。
【0511】
コンピュータによる方法とPCRに基づく方法を組み合わせたこの方法でクローン化したDNAと、amt02(配列番号61)及びamt03(配列番号60)をコードする元のcDNAとの間でペアワイズアラインメントを行った。これらのアラインメントの結果は、元のcDNAとクローン化されたゲノム配列との間の有意な差を示していたが、このことは、アンモニウムトランスポーターが多様な遺伝子のファミリーであること示している。さらに、組み合わせた方法に基づくamt03のプロモーター/5’UTRクローンは、元のamt03配列とは異なっていたのに対し、amt02配列では一致していた。amt03プロモーター/UTR配列(配列番号89)を特徴づけるためにさらなる実験を行ったが、これを以下に記載する。
【0512】
上記の同定されたamt03プロモーター/UTR配列(配列番号89)をクローン化して、4つの異なるチオエステラーゼの発現を駆動させることにより、この推定プロモーター/UTR配列を試験した。発現カセットは、上流及び下流にゲノムの6S遺伝子座に対する相同組み換え配列(それぞれ、配列番号82及び84)を含んでいた。またこのカセットは、ショ糖含有培地での陽性クローン選択を可能にするS.cerevisiae SUC2ショ糖インベルターゼcDNAも含んでいた。ショ糖インベルターゼ発現は、β−チューブリンプロモーターにより駆動され、またC.vulgaris硝酸還元酵素3’UTRも含んでいた。次いで、ショ糖インベルターゼカセットの下流にamt03プロモーター/UTR配列をクローン化し、この後に4つのチオエステラーゼ遺伝子:(1)C.camphora由来のC14チオエステラーゼ;(2)U.californica由来のC12チオエステラーゼ;(3)U.americana由来のC10〜C16チオエステラーゼ;又は(4)C.hookeriana由来のC10チオエステラーゼのうちの1つに由来するインフレームのチオエステラーゼcDNA配列が続き、またC.vulgaris硝酸還元酵素3’UTRも含んでいた。C14 C.camphoraチオエステラーゼ、C12 U.californicaチオエステラーゼ及びC10〜C16 U.americanaはすべて、Chlorella protothecoidesステアロイルACPデサチュラーゼ由来のトランジットペプチドを含んでいた。C10 C.hookerianaチオエステラーゼは、Prototheca moriformisデルタ12脂肪酸デサチュラーゼ(FAD)由来のトランジットペプチドを含んでいた。すべての場合において、配列は、Prototheca moriformisでの発現に対してコドンが最適化されていた。上記チオエステラーゼ構築物の配列は、配列表に記載されている。
【0513】
【化6】
[この文献は図面を表示できません]
【0514】
実施例2の上記の微粒子銃による野性型Prototheca moriformis細胞中への形質転換法により、トランスジェニック系列を作製し、ショ糖含有プレート/培地で選択を行った。次いで、脂肪酸プロフィールの変化の程度に関して、陽性の系列をスクリーニングした。次いで、1つが上記4つの構築物それぞれから得られた4つの系列を、さらなる分析に供した。系列76は、C.camphora C14チオエステラーゼを発現し、系列37はU.californica C12チオエステラーゼを発現し、系列60はU.americana C10〜C16チオエステラーゼを発現し、系列56はC.hookeriana C10チオエステラーゼを発現した。各系列を、唯一の炭素源としてショ糖を含有する培地で48時間成長させ、脂肪酸メチルエステルへの直接エステル転移反応と、それに続くGC−FIDによる分析(上記の)により脂肪酸プロフィールを決定するために、また全RNAを単離するために、14、24、36及び48時間(種培養物)の細胞試料を採取した。48時間の終わりに、これらの細胞を用いて、pH5.0(クエン酸により緩衝、0.05Mの最終濃度)又はpH7.0(HEPESによる緩衝、0.1Mの最終濃度)に維持された無窒素又は低レベル窒素の培養物(唯一の炭素源としてショ糖を含む)に接種した。脂肪酸プロファイリング及び全RNA単離のために、12、24、72及び108時間(脂質産生)で培養物試料を採取した。これらの培養物のアンモニアアッセイにより、低窒素培地においては、24時間後にアンモニアレベルが検出限界(約100μM)を下回ることが明らかとなった。
【0515】
上で採取された各時点の全RNAに対して、チオエステラーゼのmRNAレベルに関するリアルタイムRT−PCRアッセイを行い、すべてのmRNAレベルを、内部の対照RNA(cd189)のレベルに対して正規化した。リアルタイムPCRで使用したプライマーセットを下の表19に示す。
【0516】
【表19】
[この文献は図面を表示できません]
【0517】
種培養相における各時点での脂肪酸プロフィールの結果は、チオエステラーゼによる極わずかな影響を示していた。脂質生成相の開始により、脂肪酸プロフィールが著しく影響され、その増加はpH5.0の培養物に比べて、pH7.0に維持された培養物の方がはるかに劇的であった。pH7.0とpH5.0における対象脂肪酸蓄積の差の程度は、試験した各チオエステラーゼにより異なっていたが、全体的な効果は同じであった。すなわち、pH5.0で成長させた細胞は、蓄積された対象脂肪酸のレベルが著しく低かったが、対照野性型細胞よりは高かった。
【0518】
培養物のpHが、各チオエステラーゼの定常状態のmRNAレベルに対して明らかに影響を及ぼしたという点で、これらの同じ試料から単離したRNAの解析は、脂肪酸プロフィールのデータと非常によく相関していた。脂肪酸蓄積のデータとmRNAのデータを考え合わせると、amt03プロモーター/UTRにより駆動されるチオエステラーゼ遺伝子発現のpHによる調節が、転写、mRNA安定性、又はその両方のレベルにおいて仲介されることが明らかであった。さらに、U.californica mRNAの定常状態レベルがC.hookeriana mRNAの定常状態レベルに比べて4対数低いということが観察された。この観察は、個々のmRNA配列が発現の制御において役割を果たし得るという仮説と一致する。これらのデータは、Prototheca moriformisでのamt03ファミリーのトランスポーターによるアンモニウム取り込みがpHと直接関連していることを示唆している。
【0519】
U.americana C10〜C16チオエステラーゼの発現を駆動するamt03プロモーター/UTRの構築物を用いたPrototheca moriformis細胞の形質転換により作製された12の系列に関して、さらなる脂肪酸プロフィール分析を行った。上記の系列60は、以下の分析の一部分であった。野性型対照とともに分析した12系列のうち、3つの系列の脂質プロフィールを下の表20に示す。
【0520】
【表20】
[この文献は図面を表示できません]
【0521】
上の表で示されるように、野生型と比較した系列40の場合、総飽和物のレベルが野性型よりも2.6倍以上と劇的に増加した(分析した12系列の総飽和物は、約63%〜86%以上の範囲であった)。さらに、U.americanaチオエステラーゼがこのレベルで発現されると、不飽和物、特にC18:1及びC18:2のレベルが劇的に減少し(系列40及び44を参照)、系列44では、野生型に比べ、C18:1レベルが8倍以上減少している。また、U.americanaチオエステラーゼ(amt03プロモーターにより駆動される)は、中鎖脂肪酸のレベルを大幅に増加させる。系列44は、野性型株で見られるレベルよりも約42倍高い、56%を超えるC10:0〜C14:0レベル、及び57%を超えるC8:0〜C14:0レベルを示している。U.americanaチオエステラーゼの発現を駆動するAmt03プロモーターの構築物で形質転換されたさらなる株の代表的な脂質プロフィールは、0.23%のC8:0;9.64%のC10:0;2.62%のC12:0;31.52%のC14:0;37.63%のC16:0;5.34%のC18:0;7.05%のC18:1;及び5.03%のC18:2で、総飽和物の百分率が86.98%であった。
【0522】
C.hookeriana C10チオエステラーゼ(配列番号94)の発現を駆動する構築物amt03プロモーター/UTR(配列番号89)によるPrototheca moriformis細胞の形質転換から、さらなる脂質プロフィールが得られた。この構築物を発現する陽性クローンを選択して、pH7.0の条件で成長させた。陽性クローンの代表的な脂質プロフィールは:9.87%のC8:0;23.97%のC10:0;0.46%のC12:0;1.24%のC14:0;10.24%のC16:0;2.45%のC18:0;42.81%のC18:1;及び7.32%のC18:2であった。このクローンのC8〜C10の百分率が33.84であった。
【0523】
