【文献】
International Journal of Pharmaceutics,2010年,Vol.402,No.1-2,pp.165-174
(58)【調査した分野】(Int.Cl.,DB名)
前記粒子が、ポリ(ラクチド−コ−グリコリド)(PLG)を含み、任意に、前記粒子が50:50のポリ乳酸:ポリグリコール酸の共重合体の比率を有するPLGを含む、請求項1に記載の組成物。
前記粒子がポリ(ラクチド−コ−グリコリド)(PLG)を含み、前記PLG粒子が50:50のポリ(ラクチド−コ−グリコリド)の共重合体の比率を有し、任意に、i)前記PLG粒子の粒径が400〜800ナノメーターであるか、又はii)表面の官能化がカルボキシル化であり、任意に、前記カルボキシル化がポリ(エチレン−無水マレイン酸)(PEMA)を用いて達成される、請求項7に記載の組成物。
前記粒子が凍結乾燥されており、前記使用が、凍結乾燥された粒子を再溶解(reconstitute)して、表面が官能化された粒子を含む再溶解された医薬組成物を得て、当該再溶解された医薬組成物を必要とされる対象に投与することを含む、請求項12に記載の組成物。
【図面の簡単な説明】
【0038】
【
図1】(A)ポリ(ラクチド−コ−グリコリド)(PLG)粒子の顕微鏡写真を示す。B及びCは、動的光散乱分析による表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示し、粒径分布、平均粒径(nm)、ζ電位(mV)、並びに、OVA
323〜339及びPLP
139〜151ペプチドのPLG−PEMA粒子とのペプチド結合効率(%)を含む。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒2.5×10
5計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、バッチ当たり5〜15%異なったが、概して、567nmのZ平均粒径、670nmのピーク粒径、及び0.209の多分散性指数を有した。
【
図2】PLGナノ粒子が抗原特異的寛容を誘導することを示す。免疫優性プロテオリピドタンパク質PLP
139〜151エピトープ(PLG−PLP
139〜151)を用いて、再発性実験的自己免疫性脳炎(R−EAE)の予防に対する寛容を誘導した。免疫化時点(0日)に対して−7日目に、PLP
139〜151−PLGA(N=5)、OVA
323〜339−PLGA(N=5)、又はコンジュゲートしていないPLGA(N=5)のいずれかでマウスを処理した。典型的には、疾患のピークは12〜14日目あたりで見られ、マウスを臨床疾患についてスコア化する。ペプチドを含まない、又は対照ペプチドOVA
323〜339で修飾された粒子は、疾患の誘導を予防しなかった。しかしながら、PLP
139〜151で修飾されたPLGA粒子は、20〜30日目で示した1という低い臨床スコア以外は、全てにおいて臨床スコア0(疾患なし)を生じた。
【
図3】投与された粒子の種類が、マウスモデルにおけるEAEの発症への影響を有することを示す。A)は、平均臨床スコアを示し、B)は、EAE動物の平均蓄積スコアを示す。免疫化時点(0日)に対して−7日目に、OVA
323〜339−PLS(N=5)、OVA
323〜339−PLGA
PHOSPOREX(N=5)、OVA
323〜339−PLGA
PEMA(N=5)、PLP
139〜151−PLA(N=5)、PLP
139〜151−PLGA
PHOSPOREX(N=5)、又はPLP
139〜151−PLG
PEMA(N=5)のいずれかでマウスを処理した。典型的には、疾患のピークは12〜14日目あたりで見られ、マウスを臨床疾患についてスコア化する。対照ペプチドOVA
323〜339で修飾された任意の組成物の粒子は、疾患の誘導を予防しなかった。しかしながら、PLP
139〜151を結合したPLGビーズは、PLP
139〜151を結合した市販の(phosphorex)PLG又はポリスチレンよりも、R−EAEの下方制御誘導に有効であった。
【
図4】28日目に可溶性OVAで処理したこれらのマウスが、OVA−PLG粒子で処理した動物と比較して、体温の低下を示したことを示す。粒子送達後1時間以内には、体温の低下は見られなかった。
【
図5】寛解中のPLP−PLG投与が、アナフィラキシー関連死亡率に全く影響しないことを示す。EAEは、CFA中PLP
139〜151を皮下投与することによって、6〜8週齢の雌性SJL/Jマウスにおいて誘導され、臨床疾患の発症を観察し、記録した(B)。疾患誘導21日目に、可溶性PLP
139〜151(白四角)
、可溶性OVA
323〜339(白丸)、又はPLGナノ粒子に同じペプチドを結合したもの(黒)を、マウスにiv投与した。動物の体温を観察し、投与後1時間まで10分ごとに記録した(A)。
【
図6-01】疾患誘導7日前に静脈内に投与したPLP
139〜151−PLGの至適用量を示す。臨床疾患の発症は、OVA
323〜339−PLGで処理したSJL/Jマウスと比較して判定した(A)。6〜8週齢の雌性SJL/Jマウスに、PLP
139〜151(四角)又はOVA
323〜339(丸)のいずれかを結合したPLGナノ粒子をiv投与した。7日後(B)、25日後(C)、又は50日後(D)、CFA中PLP
139〜151の皮下投与によって、EAEを誘導した。パネルBの動物の臨床疾患について、100日間追跡調査した。疾患誘導8日目、パネルBに示すマウスのサブセットにおいて、遅延型過敏性(DTH)反応を行った(E)。パネルBのPLP
139〜151/CFAで一次感作させた群から選択された代表的な動物(OVA
323〜339−PLG及びPLP
139〜151−PLG)に対し、一次感作したPLP
139〜151エピトープ及びOVA
323〜339対照ペプチドを耳に惹起投与した。DTHの尺度としての耳腫脹を24時間後に測定し、惹起前の反応を差し引いた。6〜8週齢の雌性SJL/Jマウスに、PLP
178〜191(三角)、OVA
323〜339(丸)、若しくはPLP
139〜151(四角)を結合したPLGナノ粒子、又は未結合の粒子単独(白抜き丸)を静脈内に投与した(F)。EAEは、CFA中PLP
178〜191の皮下投与後7日目に誘導され、示される時点において疾患を観察した。
【
図6-02】疾患誘導7日前に静脈内に投与したPLP
139〜151−PLGの至適用量を示す。臨床疾患の発症は、OVA
323〜339−PLGで処理したSJL/Jマウスと比較して判定した(A)。6〜8週齢の雌性SJL/Jマウスに、PLP
139〜151(四角)又はOVA
323〜339(丸)のいずれかを結合したPLGナノ粒子をiv投与した。7日後(B)、25日後(C)、又は50日後(D)、CFA中PLP
139〜151の皮下投与によって、EAEを誘導した。パネルBの動物の臨床疾患について、100日間追跡調査した。疾患誘導8日目、パネルBに示すマウスのサブセットにおいて、遅延型過敏性(DTH)反応を行った(E)。パネルBのPLP
139〜151/CFAで一次感作させた群から選択された代表的な動物(OVA
323〜339−PLG及びPLP
139〜151−PLG)に対し、一次感作したPLP
139〜151エピトープ及びOVA
323〜339対照ペプチドを耳に惹起投与した。DTHの尺度としての耳腫脹を24時間後に測定し、惹起前の反応を差し引いた。6〜8週齢の雌性SJL/Jマウスに、PLP
178〜191(三角)、OVA
323〜339(丸)、若しくはPLP
139〜151(四角)を結合したPLGナノ粒子、又は未結合の粒子単独(白抜き丸)を静脈内に投与した(F)。EAEは、CFA中PLP
178〜191の皮下投与後7日目に誘導され、示される時点において疾患を観察した。
【
図7】A〜Dは、PLG−PLP
139〜151粒子を静脈内又は腹腔内のいずれかに投与するとき、予防的寛容が最も効率的であることを示す。静脈内投与されたPLP
139〜151−PLGで処理された動物は、疾患を発症せず、ほとんどの時点での平均臨床スコアが0であった。
【
図8】A〜Fは、OVA
323〜339−PLG粒子の投与が、処理された動物におけるTh1及びTh17応答を阻害したことを示す。
【
図9】A〜Cは、PLP
139〜151−PLGで処理した動物の脊髄内への免疫細胞浸潤の低下を示し、これは、OVA
323〜339−PLGで処理された動物の組織よりも、天然組織に近かった。OVA
323〜339−PLGで処理された動物は、CD45、CD4、及びCD11b染色に陽性を示したが、一方PLP
139〜151−PLGで処理された動物は、これらの因子の染色が最小限であった。
【
図10】A〜Cは、PLP
139〜151−PLG粒子の投与が、処理されたマウスの血液脳関門(BBB)の破壊と、脊髄におけるマクロファージ活性化を阻害することを示す。動物を、完全フロイントアジュバント(CFA)、OVA
323〜339PLG粒子、又はPLP
139〜151−PLG粒子のいずれかで処理した。EAEの臨床スコア及び発生率を判定し(B)、in vivo画像診断によって脊髄を観察した(A及びC)。
【
図11-01】A及びBは、in vivo画像診断による処理されたマウスの脊髄を示す。C〜Fは、画像データの数値化を示すグラフである。
【
図11-02】A及びBは、in vivo画像診断による処理されたマウスの脊髄を示す。C〜Fは、画像データの数値化を示すグラフである。
【
図12】PLP
139〜151が封入されているPLG粒子の投与が、マウスにおいてR−EAEの誘導を阻害することを示す。自己抗原の封入能によって、表面結合が不可能なタンパク質又は更には臓器ホモジネートの複雑な混合物の使用が可能になり、抗原の適用範囲が広くなることによって、より効果的にepitope spreadingに対応できる。
【
図13】PLP
139〜151−PLG粒子及び抗CD25抗体で処理した動物が、PLP
139〜151−PLG粒子及び対照IgG抗体で処理した動物よりも高い平均臨床スコアを、時として示したことを示す。
【
図14】能動的及び養子的EAEにおいて、PLP
139〜151−PLG粒子によって誘導された治療的寛容を示す。2.5×10
6個のPLP
139〜151活性化芽球の養子移入によって、6〜8週齢の雌性SJL/Jマウスにおいて養子的EAEを誘導した。PLP
139〜151(四角)又はOVA
323〜339(丸)ペプチドを結合させた500nmのPLGナノ粒子を、疾患誘導2日後(A)、14日後(C)、18日後(E)、又は21日後(F)に、マウスにiv投与した。臨床疾患スコアを、抗原を結合させた脾細胞で処理後のもの(A)と比較した。42日目に、PLP
139〜151又はOVA
323〜339で寛容化したマウスから、組織学的解析用に脳及び脊髄を採取した。パネルAのマウスの切片は、PLPタンパク質及びCD45について染色した(B)。パネル(C)のマウスの脊髄切片は、ルクソールファストブルーで染色した(D)。脱髄及び細胞浸潤の領域を矢印で示す。
【
図15】OVA
323〜339又はPLP
139〜151にコンジュゲートしたSP又はPLG粒子のいずれかで処理後の、能動的EAE及び養子的EAEであるマウスの平均臨床スコアを示すグラフを示す。PLP
139〜151−SP、PLP
139〜151−PLG、又はOVA
323〜339−SP、又はOVA
323〜339−PLGペプチドを結合させた500nmのナノ粒子を、疾患誘導10日後(A)又は2日後(B)に、マウスにiv投与し、平均臨床スコアを判定した。両方の場合において、PLP
139〜151−PLG粒子の投与は、マウスにおける寛容を誘導する。
【
図16】中枢神経系免疫細胞の浸潤も、PLP−PLG寛容化マウスにおいて劇的に低減することを示す。PLP
139〜151(四角)又はOVA
323〜339(丸)を結合した500nmのPLGナノ粒子を、養子移入によるEAE誘導2日後に、SJL/Jマウスにiv投与した。疾患のピーク(14日目)において、脳及び脊髄を採取し、リンパ球(B)、APC(C)、小神経膠細胞(D)、末梢樹状細胞(E)、骨髄系樹状細胞(F)、及びマクロファージ(G)の数をフローサイトメトリーによって数えた。これらの集団に対するゲーティング戦略を(A)に示す。CNS細胞調製物を、IL−17A及びIFN−γに対する細胞内染色5時間前に、PMA及びイオノマイシンで刺激した(H)。
【
図17】粒子をPBSと投与するとき、PLG粒子に封入されたPLP
139〜151ペプチドの投与が寛容を誘導することを示す。しかしながら、抗PD−1抗体の投与により、この寛容は減じる。
【
図18】粒子をPBSと投与するとき、PLG粒子に封入されたPLP
139〜151ペプチドの投与が寛容を誘導することを示す。抗CD40抗体の投与によりこの寛容は減じるが、この寛容の低減は、抗IL−12抗体の添加によって回復される。
【
図19】A〜Gは、OVA−PLGの予防的投与が、IL−4、IL−5、IL−13、及びIL−10の分泌を低下させ、血清OVA IgE及び肺中好酸球のレベルを下げたことを示す。
【
図20】PLG粒子に封入されたOVAが、縦隔リンパ節のOVA特異的in vitroリコール応答を予防的に阻害することを示す。25μgのOVAによる再刺激後観察されるリンパ節の増殖は、OVA−PLGで処理された動物において低下する(A)。更に、OVA−PLGによる処理は、OVAによる再刺激後のサイトカインの放出を低下させる。IL−4、IL−5、IL−13、及びIL−10のレベルは、OVA−PLGで処理されたマウスにおいて低下する(B)。
【
図21】A及びBは、OVA−PLGの治療的投与が、IL−4、IL−5、IL−13、及びIL−10の分泌を低下させ、血清OVA IgE及び肺中好酸球のレベルを下げたことを示す。
【
図22】PLG粒子内に封入されたOVAが、OVAを結合させたPLG粒子よりも良好に、BAL液中のOVA特異的Th2サイトカインを治療的に下方制御することを示す。0日目及び14日目に、10μg/マウスの用量のOVA/ミョウバンをマウスに腹腔内投与した。28日目及び42日目に、PLG粒子に結合させたOVA又はPLG粒子内に封入したOVAのいずれかを、マウスに静脈内投与した。56〜58日目に、エアロゾル化OVAを用いてマウスを3回処理した。グラフは、PLG粒子に結合したOVA(A)又はPLG粒子内に封入されたOVA(B)のいずれかで処理したときのサイトカイン分泌を示す。
【
図23】p31−PLG粒子で処理した後の1型糖尿病の動物の血糖値を示す。p31ペプチドが結合したPLG粒子の投与により、MOG
35〜55ペプチドが結合した粒子の投与後に見られるものと比べて、血糖値の低下がもたらされる(A及びB)。動物で見られるIFNγ分泌細胞の割合も、MOG
