特許第6543170号(P6543170)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝エネルギーシステムズ株式会社の特許一覧

<>
  • 特許6543170-計測装置及び計測方法 図000002
  • 特許6543170-計測装置及び計測方法 図000003
  • 特許6543170-計測装置及び計測方法 図000004
  • 特許6543170-計測装置及び計測方法 図000005
  • 特許6543170-計測装置及び計測方法 図000006
  • 特許6543170-計測装置及び計測方法 図000007
  • 特許6543170-計測装置及び計測方法 図000008
  • 特許6543170-計測装置及び計測方法 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6543170
(24)【登録日】2019年6月21日
(45)【発行日】2019年7月10日
(54)【発明の名称】計測装置及び計測方法
(51)【国際特許分類】
   G01B 11/00 20060101AFI20190628BHJP
   G01B 11/24 20060101ALI20190628BHJP
   G01B 21/00 20060101ALI20190628BHJP
   G01B 21/20 20060101ALI20190628BHJP
【FI】
   G01B11/00 A
   G01B11/24 A
   G01B21/00 E
   G01B21/20 C
【請求項の数】5
【全頁数】17
(21)【出願番号】特願2015-219729(P2015-219729)
(22)【出願日】2015年11月9日
(65)【公開番号】特開2017-90210(P2017-90210A)
(43)【公開日】2017年5月25日
【審査請求日】2018年5月7日
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100082991
【弁理士】
【氏名又は名称】佐藤 泰和
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100124372
【弁理士】
【氏名又は名称】山ノ井 傑
(74)【代理人】
【識別番号】100125151
【弁理士】
【氏名又は名称】新畠 弘之
(72)【発明者】
【氏名】坂本 直弥
(72)【発明者】
【氏名】大嶽 達哉
(72)【発明者】
【氏名】相川 徹郎
(72)【発明者】
【氏名】佐藤 美徳
【審査官】 川村 大輔
(56)【参考文献】
【文献】 特開平07−318324(JP,A)
【文献】 特開2011−039005(JP,A)
【文献】 特開2014−228527(JP,A)
【文献】 特開2006−329903(JP,A)
【文献】 特開2012−220338(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00−11/30
G01B 21/00−21/32
(57)【特許請求の範囲】
【請求項1】
対象物の表面形状を計測する光学式の計測部であって、被写界深度に対応する第1計測範囲を有する第1計測部と、前記第1計測部の解像度よりも高い解像度を有し、且つ前記第1計測範囲よりも狭い被写界深度に対応する第2計測範囲を有する第2計測部と、を有する計測部と、
前記計測部を移動させる駆動を行う駆動部と、
前記対象物の表面形状を計測するために用いる軌道情報を記録する記録部と、
前記軌道情報に基づき前記計測部を移動させる制御を前記駆動部に対して行う制御部と、
前記第1計測部が計測したデータに基づき前記対象物の3次元形状データを合成する合成部と、
前記3次元形状データの表面における位置座標を用いて、前記第2計測部の計測時に移動する前記計測部と前記対象物の表面との距離を、前記第2計測範囲内にする補正を前記軌道情報に対して行う補正部と、
を備え、
前記制御部は、前記補正された軌道情報に基づき、前記第2計測部を用いて前記対象物の表面形状を計測させる制御を行うことを特徴とする計測装置。
【請求項2】
前記軌道情報は、前記計測部を移動させる場合に経由させる複数の位置座標であって、前記制御部は、前記複数の位置座標に基づき軌道経路の情報を生成し、当該軌道経路にしたがって前記計測部を移動させる制御を前記駆動部に対して行うことを特徴とする請求項1に記載の計測装置。
【請求項3】
前記補正部は、
前記軌道情報にしたがい前記計測部を移動する場合に、前記対象物の表面と前記計測部とを正対させる補正情報を得る傾き補正部を、更に有し、
当該補正情報に基づき前記軌道情報を補正することを特徴とする請求項1又は2に記載の計測装置。
【請求項4】
前記軌道情報に基づき前記計測部で前記対象物を計測する場合に、奥行き方向の計測範囲を超える未計測領域に対する新たな軌道情報を生成し、当該新たな軌道にしたがった計測を前記計測部に行わせる計測範囲拡大部と、
前記計測された前記対象物の形状の情報と、当該新たな軌道にしたがって計測された前記対象物の形状の情報とを統合する統合部と、を更に備え、
前記補正部は、前記統合部で統合された前記対象物の形状の情報に基づき前記補正を行うことを特徴とする請求項1乃至のいずれか一項に記載の計測装置。
【請求項5】
対象物の表面形状を計測するために用いる軌道情報にしたがい、前記対象物の形状を被写界深度に対応する第1計測範囲を有する光学式の第1計測部が計測する第1計測工程と、
前記第1計測工程で得られた前記対象物の形状情報に基づき、前記第1計測部の解像度よりも高い解像度を有し、且つ前記第1計測範囲よりも狭い被写界深度に対応する第2計測範囲を有する光学式の第2計測部と前記対象物の表面との距離を、前記第2計測範囲内にする補正を前記軌道情報に対して行う補正工程と、
前記補正された軌道情報にしたがい、前記対象物の表面形状を前記第2計測部が計測する第2計測工程と、