まとめると、データは、mt03プロモーター/UTR及び他の同様のプロモーターを、堅固に制御されたプロモーターとして使用することができ、このようなプロモーターは潜在的に毒性のある化合物の発現に特に有用であり得、厳密な遺伝子発現の実施が必要であるということを示している。Prototheca moriformisが広範囲のpH(少なくともpH5.0〜7.0)の状態で成長する能力により、この微生物は、amt03プロモーター/UTRのような調節エレメントと組み合わせると特に有用である。さらに、上の脂質プロフィールのデータは、amt03プロモーター/UTRが遺伝子発現を駆動する優れた能力を有すること示している。
【0524】
(実施例11:微細藻類Prototheca moriformisにおける飽和脂肪酸のレベルの変化)
Prototheca moriformis(UTEX 1435)由来ゲノムDNAのcDNA、Illumiaトランスクリプトーム及びRoche 454の配列決定によるバイオインフォマティクスに基づくアプローチを用いたゲノムスクリーニングの一部として、脂肪酸飽和に関与する2つの特定の遺伝子群であるステアロイルACPデサチュラーゼ(SAD)及びデルタ12脂肪酸デサチュラーゼ(Δ12FAD)が同定された。ステアロイルACPデサチュラーゼ酵素は、脂質合成経路の一部であり、例えば、C18:0脂肪酸からのC18:1脂肪酸の合成のように、脂肪族アシル鎖に二重結合を導入するよう機能する。またデルタ12脂肪酸デサチュラーゼも脂質合成経路の一部であり、例えば、C18:1脂肪酸からのC18:2脂肪酸の合成のように、既に不飽和である脂肪酸に二重結合を導入するよう機能する。バイオインフォマティクスに取り組む間に同定された2種類の脂肪酸デサチュラーゼ遺伝子に基づくプローブを用いたサザンブロット分析により、それぞれの種類のデサチュラーゼ遺伝子が複数のファミリーメンバーで構成される可能性があることが示された。さらに、ステアロイルACPデサチュラーゼをコードする遺伝子は、2つの異なるファミリーに分類される。これらの結果に基づき、デサチュラーゼ酵素の各ファミリー内で高度に保存されたコード領域を標的とすることにより複数の遺伝子ファミリーメンバーを破壊する可能性のある、3つの遺伝子破壊構築物を設計した。
【0525】
(1)デルタ12脂肪酸デサチュラーゼ(d12FAD)ファミリーメンバーのコード配列の高度に保存された部分と、(2)SADの2つの異なるファミリーをそれぞれ標的とし、各ファミリー由来のコード配列の保存された領域をそれぞれ有する2つの構築物とを用いて、3つの相同組み換え標的化構築物を設計した。このストラテジーは、相同組み換えが標的遺伝子のフランキング領域を標的とする古典的な遺伝子置換ストラテジーというよりはむしろ、これらの高度に保存されたコード領域に選択マーカー遺伝子(ショ糖を加水分解する能力を付与するS.cerevisiae由来のsuc2ショ糖インベルターゼカセット)を組み込む(複数のファミリーメンバーを標的とする)ものである。
【0526】
すべての構築物を、上記の方法を用いた微粒子銃による形質転換により細胞内に導入し、構築物は、細胞内に撃ち込む前に線状であった。ショ糖含有プレート/培地で形質転換体を選択し、上記の方法を用いて脂質プロフィールの変化をアッセイした。3つの各標的化構築物の関連する配列を以下に挙げる。
【0527】
【化7】
[この文献は図面を表示できません]
【0528】
各構築物による形質転換から得られた代表的な陽性クローンを選び、そのクローンの脂質プロフィールを決定した(面積%で表す)が、それを下の表21にまとめる。
【0529】
【表21】
[この文献は図面を表示できません]
【0530】
各構築物は、所望の種類の脂肪酸に対して測定可能な影響を及ぼし、3つのすべての場合において、C18:0レベルが、特に2つのSADノックアウトで顕著に増加した。SADノックアウトによる複数のクローンをさらに比較したところ、SAD2Bノックアウト系列のC18:1脂肪酸が、SAD2Aノックアウト系列で見られるC18:1脂肪酸レベルよりもかなり大きく減少することが示された。
【0531】
上記の方法を用いて、Prototheca moriformisバックグラウンドでさらなるΔ12脂肪酸デサチュラーゼ(FAD)ノックアウトを作製した。Δ12FADの潜在的な相同性を同定するために、推定FADをコードするゲノム領域を、以下のプライマーを用いて増幅した:
プライマー1 5’−TCACTTCATGCCGGCGGTCC−3’ 配列番号101
プライマー2 5’−GCGCTCCTGCTTGGCTCGAA−3’ 配列番号102。
上記プライマーを用いてPrototheca moriformisゲノムDNAのゲノム増幅から得られた配列は非常に類似していたが、Δ12FADの複数の遺伝子又は対立遺伝子がProtothecaに存在することを示していた。
【0532】
この結果に基づき、1つ以上のΔ12FAD遺伝子を不活性化するための、2つの遺伝子破壊構築物を設計した。このストラテジーは、古典的な遺伝子置換ストラテジーを用いるというよりはむしろ、ショ糖インベルターゼ(S.cerevisiae由来のsuc2)カセットを高度に保存されたコード領域に組み込んで、選択マーカーとしてのショ糖を加水分解する能力を付与するというものであった。pSZ1124と呼ばれる第1の構築物は、S.cerevisiae suc2遺伝子の発現を駆動するC.reinhardtii β−チューブリンプロモーターと、Chlorella vulgaris硝酸還元酵素3’UTRとに隣接する、5’及び3’ゲノム標的化配列を含んでいた(S.cerevisiae suc2カセット)。pSZ1125と呼ばれる第2の構築物は、S.cerevisiae suc2遺伝子の発現を駆動するC.reinhardtii β−チューブリンプロモーターと、Chlorella vulgaris硝酸還元酵素3’UTRとに隣接する、5’及び3’ゲノム標的化配列を含んでいた。これらの構築物の関連する配列は、配列表に記載されている。
【0533】
【化8】
[この文献は図面を表示できません]
【0534】
pSZ1124及びpSZ1125を、それぞれPrototheca moriformisバックグラウンドに導入し、ショ糖を加水分解する能力に基づいて陽性クローンを選択した。pSZ1124及びpSZ1125標的化ベクターを用いた2つのトランスジェニック系列で得られた脂質プロフィール(面積%、上記の方法を用いて作成)を表22にまとめる。
【0535】
【表22】
[この文献は図面を表示できません]
【0536】
FAD2B(pSZ1124)構築物を含むトランスジェニックでは、脂質プロフィールにおいて、減少すると予想されたC18:2レベルが約1面積%しか減少しなかったという点で、非常に興味深く予想外な結果が得られた。しかし、ほとんどC16:0レベルが著しく減少したというだけで、C18:1脂肪酸レベルが著しく増加した。また、FAD2C(pSZ1125)構築物を含むトランスジェニックにおいても脂質プロフィールが変化し、対応するC18:1レベルの増加とともに、C18:2のレベルが著しく減少した。
【0537】
(牛脂模倣物)
上記のSAD2Bノックアウト実験から作製された陽性クローンを1つ選択して、C14選択性の脂肪族アシルACPチオエステラーゼ遺伝子をさらに導入するためのバックグラウンドとして使用した。C.camphoraのC14選択性のチオエステラーゼを導入する構築物は、6Sゲノム領域に対する標的化配列を含み(相同組み換えによる形質転換DNAの標的組み込みを可能にする)、またこの発現構築物は、neoR遺伝子の発現を駆動するC.reinhardtii β−チューブリンプロモーターとChlorella vulgaris硝酸還元酵素3’UTR、次いで、Chlorella protothecoidesステアロイルACPデサチュラーゼトランジットペプチドを有するコドン最適化C.camphoraチオエステラーゼの発現を駆動する、第2のC.reinhardtii β−チューブリンプロモーターと、Chlorella vulgaris硝酸還元酵素3’UTRとを含んでいた。5’6S領域ゲノムドナー配列は配列番号82として記載され;3’6S領域ゲノムドナー配列は配列番号84として記載され;C.camphoraチオエステラーゼの関連する発現構築物は配列番号83として記載されている。
【0538】
上述の微粒子銃による方法を用いて形質転換を行い、ショ糖2%を含有するプレートで細胞を24時間回復させた。この後、選択のための2%ショ糖及び50μg/ml G418を含有するプレートに細胞を再び懸濁させ、再び播いた。作製された陽性クローンのうち9つのクローンを、脂質産生及び脂質プロフィールのために選択した。この9つのトランスジェニッククローン(SAD2B KOを有し、C.camphoraのC14選択性のチオエステラーゼを発現する)を上記のように培養し、脂質プロフィールに関して分析した。結果を下の表23にまとめる。また獣脂の脂質プロフィールも下の表23に含まれている(National Research Council 1976:Fat
