【実施例】
【0034】
以下、本発明の具体的実施例を挙げ、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。
【0035】
原料として、Bi
2O
3、SrCO
3、CaCO
3、Na
2CO
3、TiO
2の各粉末を用意した。
【0036】
これらを組成が表1となるように秤量して、ボールミルにて湿式混合した後、乾燥して各混合粉を得た。そして、これらの混合粉を800℃で仮焼し、仮焼粉を得た。
【0037】
得られた仮焼粉:100重量部と、ポリビニルアルコール樹脂:0.6重量部とを混合して、誘電体造粒粉を作製した。
【0038】
そして、作製した誘電体造粒粉を用いて、金型プレス:0.6tで仮プレスを行い、その後、金型プレス:1.2tで本プレスを行うことで、直径12mmφの円盤状バルク体を得た。
【0039】
次いで、得られたバルク体について、脱バインダ処理(昇温速度:150℃/時間、保持温度:400℃、温度保持時間:2時間、雰囲気:空気中)で行い、焼成(昇温速度:200℃/時間、保持温度:表1に示す温度、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気:空気中)で行いセラミック焼成体を得た。
【0040】
得られたセラミック焼成体の両面をラップ研磨盤にて研磨した後、電極としてAgを1μmの厚さで蒸着させ、試料番号1〜23のセラミックコンデンサ得た。
【0041】
【表1】
【0042】
得られた試料番号1〜23のセラミックコンデンサについて、比誘電率、直流電圧の印加による比誘電率の変化(DCバイアス特性)、容量温度変化率△C/C25を下記に示す方法により測定した。
【0043】
比誘電率
セラミックコンデンサに対し、25℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。そして、比誘電率を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。比誘電率は高いほうが好ましく、400以上を良好であると判断した。
【0044】
DCバイアス特性
セラミックコンデンサに対し、25℃において、直流電圧5V/μmの電界印加状態に保持し、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。DCバイアス特性は0V/μmの電界下における静電容量に対する変化率として(1)式に基づき算出した。
DCバイアス特性=(5V/μmの電界下での静電容量−0V/μmの電界下での静電容量)/0V/μmの電界下での静電容量×100 ・・・(1)
本実施例では、DCバイアス特性が±15%以内を流電圧の印加による比誘電率の低下が少なく、良好であると判断した。
【0045】
容量温度変化率△C/C25
セラミックコンデンサに対し、−55℃〜150℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。容量温度変化率は基準温度の静電容量値C25に対して、適用される温度範囲での静電容量変化率の最大値最小値で規定した。温度T℃における静電容量値の変化率は(3)式に基づき算出した。
静電容量変化率=(温度T℃における静電容量−25℃(基準温度)における静電容量)/(25℃(基準温度)における静電容量)×100 ・・・(2)
本実施例では、−55℃〜150℃の範囲内においてEIA規格に規定するX8R特性規格に基づき、容量温度変化率が±15%以内のものを、良好であると判断した。
【0046】
抵抗温度変化率△R/R25
セラミックコンデンサに対し、−55℃〜150℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)4Vrmsの信号を入力し、抵抗値Rを測定した。抵抗温度変化率は基準温度の抵抗値R25に対して、適用される温度範囲での抵抗変化率の最大値最小値で規定した。温度T℃における抵抗値の変化率は(3)式に基づき算出した。
抵抗変化率=(温度T℃における抵抗−25℃(基準温度)における抵抗)/(25℃(基準温度)における抵抗)×100 ・・・(3)
本実施例では、−55℃〜150℃の範囲内において、抵抗温度変化率が25%以内のものを良好(○)10%以内のものを、大変良好(◎)であると判断した。
【0047】
【表2】
【0048】
表2に示すように、試料番号1から15では、温度に対する静電容量の変化率が−55℃〜150℃の範囲内でEIA規格に規定するX8R特性規格を満足する。しかも、DCバイアス特性も±15%以内を満足している。
【0049】
また試料番号1から15と試料番号16から23とを比較することで、その領域は(Na
0.5Bi
0.5)TiO
3とSrTiO
3とCaTiO
3のモル比をa:b:cとすると((Na
0.5Bi
0.5)TiO
3:SrTiO
3:CaTiO
3=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲がA(0.45、0.35、0.20)、B(0.25、0.55、0.20)、C(0.15、0.55、0.30)、D(0.35、0.35、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることがわかる。
【0050】
試料番号16と19では、(Na
0.5Bi
0.5)TiO
3の含有率が0.15以下であるため、比誘電率が低く、温度特性が悪かった。
【0051】
試料番号16と21では、SrTiO
3の含有率が0.55以上であるため、温度特性が悪かった。また試料番号17と18と20では、SrTiO
3の含有率が0.35以下であるため、DCバイアス特性が好ましくなかった。
【0052】
試料番号16と19と23では、CaTiO
3の含有率が0.3以上であるため、温度特性が悪かった。また試料番号17と22では、CaTiO
3の含有率が0.2以下であるため、DCバイアス特性が好ましくなかった。
【0053】
また試料番号9から試料番号15と試料番号1から試料番号8とを比較することで、その領域は(Na
0.5Bi
0.5)TiO
3とSrTiO
3とCaTiO
3のモル比をa:b:cとすると((Na
0.5Bi
0.5)TiO
3:SrTiO
3:CaTiO
3=a:b:c)、前記三成分の組成図上で、(a、b、c)の組成の範囲が、E(0.35、0.45、0.20)、F(0.30、0.50、0.20)、G(0.20、0.50、0.30)、H(0.25、0.45、0.30)で囲まれる領域内(各点を結ぶ線上を含む。)であることがわかる。
【0054】
これらから、誘電体磁器組成物組成を本発明所定の範囲とすることにより、良好なDCバイアス特性と広範囲の温度特性をもつ磁器組成物を得られることが確認できた。