特許第6548657号(P6548657)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 高砂香料工業株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6548657
(24)【登録日】2019年7月5日
(45)【発行日】2019年7月24日
(54)【発明の名称】アルコール類の製造方法
(51)【国際特許分類】
   C07C 45/60 20060101AFI20190711BHJP
   C07C 45/59 20060101ALI20190711BHJP
   C07C 47/27 20060101ALI20190711BHJP
   C07F 9/36 20060101ALI20190711BHJP
   C07B 61/00 20060101ALN20190711BHJP
【FI】
   C07C45/60
   C07C45/59
   C07C47/27
   C07F9/36
   !C07B61/00 300
【請求項の数】4
【全頁数】20
(21)【出願番号】特願2016-550078(P2016-550078)
(86)(22)【出願日】2015年8月31日
(86)【国際出願番号】JP2015074733
(87)【国際公開番号】WO2016047388
(87)【国際公開日】20160331
【審査請求日】2018年5月31日
(31)【優先権主張番号】特願2014-196358(P2014-196358)
(32)【優先日】2014年9月26日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000169466
【氏名又は名称】高砂香料工業株式会社
(74)【代理人】
【識別番号】100189131
【弁理士】
【氏名又は名称】佐伯 拓郎
(74)【代理人】
【識別番号】100182486
【弁理士】
【氏名又は名称】中村 正展
(74)【代理人】
【識別番号】100158872
【弁理士】
【氏名又は名称】牛山 直子
(74)【代理人】
【識別番号】100147289
【弁理士】
【氏名又は名称】佐伯 裕子
(72)【発明者】
【氏名】金井 求
(72)【発明者】
【氏名】松永 茂樹
【審査官】 山本 吾一
(56)【参考文献】
【文献】 HOFFMANN,R.W. et al,Syn-selective addition of enol borates to aldehydes,Tetrahedron Letters,1984年,Vol.25, No.17,p.1781-4,ISSN 0040-4039
【文献】 GENNARI,C. et al,Stereoselective aldol condensations via alkenyloxy dialkoxyboranes: mechanistic and stereochemical details,Tetrahedron,1984年,Vol.40, No.20,p.4051-8,ISSN 0040-4020
【文献】 GENNARI,C. et al,Enol boronates: new practical reagents for regioselective aldol condensations,Tetrahedron Letters,1984年,Vol.25, No.21,p.2279-82,ISSN 0040-4039
【文献】 GENNARI,C. et al,Stereoselective aldol condensations via enol boronates,Tetrahedron Letters,1984年,Vol.25, No.21,p.2283-6,ISSN 0040-4039
【文献】 HOFFMANN,R.W. et al,Stereoselective syntheses of alcohols, XXV. Generation of enol borates and their addition to aldehydes,Liebigs Annalen der Chemie,1987年,No.11,p.977-85,ISSN 0170-2041
【文献】 MUKAIYAMA,T. et al,Stereoselective crossed aldol reaction via boron enolates generated from α-iodo ketones and 9-borabicyclo[3.3.1]nonane,Bulletin of the Chemical Society of Japan,2003年,Vol.76, No.4,p.813-823,ISSN 0009-2673
【文献】 OISAKI Kounosuke et al.,New chiral bis(diphenylphospholane) ligands: design, synthesis, and application to catalytic enantioselective aldol reaction to ketones,Tetrahedron Letters,2005年,46 (25),p.4325-9,ISSN 0040-4039
【文献】 FERRARIS,D. et al,Catalytic, enantioselective alkylations of N,O- and N, N-acetals and hemiacetals,Tetrahedron,1999年,Vol.55, No.29,p.8869-8882,ISSN 0040-4020
【文献】 OHKOUCHI,M. et al,カルボン酸銀(I)-ビス(ホスフィン)錯体を触媒とする効率的向山アルドール反応,日本化学会誌,2002年,No.2,p.223-229,ISSN 0369-4577
【文献】 LU,A. et al,Chiral N-thiophosphoryl imine-induced diastereoselective aza-Morita-Baylis-Hillman reaction,Tetrahedron: Asymmetry,2008年,Vol.19, No.16,p.1886-1890,ISSN 0957-4166
(58)【調査した分野】(Int.Cl.,DB名)
C07C 45/00
C07C 47/27
CAplus/REGISTRY(STN)
CASREACT(STN)
(57)【特許請求の範囲】
【請求項1】
銅化合物及び光学活性二座ホスフィン化合物の存在下、下記一般式(2)
【化1】
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。R及びRは炭素数1〜4のアルキル基を表すか、又はRとRとでアルキル基で置換されていてもよいメチレン鎖を形成してもよい。)
で表されるホウ酸エノールエステル類と、下記一般式(1)
CH=Z (1)
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Zは酸素原子又はNX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。)
で表される化合物とを反応させることを特徴とする、下記一般式(3)
【化2】
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Rは水素原子又は炭素数1〜6のアルキル基を表す。Yは、水酸基又はNHX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。nは0又は1を表す。*は不斉炭素原子を表す。)