Content and Composition of Animal Product)。
【0539】
【表23】
[この文献は図面を表示できません]
【0540】
表23からわかるように、トランスジェニック系列の脂質プロフィールは、獣脂の脂質プロフィールに極めて類似している。まとめると、このデータは、獣脂の脂質プロフィールに類似した油を産生するトランスジェニック藻類株を作製するために、特定のトランスジェニックバックグラウンド、この場合はSAD2Bノックアウトを、C14選択性のチオエステラーゼ(C.camphora由来)と組み合わせることが有用であることを示している。
【0541】
(標的化されたノックアウトアプローチによりβ−ケトアシル合成酵素II(KASII)の発現を下方調節するために使用する構築物)
標的化されたノックアウトアプローチによりKASII遺伝子発現を下方調節するベクターを、古典的変異誘発したUTEX 1435誘導体であるS1331に導入した。選択マーカーとしてSaccharomyces cerevisiaeインベルターゼ遺伝子を用いて、ショ糖で成長する能力を付与した。C.reinhardtii β−チューブリンプロモーターの制御下にあるインベルターゼ発現カセットを長さ315bpのKASIIゲノム領域の中央に挿入して、標的組み込みを可能にした(pSZ1503)。
【0542】
pSZ1503中の関連する制限部位は、小文字、太字及び下線により示され、それぞれ5’−3’BspQ1、KpnI、AscI、XhoI、、SacI、BspQIである。BspQI部位は、形質転換DNAの5’末端及び3’末端の境界を定めるものである。太字で小文字の配列は、KASII遺伝子座において相同組み換えによる標的組み込みを可能にする、S1331由来のゲノムDNAを表す。5’から3’の方向に進むと、酵母ショ糖インベルターゼ遺伝子(S1331がショ糖を代謝する能力を付与する)の発現を駆動するC.reinhardtii β−チューブリンプロモーターが、枠で囲んで示されている。インベルターゼに対するイニシエーターATG及びターミネーターTGAは、大文字の太字イタリックで示され、コード領域は、小文字のイタリックで示されている。Chlorella vulgaris硝酸還元酵素3’UTRは、下線を施した小文字で示されている。
【0543】
pSZ1503_[KASII_btub−y.inv−nr_KASII]に含まれる形質転換DNAのヌクレオチド配列:
【化9-1】
[この文献は図面を表示できません]
【化9-2】
[この文献は図面を表示できません]
【0544】
KASII対立遺伝子1及び対立遺伝子2のcDNAは、それぞれ配列番号279及び280で確認される。対立遺伝子1及び2のアミノ酸配列は、それぞれ配列番号281及び282で確認される。
【0545】
脂質組成に対するKASII不活性化の影響を判定するために、pSZ1503ベクターDNAをS1331内で形質転換して、標的化されたKASIIノックアウト表現型を作製した。最初の単一クローンを単離し、pH5.0の標準的な脂質産生条件下で成長させた。最も代表的なクローン及び野性型細胞から得られたプロフィールを下の表31に示す。
【0546】
【表31】
[この文献は図面を表示できません]
【0547】
(実施例12:別の選択マーカーによるProtothecaの操作)
(A.Prototheca moriformisにおける分泌型α−ガラクトシダーゼの発現)
Prototheca speciesにおける異種ショ糖インベルターゼ遺伝子発現の方法及び効果は、参照により組み込まれる国際出願PCT/US2009/66142号に既に記載されている。本実施例では、他の異種多糖分解酵素の発現を調べた。α−ガラクトシダーゼをコードする以下の外来遺伝子のうちの1つを有するPrototheca moriformis UTEX 1435がメリビオース(α−D−gal−glu)で増殖する能力を試験した:Saccharomyces carlbergensis由来のMEL1遺伝子(NCBI寄託番号P04824に対応するアミノ酸配列(配列番号108))、Aspergillus niger由来のAglC遺伝子(NCBI寄託番号Q9UUZ4に対応するアミノ酸配列(配列番号116))、及び高等植物Cyamopsis tetragobobola(グァー豆)由来のα−ガラクトシダーゼ(NCBI寄託番号P14749に対応するアミノ酸配列(配列番号120)。上記寄託番号及び対応するアミノ酸配列は参照により組み込まれる。すべての場合において、Prototheca moriformis内での好ましいコドンの使用に従って遺伝子が最適化されていた。発現カセットの関連する部分を、配列番号とともに下に記載する。すべての発現カセットに、安定なゲノム組み込みのための5’及び3’Clp相同組み換え標的化配列、Chlamydomonas reinhardtii TUB2プロモーター/5’UTR、及びChlorella vulgaris硝酸還元酵素3’UTRを用いた。
【0548】
【化10】
[この文献は図面を表示できません]
【0549】
Prototheca moriformis細胞を、上の実施例2に記載されているように微粒子銃による形質転換法を用いて、S.carlbergensis MEL1、A.niger AlgC又はC.tetragonobola α−ガラクトシダーゼ遺伝子を含む3つの発現カセットそれぞれで形質転換した。唯一の炭素源としてメリビオース2%を含有するプレートを用いて、陽性クローンをスクリーニングした。C.tetragonobola発現カセット形質転換体のプレートには、コロニーが出現しなかった。S.carlbergensis MEL1形質転換体及びA.niger AlgC形質転換体を含むプレートから陽性クローンを選択した。C.vulgaris 3’UTR及び3’Clp相同組み換え標的化配列の一部分を標的とするプライマーにより、PCRを用いて形質転換DNAの組み込みを確認した。
5’プライマー C.vulgaris 3’UTR:下流Clp配列(配列番号123)
ACTGCAATGCTGATGCACGGGA
3’プライマー C.vulgaris 3’UTR:下流Clp配列(配列番号124)
TCCAGGTCCTTTTCGCACT
【0550】
陰性対照として、形質転換されていないPrototheca moriformis細胞由来のゲノムDNAもプライマーセットにより増幅した。野性型細胞由来のゲノムDNAからは産物が増幅されなかった。
【0551】
S.carlbergensis MEL1形質転換体及びA.niger AlgC形質転換体それぞれに由来するいくつかの陽性クローン(PCRにより確認)を、液体培地中、メリビオースを唯一の炭素源として成長するその能力に関して試験した。これらの選択されたクローンを、上の実施例1に記載されている条件及び基本培地でメリビオースを唯一の炭素源として3日間成長させた。いずれかのα−ガラクトシダーゼコード遺伝子を含むすべてのクローンがこの期間に安定的に成長したが、形質転換していない野生型株、及びSaccharomyces cerevisiae SUC2ショ糖インベルターゼを発現するPrototheca moriformisはともに、メリビオース培地であまり成長しなかった。これらの結果は、α−ガラクトシダーゼコード遺伝子が形質転換の選択マーカーとして使用され得ることを示している。またこれらのデータは、タンパク質をPrototheca moriformis細胞のペリプラズムに対して標的化するためには、S.carlbergensis MEL1(配列番号109)又はA.niger AlgC(配列番号117)に存在する天然のシグナルペプチドが有用であることを示している。
【0552】
(B.ProtothecaにおいてTHIC遺伝子がチアミン栄養要求性を補完する)
Prototheca moriformis細胞のチアミン原栄養性を、外来のTHIC遺伝子の発現を用いて調べた。植物及び藻類におけるチアミン生合成は、典型的には、プラスチドで行われるのため、その産生に関与する核コートタンパク質の大部分が、プラスチドに対して効率的に標的化される必要がある。Prototheca moriformis細胞のDNA配列決定及びトランスクリプトーム配列決定により、THICを除く、チアミン生合成酵素をコードする遺伝子がすべて、ゲノム中に存在するということが明らかとなった。チアミン栄養要求性の原因となる損傷を生化学的レベルで詳細に分析するために、次のような5つの異なる状況下でのPrototheca moriformis細胞の成長を調べた:(1)2μMチアミン塩酸塩の存在下;(2)チアミンなし;(3)チアミンなし、2μMヒドロキシエチルチアゾール(THZ)あり;(4)チアミンなし、2μM 2−メチル−4−アミノ−5−(アミノメチル)ピリミジン(PYR)あり;及び(5)チアミンなし、2μM THZ及び2μM PYRあり。これら5つの異なる条件下での成長実験の結果は、PYR前駆体を与えた場合、Prototheca moriformis細胞はde novo合成を行うことができるが、チアミンピロリン酸塩(TPP)しか産生できないということを示していた。この結果は、Prototheca moriformisのチアミン栄養要求性が、THIC酵素により触媒される変換である、アミノイミダゾールリボヌクレオチドからヒドロキシメチルピリミジンリン酸塩(HMP−P)の合成を行うことができないことに起因するという仮説と一致する。