を備えることを特徴とする計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、計測装置及び計測方法に関する。
【背景技術】
【0002】
ガスタービンの静翼等における使用後の品質確認には、目視検査や超音波探傷検査などの非破壊検査が行われている。例えば静翼の内在欠陥等の品質確認には、超音波探傷検査やECT探傷検査等が主に行われている。また、表面上のき裂や減肉といった損傷等の欠陥確認には目視検査が行われ、手作業でこの欠陥の情報などが記録されている。このため、この欠陥確認の作業、及び、き裂発生時のき裂補修には、より多くの時間がかかると共に補修コストもより増加している。そこで、このような検査における歩留まりの向上及び作業時間の短縮を行うために、検査の自動化が望まれている。
【0003】
一方で、画像を用いて、き裂を検出する方法がある。高解像度の画像を検査に用いることで、微細なき裂の検出が可能となるためである。ところが、画像を取得するために用いる計測部の被写界深度は、画像の解像度を上げるにしたがい浅くなる。これにより、対象物とこの計測部との距離が被写界深度の範囲外になるとデータが不鮮明になり、き裂などの検出漏れが生じる可能性がある。このため、検査に用いることが可能なレベルの高解像度の画像を取得するためには、対象物と計測部との距離を、被写界深度の範囲に保つことが必要である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013−69712号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明の実施形態は、このような点を考慮してなされたものであり、計測部と対象物表面との間の距離を計測部の計測範囲内にすることが可能な計測装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本実施形態に係る計測装置は、
対象物の表面形状を計測する計測部と、
前記計測部を移動させる駆動を行う駆動部と、
前記対象物の表面形状を計測するために用いる軌道情報を記録する記録部と、
前記軌道情報に基づき前記計測部を移動させる制御を前記駆動部に対して行う制御部と、
前記計測部が計測したデータに基づき前記対象物の3次元形状データを合成する合成部と、
前記3次元形状データの表面における位置座標を用いて、計測時に移動する前記計測部と前記対象物の表面との距離を、前記計測部の計測範囲内にする補正を前記軌道情報に対して行う補正部と、
を備えることを特徴とする。
【0007】
本実施形態に係る計測方法は、
対象物の表面形状を計測するために用いる軌道情報にしたがい、前記対象物の形状を計測部が計測する第1計測工程と、
前記第1計測工程で得られた前記対象物の形状情報に基づき、前記計測部と前記対象物の表面との距離を所定範囲にする補正を前記軌道情報に対して行う補正工程と、
前記補正された軌道情報にしたがい、前記対象物の表面形状を計測部が計測する第2計測工程と、
を備えることを特徴とする。
【発明の効果】
【0008】
計測部と対象表面との間の距離を計測部の計測範囲内にすることが可能な計測装置を提供することができる。
【図面の簡単な説明】
【0009】
図1】第1実施形態に係る計測装置の構成を説明するブロック図。
図2】軌道情報を補正する補正処理について説明する図。
図3】計測装置全体の処理の流れを説明するフローチャートを示す図。
図4】第2実施形態に係る計測装置の構成を説明するブロック図。
図5】対象物表面に沿った方向の未計測領域を例示する模式図。
図6】計測装置全体の処理の流れを説明するフローチャートを示す図。
図7】第3実施形態に係る計測装置の構成を説明するブロック図。
図8】拡大された計測範囲について説明する模式図。
【発明を実施するための形態】
【0010】
以下、図面を参照して、本発明の実施形態について説明する。本実施形態は、本発明を限定するものではない。
【0011】
(第1実施形態)
本実施形態に係る計測装置は、軌道情報に基づき計測部が計測した対象物の表面形状情報を用いて、この軌道情報を補正することで、計測部と対象物表面との間の距離が計測部の計測範囲内となるようにしたものである。より詳しくを、以下に説明する。
【0012】
(構成)
図1に基づいて第1実施形態に係る計測装置1の構成を説明する。図1は、第1実施形態に係る計測装置1の構成を説明するブロック図である。この図1に示すように、この計測装置1は、計測対象の対象物における表面形状を計測するために用いられる。すなわち、この計測装置1は、スキャン部100と、記録部200と、制御部300と、形状データ合成部400と、補正部500と、を備えて構成されている。
【0013】
スキャン部100は、計測対象の対象物2における表面形状を計測する。すなわち、このスキャン部100は、計測部120と、駆動部140とを備えて構成されている。この計測部120は、対象物表面の形状を計測するものであって、第1計測部122と、第2計測部124と、を備え、計測ヘッドとして構成されている。この計測ヘッド、すなわち計測部120は、スキャン部100が有する支持部に計測ヘッド固定具で固定されている。
【0014】
第1計測部122は、対象物表面の形状を計測するために用いられ、被写界深度に対応する第1の計測範囲を有する。この第1計測部122は、対象物表面の凹凸形状情報を示す要素形状データを時系列に取得する。すなわち、この要素形状データは、対象物表面領域の中の一部である矩形内、或いは線状の領域内の形状データである。例えばこの第1計測部122は、レーザ照射部と、カメラと、を備えて構成され、これらの要素形状データを取得する。このレーザ照射部が線状模様に照射する照射光(レーザ光等)をカメラで撮像し、三角測量の原理で対象物表面の凹凸形状情報を取得する。つまり、所謂光切断法を用いた撮像方法で凹凸形状情報を取得する。この場合、この要素形状データは、第1計測部122の計測点から対象物までの距離、すなわち奥行き方向の距離に基づいて生成される。ここでの奥行き方向は、被写界深度の方向に対応しており、計測部120が計測に用いる照射光を照射している方向である。なお、第1計測部122は、2台以上のカメラで構成し、ステレオ視により凹凸形状情報を要素形状データとして取得してもよい。或いは、レーザスキャナ等の取得方法を用いる構成にし、凹凸形状情報を取得してもよい。
