【実施例】
【0023】
以下、本発明によるSnめっき材およびその製造方法の実施例について詳細に説明する。
【0024】
[実施例1]
まず、厚さ0.25mmのCu−Ni−Sn合金からなる平板状の導体基材(DOWAメタルテック株式会社製のNB−109−EH材(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み、残部がCuである銅合金の基材))を用意し、この基材の表面を圧延ロール(研磨材MRC−#800により表面を研磨して表面の算術平均粗さRaを0.09μmにした圧延ロール)により処理して表面粗さを低減させた。このように表面を処理した後の基材の表面粗さについて、超深度顕微鏡(株式会社キーエンス製のVK−85000)による測定結果から、JIS B0601(2001年)に基づいて表面粗さを表すパラメータである算術平均粗さRaおよび最大高さRzを算出した。その結果、基材の表面の算術平均粗さRaは0.08μm、最大高さRzは0.63μmであった。
【0025】
次に、前処理として、表面処理後の基材(被めっき材)をアルカリ電解脱脂液により10秒間電解脱脂を行った後に水洗し、その後、5質量%の硫酸に10秒間浸漬して酸洗した後に水洗した。
【0026】
次に、80g/Lのスルファミン酸ニッケルと45g/Lのホウ酸を含むNiめっき液中において、表面処理後の基材(被めっき材)を陰極とし、Ni電極板を陽極として、電流密度5A/dm
2、液温50℃で5秒間電気めっきを行うことにより、基材上に厚さ0.1μmのNiめっき層を形成した。
【0027】
次に、110g/Lの硫酸銅と100g/Lの硫酸(98質量%硫酸)を含むCuめっき液中において、Niめっき済の被めっき材を陰極とし、Cu電極板を陽極として、電流密度5A/dm
2、液温30℃で8秒間電気めっきを行うことにより、基材上に厚さ0.4μmのCuめっき層を形成した。
【0028】
次に、60g/Lの硫酸第一錫と75g/Lの硫酸(98質量%硫酸)と30g/Lのクレゾールスルホン酸と1g/Lのβナフトールを含むSnめっき液中において、Cuめっき済の被めっき材を陰極とし、Sn電極板を陽極として、電流密度5A/dm
2、液温25℃で10秒間電気めっきを行うことにより、基材上に厚さ1.0μmのSnめっき層を形成した。
【0029】
次に、Snめっき済の被めっき材を洗浄して乾燥した後、光輝焼鈍炉(光洋リンドバーグ株式会社製)に入れ、水素ガス雰囲気中において炉内温度400℃で300秒間保持する熱処理を行った。
【0030】
このようにして作製したSnめっき材の表面粗さについて、上記と同様の方法により、算術平均粗さRaおよび最大高さRzを算出したところ、Snめっき材の表面の算術平均粗さRaは0.09μm、最大高さRzは0.68μmであった。
【0031】
また、Snめっき材の最表面のSnめっき層の厚さをJIS H8501に準拠して電解式膜厚計(株式会社中央製作所製のThickness Tester TH−11)により測定した。この最表面のSnめっき層の膜厚の測定では、電解によりSnを溶解させることができる電解液(株式会社中央製作所製のS−110)を使用した。その結果、Snが溶解する電圧で溶解しためっき層がなく、最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。
【0032】
また、Snめっき材の最表面に形成された最表層を電子線プローブ微量分析法(EPMA)およびオージェ電子分光法(AES)により分析したところ、最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さを電解式膜厚計により測定したところ、0.90μmであった。なお、この最表層の膜厚の測定では、電解によりCu−Ni−Sn合金を溶解させることができる電解液(株式会社中央製作所製のS−110)を使用した。なお、最表層は、一定の電圧で溶解したため、ほぼ単相であるとみなすことができる。
【0033】
また、Snめっき材の最表層の下に形成された層をAESにより分析したところ、最表層の下にCu層が存在しておらず、CuとNiとSnを含み且つCuとNiとSnの組成比が一定でない層(
図2および
図3の中間層16に対応する層)が最表層の下に形成されていることが確認された。この中間層の厚さを電解式膜厚計により測定したところ、0.20μmであった。なお、この中間層の膜厚の測定は、最表層の厚さを測定して最表層を溶解させたSnめっき材の表面を純水で洗浄した後、電解によりCuとNiとSnを溶解させることができる電解液(株式会社中央製作所製のS−108)を使用して行った。
【0034】
さらに、中間層の厚さを測定して中間層を溶解させたSnめっき材について、蛍光X線膜厚計により、Snめっき材の基材と中間層の間の層(
図2の下地層14に対応する層)の有無を確認したところ、Niの蛍光X線強度が検出限界以下であり、下地層が確認されなかった。
【0035】
また、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力を評価するために、Snめっき材を横型荷重測定器(株式会社山崎精機研究所製の電気接点シミュレータと、ステージコントローラと、ロードセルと、ロードセルアンプとを組み合わせた装置)の水平台上に固定し、その評価試料に圧子を接触させた後、それぞれ荷重0.7Nおよび5Nで圧子をSnめっき材の表面に押し付けながら、Snめっき材を摺動速度80mm/分で水平方向に摺動距離10mm引っ張り、1mmから4mmまでの間(測定距離3mm)に水平方向にかかる力を測定してその平均値Fを算出し、試験片同士間の動摩擦係数(μ)をμ=F/Nから算出した。その結果、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.40および0.22であった。これらの動摩擦係数がそれぞれ0.50以下、0.25以下であれば、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であるといえる。
【0036】
また、Snめっき材の高温放置後の接触信頼性を評価するために、Snめっき材から切り出した試験片を大気雰囲気下において120℃の恒温槽内に120時間保持した後に恒温槽から取り出し、20℃の測定室において試験片の表面の接触抵抗値(高温放置後の接触抵抗値)を測定したところ、高温放置後の接触抵抗値は35mΩであった。この接触抵抗値が50mΩ以下であれば、高温放置後の接触信頼性は良好であるといえる。なお、接触抵抗値の測定は、マイクロオームメータ(株式会社山崎精機研究所製)を使用して、開放電圧20mV、電流10mA、直径0.5mmのU型金線プローブ、最大荷重100gfの条件で5回測定して、(最大荷重100gfが加えられたときの)平均値を求めた。
【0037】