【0553】
上記の実施例2の微粒子銃による形質転換法を用いてPrototheca moriformis細胞を形質転換し、Coccomyxa C−169 THIC(アミノ酸配列はJGIタンパク質番号30481に対応し、参照により組み込まれる)、及び選択マーカーとしてS.cerevisiae SUC2ショ糖インベルターゼを発現させた。この発現構築物は、Coccomyxa C−169 THIC由来の天然のトランジットペプチド配列、ゲノムDNAの6S領域に対する上流及び下流相同組み換え標的化配列、C.reinhardtii TUB2プロモーター/5’UTR領域(配列番号104)、並びにChlorella vulgaris硝酸還元酵素3’UTR(配列番号115)を含んでいた。またS.cerevisiae SUC2発現も、C.reinhardtii TUB2プロモーター/5’UTR領(配列番号114)により駆動され、Chlorella vulgaris硝酸還元酵素3’UTR(配列番号115)を含んでいた。遺伝子は、Prototheca moriformisにおいて好ましいコドンの使用に従って最適化されていた。関連する発現カセットの配列は配列表に記載されており、その詳細を以下に記載する:
【化11】
[この文献は図面を表示できません]
チアミンを含まず、かつ唯一の炭素源としてショ糖を含有するプレートで、陽性クローンの選択を行った。Coccomyxa C−169 THIC遺伝子内で結合する5’プライマー、及び6S遺伝子座の形質転換DNAの下流でアニールする3’プライマーにより、PCRを用いて陽性クローンを確認した。また、PCRにより確認された陽性クローンを、サザンブロットアッセイでも確認した。
【0554】
野性型Prototheca moriformis細胞のチアミン栄養要求性を観察するために、内部にチアミンを貯蔵している細胞を最初に枯渇させる必要があった。チアミンを含まない培地での成長を試験するために、最初にチアミン2μMを含有する培地で細胞を静止期まで成長させてから、チアミンを含まない培地で、750nm(OD750)での吸光度が約0.05になるまで細胞を希釈した。次いで、希釈した細胞を、チアミンを含まない培地で再び静止期まで成長させた(約2〜3日間)。これらのチアミン枯渇細胞を用いて、チアミンを含まない培地での成長実験のための培養物を播種した。炭素源としてグルコースを含む培地(チアミンを含むか、又は含まない)で野性型細胞を成長させ、天然のトランジットペプチドCoccomyxa C−169 THIC構築物を有する陽性クローンを、唯一の炭素源としてショ糖を含む培地で成長させた。750nmでの吸光度をモニターすることにより、成長を測定した。成長実験の結果は、トランス遺伝子を発現する株の無チアミン培地における成長が、無チアミン培地における野性型細胞よりもかなり大きいことを示していた。しかし、チアミン含有培地においては、形質転換体の成長速度及び細胞密度は野性型細胞に及ばなかった。また、無チアミン培地における形質転換クローンの成長量と、組み込まれたCoccomyxa酵素のコピー数との間には強い相関が見られた(すなわち、トランス遺伝子のコピー数が多いほど、無チアミン培地での細胞の成長が良好であった)。
【0555】
Coccomyxa THIC、Arabidopsis thaliana THIC遺伝子、及びSynechocystis sp.PCC 6803 thiC遺伝子を含む発現構築物を用いて、さらなる形質転換体を作製した。Coccomyxa及びA.thaliana THIC遺伝子の場合、天然のトランジットペプチド配列を、Chlorella protothecoidesステアロイル−ACPデサチュラーゼ(SAD)遺伝子由来のトランジットペプチド配列に置き換えた。Synechocystis sp.はラン藻であり、thiCタンパク質は天然のトランジットペプチ配列を含まない。Synechocystis sp.thiC構築物では、Chlorella protothecoides SAD遺伝子由来のトランジットペプチ配列をSynechocystis sp.thiCのN−末端に融合した。すべての場合において、配列は、Prototheca moriformisでの発現に対してコドンが最適化されていた。上記3つの構築物はすべて、ゲノムの6S領域に対する上流及び下流相同組み換え標的化配列(配列番号82及び84)、Chlorella protothecoidesアクチンプロモーター/5’UTR、及びChlorella protothecoides EF1A遺伝子3’UTRを含んでいた。3つの構築物はすべて、C.reinhardtii TUB2プロモーター/5’UTR(配列番号114)により駆動されるneoR遺伝子を含み、また、G418による選択をもたらすC.vulgaris 3’UTR(配列番号115)を含んでいた。A.thaliana THICのアミノ酸配列はNCBI寄託番号NP_180524に対応し、またSynechocystis sp.thiCのアミノ酸配列はNCBI寄託番号NP_442586に対応しており、両配列とも参照により組み込まれる。関連する発現カセット配列は配列表に記載されており、その詳細を以下に記載する。
【0556】
【化12】
[この文献は図面を表示できません]
【0557】
G418を含有するプレートで陽性クローンをスクリーニングし、各形質転換によるいくつかのクローンをPCRによる確認のために選択した。Coccomyxa C−169(C.protothecoidesトランジットペプチドを有する)、A.thaliana及びSynechocystis sp.PCC 6803 THIC遺伝子をそれぞれ含む形質転換DNA構築物のゲノム6S遺伝子座への組み込みを、次のようなプライマーのよりPCR分析を用いて確認した:
5’THIC Coccomyxa確認用プライマー配列(配列番号141)
ACGTCGCGACCCATGCTTCC
3’THIC確認用プライマー配列(配列番号142)
GGGTGATCGCCTACAAGA
5’THIC A.thaliana確認用プライマー配列(配列番号143)
GCGTCATCGCCTACAAGA
5’thiC Synechocystis sp.確認用プライマー配列(配列番号144)
CGATGCTGTGCTACGTGA。
【0558】
異なる各構築物の形質転換体から選択された確認済み陽性クローンを用いて、G418を含有する培地におけるチアミン枯渇細胞の成長実験(上記)を行った。すべての形質転換体が無チアミン培地で成長することができた(安定性の程度は異なる)。無チアミン培地における形質転換体の成長を、チアミン含有培地における野性型細胞の成長と比較することにより、無チアミン培地での成長を支える能力に関して次のような順位が示された:(1)A.thaliana形質転換体;(2)Coccomyxa C−169(C.protothecoidesトランジットペプチドを有する)形質転換体;及び(3)Synechocystis sp.形質転換体。この結果は、Prototheca moriformis細胞におけるチアミン栄養要求性をA.thaliana THICの単一コピーで補完することが可能であったが、チアミンの非存在下での急速な成長を可能にするためには、Coccomyxa C−169(天然のトランジットペプチ配列又は由来のトランジットペプチ配列を有する)又はSynechocystis sp.THICの複数コピーが必要であったことを示している。異なる入手源由来の異なるTHICの結果にばらつきがあることを考えると、任意の特定のTHIC遺伝子が、Prototheca種に存在する損傷を完全に補完する能力は、予測することができない。
【0559】
3つのTHICアミノ酸配列のアラインメントを行った。Synechocystis sp.由来のthiCとCoccomyxa及びA.thaliana由来のTHICとの間に有意な配列保存(アミノ酸レベルで41%の同一性)が存在する一方で、ラン藻類タンパク質には、藻類及び植物のタンパク質でよく保存されているN末端のドメインが欠けている。このドメインの欠如(及び恐らく、それにより生じる構造上の違い)にもかかわらず、Synechocystis sp.thiCを発現する構築物は、Prototheca moriformis細胞においてチアミン原栄養性を少なくとも部分的に回復することができた。