【0015】
第2計測部124は、対象物表面の形状を計測するために用いられ、第1計測部122の解像度よりも高い解像度を有し、且つ第1の計測範囲も狭い第2の計測範囲を有する。この第2計測部124は、例えば光学系を介して対象物表面を撮像するカメラである。この場合、この光学系を介して撮像するカメラの被写界深度が第2の計測範囲に対応する。なお、第2計測部124も第1計測部122と同等に構成してもよい。すなわち、レーザ照射部と、カメラと、を備えて構成してもよく、2台以上のカメラで構成し、ステレオ視により凹凸形状情報を取得してもよい。或いは、レーザスキャナ等の取得方法を用いる構成にし、凹凸形状情報を取得してもよい。
【0016】
ここでは、第2計測部124を検査用の形状情報を取得するために用い、第1計測部122を第2計測部124の計測時におけるより正確な軌道情報を得るために用いることとする。なお、計測部は、単一の光学系、すなわち第1計測部122、及び第2計測部124のいずれか一方だけで構成してもよい。この場合、軌道情報を得るための形状計測も、検査用の形状計測も単一の光学系を用いて行う。
【0017】
駆動部140は、計測部120を支持する支持部を移動させる駆動を行うと共に、計測部120を対象物2の表面に正対する向きに回転させる駆動を行う。また、この駆動部140は、第1記憶部142を備えて構成されている。この第1記憶部142は、計測装置1が有する座標系の原点からの計測部120の移動量と、この座標系に対する計測部120の回転量とを、計測部120で計測された要素形状データに関連づけて記憶する。ここでの位置座標を示す座標系は、3次元空間の直交座標系であり、平面座標を示すX軸、及びY軸と、XY平面に対して直交するZ軸で構成されている。すなわち、この座標系では(X、Y、Z)の位置座標で空間内の位置があらわされる。
【0018】
さらにまた、対象物2もスキャン固定具で固定されており、対象物2と計測部120との位置関係が計測中も維持されている。例えばこのスキャン固定具は、計測装置1が有する座標系の原点からのスキャン固定具の位置座標を出力する。また、このスキャン固定具は、対象物2を予め定められた向きと姿勢に固定する。このため、対象物2の3次元形状データが予め取得されている場合、対象物2の3次元形状データの各座標を、計測装置1が有する座標系の位置座標に変換することが可能である。
【0019】
記録部200は、計測部120を移動させるために用いる軌道情報を記録する。この軌道情報は、例えば計測部120を移動させる際に経由させる複数の経由点の位置座標である。これらの経由点は、対象物2の表面形状の情報を用いて設定される。
【0020】
制御部300は、記録部200に記録される軌道情報に基づき、計測部120を座標空間内で連続的に移動させるための軌道経路を生成し、この軌道経路にしたがって、計測部120を移動させる制御及び回転させる制御を駆動部140に対して行う。すなわち、この制御部300は、演算部302と、第2記憶部304とを備えて構成されている。この演算部302は、軌道経路を生成する演算を行うとともに、軌道生成に必要となる情報も演算する。第2記憶部304は、制御部300が実行する制御プログラムを格納したり、制御部300によるプログラム実行時の作業領域を提供したりする。
【0021】
記録部200に記録される経由点の初期座標は、対象物2の初期形状データに基づき、演算部302により演算され、設定される。この初期形状データとして、対象物2の設計データに基づく形状データ、対象物2を使用する前に計測された対象物2の形状データ、対象物2と同形状の物体から取得した形状データ、及び前回の検査時に取得した対象物2の形状データのなかのいずれかを用いることが可能である。すなわち、演算部302は、スキャン固定具が出力する情報に基づき、座標空間内に位置する対象物2と一致するように、初期形状データを設定し、この初期形状データの表面座標から一定の距離に位置する複数の座標を、経由点の初期座標として記録部200に設定する。この場合、前述のように、スキャン固定具が出力する位置座標を用いて、対象物2の初期形状データの各座標を、計測装置1が有する座標系の位置座標に変換することが可能である。
【0022】
形状データ合成部400は、第1記憶部142に記憶される計測部120の位置座標及び回転量を用いて、計測部120で得られた複数の要素形状データを、対象物表面の3次元形状データとして合成する。この対象物表面の3次元形状データは、対象物2が使用された後における対象物表面の3次元形状データであり、計測装置1の座標系で扱うことが可能である。なお、本実施形態では、形状データ合成部400が合成部に対応する。
【0023】
補正部500は、記録部200に記録された軌道情報を補正する。すなわち、形状データ合成部400で合成された3次元形状データの表面における位置座標を用いて、計測時に移動する計測部120と対象物2の表面との距離を、計測部120の計測範囲内にする補正を、記録部200に記録された軌道情報に対して行う。この補正部500は、奥行き計測範囲外判別部502と、経由点追加部504と、計測軌道補正部506とを備えて構成されている。
【0024】
