特許第6552209号(P6552209)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サンコール株式会社の特許一覧 ▶ 株式会社日本テクノの特許一覧

<>
  • 特許6552209-金属製ばねの製造方法及び製造装置 図000002
  • 特許6552209-金属製ばねの製造方法及び製造装置 図000003
  • 特許6552209-金属製ばねの製造方法及び製造装置 図000004
  • 特許6552209-金属製ばねの製造方法及び製造装置 図000005
  • 特許6552209-金属製ばねの製造方法及び製造装置 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6552209
(24)【登録日】2019年7月12日
(45)【発行日】2019年7月31日
(54)【発明の名称】金属製ばねの製造方法及び製造装置
(51)【国際特許分類】
   C23C 8/26 20060101AFI20190722BHJP
   C23C 8/02 20060101ALI20190722BHJP
   C23C 8/80 20060101ALI20190722BHJP
   F16F 1/02 20060101ALI20190722BHJP
   C21D 1/06 20060101ALI20190722BHJP
   C21D 1/76 20060101ALI20190722BHJP
   C21D 9/02 20060101ALI20190722BHJP
   C21D 7/06 20060101ALI20190722BHJP
【FI】
   C23C8/26
   C23C8/02
   C23C8/80
   F16F1/02 B
   C21D1/06 A
   C21D1/76 R
   C21D9/02 A
   C21D7/06 A
【請求項の数】7
【全頁数】13
(21)【出願番号】特願2015-24398(P2015-24398)
(22)【出願日】2015年2月10日
(65)【公開番号】特開2016-148068(P2016-148068A)
(43)【公開日】2016年8月18日
【審査請求日】2018年2月2日
(73)【特許権者】
【識別番号】000175722
【氏名又は名称】サンコール株式会社
(73)【特許権者】
【識別番号】591080531
【氏名又は名称】株式会社日本テクノ
(74)【代理人】
【識別番号】110001597
【氏名又は名称】特許業務法人アローレインターナショナル
(72)【発明者】
【氏名】苅谷 良一
(72)【発明者】
【氏名】寺床 圭一郎
(72)【発明者】
【氏名】椛澤 均
(72)【発明者】
【氏名】高瀬 勇
【審査官】 祢屋 健太郎
(56)【参考文献】
【文献】 特開2007−031770(JP,A)
【文献】 特開2013−249524(JP,A)
【文献】 特開2014−001459(JP,A)
【文献】 特開2006−028588(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 8/26
C21D 1/06
C21D 1/76
C21D 7/06
C21D 9/02
C23C 8/02
C23C 8/80
F16F 1/02
(57)【特許請求の範囲】
【請求項1】
表面に窒化層が形成された金属製ばねの製造方法であって、
所定のばね形状に形成された金属製ばね本体を気密性雰囲気炉内に配置させた状態で炉内温度を所定窒化処理温度まで上昇させる昇温工程と、
炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内の窒化ポテンシャルが所定の高レベル値となるようにアンモニアガスを供給する第1窒化工程と、
炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内へのアンモニアガスの供給を停止し且つ前記炉内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉内の窒化ポテンシャルを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる窒化ポテンシャル低下工程と、