で表される化合物の製造方法。
【請求項2】
請求項1に記載の製造方法で製造された反応成績体に、さらに一般式(2)で表されるホウ酸エノールエステル類を反応させることを特徴とする、請求項1に記載の製造方法。
【請求項3】
一般式(2)のホウ酸エノールエステル類が、イリジウム触媒を用いた下記スキームの異性化反応により得られることを特徴とする請求項1又は2に記載の製造方法。
【化3】
(スキーム中、Rは水素原子又は炭素数1〜6のアルキル基を表す。R及びRは炭素数1〜4のアルキル基を表すか又はR及びRとでアルキル基で置換されていてもよいメチレン鎖を形成してもよい。)
【請求項4】
光学活性二座ホスフィン化合物が下記一般式(4)
【化4】
(式(4)中、R、R、R及びRは、それぞれ独立して、アルキル基、アルコキシ基、及びハロゲン原子からなる群から選ばれる置換基で置換されていてもよいフェニル基、シクロペンチル基又はシクロヘキシル基を示す。R、R10、R11、R12、R13、R14、R15及びR16は、同一又は異なっていてもよく、水素原子、置換基を有してもよいアルキル基、アルコキシ基、アシルオキシ基、ハロゲン原子、ハロアルキル基及びジアルキルアミノ基を示すか、又はR10とR11、及びR12とR13とで置換基を有してもよいメチレン鎖及びアルキレンジオキシ基を形成してもよい。ただし、R11とR12は水素原子ではない。)
で示されるホスフィン化合物である請求項1〜3のいずれか1項に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は銅化合物及び光学活性二座ホスフィン化合物を触媒成分として、ホウ酸エノールエステル類を用いた光学活性化合物の製造方法に関する。
【背景技術】
【0002】
不斉アルドール反応は、光学活性β−ヒドロキシカルボニル化合物を合成するための有用な方法である。その中でも、光学活性β−ヒドロキシアルデヒド類は医薬、農薬、香料等の中間体として特に重要性が高い。しかしながら、既知の不斉アルドール反応の多くはケトンあるいはカルボン酸誘導体から調製するエノラートあるいはエノラート等価体を用いるため、光学活性β−ヒドロキシアルデヒド類を得るためには光学活性β−ヒドロキシカルボン酸誘導体を経由する多段階での変換工程を必要としていた。光学活性β−ヒドロキシアルデヒド類を効率よく、短い工程数で得るためには、アルデヒド由来のエノラートあるいはエナミン等のエノラート等価体を用いる不斉アルドール反応が望ましい。また、異なるアルデヒドの交差不斉アルドール反応を選択的に実施するためには、どちらかのルデヒドをエノラートあるいはエノラート等価体とし、もう一方のアルデヒドを求電子剤とするための制御を実現する技術が必要である。異なるアルデヒド間の交差不斉アルドール反応により光学活性β−ヒドロキシアルデヒド類を合成するための、これまでに知られている不斉触媒としては、いくつかの有機触媒のみが知られている。
【0003】
具体的には、マクミランら(非特許文献1、2)、バーバスら(非特許文献3)、コルドバら(非特許文献4)、によるプロリン触媒を用いる技術、マクミランらによるイミダゾリジノン触媒を用いる技術(非特許文献5)、林ら(非特許文献6)、ベックマンら(非特許文献7)によるプロリノール触媒を用いる技術、丸岡らによる軸不斉有機触媒を用いる技術(非特許文献8、9、10)、マルワルドらによるヒスチジン触媒を用いる技術(非特許文献11)、ルオらのジアミン触媒を用いる技術(非特許文献12)などがある。一方、交差不斉アルドール反応における求電子剤アルデヒドと求核剤アルデヒドの組み合わせを自在に実現するための手法としては、光学活性ルイス塩基有機触媒を利用し、アルデヒド由来のエノールシリルエーテルを用いるデンマークらの技術(非特許文献13、14、15)が知られている。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】J. Am. Chem. Soc. 2002, 124, 6798
【非特許文献2】Science 2004, 305, 1752
【非特許文献3】Tetrahedron Lett. 2002, 43, 9591
【非特許文献4】Chem. Eur. J. 2005, 11, 4772
【非特許文献5】Angew. Chem. Int. Ed. 2004, 43, 6722
【非特許文献6】Angew. Chem. Int. Ed. 2008, 47, 2082
【非特許文献7】Org. Lett. 2009, 11, 4544
【非特許文献8】Angew. Chem. Int. Ed. 2007, 46, 1738
【非特許文献9】Chem. Eur. J. 2009, 15, 6678
【非特許文献10】J. Am. Chem. Soc. 2011, 133, 18130
【非特許文献11】J. Am. Chem. Soc. 2009, 131, 16642
【非特許文献12】J. Org. Chem. 2010, 75, 4501
【非特許文献13】Angew. Chem. Int. Ed. 2001, 40, 4759
【非特許文献14】Proc. Natl. Acad. Sci. USA 2004, 101, 5439
【非特許文献15】J. Org. Chem. 2005, 70, 10190
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来の技術では、高いエナンチオ選択性と広い基質汎用性を実現し、さらに、用いる基質によらずに化学選択性を制御することが困難であった。すなわち、有機触媒を用いる従来技術では、アルデヒド又はイミン類の立体的、電子的な要因にのみ依存した化学選択性を実現するため、求電子剤と求核剤との組み合せ方に大きな制限があった。具体的には、立体的に小さなプロパナールのような直鎖アルデヒドを求電子剤とすることは不可能であるなど、基質汎用性が乏しかった。また、アルデヒドエノラート等価体としてエノールシリルエーテルを用いる技術では、エナンチオ選択性が中程度、基質汎用性が乏しいなどの課題が残されていた。また、入手容易なホウ酸エノールエステルをアルデヒドエノラート等価体とする触媒的不斉反応を実現する技術、および、反応性の高い不斉金属触媒を利用する技術は存在しなかった。
【課題を解決するための手段】
【0006】
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、安価に容易に入手可能なアリルホウ酸エステルを異性化させることで得られるホウ酸エノールエステルを、銅化合物及び光学活性二座ホスフィン化合物が存在する条件下で、アルデヒド類と反応させることにより、光学活性ヒドロキシアルデヒド類が高いエナンチオ選択性及びジアステレオ選択性で得られることを見出した。生成したアルデヒドは、同様の反応を繰り返し行うことにより、ポリオールへと導くことが出来、また、アルデヒドの代わりにイミンを用いる事で、アミノヒドロキシアルデヒドが得られることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明は、銅化合物及び光学活性二座ホスフィン化合物の存在下、下記一般式(2)
【0008】
【化1】
【0009】
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。R及びRは炭素数1〜4のアルキル基を表すか、又はRとRとでアルキル基で置換されていてもよいメチレン鎖を形成してもよい。)
で表されるホウ酸エノールエステル類と、下記一般式(1)
CH=Z (1)