奥行き計測範囲外判別部502は、経由点の初期座標に基づく軌道経路に従って、第2計測部124を用いて対象物2の表面の形状を計測させる場合に、奥行き方向に計測されない未計測領域を判別する。すなわち、この軌道経路に沿って第2計測範囲を設定し、第2計測範囲外に位置する対象物表面の3次元形状データの領域を未計測領域として判別する。この対象物表面の3次元形状データは、対象物2が使用された後のデータであり、形状データ合成部400で合成されたデータである。この未計測領域は、摩耗や変形が生じた対象物2の表面領域に対応し、初期形状データにおける対象物表面の3次元形状から形状が変化などした領域である。なお、本実施形態では、奥行き計測範囲外判別部502が第1判別部に対応する。
【0025】
経由点追加部504は、奥行き計測範囲外判別部502で判別した未計測領域を計測するために追加する経由点の位置座標を得る。なお、本実施形態では、経由点追加部504が第1取得部に対応する。
【0026】
計測軌道補正部506は、記録部200に記録された経由点の位置座標の情報を補正する。ここでは、経由点追加部504で得られた経由点の位置座標を記録部200に追加する補正を行う。
【0027】
(作用)
図1を参照にしつつ、図2に基づいて、軌道情報を補正する補正処理について説明する。図2は、軌道情報を補正する補正処理について説明する図である。ここでは、軌道経路から第1計測部122が計測した計測結果を用いて経由点を追加する例を説明する。この軌道経路は、対象物2の設計データに基づいて得られた経由点の初期座標を用いて演算部302で生成された軌道経路である。
【0028】
この図2に示すように、横軸は、計測装置1が有する座標系のX軸を示し、縦軸は、計測装置1が有する座標系のY軸を示している。Aで示す実線が設計データに基づく初期形状データの表面領域の一断面を示している。つまり、実線Aは、対象物2が使用される前の状態における表面形状に対応している。
【0029】
Bで示す丸印のそれぞれは、経由点の座標初期値の例であり、軌道情報として記録部200に記録されている。経由点の座標初期値は、実線Aから第2計測範囲に基づく所定距離にある位置、すなわち第2計測範囲内、に設定されている。
【0030】
Bで示す破線は、制御部300が経由点の座標初期値に基づき生成した軌道経路の例である。制御部300は、この軌道経路に従い計測部120を移動させる移動駆動と、対象物表面に正対させる回転駆動とを、駆動部140に対して行う。ここでの破線Bは、実線Aとほぼ平行であり、第1計測部122は、実線Aとほぼ平行な軌道経路に従い移動し、対象物表面を正対する方向から計測する。
【0031】
破線Cの両端を実線Aに重ねて延長した線が、形状データ合成部400が合成した対象物表面の3次元形状データの一断面を示している。すなわち、破線Bで示す軌道経路にしたがって第1計測部122が計測した計測結果に基づいて、形状データ合成部400により合成された対象物表面の3次元形状データの一断面を示している。この破線Cで示される領域が、対象物2の使用により生じた摩耗や変形の領域に対応する。第1計測部122の第1計測範囲は、第2計測範囲よりも広いため、形状変形が生じている領域の要素形状データも得ることができるのである。
【0032】
奥行き計測範囲外判別部502は、破線Bで示す軌道経路に従って第2計測部124で対象物の表面の形状を計測する場合に、奥行き方向に計測されない未計測領域を上述の対象物表面の3次元形状データの中から判別する。すなわち、実破線Bに沿って設定された第2計測範囲内に、合成された対象物表面の3次元形状データが、含まれるかが判別される。ここでは、破線Cが変形した領域を示しており、破線Bに沿って設定された第2計測範囲内に含まれないため、破線Cの一部が未計測領域として判別されている。
【0033】
このため、経由点追加部504は、この未計測領域に対して、Dで示す経由点を追加する。すなわち、経由点追加部504は、破線Cの未計測領域中で、破線Bで示される軌道経路から最も遠い座標が、第2計測部124の第2計測範囲内に含まれるように経由点Dを追加する。そして、計測軌道補正部506は、記録部200に記録された位置座標の情報に、経由点追加部504で得られた位置座標を追加する補正を行う。
【0034】
以上が、軌道情報を補正する補正処理についての説明であるが、次に、図3に基づいて計測装置1全体の処理の流れを説明する。
【0035】
図3は、計測装置1全体の処理の流れを説明するフローチャートを示す図である。この図3に示すように、まず、計測対象の対象物が設置され、計測装置1のスキャン固定具で固定される(ステップS302)。
【0036】
次に、スキャン部100の支持部に固定された計測ヘッド、すなわち計測部120が有する第1計測部122が、対象物表面における矩形もしくは線状領域内の要素形状データを複数取得する(ステップS304)。すなわち、この第1計測部122は、対象物表面の凹凸形状情報を示す要素形状データを、移動にしたがって時系列に取得する。続いて、形状データ合成部400は、記憶部に記憶される計測部120の位置座標及び回転量を用いて、第1計測部122で得られた要素形状データを、対象物表面の3次元形状データとして合成する。続いて、この3次元形状データは、計測装置1の座標系に座標変換される。
【0037】
次に、奥行き計測範囲外判別部502は、奥行き方向に計測されない未計測領域を上述の対象物表面の3次元形状データの中から判別する(ステップS306)。すなわち、この奥行き計測範囲外判別部502は、初期値の経由点に基づく軌道経路に沿って第2計測部124の第2計測範囲を設定する。続いて、設定された第2計測範囲外に位置する対象物表面の3次元形状データを未計測領域として判別する。
【0038】
次に、経由点追加部504は、奥行き計測範囲外判別部502にて判別した未計測領域の中で、軌道経路から最も距離の遠い座標を計算し(ステップS308)、第2計測範囲の中心部に位置する経由点を追加する(ステップS310)。すなわち、経由点追加部504は、未計測領域の中から、初期値の経由点に基づく軌道経路から最も距離の遠い座標を取得する。続いて、この座標が第2の計測範囲の中心に位置するように経由点を追加し、この追加した経由点の位置座標を得るのである。続いて、計測軌道補正部506は、記録部200に経由点追加部504で得られた位置座標を追加する補正を行う。これにより、補正後の軌道情報が生成される。