炉内温度を前記所定窒化処理温度に保持し且つ前記炉内の窒化ポテンシャルを前記低レベル値に保持する第2窒化工程とを含み、
前記第1窒化工程における窒化ポテンシャルの前記高レベル値は、当該第1窒化工程を所定時間以上に亘って継続すると前記金属ばね本体に化合物層の生成を招く濃度とされており、前記第1窒化工程の処理時間は化合物層の生成を招く前記所定時間より短く且つ前記所定時間の60%以上の時間とされていることを特徴とする金属製ばねの製造方法。
【請求項2】
前記第1窒化工程の処理時間は、化合物層の生成を招く前記所定時間より短く且つ前記所定時間の80%以上の時間とされていることを特徴とする請求項1に記載の金属製ばねの製造方法。
【請求項3】
前記昇温工程は、前記炉内にアンモニアガスを供給しつつ行われることを特徴とする請求項1又は2に記載の金属製ばねの製造方法。
【請求項4】
前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含むことを特徴とする請求項1から3の何れかに記載の金属製ばねの製造方法。
【請求項5】
前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含むことを特徴とする請求項1から4の何れかに記載の金属製ばねの製造方法。
【請求項6】
気密性雰囲気炉と、前記雰囲気炉内を加熱する加熱手段と、前記雰囲気炉へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段と、前記雰囲気炉への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段と、前記雰囲気炉への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段と、前記雰囲気炉内の窒化ポテンシャルを検出する窒化ポテンシャルセンサと、前記雰囲気炉内の温度を検出する温度センサと、制御装置とを備え、
前記制御装置には、事前試験に基づき予め設定された制御モードが記憶されており、
前記制御モードは、被処理体である金属製ばね本体が前記炉内に配置された状態で前記温度センサによって検出される炉内温度が事前試験に応じて予め設定された所定窒化処理温度まで上昇するように前記加熱手段を制御する昇温工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の高レベル値となるように前記アンモニアガス供給手段を制御する第1窒化工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の低レベル値まで低下するように、前記アンモニアガス供給手段を停止制御させて前記炉内へのアンモニアガスの供給を停止させ且つ前記水素ガス供給手段及び前記窒素ガス供給手段を供給制御させて前記炉内に水素ガス及び窒素ガスを3:1の割合で供給させる窒化ポテンシャル低下工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが前記低レベル値に保持されるように、前記アンモニアガス供給手段、前記水素ガス供給手段及び前記窒素ガス供給手段の作動制御を行う第2窒化工程とを含み、
窒化ポテンシャルの前記高レベル値は、前記所定窒化処理温度での窒化処理を所定時間以上に亘って継続すると前記金属ばね本体に化合物層の生成を招くものとされており、
前記第1窒化工程の処理時間は化合物層の生成を招く前記所定時間より短く且つ前記所定時間の60%以上の時間とされ、
窒化ポテンシャルの前記低レベル値は、前記所定窒化処理温度での窒化処理を行っても前記金属製ばね本体に化合物層を生成させないものとされていることを特徴とする金属製ばねの製造装置。
【請求項7】
前記雰囲気炉のガスの排出及び排出停止を切り換えるガス排出手段と、
前記炉内の圧力を検出する圧力センサとを備え、
前記制御装置は、前記圧力センサの検出信号に基づき前記炉内の圧力が負圧とならないように前記ガス排出手段の作動制御を行うことを特徴とする請求項6に記載の金属製ばねの製造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化層が形成された弁ばね等の金属製ばねの製造方法及び製造装置に関する。