また、本実施例で作製したSnめっき材を2枚用意し、一方のSnめっき材を平板状試験片(雄端子としての試験片)として電動式微摺動摩耗試験装置のステージに固定し、他方のSnめっき材をインデント加工(R1mmの半球状の打ち出し加工)して得られたインデント付き試験片(雌端子としての試験片)のインデントを平板状試験片に接触させた後、荷重0.7Nでインデント付き試験片を平板状試験片の表面に押し付けながら、平板状試験片を固定したステージを水平方向に片道50μmの範囲において1秒間に1往復の摺動速度で100往復させる微摺動摩耗試験を行い、その微摺動摩耗試験後の平板状試験片とインデント付き試験片との間の接点部の電気抵抗値を4端子法によって連続的に測定した。その結果、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は43回目であった。この回数が35回以上(好ましくは40回以上)であれば、耐微摺動摩耗特性は良好であるといえる。また、100往復させる微摺動摩耗試験中に抵抗値が50mΩを超えることはなかった。
【0038】
[実施例2]
Niめっき層の厚さを0.3μm、Cuめっき層の厚さを0.2μm、Snめっき層の厚さを0.5μmにした以外は、実施例1と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0039】
その結果、Snめっき材の表面の算術平均粗さRaは0.09μm、最大高さRzは0.67μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定(Cu:43原子%、Ni:13原子%、Sn:44原子%)のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.60μmであった。なお、最表層の組成比から判断すると、最表層には(Cu,Ni)
6Sn
5金属間化合物が生成していると考えられる。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.15μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。また、中間層の下に形成された層をAESにより分析したところ、Cu−Ni合金からなる層(
図2の下地層14に対応する層)が中間層と基材の間に形成されていることが確認され、その厚さを蛍光X線膜厚計により測定したところ、0.05μmであった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.35および0.23であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。また、高温放置後の接触抵抗値は38mΩであり、高温放置後の接触信頼性は良好であった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は40回目であり、耐微摺動摩耗特性は良好であった。また、100往復させる微摺動摩耗試験中に抵抗値が50mΩを超えることはなかった。
【0040】
[実施例3]
表面処理した後の基材の算術平均粗さRaが0.07μm、最大高さRzが0.54μmであり、Niめっき層の厚さを0.2μm、Cuめっき層の厚さを0.2μm、Snめっき層の厚さを0.7μmにした以外は、実施例1と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、実施例2と同様の方法により、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0041】
その結果、算術平均粗さRaは0.07μm、最大高さRzは0.58μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.75μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.18μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。また、中間層の下に形成された層(中間層と基材の間の層)はCu−Ni合金からなる層(下地層)であり、その厚さは0.01μmであった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.38および0.22であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。また、高温放置後の接触抵抗値は40mΩであり、高温放置後の接触信頼性は良好であった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は45回目であり、耐微摺動摩耗特性は良好であった。また、100往復させる微摺動摩耗試験中に抵抗値が50mΩを超えることはなかった。
【0042】
[実施例4]
表面処理した後の基材の算術平均粗さRaが0.06μm、最大高さRzが0.48μmであった以外は、実施例3と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、実施例2と同様の方法により、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0043】
その結果、算術平均粗さRaは0.08μm、最大高さRzは0.71μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.73μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.17μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。また、中間層の下に形成された層(中間層と基材の間の層)はNiまたはCu−Ni合金からなる層(下地層)であり、その厚さは0.02μmであった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.34および0.23であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。また、高温放置後の接触抵抗値は42mΩであり、高温放置後の接触信頼性は良好であった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は46回目であり、耐微摺動摩耗特性は良好であった。また、100往復させる微摺動摩耗試験中に抵抗値が50mΩを超えることはなかった。
【0044】
[実施例5]
表面処理した後の基材の算術平均粗さRaが0.11μm、最大高さRzが0.83μmであった以外は、実施例3と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、実施例2と同様の方法により、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0045】