【0039】
次に、奥行き計測範囲外判別部502は、新たに追加された経由点を加えた場合に、未計測領域が存在するか判別する(ステップS312)。すなわち、新たに追加された経由点を加えた経由点に基づく補正後の軌道経路に沿って第2計測部124の第2計測範囲を再度設定する。続いて、設定された第2計測範囲外に位置する対象物表面の3次元形状データ、すなわち未計測領域が存在するかを判別する。
【0040】
未計測領域が存在する場合(ステップS312:YES)、ステップS36に戻る。一方で、未計測領域が存在しない場合(ステップS312:NO)、制御部300は、記録部200に記録される経由点の統合処理を行う(ステップS314)。すなわち、制御部300は、記録部200に記録される経由点に基づく新たな軌道経路を生成する。次に、制御部300が生成した軌道経路にしたがって、第2計測部124を移動させ、より高解像度な計測データを取得させ(ステップS316)、計測装置1の全体処理を終了する。
【0041】
このように、計測部120の計測範囲が狭い場合でも、計測部120と対象物表面との間の距離を計測部120の計測範囲内に維持するので、解像度のより高い対象物表面の形状データを得ることが可能となり、き裂の検出率が向上する。
【0042】
(効果)
以上のように、本実施形態に係る計測装置1によれば、計測部120が計測した対象物2の表面形状情報を用いて、補正部500が軌道情報を補正することとした。このため、計測部120と対象物表面との間の距離を計測部120の計測範囲内に維持することができる。
【0043】
(第2実施形態)
上述した第1実施形態においては、奥行き計測範囲外判別部502において、奥行き方向の未計測領域が判別された場合、経由点追加部504が奥行き方向に経由点を追加していたが、第2実施形態においては、対象物表面に沿った方向の未計測領域、及び重複領域を判別し、未計測領域、及び重複領域を無くすように経由点の間隔を変更、或いは新たな経由点を付加するようにしている。以下、上述した第1実施形態と異なる部分を説明する。
【0044】
(構成)
図4に基づいて第2実施形態に係る計測装置1の構成を説明する。図4は、第2実施形態に係る計測装置1の構成を説明するブロック図である。この計測装置1は、この図4に示すように、補正部500が、計測領域判別部508と、経由点間隔変更部510と、傾き補正部512とを、更に有することで第1実施形態に係る計測装置1と相違する。
【0045】
計測領域判別部508は、形状データ合成部400で合成した対象物表面の3次元データにおいて、未計測領域、及び計測領域が重複する重複計測領域が存在するかを判別する。奥行き計測範囲外判別部502が奥行き方向の未計測領域を判別していたのに対して、計測領域判別は、対象物表面に沿った方向の未計測領域を判別することで相違する。なお、本実施形態では、計測領域判別部508が第2判別部に対応する。
【0046】
経由点間隔変更部510は、未計測領域、及び重複領域を無くすように経由点の間隔を変更、或いは新たな経由点を付加するための情報を取得する。なお、本実施形態では、経由点間隔変更部510が第2取得部に対応する。
【0047】
傾き補正部512は、軌道経路上を移動する計測部120が対象物表面と正対するように軌道情報を補正する。すなわち、傾き補正部512は、軌道経路にしたがって計測部120を移動させる場合に、形状データ合成部400が合成した対象物表面の3次元形状データと正対するように記録部200に記録される軌道情報を変更させる。
【0048】
(作用)
まず、図5に基づいて計測領域判別部508における未計測領域、及び重複計測領域の判別動作について説明する。図5は、対象物表面に沿った方向の未計測領域を例示する模式図である。この図5に示すように、経由点11,12,13は計測部120が移動する軌道経路1を生成するために用いられる経由点である。また、経由点21,22,23は計測部120が移動する軌道経路2を生成するために用いられる経由点である。この軌道経路1を1番として表記し、隣接する軌道経路2を2番と表記する。
【0049】
さらにまた、経由点から隣接する経由点の間を移動する間に、計測部120が計測する領域を抽出領域とする。この図5に示す例では、経由点11から隣接する経由点12の間を移動する間に、計測部120が計測する領域を抽出領域11−12とする。すなわち、この抽出領域11−12は、経由点11の検査領域の最外殻の座標値と経由点12の検査領域の最外殻の座標値を頂点とした多角形領域である。同様に、経由点12から隣接する経由点13の間を移動する間に、計測部120が計測する計測領域を抽出領域12−13とする。同様に軌道経路2に関しても経由点間の領域を、抽出領域21−22、及び抽出領域22−23とする。
【0050】
ここでの未計測領域は、抽出領域11−12、抽出領域12−13、抽出領域21−22、及び抽出領域22−23のいずれにも属さない領域である。一方で、重複領域は、抽出領域11−12、抽出領域12−13、抽出領域21−22、及び抽出領域22−23の中の複数の領域に含まれる領域である。このような、未計測領域、及び重複領域のいずれかは、計測軌道補正部506で行った補正に応じて、例えば奥行き方向に軌道経路が変更されることで生じる場合がある。すなわち、軌道経路が変更されているので計測部506の計測範囲が変更され、未計測領域、及び重複領域のいずれかが生じる場合がある。
【0051】