【背景技術】
【0002】
鋼材等の金属体の機械的強度を向上させる方法として、処理対象金属体に対して窒化処理を行うことが広く利用されている。
【0003】
この窒化処理においては、処理対象金属体の表面に窒化層を形成しつつ化合物層の発生を防止乃至は低減することが重要となる。
【0004】
即ち、処理対象金属体の表面に化合物層が生成されてしまうと、前記金属体表面近傍の粒界に窒化物や炭窒化物が生じことになる。
【0005】
従って、一旦、窒化処理によって化合物層が生成されると、たとえ化合物層を除去したとしても、粒界に生じた窒化物や炭窒化物は残ったままとなり、処理対象金属体の機械的強度を十分には向上できない。
特に、弁ばね等の繰り返し荷重を受ける部材が処理対象金属体とされる場合には、耐久性の観点で問題となる。
【0006】
この点に関し、下記特許文献1には、弁ばねの製造方法として、第1の濃度範囲の窒化ガス雰囲気で窒化処理を施し、その後、それよりも低濃度である第2の濃度範囲の窒化ガス雰囲気で窒化処理を施す方法が開示されている。
【0007】
詳しくは、前記特許文献1には、窒化ガスの濃度が高い(窒化ポテンシャルが高い)場合には、弁ばね表面の窒素濃度が高まり、弁ばね表面に窒化鉄の化合物層が形成され、一旦、このように表面に窒化鉄の化合物層が形成された後に、窒化ガスの濃度を低濃度とすると、弁ばねの表面においては新規な窒化鉄の化合物層の形成が抑制されると共に、既存の窒化鉄の化合物層が溶解して窒素が弁ばねの内部に拡散する旨の説明がなされている。
【0008】
しかしながら、実際の窒化処理において、一旦、弁ばね表面に窒化鉄の化合物層が形成された後に、この化合物層を低濃度の窒化ガス雰囲気での窒化処理によって溶解させることは困難である。
【0009】
また、下記特許文献2には、窒化処理の前に、処理対象金属体に対してフッ化処理を行うことにより、窒化処理時に化合物層が生成されることを防止乃至は低減する方法が開示されている。
【0010】
しかしながら、この方法では、窒化処理とは別にフッ化処理が必要であり、処理コストの高騰を招くと共に、処理に相当な時間を要するという問題がある。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2004−183099号公報
【特許文献2】特開2006−249486号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、斯かる従来技術に鑑みなされたものであり、化合物層の発生を有効に防止しつつ、深い窒化層が形成された金属製ばねを製造する為の製造方法及び製造装置の提供を目的とする。
【課題を解決するための手段】
【0013】
本発明は、前記目的を達成するために、表面に窒化層が形成された金属製ばねの製造方法であって、所定のばね形状に形成された金属製ばね本体を気密性雰囲気炉内に配置させた状態で炉内温度を所定窒化処理温度まで上昇させる昇温工程と、炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内の窒化ポテンシャルが所定の高レベル値となるようにアンモニアガスを供給する第1窒化工程と、炉内温度を前記所定窒化処理温度に保持しつつ、前記炉内へのアンモニアガスの供給を停止し且つ前記炉内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉内の窒化ポテンシャルを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる窒化ポテンシャル低下工程と、炉内温度を前記所定窒化処理温度に保持し且つ前記炉内の窒化ポテンシャルを前記低レベル値に保持する第2窒化工程とを含み、前記第1窒化工程における窒化ポテンシャルの前記高レベル値は、当該第1窒化工程を所定時間以上に亘って継続すると前記金属ばね本体に化合物層の生成を招く濃度とされており、前記第1窒化工程の処理時間は化合物層の生成を招く前記所定時間より短く且つ前記所定時間の60%以上の時間とされている金属製ばねの製造方法を提供する。
【0014】
好ましくは、前記第1窒化工程の処理時間は、化合物層の生成を招く前記所定時間より短く且つ前記所定時間の80%以上の時間とされる。