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Zは酸素原子又はNX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。)
で表される化合物とを反応させることを特徴とする、下記一般式(3)
【0010】
【化2】
【0011】
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Rは水素原子又は炭素数1〜6のアルキル基を表す。Yは、水酸基又はNHX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。nは0又は1を表す。*は不斉炭素原子を表す。)
で表される化合物の製造方法に関する。
【発明の効果】
【0012】
本発明によれば、光学活性光学活性ヒドロキシアルデヒド類またはアミノヒドロキシアルデヒド類を、高収率で、高いエナンチオ選択性及びジアステレオ選択性で製造できる。
また、本発明の方法は、立体的に小さなプロパナールのような直鎖アルデヒドを求電子剤とすることも可能であり、求電子性を有する脂肪族アルデヒド、芳香族アルデヒド、芳香脂肪族アルデヒド、複素環式アルデヒドなどの多くのアルデヒド化合物やその誘導体を基質とすることができるだけでなく、これらのアルデヒド化合物から誘導されるイミン体(−CH=N−R)の化合物をも基質とすることができ、基質汎用性にも優れている。
さらに、本発明の方法によれば、生成したアルデヒドは、同様の反応を繰り返し行うことにより、ポリオールへと導くことができる。
また、本発明の方法におけるアルデヒドエノラート等価体などのカルボニルエノラート等価体として用いられるホウ酸エノールエステルは、アリルホウ酸エステルを異性化させることで安価で、かつ容易に得ることができ入手が容易である。
【発明を実施するための形態】
【0013】
本発明の方法は、光学活性二座ホスフィン化合物の存在下で行われる、アルデヒドエノラート等価体などのカルボニルエノラート等価体としてホウ酸エノールエステルを用いる不斉アルドール反応に関する。より詳細には、本発明の方法は、ホウ酸エノールエステルと、アルデヒド類又はそのイミン体類とを、銅化合物及び光学活性二座ホスフィン化合物の存在下に反応させる不斉アルドール反応に関する。
本発明の方法は、アルデヒド化合物とアルデヒド化合物による不斉アルドール反応に限定されるものではなく、求核剤としてのホウ酸エノールエステルを、銅化合物及び光学活性二座ホスフィン化合物の存在下に、カルボニル基やイミノ基などを有する求電子基質とを反応させて、求核反応による生成物を製造する方法であると解されるべきものである。
【0014】
本発明の態様をより具体的に説明すれば、次のとおりとなる。
(1)下記一般式(1)
CH=Z (1)
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Zは酸素原子又はNX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。)
で表されるアルデヒド化合物又はそのイミン体化合物を、下記一般式(2)
【0015】
【化3】
【0016】
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。R及びRは炭素数1〜4のアルキル基を表すか又はRとRとでアルキル基で置換されていてもよいメチレン鎖を形成してもよい。)
で表されるホウ酸エノールエステル類とを、銅化合物及び光学活性二座ホスフィン化合物の存在下で反応させて、下記一般式(3)
【0017】
【化4】
【0018】
(式中、Rは置換基を有してもよい炭化水素基又は置換基を有してもよい複素環基を表す。Rは水素原子又は炭素数1〜6のアルキル基を表す。Yは、水酸基又はNHX(Xは置換基を有していてもよいチオホスフィノイル基を表す。)を表す。nは0又は1を表す。*は不斉炭素原子を表す。)
で表される化合物を製造する方法。
(2)反応が、さらに添加剤の存在下で行われる、前記(1)に記載の方法。
(3)添加剤が、トリエチルアミン、トリフェニルホスフィンオキサイド、トリブチルホスフィンオキサイド、及びヘキサメチルトリリン酸アミドからなる群から選ばれる化合物である、前記(2)に記載の方法。
(4)一般式(3)におけるnが、0である前記(1)から(3)のいずれか1項に記載の方法。
(5)一般式(3)におけるnが、1である前記(1)から(3)のいずれか1項に記載の方法。
(6)前記(1)から(3)のいずれか1項に記載の方法で製造された反応成績体に、さらに一般式(2)で表されるホウ酸エノールエステル類を反応させることを特徴とする前記(5)に記載の製造方法。
(7)光学活性二座ホスフィン化合物が、軸不斉を有する光学活性二座ホスフィン化合物である、前記(1)から(6)のいずれか1項に記載の方法。
(8)光学活性二座ホスフィン化合物が、下記一般式(4)
【0019】
【化5】
【0020】
(式(4)中、R、R、R及びRは、それぞれ独立して、アルキル基、アルコキシ基、及びハロゲン原子からなる群から選ばれる置換基で置換されていてもよいフェニル基、シクロペンチル基又はシクロヘキシル基を示す。R、R10、R11、R12、R13、R14、R15及びR16は、同一又は異なっていてもよく、水素原子、置換基を有してもよいアルキル基、アルコキシ基、アシルオキシ基、ハロゲン原子、ハロアルキル基、又はジアルキルアミノ基を示すか、又はR10とR11、及びR12とR13とで置換基を有してもよいメチレン鎖及びアルキレンジオキシ基を形成してもよい。ただし、R11とR12は水素原子ではない。)
で示されるホスフィン化合物である、前記(1)から(7)のいずれか1項に記載の方法。
(9)一般式(2)で表されるホウ酸エノールエステル類が、イリジウム触媒を用いた下記スキームの異性化反応により製造されることを特徴とする、前記(1)から(8)のいずれか1項に記載の方法。
【0021】
【化6】
【0022】
(スキーム中、Rは水素原子又は炭素数1〜6のアルキル基を表す。R及びRは炭素数1〜4のアルキル基を表すか又はR及びRとでアルキル基で置換されていてもよいメチレン鎖を形成してもよい。)
【0023】
以下、本発明を詳細に説明する。
本発明の製造法における一般式(1)で示されるアルデヒド化合物において、Rで表される炭化水素基は炭素原子及び水素原子からなる一価の基であり、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
一般式(1)で表される化合物において、Rで表される炭化水素基の一つとしてのアルキル基は直鎖状でも、分岐状でも或いは環状でもよい。これらアルキル基としては例えば炭素数1〜15、好ましくは炭素数1〜10、より好ましくは炭素数1〜6のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、2−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0024】
また、これらアルキル基は置換基を有していてもよく、該置換基としては、炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルキレンジオキシ基、アリールオキシ基、アラルキルオキシ基、ヘテロアリールオキシ基、置換アミノ基及びハロゲン原子等が挙げられる。
【0025】
アルキル基に置換する炭化水素基としては、例えばアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
【0026】
アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素数1〜15、好ましくは炭素数1〜10、より好ましくは炭素数1〜6のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、2−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0027】
アルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルケニル基が挙げられ、具体的にはビニル基、プロペニル基、1−ブテニル基、ペンテニル基、ヘキセニル基等が挙げられる。
【0028】
アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルキニル基が挙げられ、具体的にはエチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、3−ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。
【0029】
アリール基としては、例えば炭素数6〜14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基等が挙げられる。
【0030】
アラルキル基としては、前記アルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7〜12のアラルキル基が好ましく、具体的にはベンジル基、2−フェニルエチル基、1−フェニルプロピル基、3−ナフチルプロピル基等が挙げられる。
【0031】
アルキル基に置換する脂肪族複素環基としては、例えば炭素数2〜14で、異種原子として少なくとも1個、好ましくは1〜3個の例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいる、5〜8員、好ましくは5又は6員の単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、2−オキソピロリジノ基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロチエニル基等が挙げられる。
【0032】
アルキル基に置換する芳香族複素環基としては、例えば炭素数2〜15で、異種原子として少なくとも1個、好ましくは1〜3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、5〜8員、好ましくは5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられ、具体的にはフリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基等が挙げられる。
【0033】
アルキル基に置換するアルコキシ基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数1〜6のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、2−メチルブトキシ基、3−メチルブトキシ基、2,2−ジメチルプロピルオキシ基、n−ヘキシルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、4−メチルペンチルオキシ基、5−メチルペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
【0034】
アルキル基に置換するアルキレンジオキシ基としては、例えば炭素数1〜3のアルキレンジオキシ基が挙げられ、具体的にはメチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基、イソプロピリデンジオキシ基等が挙げられる。
【0035】
アルキル基に置換するアリールオキシ基としては、例えば炭素数6〜14のアリールオキシ基が挙げられ、具体的にはフェニルオキシ基、ナフチルオキシ基、アントリルオキシ基等が挙げられる。
【0036】
アルキル基に置換するアラルキルオキシ基としては、例えば炭素数7〜12のアラルキルオキシ基が挙げられ、具体的にはベンジルオキシ基、2−フェニルエトキシ基、1−フェニルプロポキシ基、2−フェニルプロポキシ基、3−フェニルプロポキシ基、1−フェニルブトキシ基、2−フェニルブトキシ基、3−フェニルブトキシ基、4−フェニルブトキシ基、1−フェニルペンチルオキシ基、2−フェニルペンチルオキシ基、3−フェニルペンチルオキシ基、4−フェニルペンチルオキシ基、5−フェニルペンチルオキシ基、1−フェニルヘキシルオキシ基、2−フェニルヘキシルオキシ基、3−フェニルヘキシルオキシ基、4−フェニルヘキシルオキシ基、5−フェニルヘキシルオキシ基、6−フェニルヘキシルオキシ基等が挙げられる。
【0037】
アルキル基に置換するヘテロアリールオキシ基としては、例えば、異種原子として少なくとも1個、好ましくは1〜3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、炭素数2〜14のヘテロアリールオキシ基が挙げられ、具体的には、2−ピリジルオキシ基、2−ピラジルオキシ基、2−ピリミジルオキシ基、2−キノリルオキシ基等が挙げられる。
【0038】
アルキル基に置換する置換アミノ基としては、アミノ基の1個又は2個の水素原子がアルキル基、アリール基、アラルキル基等の置換基で置換されたアミノ基が挙げられる。
【0039】
アルキル基で置換されたアミノ基、即ちアルキル基置換アミノ基の具体例としては、N−メチルアミノ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジイソプロピルアミノ基、N−シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基が挙げられる。
【0040】
アリール基で置換されたアミノ基、即ちアリール基置換アミノ基の具体例としては、N−フェニルアミノ基、N,N−ジフェニルアミノ基、N−ナフチルアミノ基、N−ナフチル−N−フェニルアミノ基等のモノ又はジアリールアミノ基が挙げられる。
【0041】
アラルキル基で置換されたアミノ基、即ちアラルキル基置換アミノ基の具体例としては、N−ベンジルアミノ基、N,N−ジベンジルアミノ基等のモノ又はジアラルキルアミノ基が挙げられる。
【0042】
アルキル基に置換するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0043】
これらの置換基の中でも、炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルキレンジオキシ基、アリールオキシ基、アラルキルオキシ基、ヘテロアリールオキシ基又は置換アミノ基は、上記で挙げられた置換基群の中から選ばれる基によってさらに置換されていてもよい。
【0044】
また、一般式(1)で表される化合物において、Rで表される炭化水素基の一つとしては鎖状又は環状の直鎖あるいは分岐してもよい、炭素数2〜20、好ましくは炭素数2〜10のアルケニル基が挙げられる。具体的なアルケニル基としてはビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−シクロペンテニル基、3−シクロペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基、1−シクロヘキセニル基及び3−シクロヘキセニル基等が挙げられる。
【0045】
また、これらアルケニル基は置換基を有していてもよく該置換基としては、アルキル基、ハロゲン原子、アリール基及び複素環基等が挙げられ、具体例としては前記したようなものが挙げられる。
【0046】