35〜55ペプチド−PLGで処理されたマウスと比較して、p31−PLGで処理されたマウスにおいて低下した(C)。
【
図24】A〜Bは、p31−PLG誘導性寛容は、Tregを必要とすることを示す。1型糖尿病を養子移入によってマウスで誘導させた。活性化細胞をNOD.SCIDマウスに移植して2時間後、p31−PLG又はMOG
35〜55 PLG粒子のいずれかでマウスを寛容化した。Tregの枯渇は、p31−PLG粒子の投与により誘導される寛容を抑制する。
【
図25】インスリンを結合したPLG粒子の投与により、300日間糖尿病を発症しなかったマウスの割合が優位に増加したことを示す(22.7%に対し69.6%、p=0.0027)。NODマウスを、6、8、10週齢の時点で静脈投与することによって、BSA(N=22)又はインスリン(N=23)を結合させたPLG粒子のいずれかで処理した。その後、糖尿病の発症についてマウスを分析した。
【
図26】レシピエントマウスで見られるCD45.1ドナー細胞の割合を示す。雌性CD45.2マウスを、−7日目に、OVA−PLG又はDby−PLGのいずれかで寛容化させた。−1日目に、マウスを200ラドで照射し、その後、0日目に、雄性CD45.1マウスから1×10
6個、5×10
6個、又は1×10
7個の骨髄細胞を移植した。続いて、1日目に、レシピエントマウスをOVA−PLG、Dby−SP、又はDby−PLGのいずれかで寛容化し、キメラ現象のFACS解析をするために血液を回収した。
【
図27】1日目に、OVA−PLG、Dby−SP、又はDby−PLGのいずれかで寛容化した後の、レシピエントマウスにおけるドナーCD45.1細胞の割合を示す。陽性対照マウスの1例は、顕著な生着を示さなかった(〜10%)。陰性対照マウスは全て、ドナー細胞が生着しなかった。Dby−SPマウスの1例は、顕著な生着を示さなかった(〜10%)。OVA−PLGマウス2例はドナー細胞が生着し(〜10%)、1例は16週までに完全に拒絶された。Dby−PLGマウスの1例は、12週において拒絶し始め、16週までには10%であった。Dby−PLG群では、16週までの生着は10%〜56%の範囲であった。OVA−PLGマウスは、1)自発的生着、2)OVA323とDbyとの間の配列相同性、又は3)粒子の免疫寛容誘発性を示した。Dby−PLGは、Dby−SP及びOVA−PLGよりも生着が可能である。
【
図28】寛容の時期が、レシピエントマウスにおけるCD45.1細胞の割合に影響を及ぼすことを示す。陽性対照は、予想値(〜10%)よりも低い生着率(〜4%)を示す。陰性対照マウスの1例の生着率は5%であり、OVA−PLG群全体の3例のうち、−7日+1日群のマウス1例が生着を示した(12%)。1日目における寛容は、−7目での寛容よりも臨床的に意義がある。
【
図29】クマリン−6 PLGA粒子(抗原に結合させたもの又は抗原を含まないもの)が、投与後3時間では検出できたが、投与後24時間ではできなかったことを示す。粒子は、投与後3時間では検出できたが、投与後24時間ではできなかった。未処理未投与のマウス(上段)を、蛍光PLGA/PEMA微粒子をiv投与されたマウスと比べて、投与後3時間(中段)及び投与後24時間(下段)において、脾臓(左列)、肝臓(中央列)及び肺(左列)の切片をDAPIで対比染色した。
【
図30】PLGA粒子が、6時間及び15時間後に、肝臓中のF4/80
+細胞と共局在化していたことを示す。
【
図31】静脈内注射24時間後に、辺縁帯マクロファージがTAMRAで標識したPLP
139〜151結合粒子を主に取り込むことを示す。PLP
139〜151+細胞のうち割合が最も高いのは辺縁帯マクロファージである。
【
図32】PLP139〜151/CFAによる初回刺激後の日数に対する毎日の平均臨床スコアを示す。PLP139〜151/CFAにより誘導されたR−EAEは、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子を用いて免疫寛容を誘導することによって、SJL/Jマウスにおいて阻害される。
【
図33】封入化OVA−PLGによって処理されたマウスが、好酸球集積を最大に低下させたことを示す。
【
図34】封入化OVA−PLGによって処理されたマウスが、未処理又は対照で処理された動物と比べて、血清IgEレベルを最大に低下させたことを示す。
【
図35】動的光散乱分析による、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒1.792×105計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、584nmのZ平均粒径、679nmのピーク粒径、及び0.162の多分散性指数を有した。これらの結果は、上記実験計画書に基づく、合成6バッチのうちの代表的なものである。
【
図36】ζ電位測定による、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒6.67×104計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、−48.9mVのピークζ電位、及び5.14mVのζ偏差を有していた。これらの結果は、上記実験計画書に基づく、合成6バッチのうちの代表的なものである。
【
図37】動的光散乱分析による、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒1.822×105計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、569.7nmのZ平均粒径、700.3nmのピーク粒径、及び0.230の多分散性指数を有した。これらの結果は、上記実験計画書に基づく、合成3バッチのうちの代表的なものである。
【
図38】ζ電位測定による、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒2.67×104計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、−52.2mVのピークζ電位、及び5.38mVのζ偏差を有していた。これらの結果は、上記実験計画書に基づく、合成3バッチのうちの代表的なものである。
【
図39】コア内に可溶性PLP
139〜151ペプチドを含む表面機能化リポソームが、多発性硬化症のマウスモデルにおいて免疫寛容を誘導することを示すグラフを示す。コア内に可溶性PLP
139〜151ペプチドを含む表面機能化リポソーム(丸)又は可溶性OVA
323〜339ペプチドを含む表面機能化リポソーム(四角)のいずれかで動物を処理した。PLP
139〜151ペプチドリポソームを投与された動物の平均臨床スコアは、OVA
323〜339ペプチドリポソームを投与された動物より低かった。
【
図40】投与された粒子の電荷が、マウスモデルにおけるEAEの発症への影響を有することを示す。パネル(A)は平均臨床スコアを示し、パネル(B)はEAE動物の平均蓄積スコアを示す。マウスは、抗原にコンジュゲートされた−60mv又は−25mvの電荷を有するTIMP(寛容誘発性免疫修飾粒子)を投与された。OVA
323〜339−TIMP
−60mv、OVA
323〜339−PLGA
−25mv、PLP
139〜151−TIMP
−60mv、又はPLP
139〜151−PLGA
−25mvのいずれかでマウスを処理し、臨床疾患についてスコア化した。より負に荷電した粒子であるTIMP
−60mvは、PLGA
−25mv粒子よりも効率的に寛容を誘導した。
【
図41】免疫修飾粒子の電荷が、抗原提示細胞に対する免疫修飾粒子の標的化に重要であることを示す。野生型又はMARCO−/+動物を、PS−IMP又は溶媒のいずれかで処理した。その結果は、スカベンジャー受容体であるMARCOとの相互作用が低下しているため、負電荷が減少した粒子の効果が低いことを示している(A)。抗MARCO抗体単独では、PLGA IMPにおいて同様の有効性をもたらすことができない(B)。
【
図42】EAEマウスモデルにおける寛容に必要である主な粒子パラメータを示す。パネル(A)は、最も有効な平均粒径が500nmであることを示す。500nmのOVA
323〜339−PSB、100nmのPLP
139〜151−PSB、500nmのPLP
139〜151−PSB、1.75μmのPLP
139〜151−PSB、又は4.5μmのPLP
139〜151−PSBのいずれかでマウスを処理し、臨床疾患についてスコア化した。パネル(B)は、静脈内注射24時間後に、50:50のラクチド:グリコリド比を有する蛍光標識化粒子が、脾臓、肝臓、及び肺からかなり除去されていることを示す。
【
図43-01】封入化抗原を有するTIMPがペプチド結合粒子より優れていることを示す。マウスアレルギーモデルにおいて、動物をアレルゲンとしてのOVAに曝露し、その後、シャム−PLG、未処理、粒子の外側に結合したOVAを有するPLGA粒子(A)、又は粒子内に封入されたOVAを有するPLGA粒子(TIMP)(B)のいずれかで処理した。パネル(A)は、OVA−PLG表面に結合した粒子が、TH2応答を低減できないことを示す。パネル(B)は、TIMP
PEMA−60mv(粒子内に封入されたOVA)が、TH2応答を阻害することを示す。パネル(C)は、TIMP
PEMA−60mv(粒子内に封入されたOVA)が、リコール応答を阻害することを示す。
【
図43-02】封入化抗原を有するTIMPがペプチド結合粒子より優れていることを示す。マウスアレルギーモデルにおいて、動物をアレルゲンとしてのOVAに曝露し、その後、シャム−PLG、未処理、粒子の外側に結合したOVAを有するPLGA粒子(A)、又は粒子内に封入されたOVAを有するPLGA粒子(TIMP)(B)のいずれかで処理した。パネル(A)は、OVA−PLG表面に結合した粒子が、TH2応答を低減できないことを示す。パネル(B)は、TIMP
PEMA−60mv(粒子内に封入されたOVA)が、TH2応答を阻害することを示す。パネル(C)は、TIMP
PEMA−60mv(粒子内に封入されたOVA)が、リコール応答を阻害することを示す。
【発明を実施するための形態】
【0039】
本発明の発明者らは、抗原に結合したナノ粒子が、自己免疫疾患に対する寛容を誘導でき、免疫応答を低下できることを見出した。これらの粒子は、粒子の表面に結合されるか、又は内部に封入されるかどうかに関わらず、寛容を誘導できる。したがって、これらの粒子は、自己免疫疾患又はアレルギーなどの過剰な炎症性免疫応答を特徴とするあらゆる疾患又は状態の治療において有用であり得る。
【0040】
本明細書で使用する「粒子」は、あらゆる物質の組織に由来しない組成物を指し、それは球体又は球体様の実体、ビーズ、又はリポソームであってよい。用語「粒子」、用語「免疫修飾粒子」、用語「担体粒子」、及び用語「ビーズ」は、文脈に応じて互換的に使用されてよい。加えて、用語「粒子」は、ビーズ及び球体を包含するように使用されてもよい。
【0041】
本明細書で使用する「負に荷電した粒子」は、ゼロ未満の正味表面電荷を有するように修飾されている粒子を指す。
【0042】
「カルボキシル化された粒子」又は「カルボキシル化されたビーズ」又は「カルボキシル化された球体」は、その表面にカルボキシル基を含有するように修飾されたあらゆる粒子を含む。いくつかの実施形態では、カルボキシル基の付加は、例えば、MARCOなどのスカベンジャー受容体との相互作用を通して、血液循環からの粒子の食細胞/単球取り込みを強化する。粒子のカルボキシル化は、ポリ(エチレン−無水マレイン酸)(PEMA)を含むがこれらに限定されない、カルボキシル基を付加するいずれの化合物を使用しても達成することができる。
【0043】
本明細書で使用する「抗原性部分」は、宿主の免疫系によって認識される任意の部分、例えばペプチドを指す。抗原性部分の例としては、自己抗原、酵素、及び/又は細菌若しくはウイルスタンパク質、ペプチド、薬物、又は成分が挙げられるが、これらに限定されない。理論に束縛されることなく、カルボキシル化ビーズそれ自体は免疫系によって認識され得るが、それに結合するだけのカルボキシル化ビーズは、本発明の目的では「抗原性部分」とはみなされない。
【0044】
本明細書で使用する「裸ビーズ」又は「裸粒子」又は「裸球体」は、カルボキシル化されていないビーズ、粒子、又は球体を指す。
【0045】
本明細書で使用する「炎症誘発性メディエータ」又は「炎症誘発性ポリペプチド」は、対象において炎症を誘導、維持、又は延長するポリペプチド又はその断片を指す。炎症誘発性メディエータの例としては、サイトカイン及びケモカインが挙げられるが、これらに限定されない。
【0046】
本明細書で使用する「炎症性単球」という用語は、CD14/CD26及びCCR2の任意の組み合わせを発現している任意の骨髄細胞を指す。
【0047】
本明細書で使用する「抑制性好中球」という用語は、好中球、及び/又は単球由来のサプレッサー細胞を指す。
【0048】
本明細書で使用する「Th細胞」又は「ヘルパーT細胞」という用語は、CD4
+細胞を指す。CD4
+T細胞は、B細胞の形質細胞及び記憶B細胞への成熟や、細胞傷害性T細胞及びマクロファージの活性化など、免疫学的過程において他の白血球の手助けをする。T細胞は、抗原提示細胞(APC)の表面上に発現しているMHCクラスII分子によってペプチド抗原が提示されると活性化される。
【0049】
本明細書で使用する「Th1細胞」という用語は、炎症誘発性メディエータを産生するTh細胞のサブセットを指す。Th1細胞はサイトカインを分泌して免疫応答を促進し、一部には好中球及びマクロファージの感染組織への動員を媒介することによって、病原体に対する宿主防御に関与する。Th1細胞は、IFN γ、IL2、IL−10、及びTNF α/βなどのサイトカインを分泌し、ウイルス及び一部の細菌などの細胞内病原体に対する防御を連携させる。
【0050】
本明細書で使用する「Th2細胞」という用語は、細胞外の寄生生物、細菌、アレルゲン、及び毒素に対する抗体媒介性免疫応答の活性化及び維持を媒介するTh細胞のサブセットを指す。Th2細胞は、抗体産生、好酸球活性化、及びいくつかのマクロファージの機能の抑制に関与する、IL−4、IL−5、IL−6、IL−9、IL−13、及びIL−17E(IL−25)などの様々なサイトカインを産生することによって、これらの機能を媒介し、それによって食細胞非依存性の防御反応をもたらす。
【0051】