【0015】
好ましくは、前記昇温工程は、前記炉内にアンモニアガスを供給しつつ行われる。
【0016】
好ましくは、本発明に係る前記金属製ばねの製造方法は、前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含み得る。
【0017】
好ましくは、本発明に係る前記金属製ばねの製造方法は、前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含み得る。
【0018】
また、本発明は、気密性雰囲気炉と、前記雰囲気炉内を加熱する加熱手段と、前記雰囲気炉へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段と、前記雰囲気炉への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段と、前記雰囲気炉への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段と、前記雰囲気炉内の窒化ポテンシャルを検出する窒化ポテンシャルセンサと、前記雰囲気炉内の温度を検出する温度センサと、制御装置とを備えた金属製ばねの製造装置を提供する。
【0019】
本発明に係る前記製造装置において、前記制御装置には、事前試験に基づき予め設定された制御モードが記憶される。
前記制御モードは、被処理体である金属製ばね本体が前記炉内に配置された状態で前記温度センサによって検出される炉内温度が事前試験に応じて予め設定された所定窒化処理温度まで上昇するように前記加熱手段を制御する昇温工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の高レベル値となるように前記アンモニアガス供給手段を制御する第1窒化工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが事前試験に応じて予め設定された所定の低レベル値まで低下するように、前記アンモニアガス供給手段を停止制御させて前記炉内へのアンモニアガスの供給を停止させ且つ前記水素ガス供給手段及び前記窒素ガス供給手段を供給制御させて前記炉内に水素ガス及び窒素ガスを3:1の割合で供給させる窒化ポテンシャル低下工程と、前記温度センサによって検出される炉内温度が前記所定窒化処理温度に保持されるように前記加熱手段を制御しつつ、前記窒化ポテンシャルセンサに基づく前記炉内の窒化ポテンシャルが前記低レベル値に保持されるように、前記アンモニアガス供給手段、前記水素ガス供給手段及び前記窒素ガス供給手段の作動制御を行う第2窒化工程とを含むものとされる。
【0020】
ここで、窒化ポテンシャルの前記高レベル値は、前記所定窒化処理温度での窒化処理を所定時間以上に亘って継続すると前記金属ばね本体に化合物層の生成を招く濃度とされ、前記第1窒化工程の処理時間は化合物層の生成を招く前記所定時間より短く且つ前記所定時間の60%以上の時間とされ、窒化ポテンシャルの前記低レベル値は、前記所定窒化処理温度での窒化処理を行っても前記金属製ばね本体に化合物層を生成させない濃度とされる。
【0021】
好ましくは、本発明に係る金属製ばねの製造装置は、さらに、前記雰囲気炉のガスの排出及び排出停止を切り換えるガス排出手段と、前記炉内の圧力を検出する圧力センサとを備え得る。
この場合、前記制御装置は、前記圧力センサの検出信号に基づき前記炉内の圧力が負圧とならないように前記ガス排出手段の作動制御を行うものとされる。
【発明の効果】
【0022】
本発明に係る金属製ばねの製造方法及び製造装置によれば、所定時間以上に亘って継続すると金属製ばね本体に化合物層の生成を招く高濃度の窒化ポテンシャルで窒化処理を行っているので深い窒化層を金属製ばね本体の表面全体に可及的に均一に形成することができ、さらに、高濃度の窒化ポテンシャルでの窒化処理を化合物層の生成を招く前記所定時間より短く且つ前記所定時間の60%以上の時間に制限しているので金属製ばね本体に化合物層が生成することを確実に防止することができる。
【図面の簡単な説明】
【0023】
図1図1は、本発明の一実施の形態に係る金属製ばね製造方法を実施する製造装置の一例の模式図である。