【0560】
(実施例13:燃料生成)
(A.連続圧搾機及び圧縮助剤を用いた、微細藻類に由来する油を抽出)
ドラム乾燥機を用い、DCWで38%の油を含む微細藻類バイオマスを乾燥させ、得られた含水量は5〜5.5%であった。バイオマスをFrench L250プレスに供給した。バイオマス30.4kg(67lbs.)をプレスに供給したが、油は回収されなかった。同じ乾燥させた微生物バイオマスに、種々の割合のスイッチグラスを圧縮助剤として組み合わせ、プレスに供給した。乾燥微生物バイオマス及び20%w/wスイッチグラスを組み合わせることによって、最終的には最も良好な油回収率が得られた。次いで、圧縮したケーキをヘキサンで抽出し、スイッチグラスが20%の条件で、最終収率は、61.6%の利用可能な油(重量によって算出)の総量であった。細胞乾燥重量の50%を超える油を有するバイオマスは、油を放出させるために、スイッチグラスのような圧縮助剤を使う必要はなかった。連続圧搾機を用いて微細藻類から油を抽出する他の方法は、国際出願PCT/US2010/31108号に記載されており、参照により組み込まれる。
【0561】
(B.Protothecaの油に由来するバイオディーゼルの生成)
上に記載した方法に従って生成した、Prototheca moriformis UTEX 1435から得た脱ガム油に、トランスエステル化を行い、脂肪酸メチルエステルを得た。結果を下の表24に示す。
【0562】
油の脂質プロフィールは、以下の通りであった。
C10:0 0.02
C12:0 0.06
C14:0 1.81
C14.1 0.07
C16:0 24.53
C16:1 1.22
C18:0 2.34
C18:1 59.21
C18:2 8.91
C18:3 0.28
C20:0 0.23
C20:1 0.10
C20:1 0.08
C21:0 0.02
C22:0 0.06
C24:0 0.10
【0563】
【表24-1】
[この文献は図面を表示できません]
【表24-2】
[この文献は図面を表示できません]
【0564】
バイオディーゼルの脂質プロフィールは、原材料油の脂質プロフィールと非常に類似していた。本発明の方法及び組成物によって与えられる他の油を、トランスエステル化し、(a)C8〜C14が少なくとも4%であり;(b)C8が少なくとも0.3%であり;(c)C10が少なくとも2%であり;(d)C12が少なくとも2%であり;(3)C8〜C14が少なくとも30%であるといった脂質プロフィールを有するバイオディーゼルを得ることができる。
【0565】
生成したバイオディーゼルのASTM D6751 A1法による冷状態浸漬時の濾過性は、容積300mlで120秒であった。この試験は、B100 300mlを濾過し、40°F(約4.5°C)まで16時間かけて冷やし、室温まで加温し、ステンレス鋼の支持板がついた0.7マイクロメートルガラス繊維フィルターを用い、減圧下で濾過することを含む。本発明の油を、トランスエステル化し、冷状態浸漬時間が120秒未満、100秒未満、90秒未満のバイオディーゼルを作成することができる。
【0566】
(C.再生可能なディーゼルの生成)
上に記載の方法に従って生成した、Prototheca moriformis UTEX 1435に由来する脱ガム油は、上の本実施例でバイオディーゼルを製造するために使用した油と同じ脂質プロフィールを有しており、この油をトランスエステル化し、再生可能なディーゼルを生成した。
【0567】
まず、上述の油を水素化処理し、酸素とグリセロール骨格を取り除き、n−パラフィンを得た。次いで、n−パラフィンをクラッキングし、異性化した。この物質のクロマトグラムを
図1に示す。次いで、この物質を冷状態で濾過し、約5%のC18材料を除去した。冷状態で濾過した後、材料全容積から引火点のために抜き取り、引火点、ASTM D−86の蒸留分布、曇り点、粘度を評価した。引火点は63℃であり;粘度は2.86cSt(センチストークス)であり;曇り点は4℃であった。ASTM D86の蒸留値を表25に示す。
【0568】
【表25】
[この文献は図面を表示できません]
【0569】
生成した物質のT10−T90は、57.9℃であった。本明細書に開示されている油の水素化処理、異性化、及び他の共有結合改変方法、及び本明細書に開示されている蒸留及び分別の方法(例えば、冷却濾過)を使用し、本明細書に開示されている方法に従って生成したトリグリセリド油を用いて、他のT10−T90範囲、例えば、20、25、30、35、40、45、50、60、65℃を有する再生可能なディーゼル組成物を作成することができる。
【0570】
生成した物質のT10は、242.1℃であった。本明細書に開示されている油の水素化処理、異性化、及び他の共有結合改変方法、及び本明細書に開示されている蒸留及び分別の方法(例えば、冷却濾過)を利用し、他のT10値、例えば、T10が180〜295、190〜270、210〜250、225〜245、少なくとも290の再生可能なディーゼル組成物を作成することができる。
【0571】
生成した物質のT90は、300℃であった。本明細書に開示されている油の水素化処理、異性化、及び他の共有結合改変方法、及び本明細書に開示されている蒸留及び分別の方法(例えば、冷却濾過)を利用し、他のT90値、例えば、T90が280〜380、290〜360、300〜350、310〜340、少なくとも290の再生可能なディーゼル組成物を作成することができる。
【0572】
生成した物質のFBPは、300℃であった。本明細書に開示されている油の水素化処理、異性化、及び他の共有結合改変方法、及び本明細書に開示されている蒸留及び分別の方法(例えば、冷却濾過)を利用し、他のFBP値、例えば、FBPが290〜400、300〜385、310〜370、315〜360、少なくとも300の再生可能なディーゼル組成物を作成することができる。
【0573】
本発明の方法及び組成物によって得られる他の油を、(a)C8〜C14が少なくとも4%であり;(b)C8が少なくとも0.3%であり;(c)C10が少なくとも2%であり;(d)C12が少なくとも2%であり;(3)C8〜C14が少なくとも30%であるといった脂質プロフィールを有するを含む、水素化処理、異性化、及び他の共有結合改変を組み合わせて行うことができる。
【0574】
(実施例14:用途に応じた油の生成)
本明細書に開示される方法及び材料を用いて、用途の応じた様々な油を生成した。株、示される株により生じる表現型及び様々な脂肪酸プロフィールを付与する遺伝子、並びにその遺伝子のGenBank寄託番号を表32に示す。株A及びBはともにPrototheca moriformis(UTEX 1435)株であり、両者とも個別支払い方式の研究所で古典的な変異誘発を行い、油の産生量を向上させたものである。次いで、株A及びBを、所望の遺伝子を発現するように、本明細書に記載の通りに適当なDNA構築物で遺伝子操作した。また、記載の通りに株を操作して、内在性デサチュラーゼを不活性化した。チオエステラーゼのヌクレオチド配列を、Protothecaでの発現及び使用に対してコドンを最適化した。
【0575】
野性型の操作されていないProtothecaの脂肪酸プロフィールを、表32の最初の行に示す。表からわかるように、脂肪酸プロフィールは、様々な株において様々な仕方で劇的に変化した。例えば、遺伝子操作されていないP.moriformis細胞により産生されたC8:0の百分率は0%である。しかし、C.hookerianaチオエステラーゼを発現するように操作されたP.moriformis細胞では、C8:0産生が総トリグリセリドの0%から13.2%に増加した。別の例として、操作された株におけるC8:0とC10:0の総合計量は、総脂肪酸の約39%であった。これに対し、野性型細胞におけるC8:0とC10:0の総合計量は0.01%である。別の例では、内在するSAD2bの発現が破壊された細胞内でのU.americanaチオエステラーゼの発現により、飽和脂肪酸の合計量が約32%から約90%に増加した。これはほぼ300%の増加である。
【0576】
以下で開示される様々な脂肪酸プロフィールは、トリグリセリド油を含めた多種多様な用途に有用である。例えば、トリグリセリド(C12:0、C14:0、C16:0)を含む高レベルの低炭素鎖長飽和脂肪酸は、再生可能なジェット燃料製造に特に有用である。バイオディーゼル製造には、高量のC18:1が望ましい。棒状石鹸製造には、飽和レベルと短鎖脂肪酸との間の適切なバランスを制御し達成することが望ましい。例として、高量のC12:0は泡立つ特性に望ましく、長い鎖長はしっかりとした構造を与えるのに対し、リノール酸含有トリグリセリド及びリノレン酸含有トリグリセリドは、酸化に対する不安定性の一因となるため、あまり望ましくない。液体石鹸には、高量のC12:0及びC14:0が望ましい。さらに、棒状石鹸及び液体石鹸の製造には、ともに低量のC6:0、C8:0及びC10:0が望ましく、それはこれらの低鎖トリグリセリドが肌刺激性であるからである。