本明細書で使用する「Th17細胞」という用語は、Th細胞のサブセットを指す。Th17細胞はサイトカインを分泌して免疫応答を促進し好中球及びマクロファージの感染組織への動員を媒介することによって、病原体に対する宿主防御に関与する。TH17細胞は、IL17、IL21、IL22、IL24、IL26及びTNFαなどのサイトカインを分泌し、真菌及び細菌などの細胞外病原体に対する防御を連携させる。
【0052】
本明細書で使用する「結合した」は、粒子の外側に固定されているか、又は、粒子内に封入されている抗原を指す。したがって、粒子に結合した抗原とは、表面結合、並びに粒子内への封入の両方を含む。
【0053】
本明細書で使用する「IMP」という用語は、抗原に結合していない免疫修飾粒子を指す。本明細書で使用する「TIMP」という用語は、抗原に結合している寛容化免疫修飾粒子を指す。いくつかの実施形態では、抗原はTIMPの表面に付着している。別の実施形態では、抗原はTIMP内に封入される。
【0054】
粒子は、いかなる形状又は配座を有してもよい。しかしながら、いくつかの実施形態では、インビボにおいて凝集する可能性の低い粒子を使用することが好ましい。これらの実施形態内の粒子の例は、球形状を有するものである。
【0055】
本発明の別の態様は、負のゼータ電位を有し、抗原性部分を含まない免疫修飾粒子を含む、組成物に関する。更なる実施形態では、本発明は、抗原に結合した、負のゼータ電位を有する免疫修飾粒子を含む、組成物を提供する。更なる実施形態では、抗原は粒子の外側に結合している。好ましい実施形態では、抗原は粒子内に封入される。
【0056】
本発明の更に別の態様は、負のゼータ電位を有し、抗原性部分を含まない免疫修飾粒子の調製プロセスに関する。このプロセスは、負のゼータ電位を有する免疫修飾粒子の形成に有効な条件下で、免疫修飾粒子前駆物質を緩衝溶液と接触させることを含む。本発明のいくつかの実施形態では、免疫修飾粒子前駆物質は、共重合によって形成される。粒子の微細構造は、共重合の方法によって決まり得る。
【0057】
いくつかの実施形態では、抗原ペプチド分子は、コンジュゲート分子及び/又はリンカー基によって担体粒子(例えば、免疫修飾粒子)に結合する。いくつかの実施形態では、担体(例えば、PLG粒子)への抗原ペプチド及び/又はアポトーシスシグナル分子の結合は、1つ又は2つ以上の共有性及び/又は非共有性相互作用を含む。いくつかの実施形態では、抗原ペプチドは、負のゼータ電位を有する担体粒子の外側に付着される。いくつかの実施形態では、抗原ペプチドは、負のゼータ電位を有する担体粒子に封入される。
【0058】
一実施形態では、免疫修飾粒子と接触する緩衝溶液は、塩基性pHを有し得る。塩基性溶液に好適な塩基性pHとしては、7.1、7.5、8.0、8.5、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、及び13.5が挙げられる。緩衝溶液はまた、任意の好適な塩基及びその複合体で作製され得る。本発明のいくつかの実施形態では、緩衝溶液は、重炭酸ナトリウム、重炭酸カリウム、重炭酸リチウム、カリウム二水素リン酸塩、リン酸二水素ナトリウム、又はリン酸二水素リチウム、及びこれらの複合体を含むが、これらに限定されない。
【0059】
本発明の一実施形態では、免疫修飾粒子は共重合体を含有する。これらの共重合体は、異なるモル比を有してもよい。本免疫修飾粒子の好適な共重合体の比率は、25:75、30:70、35:65、40:60、45:55、50:50、55:45、60:40、65:35、70:30、75:25、80:20、81:19、82:18、83:17、84:16、85:15、86:14、87:13、88:12、89:11、90:10、91:9、92:8、93:7、94:6、95:5、96:4、97:3、98:2、99:1、又は100:0であり得る。別の実施形態では、共重合体は、周期的、統計的、線状、分枝(星型、ブラシ型、又は櫛型共重合体)共重合体であってもよい。いくつかの実施形態では、共重合体の比率は、ポリスチレン:ポリ(カルボン酸ビニル)/80:20、ポリスチレン:ポリ(カルボン酸ビニル)/90:10、ポリ(カルボン酸ビニル):ポリスチレン/80:20、ポリ(カルボン酸ビニル):ポリスチレン/90:10、ポリ乳酸:ポリグリコール酸/50:50、ポリ乳酸:ポリグリコール酸/80:20、又はポリ乳酸:ポリグリコール酸/90:10であってもよいが、これらに限定されない。
【0060】
一実施形態では、本発明の粒子は、重合体(例えば、PLGA)を含む組成物をポリ(エチレン−無水マレイン酸)(PEMA)溶液に加えることによって作製される。溶液中のPEMA濃度は、約0.1%〜約10%であってよい。一実施形態では、溶液中のPEMA濃度は、約0.2%〜約5%である。別の実施形態では、溶液中のPEMA濃度は、約0.1%〜約4%である。別の実施形態では、溶液中のPEMA濃度は、約0.1%〜約2%である。別の実施形態では、溶液中のPEMA濃度は、約0.5%〜約1%である。一実施形態では、溶液中のPEMAの割合は、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%又は10%である。別の実施形態では、溶液中のPEMAの割合は、約0.5%である。別の実施形態では、溶液中のPEMAの割合は、約1.0%である。使用できるその他化合物として、ポリ(エチレン−alt−無水マレイン酸)、ポリ(イソブチレン−コ−マレイン酸)、ポリ(メチルビニルエーテル−alt−マレイン酸)、ポリ(メチルビニルエーテル−alt−マレイン酸モノエチルエステル)、ポリ(メチルビニルエーテル−alt−無水マレイン酸)、1,9−デカジエン粉末と架橋したポリ(メチルビニルエーテル−alt−無水マレイン酸)、及び/又はポリ(スチレン−alt−マレイン酸)ナトリウム塩が挙げられるが、これらに限定されない。
【0061】
一実施形態では、粒子はリポソームである。更なる実施形態では、粒子は、30:30:40のモル比のホスファチジルコリン:ホスファチジルグリセロール:コレステロールの脂質からなるリポソームである。なお更なる実施形態では、粒子はリポソーム内に封入される。
【0062】
各粒子の寸法が均一である必要はないが、通常粒子は、脾臓又は肝臓中に隔離され、食作用、又は内皮細胞若しくはその他MPS細胞などの抗原提示細胞による受容体媒介性若しくは非媒介性機構を介した取り込みを引き起こすのに十分な寸法でなくてはならない。好ましくは、粒子は、溶解性を高め、in vivoにおける凝集に起因する起こり得る合併症を回避し、飲作用を促進するために、マイクロスケール又はナノスケールの寸法である。粒径は、間質腔からリンパ球成熟の領域への取り込みのための因子であり得る。約0.1μm〜約10μmの粒径を有する粒子は、食作用を引き起こすことができる。故に、一実施形態では、粒子は、これらの範囲内の粒径を有する。別の実施形態では、粒子は、約0.3μm〜約5μmの平均粒径を有する。また別の実施形態では、粒子は、約0.5μm〜約3μmの平均粒径を有する。別の実施形態では、粒子は、約0.2μm〜約2μmの平均粒径を有する。更なる実施形態では、粒子は、約0.1μm、又は約0.2μm、又は約0.3μm、又は約0.4μm、又は約0.5μm、又は約1.0μm、又は約1.5μm、又は約2.0μm、又は約2.5μm、又は約3.0μm、又は約3.5μm、又は約4.0μm、又は約4.5μm、又は約5.0μmの平均粒径を有する。特定の実施形態では、粒子は、約0.5μmの平均粒径を有する。いくつかの実施形態では、粒子全体の分子量は、約10,000kDa未満、約5,000kDa未満、又は約1,000kDa、500kDa、400kDa、300kDa、200kDa、100kDa、50kDa、20kDa、10kDa未満である。組成物中の粒子は、均一な粒径である必要はない。例として、医薬品製剤は複数の粒子を含有してもよく、その一部は約0.5μmであり、一方他の粒子は約1.0μmである。これら所与の範囲内である粒径のいずれの混合物も有用となるであろう。
【0063】
本発明の粒子は、特定のゼータ電位を保有することができる。ある特定の実施形態では、ゼータ電位は負である。一実施形態では、ゼータ電位は約−100mV未満である。一実施形態では、ゼータ電位は約−50mVである。ある特定の実施形態では、粒子は、−100mV〜0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−75mV〜0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−60mV〜0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−50mV〜0mVのゼータ電位を保有する。また更なる実施形態では、粒子は、−40mV〜0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−30mV〜0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−20mV〜+0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−10mV〜−0mVのゼータ電位を保有する。更なる実施形態では、粒子は、−100mV〜−50mVのゼータ電位を保有する。別の特定の実施形態では、粒子は、−75mV〜−50mVのゼータ電位を保有する。特定の実施形態では、粒子は、−50mV〜−40mVのゼータ電位を保有する。
【0064】
いくつかの実施形態では、担体の電荷(例えば、正、負、中性)は、用途に特異的な利益(例えば、生理学的適合性、有利な表面−ペプチド相互作用など)を付与するために選択される。いくつかの実施形態では、担体は正味の中性又は負電荷を有する(例えば、通常は正味の負電荷を帯びている細胞表面への非特異的結合を低下させるため)。特定の実施形態では、担体は、寛容が望まれる抗原(本明細書では、抗原又は寛容化抗原を誘導する抗原特異的ペプチド、抗原ペプチド、自己抗原とも称される)に、直接的又は間接的にコンジュゲートされ得る。場合によっては、担体は、(例えば、寛容応答の可能性を高める目的で)表面上に露出した複数コピーの抗原特異的ペプチド、又は複数の異なるペプチドを有するために複数の結合部位(例えば、2、3、4、5、6、7、8、9、10...、20...、50...、100ヶ所以上)を有する。いくつかの実施形態では、担体は1種類の抗原ペプチドを提示する。いくつかの実施形態では、担体は複数の異なる抗原ペプチドを表面上に提示する。いくつかの実施形態では、担体表面は、選択部分(例えば、抗原ペプチド)の共有性結合のための官能基を提示する。いくつかの実施形態では、担体表面の官能基は、選択部分(例えば、抗原ペプチド)との非共有性相互作用のための部位を提供する。いくつかの実施形態では、担体は、コンジュゲート部分を化学結合を形成せずに吸着できる表面を有する。
【0065】
粒子の寸法及び電荷は、寛容の誘導に重要である。粒子内に封入される抗原に基づいて、粒子の寸法及び電荷は異なるが(特定の粒子の例については表1参照)、一般には、本発明の粒子は、約100ナノメートル〜約1500ナノメートルであり、0〜約−70mVの電荷を有するときに寛容の誘導に有効であり、400〜800マイクロメートルであり、約−25mV〜−70mVの電荷を有するときに寛容の誘導に最も有効である。更に、表1に示されるように、一部は粒子の濃度と凍結乾燥工程中にスクロース及びD−マンニトールが存在することによって、凍結乾燥工程中に粒子の平均粒径及び電荷がわずかに変わり得ることから、合成後平均及び凍結乾燥後平均の両方を以下に示す。本明細書で使用する「合成後寸法」及び「合成後電荷」は、凍結乾燥前の粒子の寸法及び電荷を指す。用語「凍結乾燥後寸法」及び「凍結乾燥後電荷」は、凍結乾燥後の粒子の寸法及び電荷を指す。
【0067】
いくつかの実施形態では、粒子は非金属である。これらの実施形態では、粒子は重合体から形成され得る。好ましい実施形態では、粒子は、個体中で生分解性である。この実施形態では、個体中で粒子が蓄積することなく、複数回の投薬にわたって個体中に粒子を提供することができる。好適な粒子の例としては、ポリスチレン粒子、PLGA粒子、PLURIONICS安定化ポリプロピレン硫化物粒子、及びダイヤモンド粒子が挙げられる。
【0068】
粒子表面は、非特異的又は不必要な生物相互作用を最小限にする物質からなることが好ましい。粒子表面と間質との間の相互作用は、リンパ取り込みに関与する因子であり得る。粒子表面は、物質でコーティングされて、非特異的相互作用を防止し得るか又は減少させ得る。ポリ(エチレングリコール)(PEG)、及びPLURONICS(登録商標)などのその共重合体(ポリ(エチレングリコール)−bl−ポリ(プロピレングリコール)−bl−ポリ(エチレングリコール)の共重合体を含む)といった親水性層で粒子をコーティングすることによる立体安定化は、皮下注射後のリンパ取り込みの向上によって示されるように、間質のタンパク質との非特異的相互作用を減少させ得る。これらの因子の全ては、リンパ取り込みの観点から粒子の物理的特性の重要性を示す。生分解性重合体を使用して、重合体及び/又は粒子及び/又は層の全て又は一部を作製し得る。生分解性重合体は、例えば、官能基が溶液中の水と反応した結果によって分解を受け得る。本明細書で使用する「分解」という用語は、分子量の減少又は疎水性基の親水性基への変換のいずれかによって可溶性となることを指す。エステル基を持つ重合体、例えば、ポリラクチド及びポリグリコリドは概して、自然加水分解に付される。
【0069】
本発明の粒子はまた、更なる成分を含有してもよい。例えば、担体は、担体に組み込まれるか又は共役される造影剤を有してもよい。現在市販されている、造影剤を有する担体ナノスフェアは、Kodak X−sightナノスフェアである。量子ドット(QD)として知られる無機の量子閉じ込め発光性ナノ結晶は、FRET用途において理想的なドナーとして現れた。その高量子収率及び同調可能なサイズ依存性ストークスシフトは、異なるサイズが、単一の紫外線波長で励起されるときに青から赤外までを発することを可能にする。(Bruchez,et al.,Science,1998,281,2013;Niemeyer,C.M Angew.Chem.Int.Ed.2003,42,5796;Waggoner,A.Methods Enzymol.1995,246,362;Brus,L.E.J.Chem.Phys.1993,79,5566)。デンドリマーとして知られる重合体のクラスに基づく有機/無機ハイブリッド量子ドットなどの量子ドットは、生物学的標識化、撮像、及び光学バイオセンシングシステムにおいて使用され得る。(Lemon,et al.,J.Am.Chem.Soc.2000,122,12886)。無機量子ドットの伝統的な合成とは異なり、これらのハイブリッド量子ドットナノ粒子の合成は、高温、又は毒性の高い不安定な試薬を必要としない。(Etienne,et al.,Appl.Phys.Lett.87,181913,2005)。