図2図2は、炉内ガスの水素濃度、アンモニア濃度及び窒素濃度と炉内の窒化ポテンシャルとの関係を示す表であり、水素濃度が0%〜39%の場合の関係を示している。
図3図3は、図2と同じ表であり、水素濃度が40%〜75%の場合の関係を示している。
図4図4は、本発明の一実施の形態に係る金属製ばね製造方法における炉内雰囲気制御のタイムチャートである。
図5図5は、窒化生成相に及ぼす窒化ポテンシャルと窒化処理温度との関係を示すレーラー状態図の一例である。
【発明を実施するための形態】
【0024】
以下、本発明に係る金属製ばねの製造方法の一実施の形態について、添付図面を参照しつつ説明する。
【0025】
まず、本実施の形態に係る金属製ばねの製造方法を実施する際に用いられる製造装置の一例100について説明する。
図1に、前記製造装置100の模式図を示す。
【0026】
図1に示すように、前記製造装置100は、気密性雰囲気炉10と、前記炉10内を加熱するヒーター等の加熱手段20と、前記炉10へのアンモニアガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能なアンモニアガス供給手段30と、前記炉10への水素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な水素ガス供給手段40と、前記炉10への窒素ガスの供給及び供給停止を切り換えることができ、さらに供給時には供給量を調整可能な窒素ガス供給手段50と、前記炉10内の窒化ポテンシャルKnを検出する窒化ポテンシャルセンサ60と、前記炉10内の温度を検出する温度センサ61と、制御装置90とを備えている。
【0027】
図1に示すように、本実施の形態においては、前記アンモニアガス供給手段30は、前記炉10にアンモニアガスを供給するアンモニアガス供給ライン31と、前記アンモニアガス供給ライン31に介挿されたアンモニアガス制御手段35とを有している。
【0028】
本実施の形態においては、図1に示すように、前記アンモニアガス供給ライン31は、大流量のアンモニアガスが供給される第1アンモニアガス供給ライン31a及び小流量のアンモニアガスが供給される第2アンモニアガス供給ライン31bを含んでおり、前記アンモニアガス制御手段35は、前記第1及び第2アンモニアガス供給ライン31a、31bをそれぞれON/OFFする第1及び第2アンモニアガス電磁弁35a、35bを含んでいる。
当然ながら、前記アンモニアガス供給ライン31が流量の異なる3本以上のアンモニアガス供給ラインを有するように構成することも可能である。
【0029】
また、前記アンモニアガス制御手段35として、前記電磁弁35a、35bに代えて、弁開度を連続的に且つ自由に調整可能な電動弁(図示せず)を採用することも可能である。
この場合には、前記アンモニアガス供給手段30は、大流量のアンモニアガスが供給される単一のアンモニアガス供給ラインと、前記アンモニアガス供給ラインに介挿されるアンモニアガス電動弁とを有するものとなる。
【0030】
図1に示すように、本実施の形態においては、前記水素ガス供給手段40は、前記炉10に水素ガスを供給する水素ガス供給ライン41と、前記水素ガス供給ライン41に介挿された電磁弁又は電動弁等の水素ガス制御手段45とを有している。
【0031】
図1に示すように、本実施の形態においては、前記窒素ガス供給手段50は、前記炉10に窒素ガスを供給する窒素ガス供給ライン51と、前記窒素ガス供給ライン51に介挿された電磁弁又は電動弁等の窒素ガス制御手段55とを有している。
【0032】
前記制御装置90は、前記各種センサ等から入力される信号に基づいて演算処理を実行する制御演算手段を含む演算部と、制御プログラム及び制御条件を記憶すると共に、前記演算部による演算中に生成されるデータを一時的に保持する記憶部とを備えている。
【0033】
本実施の形態においては、前記制御装置90は、前記各種センサからの入力信号及び前記制御プログラムに基づき、前記アンモニアガス供給手段(前記アンモニアガス制御手段35)、前記水素ガス供給手段(前記水素ガス制御手段45)、前記窒素ガス供給手段(前記窒素ガス制御手段55)及び前記加熱手段20の作動制御を司る。
【0034】
ここで、窒化ポテンシャルKnについて説明する。