【0577】
【表32-1】
[この文献は図面を表示できません]
【表32-2】
[この文献は図面を表示できません]
【0578】
(パーム核油)
本発明者らは、パーム核油(PKO)に類似した微生物パーム核油模倣物を生成した。パーム核油模倣物を生成するために、プラスミドを構築し、これを株Aの形質転換に使用して、油の生成を行った。構築物pSZ1413(配列番号231)は、コドンが最適化されたCuphea wrightii FATB2遺伝子(配列番号284)(Gen bank寄託番号U56106)及びSAD2B(ステアロイルACPデサチュラーゼ)遺伝子破壊を含んでいた。
【0579】
下の表33に示されるように、パーム核油模倣物はパーム核油に類似していた。PKO模倣物に最も多く含まれる3つの脂肪酸(C12:0、C14:0及びC18:1)の百分率は、パーム核油のものと同じであるか、又はその10%以内であった。
【0580】
【表33】
[この文献は図面を表示できません]
【0581】
(パーム油)
本発明者らは、パーム油に類似した微生物パーム油模倣物を生成した。いくつかの異なるプラスミドを構築して株A中に個々に形質転換し、油の生成を行った。構築物pSZ1503(配列番号283)は、内在するKASII遺伝子を破壊するようにを設計された。構築物pSZ1439(配列番号237)は、コドンが最適化されたElaeis guiniensis TE遺伝子(配列番号205)(Gen bank寄託番号AAD42220.2)を含んでいた。構築物pSZ1420(配列番号225)は、コドンが最適化されたCuphea hookeriana TE遺伝子(配列番号201)(Gen Bank寄託番号Q39513)を含んでいた。構築物pSZ1119(配列番号227)は、コドンが最適化されたCuphea hookeriana KASIV遺伝子(配列番号186)(Gen Bank寄託番号AF060519)及びCuphea wrightii FATB2遺伝子(配列番号184)(Gen Bank寄託番号U56104)を含んでいた。
【0582】
下の表34に示されるように、パーム油模倣物はパーム油に類似していた。パーム油模倣物に最も多く含まれる3つの脂肪酸(C16:0、C18:1及びC18:2)の百分率は、パーム油のものと同じであるか、又はその10%以内であった。
【0583】
【表34】
[この文献は図面を表示できません]
【0584】
(カカオバター)
本発明者らは、カカオバターに類似した微生物カカオバター模倣物を生成した。構築物pSZ1451を構築して株A内で形質転換し、油の生成を行った。構築物pSZ1451(配列番号239)は、コドンが最適化されたCarthamus tinctorus TE遺伝子(配列番号187)(Gen Bank寄託番号AAA33019.1)を含んでいた。
【0585】
下の表35に示されるように、カカオバター油模倣物はカカオバターに類似していた。カカオバター模倣物に最も多く含まれる3つの脂肪酸(C16:0、C18:0及びC18:1)の百分率は、カカオバターのものと同じであるか、又はその10%以内であった。
【0586】
【表35】
[この文献は図面を表示できません]
【0587】
(ラード)
本発明者らは、ラードに類似した微生物ラード模倣物を生成した。いくつかの異なるプラスミドを構築して株A中に個々に形質転換し、油の生成を行った。構築物pSZ1493(配列番号241)は、内在するSAD 2B遺伝子を破壊すると同時に、コドンが最適化されたUmbellularia californica TE遺伝子(配列番号285)(Gen Bank寄託番号M94159)を発現するように設計された。構築物pSZ1452(配列番号240)は、内在するSAD2B遺伝子を破壊し、コドンが最適化されたGarcinia mangostana TE遺伝子(配列番号196)(Gen Bank寄託番号AAB51525.1)を発現するように設計された。構築物pSZ1449(配列番号238)は、コドンが最適化されたBrassica napus TE遺伝子(配列番号195)(Gen Bank寄託番号CAA52070.1)を発現するように設計された。構築物pSZ1458のポリヌクレオチド配列は、Cuphea hookerianaチオエステラーゼ(Gen Bank寄託番号U39834)をコードする、コドンが最適化されたポリヌクレオチド配列が、Brassica napus TE遺伝子(配列番号195)(Gen Bank寄託番号CAA52070.1)をコードするポリヌクレオチド配列に置き換わっている以外は、pSZ1449と同じであった。
【0588】
下の表36に示されるように、ラード模倣物はラードに類似していた。ラード模倣物に最も多く含まれる3つの脂肪酸(C16:0、C18:0及びC18:1)の百分率は、ラードのものと同じであるか、又はその10%以内であった。
【0589】
【表36】
[この文献は図面を表示できません]
【0590】
本発明を、特定の実施形態と関連させて記載してきたが、さらなる改変ができることは理解されるであろう。本明細書は、本発明の原理に一般的に従い、本発明のいかなる変更、応用又は適応をも包含することを意図しており、それらは、本発明が属する技術分野の範囲内にある知られているあるいは慣例の実践範囲内で行われ、また本明細書に記載する本質的な特徴に適用できるような、本開示からの逸脱を含む。
【0591】
本明細書に引用されている全ての参考文献は、Genbankを含めた特許、特許明細書、刊行物を含めて、その内容がすでに特定的に組み込まれているか否かにかかわらず、その全体が参照により組み込まれる。本明細書で述べられている刊行物は、本発明と組み合わせて使用することが可能な試薬、方法及び概念を記載し、開示する目的で引用されている。これらの引用文献が、本明細書に記載した本発明との関連で従来技術であることを認めたと解釈されるべきではない。特定的には、以下の特許明細書は、あらゆる目的のために、その内容全体が参照により組み込まれる:2008年6月2日に出願した国際出願PCT/US2008/065563号、名称「Production of Oil in Microorganisms」、2010年4月14日に出願した国際出願PCT/US2010/31108号、名称「Methods of Microbial Oil Extraction and Separation」、及び2009年11月30日に出願した国際出願PCT/US2009/066142号、名称「Production of Tailored Oils in Heterotrophic Microorganisms」。
【0592】
【数1】
[この文献は図面を表示できません]
【0593】
【数2】
[この文献は図面を表示できません]
【0594】
【数3】
[この文献は図面を表示できません]
【0595】
【数4】
[この文献は図面を表示できません]
【0596】
【数5】
[この文献は図面を表示できません]
【0597】
【数6】
[この文献は図面を表示できません]
【0598】
【数7】
[この文献は図面を表示できません]
【0599】
【数8】
[この文献は図面を表示できません]
【0600】
【数9】
[この文献は図面を表示できません]
【0601】
【数10】
[この文献は図面を表示できません]
【0602】
【数11】
[この文献は図面を表示できません]
【0603】
【数12】
[この文献は図面を表示できません]
【0604】
【数13】
[この文献は図面を表示できません]
【0605】
【数14】
[この文献は図面を表示できません]
【0606】
【数15】
[この文献は図面を表示できません]
【0607】
【数16】
[この文献は図面を表示できません]
【0608】
【数17】
[この文献は図面を表示できません]
【0609】
【数18】
[この文献は図面を表示できません]
【0610】
【数19】
[この文献は図面を表示できません]
【0611】
【数20】
[この文献は図面を表示できません]
【0612】
【数21】
[この文献は図面を表示できません]
【0613】
【数22】
[この文献は図面を表示できません]
【0614】
【数23】
[この文献は図面を表示できません]
【0615】
【数24】
[この文献は図面を表示できません]
【0616】
【数25】
[この文献は図面を表示できません]
【0617】
【数26】
[この文献は図面を表示できません]
【0618】
【数27】
[この文献は図面を表示できません]
【0619】
【数28】
[この文献は図面を表示できません]
【0620】
【数29】
[この文献は図面を表示できません]
【0621】
【数30】
[この文献は図面を表示できません]
【0622】
【数31】
[この文献は図面を表示できません]
【0623】
【数32】
[この文献は図面を表示できません]