【0070】
粒子は、広範な物質から形成され得る。粒子は、生体利用に好適な物質からなることが好ましい。例えば、粒子は、ガラス、シリカ、ヒドロキシカルボン酸のポリエステル、ジカルボン酸のポリ無水物、又はヒドロキシカルボン酸及びジカルボン酸の共重合体からなってもよい。より一般的には、担体粒子は、直鎖若しくは分枝鎖、置換若しくは非置換、飽和若しくは不飽和、線形若しくは架橋された、アルカニル、ハロアルキル、チオアルキル、アミノアルキル、アリール、アラルキル、アルケニル、アラルケニル、ヘテロアリール、若しくはアルコキシヒドロキシ酸のポリエステル、又は直鎖若しくは分枝鎖、置換若しくは非置換、飽和若しくは不飽和、線形若しくは架橋された、アルカニル、ハロアルキル、チオアルキル、アミノアルキル、アリール、アラルキル、アルケニル、アラルケニル、ヘテロアリール、若しくはアルコキシジカルボン酸のポリ無水物からなり得る。加えて、担体粒子は、量子ドットポリスチレン粒子などの量子ドットであるか、又は量子ドットからなることができる(Joumaa et al.(2006)Langmuir 22:1810−6)。エステル及び無水物結合の混合物(例えば、グリコール酸及びセバシン酸の共重合体)を含む担体粒子も用いることができる。例えば、担体粒子は、ポリグリコール酸重合体(PGA)、ポリ乳酸重合体(PLA)、ポリセバシン酸重合体(PSA)、ポリ(乳酸−コ−グリコール酸)共重合体(PLGA又はPLA、この用語は互換可能である)、ポリ(乳酸−コ−セバシン酸)([rho] oly (lactic-co-sebacic) acid)共重合体(PLSA)、ポリ(グリコール酸−コ−セバシン酸)共重合体(PGSA)、ポリプロピレン硫化物重合体、ポリ(カプロラクトン)、キトサンなどを含む物質を含んでもよい。本発明において有用な他の生体適合性生分解性重合体としては、カプロラクトン、炭酸塩、アミド類、アミノ酸、オルトエステル、アセタール、シアノアクリレート、及び分解性ウレタンの重合体又は共重合体、並びに直鎖若しくは分枝鎖、置換若しくは非置換、アルカニル、ハロアルキル、チオアルキル、アミノアルキル、アルケニル、又は芳香族ヒドロキシ若しくはジカルボン酸を持つこれらの共重合体が挙げられる。加えて、リジン、アルギニン、アスパラギン酸、グルタミン酸、セリン、トレオニン、チロシン及びシステイン、又はこれらの鏡像異性体などの、反応性側鎖基を持つ生物学的に重要なアミノ酸が、前述の物質のうちのいずれかを持つ共重合体に含まれて、抗原ペプチド及びタンパク質、又は共役部分に共役するための反応基を提供し得る。本発明に好適な生分解性物質としては、ダイヤモンド、PLA、PGA、ポリプロピレン硫化物、及びPLGA重合体が挙げられる。生体適合性であるが非生分解性の物質も、本発明の担体粒子に使用し得る。例えば、アクリル酸塩、エチレン酢酸ビニル、アシル置換酢酸セルロース、非分解性ウレタン、スチレン、塩化ビニル、フッ化ビニル、ビニルイミダゾール、クロロスルホン化オレフィン、エチレンオキシド、ビニルアルコール、TEFLON(登録商標)(DuPont(Wilmington,Del.))、及びナイロンである非生分解性重合体を用いてもよい。
【0071】
本発明の粒子は、当技術分野で既知の任意の手段によって製造することができる。粒子を製造する例示的な方法としては、マイクロエマルション重合法、界面重合法、沈殿重合法、エマルション蒸発法、エマルション拡散法、溶媒置換法、及び塩析法が挙げられるが、これらに限定されない(Astete and Sabliov,J.Biomater.Sci.Polymer Edn.,17:247〜289(2006))。PLGA粒子の製造プロセスの操作によって、粒子特性(例えば、粒径、粒径分布、ゼータ電位、形態、疎水性/親水性、ポリペプチドの閉じ込めなど)を制御することができる。粒径は、PLGAの濃度、粒子の製造に使用される溶媒、有機相の性質、製造に使用される界面活性剤、連続相及び不連続相の粘度、使用される溶液の性質、使用される水の温度、超音波処理、蒸発速度、添加剤、剪断応力、滅菌、及び任意の封入された抗原又はポリペプチドの性質を含むがこれらに限定されない数々の要因に影響される。
【0072】
粒径は、重合体濃度に影響を受け、より大きい粒子は、より高い重合体濃度から形成される。例えば、1%から4%(w/v)へのPLGA濃度の増加は、溶媒プロピレンカーボネートを使用する場合、平均粒径を約205nmから約290nmへと増加させ得る。あるいは、酢酸エチル及び5%のPluronic F−127中では、1%から5%(w/v)へのPLGA濃度の増加は、平均粒径を120nmから230nmへと増加させる。
【0073】
連続及び不連続相の粘度も、より小さい粒子の形成において要となる工程である拡散プロセスに影響を与える重要なパラメータである。粒径は分散相の粘度の増加と共に増加し、一方で、粒径はより粘度の高い連続相と共に減少する。概して、有機溶媒対水性溶媒の相比率が低いほど、粒径は小さくなる。
【0074】
ホモジナイザー速度及び撹拌も粒径に影響を与え、概して、より早い速度及び撹拌が粒径の減少をもたらすが、速度及び撹拌の更なる増加が粒径を減少させなくなる時点が存在する。単に速く掻き混ぜる場合と比較して、エマルションが高圧ホモジナイザーによって均質化される場合には、粒径の減少に好ましい影響がある。例えば、5%のPVAにおける20%の相分配で、掻き混ぜによる平均粒径は288nmであり、均質化(30MPa(300バール)の高圧)による平均粒径は231nmである。
【0075】
粒子の重要な粒径減少は、溶媒の拡散を向上させるために添加する水の温度を変化させることによって達成される。平均粒径は、水温の増加と共に減少する。
【0076】
粒子中に封入されるポリペプチドの性質も粒径に影響を与える。概して、疎水性ポリペプチドの封入は、より親水性であるポリペプチドの封入と比較して、より小さい粒子の形成につながる。二重エマルションプロセスでは、より親水性であるポリペプチドの閉じ込めは、高分子量のPLGAと高い内部相粘度を引き起こす高分子量の第1の界面活性剤とを使用することによって向上する。溶媒、重合体、及びポリペプチド間の相互作用は、粒子へのポリペプチドを粒子に組み込むことの効率性に影響を与える。
【0077】
PLGA分子量は最終平均粒径に影響する。概して、分子量が大きいほど、平均粒径は大きくなる。例えば、PLGAの組成及び分子量が変わると(例えば、50:50のPLGAでは12〜48kDa、75:25のPLGAでは12〜98kDa)、平均粒径が変わる(それぞれ、約102nm〜154nm、約132nm〜152nm)。粒子が同じ分子量である場合であっても、その組成は平均粒径に影響を及ぼす場合があり、例えば、50:50の比率を持つ粒子は、概して、75:25の比率を持つ粒子よりも小さい粒子を形成する。重合体の末端基も、粒径に影響を与える。例えば、酸性PLGA末端基についての平均粒径が240nm(PI=0.225)であるのと比較して、エステル末端基で調製した粒子は、740nm(PI=0.394)の平均粒径を持つ粒子を形成する。
【0078】
使用される溶媒も粒径に影響を与え、溶液の表面張力を減少させる溶媒はまた、粒径も減少させる。
【0079】
有機溶媒は真空蒸発によって除去されて、重合体及びポリペプチドの傷害を回避し、かつ最終粒径の減少を促進する。有機溶媒の真空下の蒸発は、より小さい粒子の形成に効果的である。例えば、真空蒸発は、通常の速度の蒸発下でもたらされる平均粒径よりも約30%小さい平均粒径をもたらす。
【0080】
超音波処理波長の振幅も粒子の特徴に影響を与える。更なる液滴径の変化のない安定したミニエマルションを形成するためには、波長の振幅は600〜800sの超音波処理で20%超であるべきである。しかしながら、超音波処理の主な欠点は、形成されたエマルションの単分散の欠如である。
【0081】
本発明の粒子の産生に使用し得る有機相としては、酢酸エチル、メチルエチルケトン、プロピレンカーボネート、及びベンジルアルコールが挙げられるが、これらに限定されない。使用し得る連続相としては、界面活性剤のポロキサマー188が挙げられるが、これに限定されない。
【0082】
種々の界面活性剤を、本発明の粒子の製造に使用することができる。界面活性剤は、陰イオン性、陽イオン性、又は非イオン性であることができる。ポロキサマー及びポロキサミン(poloaxamines)族の界面活性剤が粒子合成において一般的に使用される。使用し得る界面活性剤としては、PEG、Tween−80、ゼラチン、デキストラン、プルロニックL−63、PVA、メチルセルロース、レシチン、及びDMABが挙げられるが、これらに限定されない。加えて、生分解性かつ生体適合性である界面活性剤は、ビタミンE TPGS(D−α−トコフェリルポリエチレングリコール1000コハク酸塩)が挙げられるが、これに限定されない。ある特定の実施形態では、2つの界面活性剤が必要とされる(例えば、二重エマルション蒸発法において)。これらの2つの界面活性剤は、第1のエマルションのための疎水性界面活性剤と、第2のエマルションのための疎水性界面活性剤とを含むことができる。
【0083】
本発明の粒子の産生に使用し得る溶媒としては、アセトン、テトラヒドロフラン(THF)、クロロホルム、及び塩素化物族のメンバーである塩化メチルが挙げられるが、これらに限定されない。有機溶媒の選択には、重合体は本溶媒中で可溶性でなければならないということと、溶媒は水相と完全に非混和性でなければならないということとの2つの選択基準が求められる。
【0084】
本発明の粒子の産生に使用し得る塩としては、塩化マグネシウム六水和物が挙げられるが、これに限定されない。
【0085】
一般的な塩析剤としては、電解質(例えば、塩化ナトリウム、酢酸マグネシウム、塩化マグネシウム)、又は非電解質(例えば、スクロース)が挙げられるが、これらに限定されない。
【0086】
本発明の粒子の安定性及び粒径は、脂肪酸又は炭素の短鎖を含むがこれらに限定されない化合物の付加によって向上し得る。ラウリン酸のより長い炭素鎖の付加は、粒子の特徴の向上と関連付けられる。また更に、疎水性添加剤の付加は、粒径、粒子へのポリペプチドの組み込み、及び放出プロファイルを向上させることができる。粒子の調製は、凍結乾燥によって安定化することができる。トレハロースなどの抗凍結剤の付加により、凍結乾燥時の粒子の凝集を減少させることができる。
【0087】
現在市販されている好適なビーズとしては、FluoSpheres(Molecular Probes(Eugene,Oreg.))などのポリスチレンビーズが挙げられる。
【0088】
いくつかの実施形態では、本発明は、(a)化学的及び/又は生物学的薬剤を対象に送達するように構成される送達スキャフォールドと、(b)抗原特異的寛容を誘導するための抗原に結合したポリ(ラクチド−コ−グリコリド)粒子と、を含む、システムを提供する。いくつかの実施形態では、かかる送達スキャフォールドの少なくとも一部は微多孔性である。いくつかの実施形態では、抗原に結合したポリ(ラクチド−コ−グリコリド)粒子は、かかるスキャフォールド内に封入される。いくつかの実施形態では、化学的及び/又は生物学的薬剤は、タンパク質、ペプチド、低分子、核酸、細胞、及び粒子からなる群から選択される。いくつかの実施形態では、化学的及び/又は生物学的薬剤は細胞を含み、かかる細胞は膵島細胞を含む。
【0089】
物理的特性も、未熟リンパ球を有する領域における取り込み及び保持後のナノ粒子の有用性に関係する。これらは、剛性又は弾力性などの機械的特性を含む。いくつかの実施形態は、最近開発され、全身(だが標的化又は免疫ではない)送達を特徴とするPPS−PEG系においてのように、PEGにおいてのように、ゴム状コア、例えば、親水性被覆層といった被覆層を持つポリ(プロピレンスルフィド)(PPS)に基づく。ゴム状コアは、ポリスチレン又は金属ナノ粒子系においてのように、実質的に剛性であるコアとは対照的である。ゴム状という用語は天然又は合成ゴム以外のある特定の弾性物質を指し、これは重合体分野の当業者にはよく知られている用語である。例えば、架橋されたPPSを使用して、疎水性ゴム状コアを形成させることができる。PPSは、酸化条件下で分解して、疎水性ゴムから親水性の水溶性重合体へと移行しながら、ポリスルホキシド、及び最終的にポリスルホンとなる。他の硫化物重合体を使用に採用してもよく、硫化物重合体という用語は、単量体の主鎖に硫黄を持つ重合体を指す。使用し得る他のゴム状重合体は、約37℃未満の水和状態下ガラス転移温度を持つポリエステルである。疎水性コアは、被覆層がコアから離れて立体的に膨張する傾向を持つように、コアと被覆層とが混ざらない傾向にあるため、親水性被覆層と共に有利に使用することができる。コアは、その上に層を有する粒子を指す。層は、コアの少なくとも一部分を覆う物質を指す。層は、吸収されるか、又は共有結合され得る。粒子又はコアは、固体又は中空であってもよい。より高い負荷の疎水性薬物がゴム状の疎水性コアを持つ粒子によって担持され得ることから、ゴム状の疎水性コアは、結晶又はガラス状(ポリスチレンの場合のように)コアなどの剛性疎水性コアよりも有利である。
【0090】
別の物理的特性は、表面の親水性である。親水性物質は、架橋されていないとき、1リットル当たり少なくとも1グラムの水中での溶解度を有し得る。親水性重合体を持つ粒子の立体安定化は、非特異的相互作用を減少させることによって間質からの取り込みを向上させ得るが、粒子の増加した隠密性質も、未熟リンパ球を有する領域における食細胞による内在化を減少させ得る。これらの競合する特徴の均衡を保つという課題は克服したが、なお本出願は、リンパ節におけるDC及び他のAPCへの有効なリンパ送達のためのナノ粒子の創出を実証する。いくつかの実施形態は、親水性成分、例えば、親水性物質の層を含む。好適な親水性物質の例は、ポリアルキレンオキシド、ポリエチレンオキシド、ポリサッカライド、ポリアクリル酸、及びポリエーテルのうちの1つ又は2つ以上である。層中の重合体の分子量は、インビボにおける有用な程度の立体障害を提供するように、例えば、約1,000〜約100,000又は更にそれ以上に調整することができ、当業者であれば、全ての範囲及び明確に記述される範囲内の値、例えば10,000〜50,000が企図されることを即座に理解するであろう。
【0091】