また、一般式(1)で表される化合物において、Rで表される炭化水素基の一つとしては直鎖又は分岐していてもよいアルキニル基が挙げられ、具体的には、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−ペンチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、1−ヘキシニル基、2−ヘキシニル基、3−ヘキシニル基、4−ヘキシニル基及び5−ヘキシニル基等が挙げられる。
【0047】
また、これらアルキニル基は置換基を有していてもよく該置換基としては、アルキル基、アリール基、複素環基、トリアルキルシリル基等が挙げられ、アルキル基、アリール基、複素環基の具体例としては前記したようなものが挙げられる。
【0048】
また、一般式(1)で表される化合物において、Rで表される炭化水素基の一つとしてはアリール基が挙げられ、具体的には前記したようなアリール基が挙げられる。また、これらアリール基は置換基を有してもよく該置換基としては、アルキル基、アリール基、複素環基等が挙げられ、具体例としては前記したようなものが挙げられる。
【0049】
一般式(1)で表される化合物において、Rで表される複素環基としては、脂肪族又は芳香族複素環基が挙げられ、具体的には前記したような複素環基が挙げられる。また、これら複素環基は置換基を有してもよく該置換基としては、アルキル基、アリール基、複素環基等が挙げられ、具体例としては前記したようなものが挙げられる。
一般式(1)で表される化合物において、NX基のXで表されるチオホスフィノイル基としては、一般式−P(S)Q(式中、Q及びQは、それぞれ独立して、炭素数1〜10のアルキル基、又はアルキル基、ハロアルキル基、アルコキシ基、ハロゲン原子、及びアルキレンジオキシ基からなる群から選ばれる置換基で置換されていてもよい炭素数6〜12の単環式、多環式、又は縮合環式のアリール基を表す。)で表される基が挙げられる。ここにおけるアルキル基やアリール基などは、前記したようなものが挙げられる。
【0050】
本発明における一般式(2)で示されるホウ酸エノールエステル類において、Rで表される炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、2−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基等が挙げられるが、メチル基が好ましい。R及びRで表されるアルキル基としては、好ましくは炭素数1〜4のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。
また、RとRとで形成するメチレン鎖としては、メチレン基、エチレン基、トリメチレン基等が挙げられ、これらメチレン鎖に置換するアルキル基としては、炭素数1〜6のアルキル基が好ましく、例えばメチル基、エチル基等が挙げられる。
【0051】
本発明の製造法において、原料として用いられる一般式(1)で示される化合物及び一般式(2)で示されるホウ酸エノールエステル類は、市販品をそのまま用いても、又は公知の方法で調製したものを用いてもよい。公知の調製法としては、例えば、文献(Chem. Commun. 1998, 1337及びOrganometallics, 1999, 18, 413など)に記載のように、イリジウム触媒を用いて二重結合を異性化させる方法等が挙げられる。
【0052】
次に、本発明で触媒成分として用いられる銅化合物及び光学活性二座ホスフィン化合物について説明する。
【0053】
銅化合物としては、CuAr(Arはアリール基を表す。)、CuR(Rはアルキル基を表す。)、CuX(Xはハロゲン基を表す。)、CuOR(ORはアルコキシ基およびフェノキシ基を表す。)、CuOCR(OCRはカルボン酸から水素原子を除いた基を表す。)が挙げられ、好ましくはCuAr(Arはアリール基を表す。)等が挙げられる。ここにおけるアルキル基やアリール基などは、前記したようなものが挙げられる。また、ここにおけるArやRは置換基を有してもよく、当該置換基としては、アルキル基、アルコキシ基、ハロゲン基などが挙げられる。
具体的な銅化合物としては、メシチル銅、フッ化銅、ヨウ化銅、tert−ブトキシ銅、酢酸銅等が挙げられ、メシチル銅が好ましい。また、反応系に銅化合物又はその前駆体と当該銅化合物又はその前駆体と反応する化合物を共存させて、反応系中で新たな銅化合物とすることもできる。
【0054】
続いて本発明に用いられる光学活性二座ホスフィン化合物に関して説明する。
【0055】
本発明で用いられる二座ホスフィン化合物としては。軸不斉構造を有するものが好ましく、その一つとして軸不斉構造を有する下記一般式(4)
【0056】
【化7】
【0057】
(式(4)中、R、R、R及びRは、それぞれ独立して、アルキル基、アルコキシ基、及びハロゲン原子からなる群から選ばれる置換基で置換されていてもよいフェニル基、シクロペンチル基又はシクロヘキシル基を示す。R、R10、R11、R12、R13、R14、R15及びR16は、同一又は異なっていてもよく、水素原子、置換基を有してもよいアルキル基、アルコキシ基、アシルオキシ基、ハロゲン原子、ハロアルキル基及びジアルキルアミノ基を示すか、又はR10とR11、及びR12とR13とで置換基を有してもよいメチレン鎖又はアルキレンジオキシ基を形成してもよい。ただし、R11とR12は水素原子ではない。)
で表される化合物が挙げられる。
【0058】
、R、R及びRの置換基としてのアルキル基としては例えば、メチル基、tert−ブチル基等の直鎖又は分岐してもよい炭素数1〜6のアルキル基が挙げられ、アルコキシ基としては例えば、メトキシ基、tert−ブトキシ基等の直鎖又は分岐してもよい炭素数1〜6のアルコキシ基が挙げられ、また、ハロゲン原子としては例えば塩素原子、臭素原子、フッ素原子等が挙げられ、これら置換基はフェニル環やシクロアルキル環上を複数置換してもよい。
【0059】
具体的なR、R、R及びRとしては、フェニル基、p−トリル基、m−トリル基、o−トリル基、3,5−キシリル基、3,5−ジ−tert−ブチルフェニル基、p−tert−ブチルフェニル基、p−メトキシフェニル基、3,5−ジ−tert−ブチル−4−メトキシフェニル基、p−クロロフェニル基、m−フルオロフェニル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
【0060】
また、R〜R16における、アルキル基としては例えば、メチル基、tert−ブチル基等の直鎖又は分岐してもよい炭素数1〜6のアルキル基が挙げられ、アルコキシ基としては例えば、メトキシ基、tert−ブトキシ基等の直鎖又は分岐してもよい炭素数1〜6のアルコキシ基が挙げられ、アシルオキシ基としては例えば、アセトキシ基、プロパノイルオキシ基、トリフルオロアセトキシ基及びベンゾイルオキシ基等が挙げられ、ハロゲン原子としては例えば塩素原子、臭素原子、フッ素原子等が挙げられ、ハロアルキル基としては例えば、トリフルオロメチル基等の炭素数1〜4のハロアルキル基が挙げられ、ジアルキルアミノ基としては例えば、ジメチルアミノ基又はジエチルアミノ基等が挙げられる。
【0061】
10とR11及びR12及びR13とで形成される置換基を有していてもよいメチレン鎖及びアルキレンジオキシ基としては、炭素数1〜4のメチレン鎖、メチレンジオキシ基及びエチレンジオキシ基が好ましく、メチレン鎖の具体例としてはメチレン基、エチレン基、トリメチレン基及びテトラメチレン基が挙げられる。また、メチレン鎖及びアルキレンジオキシ基に置換する置換基としては、アルキル基及びハロゲン原子等が挙げられ、具体例としては炭素数1〜4の前記したようなアルキル基及びフッ素原子等が挙げられる。