【0624】
【数33】
[この文献は図面を表示できません]
【0625】
【数34】
[この文献は図面を表示できません]
【0626】
【数35】
[この文献は図面を表示できません]
【0627】
【数36】
[この文献は図面を表示できません]
【0628】
【数37】
[この文献は図面を表示できません]
【0629】
【数38】
[この文献は図面を表示できません]
【0630】
【数39】
[この文献は図面を表示できません]
【0631】
【数40】
[この文献は図面を表示できません]
【0632】
【数41】
[この文献は図面を表示できません]
【0633】
【数42】
[この文献は図面を表示できません]
【0634】
【数43】
[この文献は図面を表示できません]
【0635】
【数44】
[この文献は図面を表示できません]
【0636】
【数45】
[この文献は図面を表示できません]
【0637】
【数46】
[この文献は図面を表示できません]
【0638】
【数47】
[この文献は図面を表示できません]
【0639】
【数48】
[この文献は図面を表示できません]
【0640】
【数49】
[この文献は図面を表示できません]
【0641】
【数50】
[この文献は図面を表示できません]
【0642】
【数51】
[この文献は図面を表示できません]
【0643】
【数52】
[この文献は図面を表示できません]
【0644】
【数53】
[この文献は図面を表示できません]
【0645】
【数54】
[この文献は図面を表示できません]
【0646】
【数55】
[この文献は図面を表示できません]
【0647】
【数56】
[この文献は図面を表示できません]
【0648】
【数57】
[この文献は図面を表示できません]
【0649】
【数58】
[この文献は図面を表示できません]
【0650】
【数59】
[この文献は図面を表示できません]
【0651】
【数60】
[この文献は図面を表示できません]
【0652】
【数61】
[この文献は図面を表示できません]
【0653】
【数62】
[この文献は図面を表示できません]
【0654】
【数63】
[この文献は図面を表示できません]
【0655】
【数64】
[この文献は図面を表示できません]
【0656】
【数65】
[この文献は図面を表示できません]
【0657】
【数66】
[この文献は図面を表示できません]
【0658】
【数67】
[この文献は図面を表示できません]
【0659】
【数68】
[この文献は図面を表示できません]
【0660】
【数69】
[この文献は図面を表示できません]
【0661】
【数70】
[この文献は図面を表示できません]
【0662】
【数71】
[この文献は図面を表示できません]
【0663】
【数72】
[この文献は図面を表示できません]
【0664】
【数73】
[この文献は図面を表示できません]
【0665】
【数74】
[この文献は図面を表示できません]
【0666】
【数75】
[この文献は図面を表示できません]
【0667】
【数76】
[この文献は図面を表示できません]
【0668】
【数77】
[この文献は図面を表示できません]
【0669】
【数78】
[この文献は図面を表示できません]
【0670】
【数79】
[この文献は図面を表示できません]
【0671】
【数80】
[この文献は図面を表示できません]
【0672】
【数81】
[この文献は図面を表示できません]
【0673】
【数82】
[この文献は図面を表示できません]
【0674】
【数83】
[この文献は図面を表示できません]
【0675】
【数84】
[この文献は図面を表示できません]
【0676】
【数85】
[この文献は図面を表示できません]
【0677】
【数86】
[この文献は図面を表示できません]
【0678】
【数87】
[この文献は図面を表示できません]
【0679】
【数88】
[この文献は図面を表示できません]
【0680】
【数89】
[この文献は図面を表示できません]
【0681】
【数90】
[この文献は図面を表示できません]
【0682】
【数91】
[この文献は図面を表示できません]
【0683】
【数92】
[この文献は図面を表示できません]
【0684】
【数93】
[この文献は図面を表示できません]
【0685】
【数94】
[この文献は図面を表示できません]
【0686】
【数95】
[この文献は図面を表示できません]
【0687】
【数96】
[この文献は図面を表示できません]
【0688】
【数97】
[この文献は図面を表示できません]
【0689】
【数98】
[この文献は図面を表示できません]
【0690】
【数99】
[この文献は図面を表示できません]
【0691】
【数100】
[この文献は図面を表示できません]
【0692】
【数101】
[この文献は図面を表示できません]
【0693】
【数102】
[この文献は図面を表示できません]
【0694】
【数103】
[この文献は図面を表示できません]
【0695】
【数104】
[この文献は図面を表示できません]
【0696】
【数105】
[この文献は図面を表示できません]
【0697】
【数106】
[この文献は図面を表示できません]
【0698】
【数107】
[この文献は図面を表示できません]
【0699】
【数108】
[この文献は図面を表示できません]
【0700】
【数109】
[この文献は図面を表示できません]
【0701】
【数110】
[この文献は図面を表示できません]
【0702】
【数111】
[この文献は図面を表示できません]
【0703】
【数112】
[この文献は図面を表示できません]
【0704】
【数113】
[この文献は図面を表示できません]
【0705】
【数114】
[この文献は図面を表示できません]
【0706】
【数115】
[この文献は図面を表示できません]
【0707】
【数116】
[この文献は図面を表示できません]
【0708】
【数117】
[この文献は図面を表示できません]
【0709】
【数118】
[この文献は図面を表示できません]
【0710】
【数119】
[この文献は図面を表示できません]
【0711】
【数120】
[この文献は図面を表示できません]
【0712】
【数121】
[この文献は図面を表示できません]
【0713】
【数122】
[この文献は図面を表示できません]
【0714】
【数123】
[この文献は図面を表示できません]
【0715】
【数124】
[この文献は図面を表示できません]
【0716】
【数125】
[この文献は図面を表示できません]
【0717】
【数126】
[この文献は図面を表示できません]
【0718】
【数127】
[この文献は図面を表示できません]
【0719】
【数128】
[この文献は図面を表示できません]
【0720】
【数129】
[この文献は図面を表示できません]
【0721】
【数130】
[この文献は図面を表示できません]
【0722】
【数131】
[この文献は図面を表示できません]
【0723】
【数132】
[この文献は図面を表示できません]
【0724】
【数133】
[この文献は図面を表示できません]
【0725】
【数134】
[この文献は図面を表示できません]
【0726】
【数135】
[この文献は図面を表示できません]
【0727】
【数136】
[この文献は図面を表示できません]
【0728】
【数137】
[この文献は図面を表示できません]
【0729】
【数138】
[この文献は図面を表示できません]
【0730】
【数139】
[この文献は図面を表示できません]
【0731】
【数140】
[この文献は図面を表示できません]
【0732】
【数141】
[この文献は図面を表示できません]
【0733】
【数142】
[この文献は図面を表示できません]
【0734】
【数143】
[この文献は図面を表示できません]
【0735】
【数144】
[この文献は図面を表示できません]
【0736】
【数145】
[この文献は図面を表示できません]
【0737】
【数146】
[この文献は図面を表示できません]
【0738】
【数147】
[この文献は図面を表示できません]
【0739】
【数148】
[この文献は図面を表示できません]
【0740】
【数149】
[この文献は図面を表示できません]
【0741】
【数150】
[この文献は図面を表示できません]
【0742】
【数151】
[この文献は図面を表示できません]
【0743】
【数152】
[この文献は図面を表示できません]
【0744】
【数153】
[この文献は図面を表示できません]
【0745】
【数154】
[この文献は図面を表示できません]
【0746】
【数155】
[この文献は図面を表示できません]
【0747】
【数156】
[この文献は図面を表示できません]
【0748】
【数157】
[この文献は図面を表示できません]