ナノ粒子は、更なる反応のための官能基を組み込み得る。更なる反応のための官能基としては、求電子剤又は求核剤が挙げられ、これらは他の分子との反応に簡便である。求核剤の例は、第1級アミン、チオール、及びヒドロキシルである。求電子剤の例は、スクシンイミジルエステル、アルデヒド、イソシアネート、及びマレイミドである。
【0092】
当該技術分野において周知である多種多様な手段を用いて、抗原ペプチド及びタンパク質を担体にコンジュゲートできる。これらの方法として、抗原ペプチド及びタンパク質の生物活性を破壊したり、大幅に制限したりせず、十分な数の抗原ペプチド及びタンパク質が、抗原ペプチド又はタンパク質の同族T細胞受容体との相互作用を可能にする方向で担体にコンジュゲートできる、任意の標準的な化学技術が挙げられる。一般には、抗原ペプチド若しくはタンパク質のC末端領域、又は、抗原ペプチド若しくはタンパク質融合タンパク質のC末端領域を獲得側にコンジュゲートする方法が好ましい。正確な化学反応は、当然のことながら、獲得側物質の性質、抗原ペプチド若しくはタンパク質に対するC末端融合部の有無、及び/又はコンジュゲート部分の有無に依存する。
【0093】
官能基を、その利用可能性について必要に応じて粒子上に配置してよい。1つの位置は、コア重合体又はコア上の層である重合体又はそれ以外で粒子につなぎ止められている重合体の側鎖又は末端部であってよい。例えば、本明細書に含まれる例は、特定の細胞標的化又はタンパク質及びペプチドの薬物送達のために容易に官能化できるナノ粒子を安定化するPEGについて説明している。
【0094】
エチレンカルボジイミド(ECDI)、ヘキサメチレンジイソシアネート、2つのエポキシ残基を含むプロピレングリコールジグリシリジルエーテル、及びエピクロロヒドリンなどのコンジュゲートは、ペプチド又はタンパク質を担体表面に固定するのに使用できる。理論に束縛されることなく、ECDIは、寛容の誘導に対する2つの主要な機能、すなわち、(a)遊離のアミノ基と遊離のカルボキシル基との間のペプチド結合形成の触媒作用を介して、タンパク質/ペプチドを細胞表面に化学的に結合する機能、及び、(b)導入されることによって、脾臓中の宿主の抗原提示細胞(内皮細胞を含み得る)によって捕捉されるようにアポトーシス細胞死を模倣し、寛容を誘導する機能を果たすと考えられる。宿主T細胞に対してこのように非免疫原性的に提示することが、自己反応性細胞中でのアネルギーの直接的誘発につながる。加えて、ECDIは、特定の制御性T細胞を誘導するための強力な刺激剤として働く。
【0095】
一連の実施形態では、抗原ペプチド及びタンパク質は、共有性化学結合を介して担体に結合される。例えば、抗原のC末端付近の反応基又は部分(例えば、C末端カルボキシル基、又は、アミノ酸側鎖のヒドロキシル、チオール、若しくはアミン基)は、直接的化学反応によって、担体の表面上の反応基又は部分(例えば、PLA又はPGA重合体のヒドロキシル若しくはカルボキシル基、デンドリマーの末端アミン若しくはカルボキシル基、又は、リン脂質のヒドロキシル、カルボキシル若しくはホスフェート基)に直接的にコンジュゲートされ得る。あるいは、抗原ペプチド及びタンパク質並びに担体の両方に共有結合的にコンジュゲートするコンジュゲート化部分があり、それによってこれらを互いに連結してもよい。
【0096】
担体の表面上の反応性カルボキシル基は、例えば、1−エチル−3−[3,9−ジメチルアミノプロピル]カルボジイミドヒドロクロライド(EDC)又はN−ヒドロキシスクシンイミドエステル(NHS)と反応させることによって、抗原ペプチド又はタンパク質上の遊離アミン(例えば、Lys残基由来)に結合できる。同様に、同じ化学反応を用いて、担体の表面上の遊離アミンを抗原ペプチド又はタンパク質上の遊離カルボキシル(例えば、C末端由来、又は、Asp若しくはGlu残基由来)とコンジュゲートできる。あるいは、担体の表面上の遊離アミン基は、原則がArano et al.(199I)Chem.2:71−6に記載されるスルホ−SIAB化学反応を用いて、抗原ペプチド及びタンパク質、又は、抗原ペプチド若しくはタンパク質融合タンパク質に共有結合的に結合され得る。
【0097】
別の実施形態では、抗原ペプチド又はタンパク質に結合したリガンドと、担体に付着された抗リガンドとの間の非共有結合により、抗原を担体にコンジュゲートしてよい。例えば、ビオチンリガーゼ認識配列タグを抗原ペプチド又はタンパク質のC末端に連結し、このタグをビオチンリガーゼによってビオチン化してよい。その後、ビオチンは、抗原ペプチド又はタンパク質を、抗リガンドとして担体の表面に吸着ないしは別の方法で結合しているアビジン又はストレプトアビジンに非共有結合的にコンジュゲートする、リガンドとして機能することができる。あるいは、抗原ペプチド及びタンパク質が上記のようなFc領域を持つ免疫グロブリンドメインに融合される場合、Fcドメインはリガンドとして働くことができ、担体の表面に共有結合的又は非共有結合的に結合したタンパク質Aは、担体に、抗原ペプチド又はタンパク質を非共有結合的にコンジュゲートする抗リガンドとして働くことができる。その他の手段は当該技術分野において周知であり、金属イオンキレート化法(例えば、抗原ペプチド若しくはタンパク質、又は抗原ペプチド若しくはタンパク質融合タンパク質のC末端にあるポリ−Hisタグと、Ni
+でコーティングした担体を用いる)などの、担体に、抗原ペプチド及びタンパク質を非共有結合的にコンジュゲートするのに使用でき、これらの方法を本明細書に記載されるものと置き換えてよい。
【0098】
プラットフォーム分子への核酸部分のコンジュゲートは、典型的には、1つ又は2つ以上の架橋剤と核酸部分及びプラットフォーム分子上の官能基が関与する様々な方法で達成できる。標準的な合成化学的手法を用いて、連結基をプラットフォームに付加する。標準的な合成的手法を用いて、連結基を核酸部分に付加できる。医師は、本発明の組み合わせにおいて用いられる抗原について、多くの選択肢を有する。組み合わせ中に存在する誘導抗原は、誘導される寛容誘発性応答の特異性に寄与する。これは、望まれない免疫応答の標的であり、寛容が所望される標的抗原(治療されている対象中で存在する又は、対象に投与される抗原)と同じであっても同じでなくてもよい。
【0099】
本発明の誘導抗原は、生物源から単離したポリペプチド、ポリヌクレオチド、炭水化物、糖脂質、若しくはその他の分子であってよく、又は、粘膜結合成分と結合すると本説明に従う寛容の誘導能を有する場合、化学合成した低分子、重合体、若しくは生物由来物質の誘導体であってよい。
【0100】
いくつかの実施形態では、本発明は、1つ又は2つ以上のペプチド、ポリペプチド、及び/又はタンパク質に結合した担体(例えば、免疫修飾粒子)を提供する。いくつかの実施形態では、本明細書に記載するものなどの担体(例えば、PLG担体)は、抗原特異的寛容の誘導、及び/又は、免疫関連疾患(例えば、マウスモデルにおけるEAE)の発症予防、及び/又は、予め現存する免疫関連疾患の重篤度の改善に効果がある。いくつかの実施形態では、本発明の組成物及び方法は、T細胞に、T細胞活性化に関連する初期変化を起こさせることができるが、T細胞にエフェクター機能を獲得させない。例えば、本発明の組成物の投与によって、CD69及び/又はCD44上方制御などの半活性化表現型を有するT細胞を得ることができるが、IFN−γ又はIL−17合成の欠如によって示されるようなエフェクター機能は示さない。いくつかの実施形態では、本発明の組成物の投与によって、半活性化表現型を有し、ナイーブな抗原特異的T細胞の、CD25
+/Foxp3
+表現型を有するものなどの制御性表現型への変換が見られない、T細胞が得られる。
【0101】
いくつかの実施形態では、担体の表面(例えば、粒子)は、抗原ペプチド及び/又はその他官能要素を担体に付加(例えば、共有結合的、非共有結合的)可能な化学的部分及び/又は官能基を含む。いくつかの実施形態では、担体(例えば、粒子)上の化学的部分及び/又は官能基の数、配向、間隔などは、担体の化学的性質、所望の用途などによって変わる。
【0102】
いくつかの実施形態では、担体は、担体に付着、吸着、内部に封入、及び/又はその全体に含有された、1つ又は2つ以上の生物学的又は化学的薬剤を含む。いくつかの実施形態では、化学的又は生物学的薬剤は、粒子内に封入、及び/又は、その全体に含有される。本発明は、化学的又は生物学的薬剤の性質よって制限されない。かかる薬剤として、タンパク質、核酸分子、低分子薬、脂質、炭水化物、細胞、細胞成分などが挙げられるが、これらに限定されない。いくつかの実施形態では、2つ又はそれ以上の(例えば、3つ、4つ、5つなど)の異なる化学的又は生物学的薬剤が、担体上に、又は内部に含められる。いくつかの実施形態では、薬剤は、特定の放出速度に構成されている。いくつかの実施形態では、複数の異なる薬剤が、異なる放出速度に構成されている。例えば、第1の薬剤は数時間にわたって放出でき、一方第2の薬剤は、より長期間(例えば、数日、数週間、数ヶ月など)にわたって放出する。いくつかの実施形態では、担体又はその一部は、生物学的又は化学的薬剤を徐放するように構成される。いくつかの実施形態では、徐放により、生物学的活性量の薬剤の少なくとも30日間(例えば、40日間、50日間、60日間、70日間、80日間、90日間、100日間、180日間など)の期間にわたる放出がもたらされる。いくつかの実施形態では、担体又はその一部は、細胞の孔内への内部成長を可能にするように十分に多孔性であるよう構成される。孔の寸法は、対象となる特定の細胞型及び/又は所望の内部成長量について選択できる。いくつかの実施形態では、粒子は、薬剤又は免疫調節薬などその他の非ペプチド活性剤を含まずに、対象となる抗原を含む。更に、いくつかの実施形態では、本発明の粒子は、対象となる抗原に加えて、免疫刺激性又は免疫抑制性ペプチドを含まない。更に、いくつかの実施形態では、粒子は、表面上又は粒子内に封入のいずれにおいても、別のタンパク質又はペプチド(例えば、共刺激分子、MHC分子、免疫刺激性ペプチド又は免疫抑制性ペプチド)を含まない。
【0103】
本発明の粒子中への抗原、生物学的、及び/又は化学的薬剤の封入が、意外にも、免疫寛容を誘導し、いくつかの利点を有することが見出されている。第1には、封入化粒子は、サイトカイン応答がより遅い。第2には、複数の抗原、生物学的、及び/又は化学的薬剤を用いるとき、封入によって、薬剤が粒子の表面に付着していた場合に起こり得る、これら様々な分子間の競合がなくなる。第3には、封入によって、より多くの抗原、生物学的、及び/又は化学的薬剤を粒子内に組み込むことが可能になる。第4には、封入によって、複合体タンパク質抗原又は臓器ホモジネート(例えば、1型糖尿病向けの膵ホモジネート、又は、ピーナツアレルギーでのピーナツ抽出物)の使用がより容易になる。最後に、粒子の表面へのコンジュゲートの代わりに、粒子内に抗原、生物学的、及び/又は化学的薬剤を封入することにより、粒子の表面上の正味の負電荷が維持される。本発明の粒子中への抗原、生物学的、及び/又は化学的薬剤の封入は、当該技術分野において既知の任意の方法によって実施できる。一実施形態では、二重乳化法によって、ポリペプチド抗原を粒子内に封入する。更なる実施形態では、ポリペプチド抗原は水溶性である。
【0104】
別の実施形態では、一重乳化法によって、ポリペプチド抗原を粒子内に封入する。更なる実施形態では、ポリペプチド抗原はより疎水性である。時には、二重乳化法が、親水性活性成分の漏れ、及び封入効率の低さの原因となり得る、大きな粒子形成を引き起こす。融合及びオストワルド熟成は、二重エマルションの液滴を不安定化し得る2つのメカニズムであり、親水性活性成分の有機相からの拡散は、封入された活性成分が低レベルとなる原因の主なメカニズムである。いくつかの実施形態では、ナノ粒子径を小さくすることが有利な場合がある。これを達成するための1つの戦略は、第2の強い剪断速度を加えることである。漏れの現象は、内部の水相の粘度の増加と界面活性剤分子量の増加が伴う、高濃度の重合体及び高分子量の重合体を用いることで低減できる。
【0105】
特定の実施形態では、本発明は、上面(又は内部)の細胞、又は、その他生物学的若しくは化学的薬剤を有する、担体を提供する。細胞が使用される場合、担体は、特定の種類の細胞に限定されない。いくつかの実施形態では、担体は上面に膵島細胞を有する。いくつかの実施形態では、微多孔性担体は、上面にECMタンパク質及び/又はエキセンジン−4を追加的に有する。担体は特定の種類に限定されない。いくつかの実施形態では、担体は、有孔性(例えば、様々な孔径、孔深さ、及び/又は孔密度)が様々である領域を有する。いくつかの実施形態では、担体は、医薬品、DNA、RNA、細胞外マトリックスタンパク質、エキセンジン−4などを上面(又は内部)に有する。特定の実施形態では、本発明は、このような担体に膵島細胞を移植する方法を提供する。本発明の特定の実施形態では、誘導抗原は、単離されるか、組み換え的に産生された分子である。標的抗原が宿主中の様々な場所に散在している状態を治療するには、通常は、誘導抗原が標的抗原と同一であるか、免疫的に関連している必要がある。かかる抗原の例は、ほとんどのポリヌクレオチド抗原、一部の炭水化物抗原(例えば、血液型抗原)である。
【0106】
任意の好適な抗原は、本発明の範囲内での利用法を見つけることができる。いくつかの実施形態では、誘導抗原は、誘導される寛容誘発性応答の特異性に寄与する。誘導抗原は、望まれない免疫応答の標的であり、寛容が所望される標的抗原(治療されている対象中で存在する又は、対象に投与される抗原)と同じであっても同じでなくてもよい。
【0107】
標的抗原が、特定の器官、細胞、又は組織型で優先的に発現している場合、ここでも医師は、標的抗原と同一の、又は免疫的に関連している誘導抗原を使用する選択肢を有する。しかしながら、標的に対するバイスタンダーである抗原を使用する更なる選択肢もある。これは、標的抗原と免疫的に関連し得ない抗原であるが、標的抗原が発現する組織で優先的に発現している。バイスタンダー抑制の有効性に関する理論は、この抑制が、標的細胞における免疫応答のエフェクターアームを下方制御する、活性細胞介在性プロセスであることである。サプレッサー細胞は、粘膜表面でインデューサー抗原によって特異的に刺激を受け、バイスタンダー抗原が優先的に発現している組織部位に存在する。相互作用的又はサイトカイン介在性機構によって、局在するサプレッサー細胞が、何に対して反応性を有するかに関わらず、その後エフェクター細胞(又は、エフェクター細胞のインデューサー)を下方制御する。エフェクター細胞が誘導抗原と異なる標的に対して特異的である場合、この結果がバイスタンダー効果である。バイスタンダー反応の更なる詳細と、この効果を有する寛容誘発性ペプチドの一覧については、国際公開第93/16724号を参照されたい。バイスタンダー説の意味は、医師が本発明を実行するために、寛容が望まれる特定の標的抗原を同定又は単離する必要がないことである。医師にとっては、誘導抗原として使用するために、標的部位で優先的に発現している少なくとも1つの分子を得られることのみが必要である。