【0062】
前記一般式(4)で表される光学活性ホスフィンの具体例としては、これらに限定されるものではないが、例えば、2,2'−ビス(ジフェニルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1、1'−ビナフチル、2,2'−ビス(ジ−p−トリルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、2,2'−ビス(ジ−m−トリルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1、1'−ビナフチル、2,2'−ビス(ジ−3,5−キシリルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1、1'−ビナフチル、2,2'−ビス(ジ−p−ターシャリーブチルフェニルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、2,2'−ビス(ジ−p−メトキシフェニルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、2,2'−ビス(ジ−p−クロロフェニルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、2,2'−ビス(ジシクロペンチルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、2,2'−ビス(ジシクロヘキシルホスフィノ)−5,5',6,6',7,7',8,8'−オクタヒドロ−1,1'−ビナフチル、((4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ジフェニルホスフィン)、(4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ビス(3,5−ジメチルフェニル)ホスフィン)、((4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ビス(3,5−ジ−t−ブチル−4−メトキシフェニル)ホスフィン)(以下、DTBM−segphosという)、((4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ビス(4−メトキシフェニル)ホスフィン)、((4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ジシクロヘキシルホスフィン)、((4,4'−ビ−1,3−ベンゾジオキソール)−5、5'−ジイル)ビス(ビス(3,5−ジ−t−ブチルフェニル)ホスフィン)、2,2'−ビス(ジフェニルホスフィノ)−4,4',6,6'−テトラメチル−5,5'−ジメトキシ−1,1'−ビフェニル、2,2'−ビス(ジ−p−メトキシフェニルホスフィノ)−4,4',6,6'−テトラメチル−5,5'−ジメトキシ−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−4,4',6,6'−テトラ(トリフルオロメチル)−5,5'−ジメチル−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−4,6−ジ(トリフルオロメチル)−4',6'−ジメチル−5'−メトキシ−1,1'−ビフェニル、2−ジシクロヘキシルホスフィノ−2'−ジフェニルホスフィノ−4,4',6,6'−テトラメチル−5,5'−ジメトキシ−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−6,6'−ジメチル−1,1−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−4,4',6,6'−テトラメチル−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−3,3',6,6'−テトラメチル−1,1'−ビフェニル)、2,2'−ビス(ジフェニルホスフィノ)−4,4'−ジフルオロ−6,6'−ジメチル−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−4,4'−ビス(ジメチルアミノ)−6,6'−ジメチル−1,1'−ビフェニル、2,2'−ビス(ジ−p−トリルホスフィノ)−6,6'−ジメチル−1,1'−ビフェニル、2,2'−ビス(ジ−o−トリルホスフィノ)−6,6'−ジメチル−1,1'−ビフェニル、2,2'−ビス(ジ−m−フルオロフェニルホスフィノ)−6,6'−ジメチル−1,1'−ビフェニル、1,11−ビス(ジフェニルホスフィノ)−5,7−ジヒドロベンゾ[c,e]オキセピン、2,2'−ビス(ジフェニルホスフィノ)−6,6'−ジメトキシ−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−5,5',6,6'−テトラメトキシ−1,1'−ビフェニル、2,2'−ビス(ジ−p−トリルホスフィノ)−6,6'−ジメトキシ−1,1'−ビフェニル、2,2'−ビス(ジフェニルホスフィノ)−4,4',5,5',6,6'−ヘキサメトキシ−1,1'−ビフェニル等が挙げられる。これらの中でもDTBM−segphosが好ましい。
【0063】
本発明の製造法は、一般式(2)で表されるホウ酸エノールエステル類、好ましくは一般式(2’)で表されるホウ酸エステル類の二重結合を異性化させた一般式(2)で表されるホウ酸エノールエステル類を、触媒成分である銅化合物及び光学活性二座ホスフィンを含む溶液に加え、これに一般式(1)で表される化合物を加えた後、適当な反応温度及び反応時間で撹拌することにより目的物である一般式(3)で表される光学活性化合物を製造することができる。または、逆に反応基質に触媒成分を加えてもよい。
この際に反応系に加えられる一般式(2)のホウ酸エノールエステル類は、異性化反応を行なった後に単離されたもの、又は単離せずに溶液として用いることができるが、溶液状態のものを使用することが好ましい。
【0064】
一般式(2)で表されるホウ酸エノールエステル類の使用量は、一般式(1)で示される化合物に対して、1倍モル〜5倍モル、好ましくは1.1倍モル〜2倍モル、より好ましくは1.1倍モル〜1.5倍モル用いれば充分である。
【0065】
また、一般式(2’)で表されるホウ酸エステル類の異性化により一般式(2)で表されるホウ酸エノールエステル類を調製する際に用いられるイリジウム触媒としては、(1,5-シクロオクタジエン)ビス(メチルジフェニルホスフィン)イリジウム(I)ヘキサフルオロホスファート、あるいはビス(1,5-シクロオクタジエン)イリジウム(I)ヘキサフルオロホスファートとトリアルキルホスフィンを反応溶液中で混合したもの等が挙げられ、好ましくは(1,5-シクロオクタジエン)ビス(メチルジフェニルホスフィン)イリジウム(I)ヘキサフルオロホスファート、ビス(1,5-シクロオクタジエン)イリジウム(I)ヘキサフルオロホスファートとトリブチルホスフィンの組み合わせが挙げられる。イリジウム触媒の使用量は、異性化基質である一般式(2’)で表されるホウ酸エステル類に対して、0.0001〜0.5倍モル、好ましくは、0.001〜0.05倍モル用いることができる。
また異性化反応は水素ガスを反応系内に存在させて行なってもよい。
【0066】
触媒成分である銅化合物及び光学活性二座ホスフィンの使用量は、一般式(1)で示される化合物に対して0.01モル%〜50モル%、好ましくは1モル%〜30モル%、より好ましくは3モル%〜10モル%用いれば充分である。
【0067】