計測領域判別部508は、計測軌道補正部506で補正した軌道情報で定まる計測範囲を、対象物表面の3次元形状データに投影、すなわち同一の座標系で扱うための座標変換処理を行う。図5に示す例では、抽出領域11−12、抽出領域12−13、抽出領域21−22、及び抽出領域22−23と対象物表面の3次元形状データとを座標系統合する。この座標系統合では、まず、計測範囲を示す3次元データ及び対象物表面の3次元形状データが一致する領域内の3次元座標点を対応点として、最低3点以上選定する。続いて、これらの選定された3次元座標点の対応点間の差異を座標系統合誤差として演算する。続いて、3次元座標系の各軸の平行移動量と回転量を座標系統合誤差が最小となるように最小二乗法等を用いて求める。そして、得られた平行移動量と回転量を用いて、双方いずれかにおける3次元データのすべての3次元座標を座標変換する。これにより、計測範囲を示す3次元データ及び対象物表面の3次元形状データを同一の座標系で扱うことが可能になる。なお、軌道情報で定まる計測範囲を示す3次元データと、対象物表面の3次元形状データとが同一座標系に存在する場合、基準となる座標原点が一致しているため、双方の3次元座標にたいしては座標変換を行なわずに処理を進める。
【0052】
次に、計測領域判別部508は、3次元形状データに対してラベリング処理を行う。これにより、未計測領域、及び重複計測領域のうちの少なくとも一方が存在するか判別する。この処理では、まず、それぞれの抽出領域内における対象物表面の3次元形状データの座標に、抽出領域に対応するラベル番号(識別番号)を付与する。この場合、ラベル番号が付与されなかった領域を未計測領域として判別する。一方で、複数のラベル番号が付与された領域を重複計測領域と判別する。
【0053】
次に、抽出領域11−12と抽出領域21−22とについての判別処理を説明する。上述のラベリング処理を行う場合、抽出対象とする3次元座標は、抽出領域11−12、及び抽出領域21−22それぞれの領域内の3次元座標である。これら多角形領域内の3次元座標の各点について、まずラベル番号0を付与する。続いて、抽出領域11−12内に存在する3次元座標には、ラベル番号1を付与し、抽出領域21−22内に存在する3次元座標には、ラベル番号2を付与する。ここで、抽出領域21−22を付与する際に、すでにラベル番号1が付与されていた場合には、重複計測領域と判別され、ラベル番号3を付与する。この処理を多角形領域の3次元座標の全点に対して実施した結果、ラベル番号0となっている3次元座標点が未計測領域と判別される。
【0054】
次に、経由点間隔変更部510の処理動作を説明する。経由点間隔変更部510の処理動作は、未計測領域に対する処理動作と、重複計測領域に対する処理動作とで処理が異なる。まず、未計測領域に対する処理動作について説明する。ここでは、前述の軌道経路1に対して、軌道経路2の間に未計測領域が存在した場合について説明する。この場合、軌道経路2を軌道経路1に近づけ未計測領域を消去する方法1(軌道情報生成の最適化方法1)と、軌道経路1と軌道経路2の間に等間隔となるように新規の軌道経路を設け未計測領域を消去する方法2(軌道情報生成の最適化方法2)とがある。いずれの方法の場合も、まず、未計測領域の寸法値、すなわち幅や高さ(長さ)を演算処理する。
【0055】
方法1では、軌道経路1の経由点12と軌道経路2の経由点22を結ぶ線分の長さとその線分上に存在する未計測領域の長さを求める。続いて、経由点22の位置を経由点22から経由点12に向かうベクトルに沿って、経由点22をベクトル方向に、未計測領域の長さ分移動した点を新規経由点21として設定する。このように、ベクトル方向に沿って未計測領域の長さ分経由点22を移動させるので、抽出領域11−12と抽出領域21−22とは接することになる。これにより、未計測領域が消去される。
【0056】
経由点間隔変更部510は、このベクトルの向きと長さを、経由点の位置座標の変更量として、計測軌道補正部506に出力する。同様にして、その他の経由点についても移動することで、未計測領域が消去された状態を生成する。
【0057】
一方、方法2では、軌道経路1の経由点11と軌道経路2の経由点21を結んだ線分の中点に新たに軌道経路3として、経由点31を設定する。同様にして、軌道経路3上に複数の経由点を設定することで、未計測領域を消去するのである。経由点間隔変更部510は、新たに設定した経由点の位置座標を計測軌道補正部506に出力する。
【0058】
次に、重複計測領域に対する処理動作の場合、重複計測領域の寸法値すなわち幅や高さ(長さ)を演算処理する。重複計測領域を消去する方法3(軌道情報生成の最適化方法3)は、軌道経路1の経由点11と軌道経路2の経由点21を結ぶ線分の長さとその線分上に存在する重複計測領域の長さを求める。経由点21の位置を、経由点11から経由点21に向かう延長線方向のベクトルに沿って、長さ分移動させた点を新規経由点21として設定する。経由点間隔変更部510は、このベクトルの向きと長さを、経由点の位置座標の変更量として、計測軌道補正部506に出力する。同様にして、その他の経由点についても移動することで、重複計測領域を消去するのである。計測軌道補正部506は、記録部200に記録された位置座標の情報を、経由点間隔変更部510から入力された経由点の位置座標の変更量、或いは追加した経由点の位置座標に基づき補正する。
【0059】
なお、この経由点間隔変更部510において候補点の位置が補正された軌道経路は、軌道経路に急激な変化を生む場合がある。そこで、制御部300で生成する軌道経路の生成方法を選択できるように構成されている。すなわち、経由点間を線型的に結び軌道経路を生成する方法と、3次元スプライン補間により経由点間を平滑化した状態で軌道経路を生成する方法とが、任意に選択できるように構成されている。
【0060】