【0108】
本発明の特定の実施形態では、誘導抗原は、治療されている個体で発現しているのと同じ形態でないが、それらのフラグメント又は誘導体である。本発明の誘導抗原として、適切な特異性を有するが、切断、残基置換、標識化、コンジュゲート化、及び/又は別の機能を有するペプチドとの融合を受けている分子をベースとするペプチドが挙げられる。この適合化は、毒性又は免疫原性などの任意の望まれない特性の排除、粘膜結合、粘膜浸透、又は免疫応答の寛容誘発性アームの刺激などの任意の望ましい特性の強化が挙げられるが、これらに限定されない、任意の望ましい目的に対して行われてよい。本明細書で使用する、インスリンペプチド、コラーゲンペプチド、及びミエリン塩基性タンパク質ペプチドなどの用語は、完全なサブユニットだけではなく、アナログである対応する分子の少なくとも10個の、好ましくは20個の連続アミノ酸に対して相同(アミノ酸レベルで好ましくは70%同一、より好ましくは80%同一、更により好ましくは90%同一)な領域を含む、アロタイプ及び合成変異形、フラグメント、融合ペプチド、コンジュゲート、及び他の誘導体も指し、誘導体の相同領域は、対応する親分子と標的抗原に対する寛容誘導能が共通である。
【0109】
誘導抗原の寛容誘発性領域は、抗体応答の刺激に対して、多くの場合免疫優性エピトープと異なると認識されている。寛容誘発性領域は通常は、T細胞が関与する特定の細胞間相互作用において提示され得る領域である。寛容誘発性領域が提示され、完全抗原の提示によって寛容を誘導可能であり得る。一部の抗原は潜在性寛容誘発性領域を含み、ナイーブな抗原のプロセシング及び提示は、通常は寛容を引き起こさない。潜在性抗原及びそれらの同定に関する詳細は、国際公開第94/27634号に記載されている。
【0110】
本発明の特定の実施形態では、2つ、3つ、又はそれ以上の複数の誘導抗原が使用される。複数の標的抗原があるときにこれらの実施形態を実践すること、又は、標的に対する複数のバイスタンダーを提供することが望ましい場合がある。例えば、糖尿病の治療において、インスリン及びグルカゴンの両方を粘膜結合成分と混合してよい。いくつかの可能性のある別の標的を網羅するため、抗原の混合物の提供が望ましい場合もある。例えば、組織適合性抗原フラグメントの混合物を用いて、将来的な未知の表現型の同種移植片の移植を見込んで、対象を寛容化できる。ヒト白血球抗原の同種可変領域(Allovariant region)は当該技術分野、例えば、Immunogenetics 29:231,1989において既知である。別の例では、アトピー治療に対して、アレルゲンの混合物を誘導抗原として機能させてよい。
【0111】
誘導抗原は、分子の性質に応じて、当該技術分野において既知の様々な手法によって調製できる。ポリヌクレオチド、ポリペプチド、及び炭水化物抗原は、それらを豊富に含ませた処理される種の細胞から単離できる。短ペプチドは、アミノ酸合成によって便利に調製される。既知の配列を有するより長いタンパク質は、コード配列を合成又は天然源若しくはベクターからコード配列をPCR増幅し、次いで、コード配列を好適な細菌性又は真核性宿主細胞中で発現させることよって調製できる。
【0112】
本発明の特定の実施形態では、この組み合わせは、細胞又は組織から得られた抗原の複雑な混合物を含み、その1つ又は2つ以上が誘導抗原の役割を担う。抗原は、完全な、又は、ホルムアルデヒド、グルタルアルデヒド、若しくはアルコールなどの固定液で処理された、細胞全体の形態であってよい。抗原は、細胞又は組織の洗剤による可溶化又は機械的破壊と、その後の清澄化によって作製された細胞可溶化物の形態であってよい。抗原は、任意に洗剤による可溶化と透析が後続する分画遠沈法などの手法によって、細胞成分分画、特に原形質膜の濃縮によって得ることもできる。可溶化膜タンパク質のアフィニティ又はイオン交換クロマトグラフィなどの、その他の分離手法も好適である。
【0113】
一実施形態では、抗原ペプチド又はタンパク質は、自己抗原、同種抗原、又は移植抗原である。更に別の特定の実施形態では、自己抗原は、ミエリン塩基性タンパク質、コラーゲン又はそれらのフラグメント、DNA、核及び核タンパク質、ミトコンドリアタンパク質、並びに膵β細胞タンパク質からなる群から選択される。
【0114】
本発明は、寛容が望まれる抗原を投与することによる、自己免疫疾患の治療のための自己抗原に対する寛容誘導を提供する。例えば、ミエリン塩基性タンパク質(MBP)に対する自己抗体は、多発性硬化症患者において観察され、そのため、多発性硬化症の治療及び予防のために、本発明の組成物を用いて送達される、MBP抗原ペプチド又はタンパク質を本発明で使用することができる。
【0115】
別の非限定例として、二卵性双生児の一方からの移植を必要とする個体は、移植された抗原がレシピエントにとって異物であるため、移植された細胞、組織、又は器官の拒絶反応に苦しむ場合がある。レシピエント個体が目的とする移植片に対して事前に寛容であれば、後の拒絶反応を抑制又は低減する。長期にわたる抗拒絶反応療法を削減又は排除することが、本発明の実施によって達成できる。別の例では、多くの自己免疫疾患は、内在性又は自己抗原に対する細胞性免疫応答を特徴とする。内在性抗原に対する免疫系の寛容が、疾患の制御に望ましい。
【0116】
更なる例では、例えば勤務中に直面し得る、産業性汚染物質又は化学物質に対する固体の感作は、免疫応答の危険性がある。個体の免疫系を化学物質、特に個体の内因性タンパク質と反応する化学物質の形態に対して事前に寛容にすると、後の免疫応答の職業性発症の予防に望ましい場合がある。
【0117】
アレルゲンは、それに対する免疫応答の寛容も望まれるその他の抗原である。一実施形態では、抗原はグリアジンである。更なる実施形態では、抗原はA−グリアジンである。
【0118】
特に、病原性自己抗原が未知である疾患であっても、解剖学的近傍に存在する抗原を用いて、バイスタンダー抑制を誘導できる。例えば、コラーゲンに対する自己抗体がリウマチ性関節炎において観察され、したがって、コラーゲンをコードする遺伝子を、リウマチ性関節炎を治療するための抗原発現遺伝子モジュールとして使用できる(例えば、Choy(2000)Curr Opin Investig Drugs 1:58〜62参照)。更に、β細胞自己抗原に対する寛容を利用して、1型糖尿病の発症を予防できる(例えば、Bach and Chatenoud(2001)Ann Rev Immunol 19:131〜161参照)。
【0119】
別の例として、ミエリンオリゴデンドロサイト糖タンパク質(MOG)に対する自己抗体が、自己免疫性脳脊髄炎及び多くのその他CNS疾患、並びに多発性硬化症において観察されている(例えば、Iglesias et al.(2001)Glia 36:22〜34参照)。したがって、本発明のMOG抗原を発現する構築物の使用によって、多発性硬化症並びに関連する中枢神経系自己免疫障害の治療が可能になる。
【0120】
自己免疫疾患の治療に用いる候補となる自己抗原の更に別の例として、インスリン依存性糖尿病を治療するための膵β細胞抗原、インスリン及びGAD;リウマチ性関節炎の治療に用いる11型コラーゲン、ヒト軟骨gp39(HCgp39)及びgpl30−RAPS;多発性硬化症を治療するためのミエリン塩基性タンパク質(MBP)、プロテオリピドタンパク質(PLP)及びミエリンオリゴデンドロサイト糖タンパク質(MOG、上記参照);強皮症治療のためのフィブリラリン及び核小体低分子タンパク質(snoRNP);グレーブス病の治療に用いる甲状腺刺激因子受容体(TSH−R);全身エリテマトーデスの治療に用いる核抗原、ヒストン、糖タンパク質gp70及びリボソームタンパク質;原発性胆汁性肝硬変(primary billiary cirrhosis)の治療に用いるピルビン酸デヒドロゲナーゼジヒドロリポアミドアセチルトランスフェラーゼ(PCD−E2);円形脱毛症の治療に用いる毛包抗原;並びに、潰瘍性大腸炎の治療に用いるヒトトロポミオシンアイソフォーム5(hTM5)が挙げられる。
【0121】
一実施形態では、本発明の粒子は、アレルギー、自己免疫疾患、及び/又は炎症性疾患若しくは障害と関連付けられる1つ若しくは2つ以上のエピトープを含む抗原に結合する。抗原は、エピトープの1つ又は2つ以上の複製を含み得る。一実施形態では、抗原は、1つの疾患又は障害と関連付けられる単一のエピトープを含む。更なる実施形態では、抗原は、同じ疾患又は障害と関連付けられる2つ以上のエピトープを含む。なお更なる実施形態では、抗原は、異なる疾患又は障害と関連付けられる2つ以上のエピトープを含む。更なる実施形態では、抗原は、1つ又は2つ以上のアレルギーと関連付けられる1つ又は2つ以上のエピトープを含む。更なる実施形態では、抗原は、多発性硬化症、1型糖尿病、セリアック病、及び/又はクローン病若しくは潰瘍性大腸炎を含む炎症性腸疾患と関連付けられる1つ又は2つ以上のエピトープを含む。一実施形態では、エピトープは、ミエリン塩基性タンパク質(例えば、配列番号4975 & 4976)、プロテオリピドタンパク質(例えば、配列番号4977)、ミエリンオリゴデンドロサイト糖タンパク質(例えば、配列番号1 & 4978)、アクアポリン(例えば、配列番号4979)、ミエリン関連糖タンパク質(例えば、配列番号4980)、インスリン(例えば、配列番号4981)、グルタミン酸デカルボキシラーゼ(例えば、配列番号4982)、グリアジン(例えば、配列番号4983〜4985又は5136〜5140)、IV型コラーゲンのα3鎖(例えば、配列番号5017)、又はこれらのフラグメント、ホモログ、若しくはアイソフォーム由来のものである。更なる実施形態では、エピトープは、グリアジン及び/又はグルテニンからのものを含む、グルテンからのものである。一実施形態では、エピトープは、その全体があらゆる目的で本明細書に組み込まれる米国特許第8,476,228号に記載されるものなどの、インスリン相同体からのものである。一実施形態では、グリアジンエピトープは、米国特許出願公開第20110293644号(全ての目的においてその全体が本明細書に組み込まれる)の配列番号13、14、16、320、又は321である。
【0122】
本発明が企図する、種々の自己免疫疾患及び/又は炎症性疾患若しくは障害と関連付けられるエピトープの更なる非限定的な例を、表2及び3に記載する。
【0124】
全てのエピトープが直鎖状エピトープというわけではなく、エピトープは、不連続の立体構造エピトープであることもできる。自己免疫疾患又は炎症性疾患及び/若しくは障害と関連付けられる多数の不連続エピトープが既知である。不連続エピトープの非限定的な例を表3に記載する。
【0127】
抗原及び/又はエピトープの組み合わせについて、単離細胞を用いる、又は動物モデルでの実験を実施することによって、寛容の促進能を検査できる。
【0128】
いくつかの実施形態では、本発明の寛容誘発性組成物は、(例えば、抗原ペプチド又は他の抗原性分子に加えて)アポトーシスシグナル分子を含む。いくつかの実施形態では、アポトーシスシグナル分子は、担体の表面と結合する及び/又は関連付けられる。いくつかの実施形態では、アポトーシスシグナル分子は、宿主の抗原提示細胞、例えば宿主細網内皮系細胞によって、アポトーシス小体として担体が認識されるのを可能にし、これにより、寛容を誘導するように関連ペプチドエピトープを提示させる。理論に束縛されることなく、免疫細胞刺激に慣用する分子、例えばMHCクラスI/II、及び共刺激分子の上方制御を阻止すると推測されている。これらのアポトーシスシグナル分子は、食細胞マーカーとしても機能し得る。例えば、本発明において好適なアポトーシスシグナル分子は、米国特許出願公開第20050113297号に記載されており、この全体が参照として本明細書に組み込まれる。本発明において好適な分子として、食細胞を標的とする分子が挙げられ、マクロファージ、樹状細胞、単球、顆粒球、及び好中球を含む。
【0129】
いくつかの実施形態では、アポトーシスシグナル分子として好適な分子は、関連ペプチドの寛容性を強化する作用がある。加えて、アポトーシスシグナル分子に結合した担体は、アポトーシス細胞認識中のClqによって結合できる(Paidassi et al.,(2008)J.Immunol.180:2329〜2338、この全体が参照として本明細書に組み込まれる)。例えば、アポトーシスシグナル分子として有用であり得る分子として、ホスファチジルセリン、アネキシン−1、アネキシン−5、乳脂肪球−EGF−因子8(MFG−E8)、又はトロンボスポンジンファミリー(例えば、トロンボスポンジン−1(TSP−1))が挙げられる。本発明においてアポトーシスシグナル分子として使用するのに好適な様々な分子が、例えば、米国特許出願公開第2012/0076831号に記載されており、この全体が参照として本明細書に組み込まれる。
【0130】
いくつかの実施形態では、アポトーシスシグナル分子は抗原特異的ペプチドにコンジュゲートされてよい。一部の場合では、アポトーシスシグナル分子及び抗原特異的ペプチドは、融合タンパク質を作製することによってコンジュゲートされてよい。例えば、融合タンパク質は、アポトーシスシグナル分子(又は、それらのフラグメント若しくは変異体)の少なくとも1つの分子に結合した、少なくとも1つの抗原特異的ペプチド(又は、それらのフラグメント若しくは変異体)を含んでよい。融合タンパク質の作製に関して、用語「融合タンパク質」、「融合ペプチド」、「融合ポリペプチド」、及び「キメラペプチド」は、互換的に使用される。抗原特異的ペプチドの好適なフラグメントとして、本発明の所望の抗原特異的寛容機能を生じる機能を保持する完全長のペプチドの任意のフラグメントが挙げられる。融合タンパク質は、当該技術分野において既知の様々な手段(例えば、遺伝子融合、化学的結合など)によって作製できる。2つのタンパク質を、直接的に、又はアミノ酸リンカーを介して融合できる。融合タンパク質を形成するポリペプチドは、典型的にはC末端をN末端に連結するが、C末端をC末端に、N末端をN末端に、又はN末端をC末端に連結してもよい。融合タンパク質のポリペプチドは、任意の順序であってよい。ペプチドリンカー配列を使用して、各ポリペプチドがその二次及び三次構造に確実に折りたたまれるのに十分な距離で、第1及び第2ポリペプチド部分を分離してよい。リンカーとして有用に使用できるアミノ酸配列として、Maratea et.al.,Gene 40:39〜46(1985);Murphy et al.,Proc.Natl.Acad.Sci.USA 83:8258〜8262(1986);米国特許第4,935,233号及び同第第4,751,180号に開示されるものが挙げられ、これらの全体が参照として本明細書に組み込まれる。リンカー配列は、通常は1〜約50個のアミノ酸長である。いくつかの実施形態では、例えば、第1及び第2ポリペプチドが、機能性ドメインを分離し、立体干渉を防ぐために使用され得る非必須N末端アミノ酸領域を有するとき、リンカー配列は必要とされない及び/又は使用されない。