【0749】
【数158】
[この文献は図面を表示できません]
【0750】
【数159】
[この文献は図面を表示できません]
【0751】
【数160】
[この文献は図面を表示できません]
【0752】
【数161】
[この文献は図面を表示できません]
【0753】
【数162】
[この文献は図面を表示できません]
【0754】
【数163】
[この文献は図面を表示できません]
【0755】
【数164】
[この文献は図面を表示できません]
【0756】
【数165】
[この文献は図面を表示できません]
【0757】
【数166】
[この文献は図面を表示できません]
【0758】
【数167】
[この文献は図面を表示できません]
【0759】
【数168】
[この文献は図面を表示できません]
【0760】
【数169】
[この文献は図面を表示できません]
【0761】
【数170】
[この文献は図面を表示できません]
【0762】
【数171】
[この文献は図面を表示できません]
【0763】
【数172】
[この文献は図面を表示できません]
【0764】
【数173】
[この文献は図面を表示できません]
【0765】
【数174】
[この文献は図面を表示できません]
【0766】
【数175】
[この文献は図面を表示できません]
【0767】
【数176】
[この文献は図面を表示できません]
【0768】
【数177】
[この文献は図面を表示できません]
【0769】
【数178】
[この文献は図面を表示できません]
【0770】
【数179】
[この文献は図面を表示できません]
【0771】
【数180】
[この文献は図面を表示できません]
【0772】
【数181】
[この文献は図面を表示できません]
【0773】
【数182】
[この文献は図面を表示できません]
【0774】
【数183】
[この文献は図面を表示できません]
【0775】
【数184】
[この文献は図面を表示できません]
【0776】
【数185】
[この文献は図面を表示できません]
【0777】
【数186】
[この文献は図面を表示できません]
【0778】
【数187】
[この文献は図面を表示できません]
【0779】
【数188】
[この文献は図面を表示できません]
【0780】
【数189】
[この文献は図面を表示できません]
【0781】
【数190】
[この文献は図面を表示できません]
【0782】
【数191】
[この文献は図面を表示できません]
【0783】
【数192】
[この文献は図面を表示できません]
【0784】
【数193】
[この文献は図面を表示できません]
【0785】
【数194】
[この文献は図面を表示できません]
【0786】
【数195】
[この文献は図面を表示できません]
【0787】
【数196】
[この文献は図面を表示できません]
【0788】
【数197】
[この文献は図面を表示できません]
【0789】
【数198】
[この文献は図面を表示できません]
【0790】
【数199】
[この文献は図面を表示できません]
【0791】
【数200】
[この文献は図面を表示できません]
【0792】
【数201】
[この文献は図面を表示できません]
【0793】
【数202】
[この文献は図面を表示できません]
【0794】
【数203】
[この文献は図面を表示できません]
【0795】
【数204】
[この文献は図面を表示できません]
【0796】
【数205】
[この文献は図面を表示できません]
【0797】
【数206】
[この文献は図面を表示できません]
【0798】
【数207】
[この文献は図面を表示できません]
【0799】
【数208】
[この文献は図面を表示できません]
【0800】
【数209】
[この文献は図面を表示できません]
【0801】
【数210】
[この文献は図面を表示できません]
【0802】
【数211】
[この文献は図面を表示できません]
【0803】
【数212】
[この文献は図面を表示できません]
【0804】
【数213】
[この文献は図面を表示できません]
【0805】
【数214】
[この文献は図面を表示できません]
【0806】
【数215】
[この文献は図面を表示できません]
【0807】
【数216】
[この文献は図面を表示できません]
【0808】
【数217】
[この文献は図面を表示できません]
【0809】
【数218】
[この文献は図面を表示できません]
【0810】
【数219】
[この文献は図面を表示できません]
【0811】
【数220】
[この文献は図面を表示できません]
【0812】
【数221】
[この文献は図面を表示できません]
【0813】
【数222】
[この文献は図面を表示できません]
【0814】
【数223】
[この文献は図面を表示できません]
【0815】
【数224】
[この文献は図面を表示できません]
【0816】
【数225】
[この文献は図面を表示できません]
【0817】
【数226】
[この文献は図面を表示できません]
【0818】
【数227】
[この文献は図面を表示できません]
【0819】
【数228】
[この文献は図面を表示できません]
【0820】
【数229】
[この文献は図面を表示できません]
【0821】
【数230】
[この文献は図面を表示できません]
【0822】
【数231】
[この文献は図面を表示できません]
【0823】
【数232】
[この文献は図面を表示できません]
【0824】
【数233】
[この文献は図面を表示できません]
【0825】
【数234】
[この文献は図面を表示できません]
【0826】
【数235】
[この文献は図面を表示できません]
【0827】
【数236】
[この文献は図面を表示できません]
【0828】
【数237】
[この文献は図面を表示できません]
【0829】
【数238】
[この文献は図面を表示できません]
【0830】
【数239】
[この文献は図面を表示できません]
【0831】
【数240】
[この文献は図面を表示できません]
【0832】
【数241】
[この文献は図面を表示できません]
【0833】
【数242】
[この文献は図面を表示できません]
【0834】
【数243】
[この文献は図面を表示できません]
【0835】
【数244】
[この文献は図面を表示できません]
【0836】
【数245】
[この文献は図面を表示できません]
【0837】
【数246】
[この文献は図面を表示できません]
【0838】
【数247】
[この文献は図面を表示できません]
【0839】
【数248】
[この文献は図面を表示できません]
【0840】
【数249】
[この文献は図面を表示できません]
【0841】
【数250】
[この文献は図面を表示できません]
【0842】
【数251】
[この文献は図面を表示できません]
【0843】
【数252】
[この文献は図面を表示できません]
【0844】
【数253】
[この文献は図面を表示できません]
【0845】
【数254】
[この文献は図面を表示できません]
【0846】
【数255】
[この文献は図面を表示できません]
【0847】
【数256】
[この文献は図面を表示できません]
【0848】
【数257】
[この文献は図面を表示できません]
【0849】
【数258】
[この文献は図面を表示できません]
【0850】
【数259】
[この文献は図面を表示できません]
【0851】
【数260】
[この文献は図面を表示できません]
【0852】
【数261】
[この文献は図面を表示できません]
【0853】
【数262】
[この文献は図面を表示できません]
【0854】
【数263】
[この文献は図面を表示できません]
【0855】
【数264】
[この文献は図面を表示できません]
【0856】
【数265】
[この文献は図面を表示できません]
【0857】
【数266】
[この文献は図面を表示できません]
【0858】
【数267】
[この文献は図面を表示できません]
【0859】
【数268】
[この文献は図面を表示できません]
【0860】
【数269】
[この文献は図面を表示できません]
【0861】
【数270】
[この文献は図面を表示できません]
【0862】
【数271】
[この文献は図面を表示できません]
【0863】
【数272】
[この文献は図面を表示できません]
【0864】
【数273】
[この文献は図面を表示できません]
【0865】
【数274】
[この文献は図面を表示できません]
【0866】
【数275】
[この文献は図面を表示できません]
【0867】
【数276】
[この文献は図面を表示できません]
【0868】
【数277】
[この文献は図面を表示できません]
【0869】
【数278】
[この文献は図面を表示できません]
【0870】
【数279】
[この文献は図面を表示できません]
【0871】
【数280】
[この文献は図面を表示できません]