窒化ポテンシャルKnとは、炉内雰囲気の窒化力を示す指標であって、次式によって表される。
Kn=PNH3/PH23/2
(式中のPNH3 はアンモニア(NH)の分圧、PH2は水素(H)の分圧を示す)
【0035】
この窒化ポテンシャルKnは水素濃度を検出することによって算出され得る。
即ち、炉内に供給されたアンモニアガス(NH)は次式に基づいて、窒素(N)と水素(H)とに熱分解する。
NH → (1/2)N + (3/2)H
【0036】
ここで、アンモニアガスの単位量が炉内に導入された際の当該アンモニアガスの分解率をαとすれば、未分解アンモニア量は1−α、発生窒素量はα/2、発生水素量は3α/2となり、これらガスの総量は1+αとなる。
【0037】
従って、アンモニア分圧PNH3、窒素分圧PN2、水素分圧PH2は、次式によって表される。
NH3=(1−α)/(1+α) ・・・ (1)
N2 =(α/2)/(1+α) ・・・ (2)
H2 =(3α/2)/(1+α) ・・・ (3)
【0038】
前記式(1)〜(3)から、PNH3及びPN2は、それぞれ、
NH3=(3−4PH2)/3
N2 =PH2/3
となり、前述の窒化ポテンシャルKnは、
Kn=PNH3/PH23/2
=(3−4PH2)/3PH23/2
=(1−4PH2/3)/PH23/2
となる。
【0039】
従って、前記雰囲気炉内の水素分圧PH2を検出すれば、炉内雰囲気の窒化ポテンシャルKnを求めることができる。
【0040】
この点から、前記窒化ポテンシャルセンサ60として、水素センサを好適に用いることができる。
前記水素センサとしては、例えば、水素分子透過性を備えた測定管によるもの(例えば、独Ipson社製:HydroNit−sonde)を用いることができるが、炉体に直接装着することができ、炉内の水素濃度を連続的に測定できる点から、熱伝導式センサー(例えば、独Stange社製:SE−H2)が好適に利用され得る。
【0041】
参考として、図2及び図3に、前記関係式に基づき得られる、窒化ポテンシャルKnと水素濃度、アンモニア濃度及び窒素濃度との関係を示す。
所望の窒化層を形成するために必要な窒化ポテンシャルKnが定まれば、前記関係式又は図2及び図3に示す表から、前記雰囲気炉内において制御目標値とすべき水素分圧PH2を求めることができる。
【0042】
なお、本発明において、前記アンモニアガス供給ライン31を介して前記炉10内にアンモニアガスを供給する構成には、アンモニアガスだけを供給する態様に加えて、所謂、ガス軟窒化処理の態様も含まれる。前記ガス軟窒化処理には、アンモニアガスに炭酸ガスを加えたアンモニア・炭酸混合ガスを供給する態様や、アンモニアガスにアセチレンガスを加えたアンモニア・アセチレン混合ガスを供給する態様が含まれる。
【0043】
アンモニア・炭酸混合ガスを供給する態様においても、炭酸ガスの量はアンモニアガスに比して3〜5%程度であるため、前記炭酸ガスの存在を無視して、前記関係式(図2及び図3の関係表)を利用することができる。同様に、アンモニア・アセチレン混合ガスを供給する態様においても、前記関係式(図2及び図3の関係表)を利用することができる。
【0044】
好ましくは、図1に示すように、前記製造装置100には、前記炉10内のガスの排出及び排出停止を切り換えるガス排出手段70と、前記炉10内の圧力を検出する圧力センサ62とが備えられる。
【0045】
この場合、前記制御装置90は、前記圧力センサ62の検出信号に基づき前記炉10内の圧力が負圧とならないように前記ガス排出手段70の作動制御を行う。
【0046】
本実施の形態においては、図1に示すように、前記ガス排出手段70は、前記炉10内のガスを排出させる排出ライン71と、前記排出ライン71に介挿された排出電磁弁75とを有しており、前記排出電磁弁75が前記制御装置90によって作動制御される。
【0047】
本実施の形態においては、図1に示すように、前記製造装置100は、さらに、前記排出ライン71の下流端に接続された分解炉80を有しており、前記炉10内での窒化処理での残余のアンモニアが前記分解炉80によって分解され、排出ガス中の可燃性ガス成分と共に燃焼炉85で燃焼された上で、大気に放出される。
【0048】