次に、傾き補正部512の処理動作を説明する。対象物表面の形状が急峻に変化する領域などにおいて、記録部200に記録される軌道情報に基づき生成された軌道経路に沿って計測部120を対象物表面に正対させることができない領域が生じる場合がある。傾き補正部512は、このような領域を計測する場合にも計測部120が対象物表面に正対するように軌道情報を変更させる。すなわち、傾き補正部512は、計測部120が軌道経路に沿って対象物表面に正対させる場合に、正対が困難である領域と計測対象表面に対する計測部の傾きを求める。この角度は角度補正前の軌道情報により得られた量であり、傾き補正部512は、計測部120をこの角度と逆側に傾けるように経由点を移動させ、補正された軌道情報を生成する。この場合、補正された計測軌道と対象物表面との距離は計測範囲内に維持される。これにより、計測範囲内の軌道経路でかつ、対象物2と正対した状態で計測可能な軌道情報が生成される。このため、解像度のより高い要素形状データが取得され、き裂の検出率を向上させることが可能である。
【0061】
次に、図6に基づいて第2実施形態に係る計測装置1全体の処理の流れを説明する。図6は、第2実施形態に係る計測装置1全体の処理の流れを説明するフローチャートを示す図である。なお、図3で説明した第1実施形態に係る計測装置1全体の処理の流れと同等の処理には同一の番号を付して説明を省略する。
【0062】
まず、ステップS302〜S312の処理を行う。次に、計測領域判別部508は、形状データ合成部400で合成した対象物表面の3次元データの検査領域において、未計測領域、及び計測領域が重複する重複計測領域が存在するか判別する(ステップS602)。次に、経由点間隔変更部510は、計測領域判別部508で未計測領域、及び重複計測領域のいずれかが存在すると判別された場合、判別された未計測領域、及び重複領域を無くすように経由点の間隔を変更、或いは新たな経由点を付加する(ステップS604)。
【0063】
次に、傾き補正部512は、軌道経路上を移動する計測部120が対象物表面と正対するように軌道情報を補正する(ステップS606)。このように、計測領域判別部508が、未計測領域、及び計測領域が重複する重複計測領域が存在するか判別し、経由点間隔変更部510は、判別された未計測領域、及び重複領域を無くすように経由点の間隔を変更、或いは新たな経由点を付加する。そして、傾き補正部512は、計測部120が対象物表面に正対するように軌道情報を補正し、ステップS314〜S316の処理を行い、全体処理を終了する。
【0064】
(効果)
以上のように、本実施形態に係る計測装置1によれば、計測領域判別部508が、未計測領域、及び計測領域が重複する重複計測領域のいずれかが存在すると判別された場合には、経由点間隔変更部510は、判別された未計測領域、及び重複領域を無くすように経由点の間隔を変更、或いは新たな経由点を付加することとした。これにより、未計測領域を無くし、対象物表面の全体をもれなく計測ができる。また、重複領域を無くすことで、対象物表面の計測をより効率的に行うことができる。さらにまた、傾き補正部512が、対象物表面と計測部120が正対するように軌道情報を補正するので、解像度のより高い要素形状データが取得され、き裂の検出率を向上させることができる。
【0065】
(第3実施形態)
上述した奥行き計測範囲外判別部502において、奥行き方向の未計測領域が判別された場合、経由点追加部504が奥行き方向に経由点を追加していたが、第3実施形態においては、複数回の測定を奥行き方向の深度を変えて行い、奥行き方向の計測範囲を拡大させる処理を行うようにしている。以下、上述した第2実施形態と異なる部分を説明する。
【0066】
(構成)
図7に基づいて第4実施形態に係る計測装置1の構成を説明する。図7は、第3実施形態に係る計測装置1の構成を説明するブロック図である。この図7に示すように、第3実施形態に係る計測装置1は、計測範囲拡大取得部600と、時系列スキャンデータ統合部602と、を更に備えることで第2実施形態に係る計測装置1と相違する。
【0067】
計測範囲拡大取得部600は、奥行き方向の計測範囲を拡大させる処理を行う。すなわち、この計測範囲拡大取得部600は、対象物表面の3次元形状データの中から奥行き方向の未計測領域が判別された場合に、奥行き方向に更に深い軌道経路を生成し、未計測領域を計測部120に計測させる。上述の経由点追加部504は、軌道の一部を奥行き方向の深い方向に移動させるための経由点を追加するのに対して、この計測範囲拡大取得部600は、複数回の測定を奥行き方向の深度を変えて行い、奥行き方向の計測範囲を拡大させる処理を行うのである。なお、計測範囲拡大取得部600の処理は、第1計測部122を用いた計測の際に行ってもよく、第2計測部124を用いた計測の際に行ってもよい。
【0068】
時系列スキャンデータ統合部602は、計測範囲拡大取得部600で、奥行き方向の計測範囲を拡大させる処理を行った場合に、拡大された計測範囲から計測された形状データと、通常の計測範囲で取得された形状データとを統合する処理を行う。すなわち、スキャンデータ統合部は、深度を変えて計測され、形状データ合成部400で合成された複数の形状データを統合する。補正部500は、形状データ合成部400で統合された対象物2の形状の情報に基づき、補正処理を行う。
【0069】
(作用)
次に、計測範囲拡大取得部600の処理動作について説明する。計測範囲拡大取得部600は、奥行き方向の計測範囲を拡大させる処理を行う。図7を参照にしつつ、図8に基づいて拡大された計測範囲について説明する。図8は、拡大された計測範囲について説明する模式図である。横軸は、計測部120が移動する方向の座標であり、縦軸は、奥行き方向の座標であり、下側が深度の深い方向である。この図8に示すように、初期の軌道経路1から計測範囲1内の領域が計測される。しかしながら、対象物2の変形が大きいため、計測範囲1内に入らない対象物2の表面領域が生じている。このため、計測範囲拡大取得部600は、新たな軌道経路2を生成し、軌道経路2の計測範囲2内に未計測領域が入るように処理を行う。
【0070】
この処理において、まず、計測範囲拡大取得部600は、軌道経路1からの計測で計測部120が取得した要素形状データの値に基づき未計測領域を判別する。すなわち、この計測部120は、計測範囲外の領域に対して計測不能値を要素形状データの値として出力する。そこで、計測範囲拡大取得部600は、形状データ合成部400で合成された対象物表面の3次元形状データの中から計測不能値を検索し、任意に設定した個数の計測不能値が連続した場合に、計測不能値が取得された領域を未計測領域として判別する。