反応溶媒としては、反応に関与しないものであれば特に制限は無いが、例えば、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジクロロメタン、1,2−ジクロロエタン、o−ジクロロベンゼン等のハロゲン化炭化水素類;例えばペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類;例えばトルエン、キシレン等の芳香族炭化水素類;イソプロパノール、tert−ブタノール等のアルコール類;ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類;アセトン、2−ブタノン、シクロヘキサノン等のケトン類及びジメチルスルホキシド等のスルホキシド類等が挙げられる。より好ましい溶媒としては、例えばテトラヒドロフラン、アセトン及びイソプロピルアルコール等が挙げられる。これら溶媒は夫々単独で用いても二種以上適宜組み合わせて用いてもよい。
【0068】
また、本発明の方法は添加物を使用することにより収率が向上する場合がある。使用される添加物としては、トリエチルアミン、トリフェニルホスフィンオキサイド、トリブチルホスフィンオキサイド、ヘキサメチルトリリン酸アミド等が挙げられる。
【0069】
反応温度は、使用する基質により自ずから異なるが、通常−80℃〜100℃、好ましくは−60℃〜80℃の範囲で、さらに好ましくは−80℃〜80℃、−80℃〜20℃の範囲で行うことができる。
【0070】
反応時間は、使用する基質により自ずから異なるが、通常10分〜100時間、好ましくは0.5時間〜80時間である。
【0071】
本反応は、一般式(2)で表されるホウ酸エノールエステル類を繰り返し反応させることにより、光学活性ポリオールへと変換することが可能である。即ち、前記の反応を行った後に、さらに反応系に1倍モル〜5倍モル、好ましくは1.1倍モル〜2倍モル、より好ましくは1.1倍モル〜1.5倍モルの一般式(2)で表されるホウ酸エノールエステル類を添加して、反応を継続させることにより、光学活性ポリオールへと変換することが可能である。また、一般式(1)のアルデヒドは、一般式(5)で示されるイミンに変換した場合でも、同様に反応を行わせることが出来、アミノアルデヒドを得ることが出来る。
一般式(5)で示される化合物におけるXとしては、チオホスフィニル基が好ましく、特にジフェニルチオホスフィニル基(PhP(=S))が好ましい。
【0072】
反応の形態は特に制限はなく、バッチ法でもフロー法でも差支えない。
反応終了後は、結晶化、蒸留又は各種クロマトグラフィー等の操作を単独又は組み合わせることにより目的の光学活性ヒドロキシアルデヒド類またはアミノヒドロキシアルデヒド類を得ることができる。
また、得られた生成物を水素化ホウ素ナトリウムなどの水素化剤で還元することにより、対応するジオールとすることもできる。
【実施例】
【0073】
以下、実施例により更に詳しく説明するが、本発明はこれらに限定されるものではない。
【0074】
(実施例1) ヒドロキシアルデヒド類の合成
(1)ホウ酸エノラートの調製
【0075】
【化8】
【0076】
アルゴン置換した乾燥反応ガラス容器に(1,5-シクロオクタジエン) ビス(メチルジフェニルホスフィン)イリジウム(I)ヘキサフルオロホスファート(6.7 mg, 0.0079 mmol)、脱水アセトン1.6 mLを加えた。そこに室温にて、反応液の色が赤から無色透明に変化するまで水素ガスをバブリングし、再びアルゴンをバブリングした。この反応液を0 ℃に冷却後、アリルエステル (223.6 μL, 1.575 mmol)を加え、0 ℃にて30分撹拌した。0 ℃に保持したまま、減圧下で溶媒(アセトン)を留去し、残渣を−78 ℃に冷却後、THF 5.25 mLを加え、ホウ酸エノラートの0.3 M溶液として次のアルドール反応に使用した。
(2)アルドール反応
【0077】
【化9】
【0078】
乾燥した反応容器にトリフェニルホスフィンオキシド (27.8 mg, 0.10 mmol)、メシチル銅 (0.9 mg, 0.005 mmol)、(R)-DTBM-segphos (6.0 mg, 0.005 mmol)、THF 0.5 mLを加え、−78 ℃に冷却した。ここに、上記(1)で得られたホウ酸エノラートの0.3 M溶液 (0.5 mL, 0.15 mmol)、ヒドロシンナムアルデヒド (13.2 μL, 0.1 mmol)を順に加え、−78 ℃にて22時間撹拌してヒドロキシアルデヒド類を得た。
【0079】
続いて、収率及びジアステレオ選択性を測定するために、ジオールへと誘導した。反応液に水素化ホウ素ナトリウム (18.9 mg, 0.5 mmol)、メタノール 1 mLを加え、徐々に室温まで昇温させた。反応液に水を加え、ジエチルエーテルで3回分液抽出後、合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を留去した。得られたジオールをシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1)により単離したところ、収率95%であり、HPLC (ダイセルIAカラム, 254 nm, 1.0 mL/min, ヘキサン:エタノール = 60:1)にてエナンチオ選択性を測定したところ、99% ee (syn)であった。
保持時間はsyn体: 63.9 (minor), 77.2 (major) およびanti体: 46.8 min, 49.0 min。
【0080】
(実施例2) ヒドロキシアルデヒド類の合成
乾燥した反応容器にメシチル銅 (0.9 mg, 0.005 mmol)、(R)-DTBM-segphos (6.0 mg, 0.005 mmol)、THF 0.5 mL、IPA 7.7 μLを加え、−78 ℃に冷却した。ここに、ホウ酸エノラートの0.3 M溶液 (0.5 mL, 0.15 mmol)、ヒドロシンナムアルデヒド (13.2 μL, 0.1 mmol)を順に加え、−60 ℃にて24時間撹拌してヒドロキシアルデヒド類を得た。
続いて、実施例1と同様にジオールへと誘導した。単離収率93%、ジアステレオ比26:1(syn:anti)、エナンチオ選択性94%ee(syn)であった。
【0081】
(実施例3〜12)ヒドロキシアルデヒド類の合成
【0082】
【化10】
【0083】
上記スキームの反応(R=H)を実施例2と同様の操作で行った結果を表1に示す。
【0084】
【表1】
【0085】
ホウ素エノラートとアルデヒドの両基質を変えて、実施例2と同様の操作を行った結果を表2に示す。
【0086】
【表2】
【0087】
(実施例13)ヒドロキシアルデヒド類の合成
(1)ホウ酸エノラートの調製
【0088】
【化11】
【0089】
アルゴン置換した乾燥反応ガラス容器にビス(1,5-シクロオクタジエン)イリジウム(I)ヘキサフルオロホスファート(4.4 mg, 0.0079 mmol)、トリブチルホスフィン(3.2 mg, 0.0158 mmol)、脱水アセトン1.6 mLを加えた。そこに室温にて水素ガスを5分間バブリングし、再びアルゴンをバブリングした。この反応液を0 ℃に冷却後、アリルエステル (223.6 μL, 1.575 mmol)を加え、0 ℃にて30分撹拌した。0 ℃に保持したまま、減圧下で溶媒(アセトン)を留去し、残渣を−78 ℃に冷却後、THF 5.25 mLを加え、ホウ酸エノラートの0.3 M溶液として次のアルドール反応に使用した。
【0090】
(2)アルドール反応
【0091】
【化12】
【0092】