ここで、本実施の形態に係る金属製ばね製造方法について説明する。
図4に、本実施の形態に係る金属製ばね製造方法における炉内雰囲気制御のタイムチャートを示す。
【0049】
図1に示すように、本実施の形態に係る金属製ばね製造方法は、昇温工程と、第1窒化工程と、窒化ポテンシャル低下工程と、第2窒化工程とを含んでいる。
【0050】
前記昇温工程は、小量のアンモニアガス及び窒素ガスを供給しつつ、炉内温度を所定の窒化処理温度(例えば450℃)まで上昇させるものであり、これにより、炉内及び被処理体である金属製ばね本体の酸化を防止する。
なお、後続する前記第1窒化工程、前記窒化ポテンシャル低下工程及び前記第2窒化工程では炉内温度は前記所定窒化処理温度に維持される。
【0051】
前記第1窒化工程は、前記炉10内の窒化ポテンシャルKnが前記金属ばね本体の表面に化合物層の生成を招く高レベル値となるように、アンモニアガスを供給する。
【0052】
ここで、所定窒化処理温度及び窒化ポテンシャルの高レベル値は、図5に示すレーラー状態図を利用して予め設定され、前記制御装置90に制御条件として記憶される。
【0053】
即ち、図5に示すレーラー状態図は、窒化生成相に及ぼす窒化ポテンシャルKnと処理温度の関係を示しており、鋼部品にガス窒化処理(あるいは軟窒化処理)を施す際に、目的とする相組成の窒化層を形成するために必要な窒化ポテンシャルKnを求めるのに利用することができる。
【0054】
なお、図5に示すレーラー状態図は、純鉄から成るワーク表面の窒化ポテンシャルKnと炉内雰囲気の窒化ポテンシャルKnとが一致する平衡状態をベースに作成されているので、現実の処理状況の非平衡状態、及び/又は、被処理体である金属製ばね本体の材質(鋼種)によっては、多少の誤差が生じることが考えられる。
【0055】
したがって、現実の処理状態、金属製ばね本体の材質、及び/又は、軟窒化処理時における炭酸ガス又はアセチレンガスの添加量が比較的多い場合などには、必要に応じて、事前試験によって補正し、予め必要な窒化ポテンシャルKn及び窒化処理温度を求めておくことが望ましい。
【0056】
前記第1窒化工程の処理時間は、事前試験によって得られるデータに基づいて予め以下のように設定され、前記制御装置90に制御条件として記憶される。
即ち、前記第1窒化工程における窒化条件、つまり、窒化ポテンシャルKnが前記高レベル値で且つ炉内温度が前記窒化処理温度とされた窒化条件での窒化処理において、前記金属製ばね本体の表面に化合物層が生じ始める所定時間を、予め、事前試験によって確認する。
【0057】
その上で、前記第1窒化工程の処理時間を前記所定時間より短い時間に設定し、前記制御装置90に記憶する。
好ましくは、前記第1窒化工程の処理時間は、前記所定時間の60%以上、より好ましくは前記所定時間の80%以上とされる。
【0058】
前記窒化ポテンシャル低下工程は、炉内温度を前記所定窒化処理温度に維持しつつ、前記炉10内へのアンモニアガスの供給を停止し且つ前記炉10内に水素ガス及び窒素ガスを3:1の割合で供給して、前記炉10内の窒化ポテンシャルKnを前記金属製ばね本体に化合物層が生成しない低レベル値まで低下させる。
【0059】
詳しくは、前記窒化ポテンシャルKnの前記低レベル値は、前記レーラー状態図、及び/又は、事前試験に基づいて、予め設定され、前記制御装置90に制御条件として記憶される。
【0060】
前記制御装置90は、前記温度センサ61に基づいて得られる炉内温度が前記所定窒化処理温度に維持されるように前記加熱手段20を作動させつつ、前記窒化ポテンシャルセンサ60からの信号に基づいて得られる前記炉10内の窒化ポテンシャルKnが前記低レベル値まで低下するように前記水素ガス電磁弁45及び前記窒素ガス電磁弁55の作動制御を行う。
【0061】
前記第2窒化工程は、炉内温度を前記所定窒化処理温度に保持し且つ前記炉10内の窒化ポテンシャルKnを前記低レベル値に保持した状態を所定時間維持する。
【0062】
即ち、前記制御装置90は、前記温度センサ61に基づいて得られる炉内温度が前記所定窒化処理温度に維持されるように前記加熱手段20を作動させつつ、前記窒化ポテンシャルセンサ60からの信号に基づいて得られる前記炉10内の窒化ポテンシャルKnが前記低レベル値に維持されるように前記アンモニアガス制御手段35、前記水素ガス制御手段45及び前記窒素ガス制御手段55の作動制御を行う。