その結果、算術平均粗さRaは0.12μm、最大高さRzは0.75μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.78μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.18μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。また、中間層の下に形成された層(中間層と基材の間の層)はNiまたはCu−Ni合金からなる層(下地層)であり、その厚さは0.01μmであった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.35および0.25であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。った。また、高温放置後の接触抵抗値は45mΩであり、高温放置後の接触信頼性は良好であった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は40回目であり、耐微摺動摩耗特性は良好であった。また、100往復させる微摺動摩耗試験中に抵抗値が50mΩを超えることはなかった。
【0046】
[実施例6]
Cuめっき層の厚さを0.2μm、Snめっき層の厚さを0.5μmにし、熱処理の保持時間を240秒間にした以外は、実施例1と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めた。
【0047】
その結果、算術平均粗さRaは0.06μm、最大高さRzは0.49μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.52μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.15μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。中間層の下には、下地層が確認されなかった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.25および0.13であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。また、高温放置後の接触抵抗値は35mΩであり、高温放置後の接触信頼性は良好であった。
【0048】
[実施例7]
Cuめっき層の厚さを0.1μm、Snめっき層の厚さを0.5μmにし、熱処理の保持時間を240秒間にした以外は、実施例1と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めた。
【0049】
その結果、算術平均粗さRaは0.06μm、最大高さRzは0.71μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層が深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.48μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.15μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。中間層の下には、下地層が確認されなかった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.25および0.25であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好であった。また、高温放置後の接触抵抗値は38mΩであり、高温放置後の接触信頼性は良好であった。
【0050】
[比較例1]
表面を処理した後の基材の算術平均粗さRaが0.15μm、最大高さRzが1.65μmであり、Niめっき層とCuめっき層を形成せず、熱処理の温度を700℃として保持時間を6.5秒間とした以外は、実施例1と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0051】
その結果、算術平均粗さRaは0.06μm、最大高さRzは0.49μmであった。また、最表面に形成された最表層はSnからなる層であり、その厚さは0.57μmであった。基材の表面に形成された下地層は(Cu
6Sn
5)からなり、その厚さは0.90μmであった。なお、この下地層の膜厚の測定では、電解によりCu−Sn合金を溶解させることができる電解液(株式会社中央製作所製のS−110)を使用した。また、最表層と下地層の間の中間層として、Cu層が存在しておらず、下地層の表面に最表層が形成されていた。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.57および0.33であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好でなかった。また、高温放置後の接触抵抗値は110mΩであり、高温放置後の接触信頼性は良好でなかった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は19回目、50mΩを超える往復回数は60回目であり、耐微摺動摩耗特性は良好でなかった。
【0052】
[比較例2]
表面を処理した後の基材の算術平均粗さRaが0.32μm、最大高さRzが2.25μmであった以外は、実施例2と同様の方法により、Snめっき材を作製し、そのSnめっき材の表面の算術平均粗さRaおよび最大高さRzを算出し、めっき層を分析し、動摩擦係数を算出し、高温放置後の接触抵抗値を求めるとともに、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数を求めた。
【0053】
その結果、算術平均粗さRaは0.22μm、最大高さRzは1.15μmであった。最表面のSnめっき層の厚さは0μmであり、最表面にSnめっき層が存在しないことが確認された。また、最表面に形成された最表層深さ方向でCuとNiとSnの組成比が略一定のCu−Ni−Sn合金からなる層であることが確認され、その厚さは0.60μmであった。また、最表層の下には、Cu層が存在しておらず、CuとNiとSnを含み且つ深さ方向でCuとNiとSnの組成比が一定でない厚さ0.15μmの層(中間層)が形成され、その中間層の表面に最表層が形成されていた。また、中間層の下に形成された層(中間層と基材の間の層)はNiからなる層であり、その厚さは0.05μmであった。また、荷重0.7Nおよび5Nの場合の動摩擦係数は、それぞれ0.30および0.40であり、Snめっき材を挿抜可能な接続端子などの材料として使用した際の挿入力は良好でなかった。また、高温放置後の接触抵抗値は40mΩであり、高温放置後の接触信頼性は良好であった。また、微摺動摩耗試験中の抵抗値が初めて10mΩを超える往復回数は10回目、50mΩを超える往復回数は40回目であり、耐微摺動摩耗特性は良好でなかった。
【0054】
これらの実施例および比較例のSnめっき材の製造条件および特性を表1〜表3に示す。
【0055】
【表1】
【0056】
【表2】
【0057】
【表3】