【0131】
寛容誘発活性に対する代用物は、標的部位において適切なサイトカインの産生を刺激する完全抗原又はフラグメントの能力である。標的部位でTサプレッサー細胞によって放出される免疫調節性サイトカインは、TGF−βであると考えられている(Miller et al.,Proc.Natl.Acad.Sci.USA 89:421,1992)。寛容の間に産生され得る他の因子は、サイトカインIL4及びIL−10、並びにメディエータPGEである。対照的に、活発な免疫破壊を受けている組織中のリンパ球は、IL−I、IL−2、IL−6、及びγ−IFNなどのサイトカインを分泌する。よって、候補となる誘導抗原の有効性は、適切な型のサイトカインを刺激するその能力を測定することによって評価することができる。
【0132】
このことを考慮すると、誘導抗原の寛容誘発性エピトープ、有効な粘膜結合成分、有効な組み合わせ、又は粘膜投与の有効な様式及びスケジュールの迅速なスクリーニング試験を、in vitro細胞アッセイのドナーとして同系動物を使用して実施することができる。動物の粘膜表面を試験組成物を用いて処理し、ある時期に、完全フロイントアジュバント中標的抗原の非経口投与によって惹起する。脾臓細胞を単離し、約50μg/mLの濃度の標的抗原の存在下でin vitro培養する。標的抗原を候補となるタンパク質又はサブフラグメントと置換して、寛容誘発性エピトープの位置をマッピングできる。培地へのサイトカインの分泌は、標準的なイムノアッセイによって定量化することができる。
【0133】
細胞の他の細胞の活性を抑制する能力は、標的抗原で免疫化された動物から単離された細胞を用いて、又は、標的抗原に応答する細胞系を産出することによって、決定することができる(Ben−Nun et al.,Eur.J.Immunol.11:195,1981、この全体が参照として本明細書に組み込まれる)。この実験の一変形形態では、サプレッサー細胞集団に軽度に放射線照射して(約1000〜1250ラド)増殖を防止し、サプレッサーをキラー細胞を用いて共培養し、その後、トリチウム化チミジンの組み込み(又はMTT)を使用してキラー細胞の増殖活性を定量化する。別の変形形態では、ポリカーボネート膜によって分離させた相互の1mm以内で集団が共インキュベートするのを可能にするdual chamber transwell culture system(Costar(Cambridge Mass.))の上部及び下部レベルにおいて、サプレッサー細胞集団及びキラー細胞集団を培養する(国際公開第WO 93/16724号)。このアプローチでは、キラー細胞の増殖活性は別個に測定することができるため、サプレッサー細胞集団の照射は不要である。
【0134】
個体中で標的抗原が既に存在している本発明の実施形態では、抗原の単離、又は粘膜結合成分との事前混合の必要がない。例えば、抗原は、病的状態(例えば、炎症性腸疾患又はセリアック病)の結果として、又は、食物アレルゲンの消化によって、特定の様式で固体中に発現し得る。粘膜結合成分を1又は2以上の用量又は製剤で投与し、in situにおける抗原に対する慣用化促進能を判定することによって、試験を実施する。
【0135】
特定の疾患に対する組成物の有効性及び投与様式はまた、対応する動物疾患モデルにおいて詳述され得る。疾患の総体症状を減退又は遅延させるための治療の能力は、用いるモデルに適切なように、疾患の循環生化学的及び免疫学的特質、罹患組織の免疫組織学、並びに肉眼的な臨床的特徴のレベルでモニタリングする。試験に使用し得る動物モデルの非限定的な例を、以下の節に含める。
【0136】
本発明は、THl応答、TH2応答、TH17応答、又はこれらの応答の組み合わせを調節することによる寛容の調節を企図する。THl応答の調節は、例えばインターフェロンガンマの発現を変化させることを含む。TH2応答の調節は、例えば、IL−4、IL−5、IL−10、及びIL−13の任意の組み合わせの発現を変化させることを含む。典型的には、TH2応答の増加(減少)は、IL−4、IL−5、IL−10、又はIL−13のうちの少なくとも1つの発現の増加(減少)を含むことになり、より典型的には、TH2応答の増加(減少)は、IL−4、IL−5、IL−10、又はEL−13のうちの少なくとも2つの発現の増加を含むことになり、最も典型的には、TH2応答の増加(減少)は、DL−4、IL−5、IL−10、又はIL−13のうちの少なくとも3つの増加を含むことになるが、TH2応答の増加(減少)が、IL−4、IL−5、IL−10、及びIL−13のうちの全ての発現の増加(減少)を含むことになるのが理想的である。TH17の調節は、例えば、TGF−ベータ、IL−6、IL−21、及びIL23の発現を変化させることを含み、IL−17、IL−21、及びIL−22のレベルに影響する。
【0137】
本発明の組成物及び方法の効果を評価する他の好適な方法は、当該技術分野において既知であり、例えば、米国特許出願公開第2012/0076831号(この全体が参照として本明細書に組み込まれる)に記載されている。
【0138】
本発明の特定の実施形態は、治療的介入によって予め寛容化されていない個体における、免疫寛容の初回刺激に関する。これらの実施形態は、通常、抗原及び粘膜結合成分の組み合わせを複数回投与することを含む。長期間続く結果を得るために、典型的には少なくとも3回の投与、多くは少なくとも4回の投与、及びときには少なくとも6回の投与を初回刺激中に実施するが、治療中の初期に、対象が寛容の発現を示す場合がある。最も多くの場合、各用量をボーラス投与で与えるが、粘膜放出が可能な徐放性製剤も好適である。複数回の投与が行われる場合、投与間の期間は、通常は1日〜3週間、典型的には約3日〜2週間である。通常は、同じ抗原及び粘膜結合成分が同濃度で存在し、同じ粘膜表面に投与されるが、治療期間中に任意のこれら変更点の変更例に対応させてよい。
【0139】
本発明の他の実施形態は、予め確立された免疫寛容の持続の増強又は延長に関する。これらの実施形態は、通常は、確立された寛容が減退したとき、又は減退の恐れがあるときに、1回投与する、又は短期間の治療を行うことを含む。増強は、初回刺激又は以前の増強の、通常は1ヶ月〜1年後、典型的には2〜6ヶ月後に行われる。本発明は、週2回、週1回、2週に1回、又は任意のその他規則的な間隔の投与スケジュールによる寛容の定期的維持を伴う、実施形態も含む。
【0140】
本発明の粒子は、炎症性免疫応答を減退させることを、それを必要とする対象において行うために、及び細菌又はウイルス感染を治療することを、それを必要とする対象において行うために有効ないかなる用量でも付与することができる。ある特定の実施形態では、約10
2〜約10
20個の粒子が個体に提供される。更なる実施形態では、約10
3〜約10
15個の粒子が提供される。なお更なる実施形態では、約10
6〜約10
12個の粒子が提供される。また更なる実施形態では、約10
8〜約10
10個の粒子が提供される。好ましい実施形態では、好ましい用量は1ml当たり0.1%の固体である。したがって、0.5μmのビーズについては、好ましい用量は約4×10
9個のビーズであり、0.05μmのビーズについては、好ましい用量は約4×10
12個のビーズであり、3μmのビーズについては、好ましい用量は2×10
7個のビーズである。しかしながら、治療される特定の状態を治療することにおいて有効であるあらゆる用量が、本発明に包含される。
【0141】
本発明は、自己免疫疾患、移植拒絶反応、酵素欠損、及びアレルギー反応などの免疫関連障害の治療に有用である。合成の生体適合性粒子系を置換して免疫寛容を誘導することは、製造の容易さ、治療薬の広い可用性につながり、試料間の均一性を増加させ、可能性のある治療部位の数を増加させ、かつ担体細胞に対するアレルギー反応の可能性を劇的に減少させ得る。
【0142】
本明細書で使用する「免疫応答」という用語は、T細胞介在性及び/又はB細胞介在性免疫応答を含む。例示的な免疫応答は、T細胞応答、例えば、サイトカイン産生及び細胞傷害性を含む。加えて、免疫応答という用語は、T細胞活性化、例えば抗体産生(液性応答)、及びサイトカイン応答性細胞、例えばマクロファージの活性化によって間接的に影響される免疫応答を含む。免疫応答に関与する免疫細胞としては、B細胞及びT細胞(CD4
+、CD8
+、Th1、及びTh2細胞)などのリンパ球;抗原提示細胞(例えば、樹状細胞、マクロファージ、Bリンパ球、ランゲルハンス細胞などのプロフェッショナル抗原提示細胞、及びケラチン生成細胞、内皮細胞、星状細胞、線維芽細胞、オリゴデンドロサイトなどのノンプロフェッショナル細胞);ナチュラルキラー細胞;マクロファージ、好酸球、肥満細胞、好塩基球、及び顆粒球などの骨髄細胞が挙げられる。いくつかの実施形態では、本発明の修飾された粒子は、炎症の部位への炎症性細胞の輸送を減少させるのに有効である。
【0143】
本明細書で使用する「アネルギー」、「寛容」、又は「抗原特異的寛容」という用語は、T細胞受容体介在性刺激へのT細胞の非感受性を指す。このような非感受性は、概して抗原特異的であり、抗原性ペプチドへの曝露が停止した後に存続する。例えば、T細胞におけるアネルギーは、サイトカイン産生、例えばIL−2の欠如を特徴とする。T細胞アネルギーは、T細胞が抗原に曝露され、第2のシグナル(共刺激シグナル)の不在下で第1のシグナル(T細胞受容体又はCD−3介在性シグナル)を受信するときに発生する。これらの条件下で、同じ抗原への細胞の再曝露が(再曝露が副刺激分子の存在下で発生するとしても)、サイトカインの産生の失敗、及びその後の増殖の失敗をもたらす。故に、サイトカインの産生の失敗は、増殖を防止する。アネルギー性T細胞は、しかしながら、サイトカイン(例えば、IL−2)と共に培養する場合、増殖することができる。例えば、T細胞アネルギーはまた、指標細胞系を使用してELISA又は増殖アッセイによって測定されるように、Tリンパ球によるIL−2産生の欠如によって観察され得る。あるいは、レポーター遺伝子構造物を使用することができる。例えば、アネルギー性T細胞は、5’IL−2遺伝子エンハンサーの制御下にある異種プロモーターによって、又はエンハンサー内で見出され得るAPI配列のマルチマーによって誘導されるDL−2遺伝子転写の開始に失敗する(Kang et al.1992 Science.257:1134)。
【0144】
本明細書で使用する「免疫寛容」という用語は、a)減少したレベルの特異的免疫応答(少なくとも一部分では、抗原特異的エフェクターTリンパ球、Bリンパ球、抗体、又はそれらの等価物によって媒介されると考えられる)、b)特異的免疫応答の開始若しくは進行、又はc)特異的免疫応答の開始若しくは進行の減少した危険性の場合、治療されていない対象と比較した治療された対象の一部に行う方法を指す。「特異的」免疫寛容は、免疫寛容が他のものと比較してある特定の抗原に対して選択的に引き起こされるときに発生する。「非特異的」免疫寛容は、免疫寛容が、炎症性免疫応答をもたらす抗原に対して無差別に引き起こされるときに発生する。「準特異的」免疫寛容は、免疫寛容が、半差別的に、病原性免疫応答をもたらす抗原に対しては引き起こされ、防御免疫応答をもたらす他のものに対しては引き起こされないときに発生する。
【0145】
自己抗原及び自己免疫疾患への寛容は、胸腺における自己反応性T細胞の陰性選択、及び、胸腺での削除を逃れ末梢において見出される自己反応性T細胞についての末梢寛容の機構を含む、種々の機構によって達成される。末梢T細胞寛容をもたらす機構の例としては、自己抗原の「無知」、自己抗原に対するアネルギー又は非応答、サイトカイン免疫偏向、及び自己反応性T細胞の活性化誘発性細胞死が挙げられる。加えて、調節性T細胞は、末梢寛容の介在に関与することが示されている。例えば、Walker et al.(2002)Nat.Rev.Immunol.2:11〜19;Shevach et al.(2001)Immunol.Rev.182:58〜67を参照されたい。一部の状況では、自己抗原への末梢寛容が失われ(又は破壊され)、自己免疫応答が続いて起きる。例えば、EAEについての動物モデルにおいて、TLR先天性免疫受容体を通した抗原提示細胞(APC)の活性化は、自己寛容を破壊し、EAEの誘導をもたらすことを示した(Waldner et al.(2004)J.Clin.Invest.113:990〜997)。
【0146】
したがって、いくつかの実施形態では、本発明は、抗原の提示を増加させ、同時に、TLR7/8、TLR9、及び/又はTLR 7/8/9依存性の細胞刺激を抑制するか又は減少させるための方法を提供する。本明細書に記載するように、特定の修飾された粒子の投与は、DC又はAPCによる抗原提示をもたらし、同時に、免疫賦活性ポリヌクレオチドと関連付けられる、TLR 7/8、TLR9、及び/又はTLR7/8/9依存性細胞応答を抑制する。このような抑制は、1つ又は2つ以上のTLR関連サイトカインの減少したレベルを含み得る。
【0147】
上で考察したように、本発明は、Mac−1及びLFA−1介在性障害の治療に有用な生物学的特性を有する新規化合物を提供する。
【0148】
したがって、本発明の別の態様では、免疫修飾粒子を含み、かつ薬学的に許容される担体を任意選択的に含む、医薬品組成物を提供する。ある特定の実施形態では、これらの組成物は、1つ又は2つ以上の追加の治療薬を任意選択的に更に含む。あるいは、本発明の修飾粒子を、1つ又は2つ以上の他の治療薬の投与と組み合わせて、それを必要とする患者に投与してもよい。例えば、本発明の化合物との共同投与、又は薬学的組成物中への本発明の化合物の含有のための追加の治療薬は、承認された抗炎症薬であってもよく、あるいは、無制御の炎症性免疫応答又は細菌若しくはウイルス感染を特徴とするいずれかの障害の治療のために最終的に承認を得る、食品医薬品局で承認を受けている最中の多数の薬剤のうちのいずれか1つであってもよい。本発明の修飾された粒子のある特定のものは、治療のために遊離型で、又は適切な場合にはその薬学的に許容される誘導体として、存在することができる。
