【実施例1】
【0011】
図1は、統合されたチャネルモニタを有する波長選択スイッチ(WSS)100の一例を示す機能ブロック図である。
図1に示す様に、3つの異なる機能として:WSS110、120により示される2つの1×nタイプのWSS、及び光チャネルモニタ130(OCM)が図示されている。但し、以下に記載する様に、これらの機能とは異なる機能が、1つの物理的スイッチング装置内に組み込まれるものとしてもよい。
【0012】
WSS110は、入力ポート112及び出力ポート114
1、114
2、114
3、114
4、114
5(“114”)を有する。スイッチング構造116は、入力ポート112にて受信された光信号が、スイッチ制御器140の制御に従って出力ポート114の1つに選択的に向けられる様に、入力ポート112を出力ポート114に光学的に結合する。同様に、WSS120は、入力ポート122及び出力ポート124
1、124
2、124
3、124
4、124
5(“124”)を有する。スイッチング構造126は、入力ポート122にて受信された光信号が、スイッチ制御器140の制御に従って出力ポート124の1つに選択的に向けられる様に、入力ポート122を出力ポート124に光学的に結合する。
【0013】
OCM130は、その出力ポートの各々が、例えばフォトダイオードの様な光検出器において終端する点を除き、WSS110、120と同様である。特に、OCM130は、入力ポート132及び出力ポート134
1、134
2、134
3、134
4、134
5(“134”)を有する。スイッチング構造136は、入力ポート132にて受信された光信号が、スイッチ制御器140の制御に従って出力ポート134の1つに選択的に向けられる様に、入力ポート132を出力ポート134に光学的に結合する。フォトダイオード150
1、150
2、150
3、150
4、150
5はそれぞれ、光出力134
1、134
2、134
3、134
4、134
5から光を受信する。
【0014】
ここで、WSS110、120及びOCM130は5つの出力ポートを有するものとして図示されているが、一般的には如何なる数の出力ポートを使用してもよい。また、出力ポートの数は、3つの機能要素間で、同一であっても異なっていてもよい。すなわち、WSS110、120及びOCM130は、同数または異なる数の出力ポートをもつものとしてもよい。
【0015】
上記OCMは、各々がフォトダイオードを備える複数の出力ポートを有するので、複数のチャネルが同時に監視可能となり、その結果、OCMのループ速度は上昇する。例えば、1つのフォトダイオードのみにより100チャネル分の測定を行うには、1つのスイッチに連続する100のサンプル、及び各サンプル間の整定時間が必要となるであろう。例えば、もし、20個のフォトダイオードを有する1×20タイプのWSSが使用された場合、各フォトダイオードは、並行して検出されている20個のチャネルと共に、ほぼ同時にサンプリング可能となるであろう。これにより、ループ時間は、従来の配列において必要とされた時間と比較して、20倍も短くなるであろう。この様な方法により、1msの整定時間を伴う0.2秒の目標ループ時間が、39msのスイッチング時間を達成可能とするであろう。この様なスイッチング時間は、液晶ベースのスイッチング技術の使用に際して有用である。
【0016】
個別のチャネルは、多様な異なる方法により、監視を行うOCM130に向けて同時に送出されるものとしてもよい。
図2は、各々が5つの出力ポートを有する一連のN個(但し、Nは2以上)のWSSを有する装置、及び出力ポートから光を受信するN個のフォトダイオードを有するOCMに関連して使用可能なシーケンスの一例を示す。
図2に示す様に、チャネル波長1、2、3、4、5は、第1のWSSの5つの出力に向けて順次送出される。波長6、7、8、9、10は、第2のWSSの5つの出力に向けて順次送出される。かかる送出プロセスは、最終の波長N、N+1、N+2、N+3、N+4、N+5が、第N番目のWSSの5つの出力に向けて順次送出されるまで、各WSS毎に継続して実行される。
【0017】
上記OCMは、N個の出力を有するため、N個のWSSの各々からの1つずつのチャネルを同時に監視することができる。例えば、この様な配列により、チャネルまたは波長1、6、11、16、…、Nは、
これらを出力ポートA、B・・・Nにそれぞれ向けることによって同時に監視可能となる。次に、これらのチャネルが監視された後に、チャネル2、7、12、17、…、N+1は、同時に監視可能となり、これに続いて、チャネル3、8、13、18、…、N+2等も監視可能となる。最終的に、監視シーケンスは、チャネル5、10、15、20、…、N+4の同時監視終了後に全てのシーケンスが繰り返されたことを以って、完了するものとしてもよい。
【0018】
多くの出願では、複数のフォトダイオードを有するOCMに専用の複数ポートWSSを製造するのに多大なコストが掛かることがある。しかしながら、WSS内で使用される殆どの光学素子がOCMの機能を実行するためにも使用される場合に、1つ以上のWSSの機能を有する装置の付属物として、OCMの機能を組み込み可能なとき、上記コストは大幅に低減される。この場合、複数のフォトダイオードを有するOCMを、実行可能な代替手段として用いることで、WSSの追加に伴って増加するコストを抑制することが可能である。
【0019】
図3及び