【0071】
また、計測不能値が連続しなかった場合には、ノイズなどの計測誤差が生じたのか、計測不能な領域が存在するのかを判別する。この判別処理では、まず、対象物表面の3次元形状データにおいて、計測不能値が検出された座標を中心とする予め定められた区間内の座標値を用いて、分散値を求める。続いて、求めた分散値に基づき計測誤差を含む値か、計測不能領域であるか判別する。そして、この分散値が誤差範囲を示す閾値以上の場合に、未計測領域であると判別する。
【0072】
このような処理により、未計測領域が存在すると判別された場合、計測部120の計測範囲1の半分の距離を奥行き方向に移動させた軌道経路2を生成する。軌道経路2から計測部120に対象物2の形状データを更に取得させる。軌道経路2から取得した要素形状データを合成した3次元形状データにも未計領域が含まれる場合、さらに、計測部120の計測範囲2の半分の距離を奥行き方向に移動させた軌道経路を生成する。このようにして、本来取得すべき形状データが得られるまで、深度の深い方向に新たな軌道経路を生成する処理を繰り返し、奥行き方向の未計測領域が生じないようにするのである。
【0073】
次に、時系列スキャンデータ統合部602の統合処理について説明する。ここでは、深度を変えて2回計測された、2つの時系列に得られた形状データの統合処理について説明する。なお、各々取得される形状データは、線状データ、面データのいずれを用いる場合も同様に処理することが可能である。
【0074】
1回目の計測で得た時系列の形状データは、計測不能値か計測誤差を含む値もしくは、双方を含む値である。このため、形状データ合成部400で合成された対象物表面の3次元形状データの中から、計測不能値もしくは計測誤差を含む値を除去する除去処理を実施する。除去処理された3次元形状データに対して、2回目の形状データに基づき形状データ合成部400で合成された対象物表面の3次元形状データは、計測範囲1を半分ずらしたデータである。このため、3次元形状データのそれぞれは、計測領域の半分が重なっており、一致もしくは近似した形状データがそれぞれに含まれる。
【0075】
そこで、1回目の計測に基づく3次元形状データの下側半分と、2回目の計測に基づく3次元形状データの上半分を形状比較することで、一致もしくは近似した形状領域を検出し、その平行移動量を算出する。つまり、1回目の3次元形状データの下側半分をテンプレートとして、2回目の3次元形状データに重ね合わせ、近接する計測点座標の差分の二乗和が最小となるよう上下方向に平行移動させ、最も重なる位置までの距離を平行移動量として算出する。ここでは、上下方向の二乗和に対して、最小値か判別するための閾値を設け、閾値以下であれば、一致したと判断し、その最小値となった位置に対応する平行移動量を統合処理に用いる。
【0076】
また、上下の平行移動では閾値以上の二乗和しか得られない場合には、左右方向を追加した平行移動を実施する。この場合も、近接する計測点座標の差分の二乗和が最小となる平行移動量を算出する。このようにして求めた平行移動量を用いて、1回目の形状データに対して、2回目の形状データを平行移動する座標変換を行いそれぞれの3次元形状データを統合処理する。なお、1回目と2回目の3次元形状データそれぞれの中で重複する計測値は2回目の形状データを優先選択する。この優先選択の方法は、任意に設定してもよい。このように、計測部120により取得される対象物2の形状変化が1回の軌道経路(スキャン)からの計測で取得可能な計測範囲を超えた場合にも、形状データの欠損のない対象物2の計測データを得られることが可能である。そして、補正部500は、時系列スキャンデータ統合部602で統合された対象物2の形状の情報に基づき、補正処理を行う。すなわち、時系列スキャンデータ統合部602で統合された対象物2の形状の情報に基づき、計測部120の計測範囲に対象物表面が入る軌道経路を生成するように記録部200に記録される軌道情報を補正する。すなわち、図7を参照して、時系列スキャンデータ統合部602で統合された対象物2の形状の情報に基づき、奥行き計測範囲外判別部502及び経由点追加部504の処理、計測領域判別部508及び経由点間隔変更部510の処理、傾き補正部512の処理の少なくともいずれかを行う。
【0077】
(効果)
以上のように、本実施形態に係る計測装置1によれば、計測範囲拡大取得部600が奥行き方向の未計測領域を判別した場合には、奥行き方向に計測範囲をずらした軌道経路を生成し、この軌道経路にしたがい計測を計測部に再度行なわせることとした。このため、深度の深い新たな軌道経路にしたがった計測を行うことができ、奥行き方向の未計測領域が生じないようにできる。さらにまた、計測範囲が重なるように軌道経路を生成したので、時系列スキャンデータ統合部602は、異なる軌道経路から生成された3次元形状データをより精度よく統合することができる。
【0078】
以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置および方法は、その他の様々な形態で実施することができる。また、本明細書で説明した装置および方法の形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。
【符号の説明】
【0079】
1:計測装置、120:計測部、122:第1計測部、124:第2計測部、140:駆動部、200:記録部、300:制御部、400:形状データ合成部、500:補正部、502:奥行き計測範囲外判別部、504:経由点追加部、506:計測軌道補正部、508:計測領域判別部、510:経由点間隔変更部、512:傾き補正部、600:計測範囲拡大取得部、602:時系列スキャンデータ統合部
図1
図2
図3
図4
図5
図6
図7
図8