【0063】
なお、前記炉10内の窒化ポテンシャルKnの前記低レベル値の維持は、前記アンモニアガス制御手段35のON/OFF制御によって行うこともできるし、アンモニアガスの供給による窒化ポテンシャルの上昇制御と窒素ガス及び水素ガスの供給(水素ガス及び窒素ガスの3:1の割合での供給)による窒化ポテンシャルの下降制御との組み合わせによって行うことも可能である。
【0064】
前記第2窒化工程の処理時間も予め設定されており、前記制御装置90は、制御条件として記憶されている処理時間に亘って前記第2窒化工程を実行する。
【0065】
かかる構成の金属製ばね製造方法によれば、以下の効果を得ることができる。
即ち、窒化処理前の金属製ばね本体の表面は、汚れ状態や酸化状態に関し均一とは言えない。
従って、このような状態の処理対象物(金属製ばね本体)に対して低濃度の窒化ポテンシャルで窒化処理を行うと、金属製ばね本体の表面に窒化のばらつきが生じ、結果として、金属製ばねの耐久性を十分には向上できない。
【0066】
これに対し、本実施の形態に係る前記製造方法によれば、金属製ばね本体に対する最初の窒化処理(前記第1窒化工程)は、前記金属製ばね本体の表面に化合物層の生成を招くような高レベル値の窒化ポテンシャルで行われている。
【0067】
従って、窒化処理前の状態において金属製ばね本体の表面が汚れ状態や酸化状態に関し均一では無かったとしても、金属製ばね本体への窒化を可及的に均一且つ深く行うことができる。
【0068】
さらに、前記第1窒化工程においては、処理時間を制御することによって、処理対象物である金属製ばね本体の表面に化合物層が生成することを防止している。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって金属製ばね本体に深い窒化層を有効に形成しつつ、金属製ばね本体に化合物層が生成することを、簡単な制御で且つ確実に防止することができる。
【0069】
即ち、理論上においては、窒化ポテンシャルKnの濃度の増減制御を繰り返し行うことによっても、金属製ばね本体の表面に深い窒化層を得ることが可能である。
【0070】
しかしながら、窒化ポテンシャルKnの濃度の増減制御を応答性良く且つ正確に行うことは、現実的には非常に困難である。
【0071】
これに対し、本実施の形態においては、前記第1窒化工程における窒化ポテンシャルKn及び炉内温度は一定とされており、窒化処理処理時間を制御することによって、高濃度の窒化ポテンシャルで窒化処理を行いつつ化合物層の生成を防止している。
従って、高レベル値の窒化ポテンシャルで窒化処理を行うことによって深い窒化層を形成しつつ、化合物層の生成を簡単な制御で確実に防止することができる。
【0072】
好ましくは、前記昇温工程においても、前記高レベル値を目標値として前記炉10内に対するアンモニアガスの供給制御を行うことができる。
斯かる構成によれば、第1窒化工程の処理時間を可及的に短縮化させることができる。
【0073】
本実施の形態に係る製造方法は、図4に示すように、前記昇温工程の前に、アイドリング工程(待機工程)を有している。
アイドリング工程は、前記金属製ばね本体を炉内の雰囲気に慣らす為の処理である。
【0074】
前記金属製ばね製造方法は、好ましくは、前記昇温工程の前に、前記金属製ばね本体に対してショットブラストを行う前処理工程を含むことができる。
前記前処理工程を備えることにより、後続する前記第1及び第2窒化工程での窒化処理の安定化を図ることができる。
【0075】
また、前記金属製ばね製造方法は、好ましくは、前記第2窒化工程の後に、前記金属製ばね本体に対してショットブラスト又はショットピーニングを行う後処理工程を含むことができる。
前記後処理工程を備えることにより、金属製ばねの耐久性を向上させることができる。
【符号の説明】
【0076】
10 気密性雰囲気炉
20 加熱手段
30 アンモニアガス供給手段
40 水素ガス供給手段
50 窒素ガス供給手段
60 窒化ポテンシャルセンサ
61 温度センサ
62 圧力センサ
70 ガス排出手段
90 制御装置
100 金属製ばね製造装置
図1
図2
図3
図4
図5