図4を参照して、上述したタイプの光チャネルモニタを組み込み可能な波長選択スイッチの一例について説明する。この選択スイッチに関する更なる詳細については、“LCoS装置を用いると共にクロストークを低減した波長選択スイッチ”という名称を有する同時係属中の米国出願[整理番号2062/17]に開示されている可能性がある。
【0020】
図3A及び
図3Bはそれぞれ、本発明の実施形態と共に使用可能な自由空間WSS100の様な簡易光学装置の一例を示す上面図及び側面図である。光は、例えば、入力及び出力ポートとしての機能を果たす光ファイバの様な光導波路を通って、WSS100に入力及び出力される。
図3Bにおいて最もよく示される様に、ファイバコリメータ配列101は、その各々が、コリメータ102
1、102
2、102
3にそれぞれ接続された複数のファイバ120
1、120
2、120
3を有するものとしてもよい。1つ以上のファイバ120からの光は、コリメータ102により、自由空間光束(ビーム)に変換される。ポート配列101から送出される光は、z軸に平行である。
図3Bでは、ポート配列101は、3組の光ファイバ/コリメータのみを示すが、より一般的には、如何なる適切な数の組の光ファイバ/コリメータを用いることができる。
【0021】
一組の望遠鏡または光ビーム拡大器は、ポート配列101からの自由空間光束を拡大する。第1の望遠鏡または光ビーム拡大器は、光学素子106、107により形成され、第2の望遠鏡または光ビーム拡大器は、光学素子104、105により形成される。
【0022】
図3A及び
図3Bでは、2つの軸の光に作用する光学素子は、両凸の目として、双方の図面において実線により図示されている。これに対して、1つの軸の光にのみ作用する光学素子は、影響を受ける軸における平凸レンズとして、実線により図示されている。また、1つの軸の光にのみ作用する光学素子は、これらの光学素子が作用しない軸においては、破線により図示されている。例えば、
図3A及び
図3Bでは、光学素子102、108、109、110は、双方の図面において実線により描かれている。これに対して、光学素子106、107は、(y軸に沿った焦点調節能力を有するため、)
図3Aでは実線により描かれると共に、(x軸に沿った作用をビームに与えないままとするため、)
図3Bでは破線により描かれている。光学素子104、105は、(x軸に沿った焦点調節能力を有するため、)
図3Bでは実線により描かれると共に、(y軸における作用をビームに与えないままとするため、)
図3Aでは破線により描かれている。
【0023】
各望遠鏡は、x方向及びy方向毎に異なる拡大係数を用いて、生成されるものとしてもよい。例えば、光学素子104、105により形成され、x方向の光を拡大する望遠鏡の拡大率は、光学素子106、107により形成され、y方向の光を拡大する望遠鏡の拡大率よりも低いものとしてもよい。
【0024】
一組の望遠鏡は、ポート配列101からの光ビームを拡大すると共に、これらの光ビームを、自由空間光束をこれらの構成要素としての波長またはチャネルに分離する波長分散体108(例えば、回折格子またはプリズム)に光学的に結合させる。波長分散体108は、x−y平面上の異なる方向の光を、その波長に応じて分散させる様に作用する。上記分散体からの光は、ビーム焦点調節目109に向けられる。
【0025】
ビーム焦点調節目109は、波長分散体108からの波長成分を、光路変換システムに結合させる。この例では、光路変換システムは、プログラム可能な光位相変調器であり、例えば、LCoS装置110の様な、液晶をベースにした位相変調器であってもよい。上記波長成分は、波長分散の方向または軸としてみなされるx軸に沿って分散される。従って、所定の波長を有する波長成分の各々は、y方向に延びるピクセル配列に集中する。一つの例として、これに限定される訳ではないが、λ
1、λ
2、λ
3により示される中心波長を有するその様な3つの波長成分は、
図3Aに示す様に、波長分散軸(x軸)に沿って、LCoS装置110に集中している。
【0026】
図3Bにおいて最もよく示される様に、LCoS装置110からの反射後には、波長成分の各々は、ビーム焦点調節目109、波長分散体108及び光学素子106、107を経由して、ポート配列101内で選択されたファイバに再び結合可能である。上述した同時係属中の米国出願においてより詳細に記載されている様に、y軸におけるピクセルを適切に操作することで、各波長成分を、選択された出力ファイバへ、選択的かつ自律的に誘導することが可能となる。
【0027】
特定の一実施形態では、LCoS装置110は、x−y平面上に無くなり、その結果、光がポート配列101から伝搬する際に沿うz軸に直交しなくなる様に、x軸を中心軸として傾けられる。換言すれば、傾斜角度は、z軸、及び波長分散軸に垂直な変調器の平面内の方向の間で形成される。この様な実施形態は、
図3Bに示した側面図と同様の側面図である
図4に示されている。
図4並びに
図3A及び
図3Bでは、同様の構成要素は、同様の参照番号により示されている。この様にLCoS装置110を傾斜させることにより、散乱光から生じるクロストークを低減することができる。
【0028】
図3A、
図3B及び
図4に示す特定の波長選択スイッチにて使用される光路変換システムは、プログラム可能な光位相変調器(例えば、LCoS装置)ベースのものであるが、例えば、DMDの様なMEMベースの装置等を含む、より一般的な他の技術が代用されるものとしてもよい。