乾燥した反応容器にメシチル銅 (0.9 mg, 0.005 mmol)、(R)-DTBM-segphos (6.0 mg, 0.005 mmol)、THF 0.5 mLを加え、−60 ℃に冷却した。ここに、上記(1)で得られたホウ酸エノラートの0.3 M溶液 (0.5 mL, 0.15 mmol)、ヒドロシンナムアルデヒド (13.2 μL, 0.1 mmol)を順に加え、−60 ℃にて24時間撹拌してヒドロキシアルデヒド類を得た。
実施例1と同様にジオールへと誘導して収率等を測定したところ、単離収率87%、ジアステレオ比8:1(syn:anti)、エナンチオ選択性87%ee(syn)であった。
【0093】
(実施例14)β、δ−ジヒドロキシアルデヒド類の合成
(1)ホウ酸エノラートの調製
【0094】
【化13】
【0095】
アルゴン置換した乾燥反応ガラス容器に(1,5-シクロオクタジエン)ビス(メチルジフェニルホスフィン)イリジウム(I)ヘキサフルオロホスファート(6.7 mg, 0.0079 mmol)、脱水アセトン1.6 mLを加えた。そこに室温にて、反応液の色が赤から無色透明に変化するまで水素ガスをバブリングし、再びアルゴンをバブリングした。この反応液を0 ℃に冷却後、アリルエステル (340.2 μL, 1.575 mmol)を加え、0 ℃にて30分撹拌した。0 ℃に保持したまま、減圧下で溶媒(アセトン)を留去し、残渣を−78 ℃に冷却後、THF 5.25 mLを加え、ホウ酸エノラートの0.3 M溶液として次のアルドール反応に使用した。
【0096】
(2)連続アルドール反応
【0097】
【化14】
【0098】
アルゴン置換した乾燥反応ガラス容器にメシチル銅 (0.9 mg, 0.005 mmol)、(S)-DTBM-segphos (6.0 mg, 0.00505 mmol)、イソプロパノール (7.7 μL, 0.1 mmol)、THF 0.25 mLを加え、−78 ℃に冷却した。ここに、上記(1)で得られたホウ酸エノラートの0.3 M溶液 (0.5 mL, 0.15 mmol)、ヒドロシンナムアルデヒド (13.2 μL, 0.1 mmol)を順に加え、−60 ℃にて24時間撹拌した。
【0099】
続いて別途、乾燥反応ガラス容器にメシチル銅 (0.9 mg, 0.005 mmol)、(S)-DTBM-segphos (6.0 mg, 0.00505 mmol)、イソプロパノール (0.39 μL, 0.005 mmol)、THF 0.25 mLを加え触媒溶液 (以下触媒溶液A)を調製した。反応溶液に触媒溶液A (0.25 mL, 0.005 mmol)、ホウ酸エノラートの0.4 M溶液 (0.25 mL, 0.1 mmol)を加え−60 ℃にて24時間攪拌後、更に触媒溶液A (0.25 mL, 0.005 mmol)、ホウ酸エノラートの0.4 M溶液 (0.25 mL, 0.1 mmol)を加え−60 ℃にて24時間攪拌し、最後に触媒溶液A (0.25 mL, 0.005 mmol)、ホウ酸エノラートの0.4 M溶液 (0.25 mL, 0.1 mmol)を加え−60 ℃にて42時間攪拌した。
【0100】
収率及びジアステレオ選択性はトリオールへと誘導して決定した。反応液に水素化ホウ素リチウム (3 M THF溶液、0.33 mL, 1.0 mmol)を加え、徐々に室温まで昇温させた。反応液に1M塩酸水溶液を加え、そのままシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 2:1 to 1:1)により単離し、HPLC (ダイセルICカラム、254 nm、1.0 mL/min、アセトニトリル:水 = 1:5)にて収率、及び選択性を測定したところ72% (32:1:1 dr)であった。保持時間はsyn,syn,syn体: 16.1 (major)、16.8 (minor)、syn,anti,syn体: 22.1、24.7。エナンチオ選択性99%ee(syn,syn,syn)であった。
【0101】
(実施例15)β、δ−ジヒドロキシアルデヒド類の合成
【0102】
【化15】
【0103】
アルゴン置換した乾燥反応ガラス容器にメシチル銅 (0.7 mg, 0.0038 mmol)、(R)-DTBM-segphos (4.5 mg, 0.0038 mmol)、4-メトキシフェノール (0.9 mg, 0.0075 mmol)、THF 0.25 mLを加え、−60 ℃に冷却した。ここに、ホウ酸エノラートの0.6 M溶液 (0.25 mL, 0.15 mmol)、(2R,3S)-3-ヒドロキシ-2-メチル-5-フェニルペンタナールの0.3 M溶液 (0.25 mL, 0.075 mmol)を順に加え、−60 ℃にて40時間撹拌した。
【0104】
収率及びジアステレオ選択性はトリオールへと誘導して決定した。反応液に水素化ホウ素リチウム (3 M THF溶液、0.25 mL, 0.75 mmol)を加え、徐々に室温まで昇温させた。反応液に1M塩酸水溶液を加え、そのままシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 2:1 to 1:1)により単離し、HPLC (ダイセルICカラム、254 nm、1.0 mL/min、アセトニトリル:水 = 1:5)にて収率、及び選択性を測定したところ55% (28:1:1 dr)であった。保持時間はsyn,anti,syn体: 22.1 (major)、24.7 (minor)、syn,syn,syn体: 16.1、16.8。エナンチオ選択性は99%ee(syn,anti,syn)であった。
【0105】
(実施例16)δ−アミノ−β−ヒドロキシアルデヒド類の合成
【0106】
【化16】
【0107】
乾燥した反応容器にメシチル銅 (3.65 mg, 0.020 mmol)、(S)-DTBM-segphos (23.8 mg, 0.020 mmol)、トリエチルアミン(1.5 mmol, 41.8 μL)、および原料のイミン (0.20 mmol, 64.2 mg)を加え、−40 ℃に冷却した。ここに、ホウ酸エノラートの1.2 M THF溶液 (1.0 mL, 1.2 mmol)を加え、−40 ℃にて撹拌を行いながら4−メトキシフェノール(0.20 mmol, 24.8 mg)の0.2 M THF溶液を12時間かけてゆっくり滴下する。−40 ℃にて、さらに12時間撹拌することでδ−アミノ−β−ヒドロキシアルデヒド類を得た。
【0108】
収率及びジアステレオ選択性はアミノジオールへと誘導して決定した。反応液に水素化ホウ素リチウム (2 M THF溶液、2.0 mL)を加え、徐々に0度まで昇温させた。反応液に1M塩酸水溶液(2.0 mL)を加え、酢酸エチル抽出後、減圧条件下溶媒を留去しシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 3:2 to 2:3)により収率75%、ジアステレオ選択性 >20:1 (主ジアステレオマー:他の全てのジアステレオマーの比)でアミノジオールを得た。HPLC (ダイセルIAカラム、254 nm、1.0 mL/min、ヘキサン:エタノール = 20:1)にて選択性を測定したところエナンチオ選択性99% ee、保持時間は16.8 (major)、23.5 (minor)であった。
【0109】
(実施例17〜18)δ−アミノ−β−ヒドロキシアルデヒド類の合成
【0110】
【化17】
【0111】
実施例16と同様の操作を行った結果を表3に示す。
【0112】
【表3】
【産業上の利用可能性】
【0113】
本発明の方法で製造された化合物は、例えば医薬、農薬、香料等の中間体として有用であり、本発明の方法は産業上有用な製造方法を提供するものである。