【0149】
本発明の薬学的組成物は、薬学的に許容される担体を追加で含み、この担体としては、本明細書で使用する場合、所望の特定の剤形に適したように、ありとあらゆる溶媒、希釈剤、又は他の液体ビヒクル、分散若しくは懸濁助剤、界面活性剤、等張剤、増粘剤若しくは乳化剤、防腐剤、固体結合剤、滑沢剤などが挙げられる。Remington’s Pharmaceutical Sciences,Sixteenth Edition,E.W.Martin(Mack Publishing Co.,Easton,Pa.,1980)は、薬学的組成物の製剤化に使用される種々の担体、及びその調製のための既知の技法を開示する。望ましくない生物学的影響をもたらすこと、あるいは薬学的組成物の任意の他の成分(複数可)と有害な様式で相互作用することによってなど、いずれの従来の担体媒体もが本発明の化合物と不適合である限りにおいて、その使用は本発明の範囲内であると企図される。薬学的に許容される担体として働き得る物質の一部の例としては、ラクトース、グルコース、及びスクロースなどの糖類;コーンスターチ及びジャガイモデンプンなどのデンプン;カルボキシメチルセルロースナトリウム、エチルセルロース、及び酢酸セルロースなどのセルロース及びその誘導体;粉末トラガカント;麦芽;ゼラチン;滑石;ココアバター及び坐薬ワックスなどの賦形剤;ピーナッツ油、綿実油、サフラワー油、胡麻油、オリーブ油、トウモロコシ油、及び大豆油などの油類;プロピレングリコールなどのグリコール類;オレイン酸エチル及びラウリン酸エチルなどのエステル;寒天;水酸化マグネシウム及び水酸化アルミニウムなどの緩衝剤;アルギン酸;発熱物質を含まない水;等張食塩水;リンガー溶液;エチルアルコール、並びにリン酸緩衝溶液が挙げられるがこれらに限定されず、かつラウリル硫酸ナトリウム及びステアリン酸マグネシウムなどの他の無毒の相溶性滑沢剤、併せて着色剤、解除剤、コーティング剤、甘味、香味、及び芳香剤、防腐剤、並びに抗酸化剤も、製剤化担当者の判断に従って、組成中に存在し得る。
【0150】
経口投与のための液体剤形としては、薬学的に許容されるエマルション、マイクロエマルション、溶液、懸濁液、シロップ、及びエリキシルが挙げられるが、これらに限定されない。活性化合物に加えて、液体剤形は、例えば水又は他の溶媒などの当技術分野で一般的に使用される不活性希釈剤、エチルアルコール、イソプロピルアルコール、炭酸エチル、酢酸エチル、ベンジルアルコール、安息香酸ベンジル、プロピレングリコール、1,3−ブチレングリコール、ジメチルホルムアミド、油類(具体的には、綿実油、落花生油、トウモロコシ油、胚芽油、オリーブ油、ヒマシ油、及び胡麻油)、グリセロール、テトラヒドロフルフリルアルコール、ポリエチレングリコール、及びソルビタンの脂肪酸エステルなどの、可溶化剤及び乳化剤、並びにこれらの混合物を含有してもよい。不活性希釈剤に加えて、経口用組成物はまた、湿潤剤、乳化及び懸濁剤、甘味剤、香味剤、及び芳香剤などのアジュバントを含むことができる。
【0151】
本発明の粒子を、経口的に、経鼻的に、静脈内に、筋肉内に、眼内に、経皮的に、腹腔内に、又は皮下に投与してよい。一実施形態では、本発明の粒子は静脈内に投与される。
【0152】
免疫応答を調節するための本発明の有効量及び投与方法は、個体、どの症状を治療するのか、及び当業者には明らかであるその他要因に基づいて、変わり得る。考えられる要因として、投与経路及び投与回数が挙げられる。かかる要因は、当該技術分野において既知であり、当業者においては、過度に実験することなく十分にこのような決定を行う。好適な用量範囲は、所望の免疫調節をもたらすものである。担体の有用な用量範囲は、送達される担体量で、例えば、0.5〜10mg/kg、1〜9mg/kg、2〜8mg/kg、3〜7mg/kg、4〜6mg/kg、5mg/kg、1〜10mg/kg、5〜10mg/kgの任意のものである。あるいは、用量は、粒子数を基に投与されてよい。例えば、担体の有用な用量は、送達される担体量で、例えば1用量当たり、約10
6、10
7、10
8、10
9、10
10又はそれ以上の粒子数であってよい。各患者に投与される絶対量は、生物学的利用能、クリアランス率、及び投与経路などの製薬学的特性に依存する。薬学的に許容される担体、希釈剤及び賦形剤、並びに、医薬品組成物及び製剤の調製方法の詳細は、Remmingtons Pharmaceutical Sciences 18
th Edition,1990,Mack Publishing Co.,Easton,Pa.,USA.に記載されており、この全体が参照として本明細書に組み込まれる。
【0153】
特定の担体製剤の有効量及び投与方法は、個々の患者、所望の結果、及び/又は疾患の種類、その疾患のステージ、及び当業者には明らかであるその他要因に基づいて、変わり得る。特定の適応において有用な投与経路は、当業者には明らかである。投与経路として、局所、皮膚、経皮、経粘膜、経表皮、非経口、経胃腸、及び経鼻咽頭、並びに、経気管支及び経肺胞などの経肺が挙げられるが、これらに限定されない。好適な用量範囲は、血中濃度によって測定するとき、約1〜50μMの組織濃度を達成するため、十分なIRP含有組成物をもたらすものである。各患者に投与される絶対量は、生物学的利用能、クリアランス率、及び投与経路などの製薬学的特性に依存する。
【0154】
本発明は、生理学的に許容できる埋没物、軟膏、クリーム、リンス液、及びゲルが挙げられるが、これらに限定されない、局所投与に好適な担体製剤を提供する。皮膚投与の代表的な経路は、経皮的伝達、表皮投与及び皮下投与などの侵襲性が低いものである。
【0155】
経皮投与は、担体が皮膚を浸透し、血流に入るのを可能にできるクリーム、リンス液、ゲルなどを塗布することによって達成される。経皮投与に好適な組成物として、皮膚に直接塗布される薬学的に許容される懸濁液、油、クリーム、及び軟膏、又は、経皮的デバイスなどの被覆キャリア(いわゆる「パッチ」)に組み込まれたものが挙げられるが、これらに限定されない。好適なクリーム、軟膏などの例は、例えば、Physician’s Desk Referenceに見られる。経皮的伝達を、イオントフォレシスによって、例えば、製品を、数日以上の期間にわたって無傷皮膚を通して持続的に送達する市販のパッチを用いて、達成することもできる。この方法を使用することによって、医薬品組成物を比較的高い濃度で制御伝達でき、組み合わせ医薬品の注入が可能になり、吸収促進剤の同時使用ができる。
【0156】
非経口的投与経路として、電気的投与(イオントフォレシス)、又は、中心静脈ラインへの直接注入、静脈内、筋肉内、腹腔内、皮内、若しくは皮下投与などの直接注入が挙げられるが、これらに限定されない。非経口投与に好適な担体製剤は、通常はUSP水又は注射用水中で処方され、pH緩衝剤、塩、充填剤、保存剤、及びその他薬学的に許容される賦形剤を更に含んでもよい。非経口的注入用の免疫調節性ポリヌクレオチドは、注射用生理食塩液及びリン酸緩衝生理食塩液などの薬学的に許容される無菌等張液中で処方されてよい。
【0157】
経胃腸的投与経路として、経口及び直腸経路が挙げられるが、これらに限定されず、例えば、経口用の薬学的に許容される粉末、ピル、又は液体、及び直腸投与用の坐薬の使用を挙げることができる。
【0158】
挙げられる経鼻咽頭的及び経肺的投与は、吸入によって達成され、経鼻、経気管支、及び経肺胞経路などの送達経路が含まれる。本発明は、エアロゾルを形成するための液体懸濁液、並びに乾燥粉末吸入送達システムのための粉末形態が挙げられるが、これらに限定されない、吸入による投与に好適な担体の製剤を含む。担体製剤の吸入による投与に好適なデバイスとして、アトマイザー、気化器、ネブライザー、及び乾燥粉末吸入送達デバイスが挙げられるが、これらに限定されない。
【0159】
注射可能な調剤、例えば、滅菌の注射可能な水性又は油性懸濁液は、好適な分散又は湿潤剤及び懸濁化剤を使用して、既知の技術に従って製剤化し得る。滅菌の注射可能な調剤はまた、無毒の非経口的に許容される希釈剤又は溶媒中の滅菌の注射可能な溶液、懸濁液、又はエマルション、例えば、1,3−ブタンジオール中の溶液としてあってもよい。用いることができる許容可能なビヒクル及び溶媒には、水、リンガー溶液、U.S.P.、及び等張食塩水がある。加えて、滅菌凝固油が、溶媒又は懸濁媒体として従来的に用いられる。この目的では、合成モノグリセリド又はジグリセリドを含むいかなる無菌性凝固油も用いることができる。加えて、オレイン酸などの脂肪酸が、注射可能物質の調製に使用される。
【0160】
注射可能な製剤は、例えば、細菌保持フィルタを通した濾過によって、又は使用前に滅菌水若しくは他の注射可能な滅菌媒体中に溶解若しくは分散させ得る滅菌固体組成物の形態にある滅菌剤を組み込むことにより、滅菌することができる。
【0161】
薬物の効果を延長するために、皮下又は筋肉注射からの薬物の吸収を遅延させることが望ましい場合が多い。これは、液体懸濁液、又は難水溶性の結晶質若しくは非晶質物質の使用によって達成し得る。そして薬物の吸収の速度はその溶解速度に依存し、この溶解速度は、今度は結晶サイズ及び結晶形に依存し得る。あるいは、非経口的に投与された薬物形態の遅延吸収は、薬物を油性ビヒクル中に溶解させるか又は懸濁することによって達成される。注射可能なデポー剤形は、ポリラクチド−ポリグリコリドなどの生分解性重合体中の薬物のマイクロカプセル化マトリックスを形成することによって作製される。薬物の重合体に対する比率、及び用いる特定の重合体の性質に応じて、薬物放出の速度を制御することができる。他の生分解性重合体の例としては、ポリ(オルトエステル)及びポリ(無水物)が挙げられる。注射可能なデポー製剤はまた、体組織と互換性のあるリポソーム又はマイクロエマルション中に薬物を封入することによっても調製される。
【0162】
いくつかの実施形態では、本発明の合成生分解性粒子は、製造容易性、治療薬の幅広い利用可能性、及び治療部位の拡大をもたらす。特定の実施形態では、界面活性剤であるポリ(エチレン−alt−無水マレイン酸)を使用して合成された、表面カルボキシレート基の密度が高い表面機能化生分解性ポリ(ラクチド−コ−グリコリド)粒子は、別の担体粒子及び/又は表面よりも数多くの利点をもたらす担体を提供する。本発明の実施形態の開発中に実施された実験によって、これらの粒子に対するペプチド(例えば、PLP
139〜151ペプチド)のコンジュゲートが示された。かかるペプチド結合粒子は、疾患の発症予防及び免疫寛容の誘導に有効であることが示されている(例えば、SJL/J PLP
139〜151/CFAで誘導された多発性硬化症のR−EAEマウスモデル)。本発明の担体に結合したペプチドは、別の寛容誘発構造体よりも数多くの利点をもたらす。いくつかの実施形態では、粒子は生分解性であり、そのため体内に長期間残らない。完全に分解する時間を制御することができる。いくつかの実施形態では、粒子は官能化され、細胞活性化をせずに内在化を促進する(例えば、PLG微小球に付加されたホスファチジルセリン)。いくつかの実施形態では、粒子は、特定の細胞集団に対する標的化リガンドを含む。いくつかの実施形態では、IL−10及びTGF−βなどの抗炎症性サイトカインが粒子上又は粒子内に含まれ、粒子を内在化させる細胞型の活性化を制限し、制御性T細胞のアネルギー(energy)及び/又は欠失、並びに活性化を介する寛容の誘導を促進する。粒子の組成物は粒子が体内で存続する時間に影響し、寛容は急速な粒子の取り込み及びクリアランス/分解を必要とすることを見出した。50:50を超えるラクチド:グリコリドの比は分解速度を遅延させるため、本発明の粒子は、約50:50以下のラクチド:グリコリド比を有する。一実施形態では、本発明の粒子は、約50:50のD,L−ラクチド:グリコリド比を有する。
【0163】
経口投与のための固形剤形としては、カプセル錠、錠剤、丸薬、粉末剤、及び顆粒剤が挙げられる。このような固形剤形において、この修飾された粒子は、少なくとも1つのクエン酸ナトリウム又はリン酸ニカルシウムなどの不活性な薬学的に許容される賦形剤若しくは担体、並びに/又はa)デンプン、ラクトース、スクロース、グルコース、マンニトール、及びケイ酸などの充填剤又は増量剤、b)例えば、カルボキシメチルセルロース、アルギン酸塩、ゼラチン、ポリビニルピロリジノン、スクロース、及びアカシアなどの結合剤、c)グリセロールなどの保湿剤、d)寒天、炭酸カルシウム、ジャガイモ又はタピオカデンプン、アルギン酸、ある特定のケイ酸塩、及び炭酸ナトリウムなどの崩壊剤、e)パラフィンなどの溶液緩和剤、f)第4級アンモニウム化合物などの吸収促進剤、g)例えば、セチルアルコール及びグリセロールモノステアレートなどの湿潤剤、h)カオリン及びベントナイト粘土などの吸収剤、並びにi)滑石、ステアリン酸カルシウム、ステアリン酸マグネシウム、固形ポリエチレングリコール、ラウリル硫酸ナトリウム、及びこれらの混合物などの滑沢剤と混合する。カプセル錠、錠剤、及び丸薬の場合には、剤形はまた、緩衝剤を含んでもよい。
【0164】
類似の型の固形組成物も、ラクトース又は乳糖及び超高分子量ポリエチレングリコールなどの賦形剤を使用して、軟及び硬ゼラチンカプセルにおける充填剤として用いてもよい。錠剤、糖衣錠、カプセル錠、丸薬、及び顆粒剤の固形剤形は、腸溶コーティング及び医薬品製剤化分野で公知の他のコーティングなどのコーティング及びシェルを用いて調製することができる。これらは、不透明化剤を任意選択で含有してもよく、これらが、任意選択で遅延した様式で、腸管のある特定の部分においてのみ又はそこで優先的に、活性成分(複数可)を放出するような組成物であることもできる。使用し得る埋め込み組成物の例としては、重合物質及びワックスが挙げられる。類似の型の固形組成物も、ラクトース又は乳糖及び超高分子量ポリエチレングリコールなどの賦形剤を使用して、軟及び硬ゼラチンカプセルにおける充填剤として用いてもよい。
【0165】
修飾された粒子も、上記のような1つ又は2つ以上の賦形剤を用いたマイクロカプセル化形態にあることができる。錠剤、糖衣錠、カプセル錠、丸薬、及び顆粒剤の固形剤形は、腸溶コーティング、放出制御コーティング、及び医薬品製剤化分野で公知の他のコーティングなどのコーティング及びシェルを用いて調製することができる。このような固形剤形において、活性化合物は、スクロース、ラクトース、及びデンプンなどの少なくとも1つの不活性希釈剤と混合してもよい。このような剤形はまた、通常の慣行のように、不活性希釈剤以外の追加的な物質、例えば、ステアリン酸マグネシウム及び微結晶性セルロースなどの錠剤化滑沢剤及び他の錠剤化助剤を含んでもよい。カプセル錠、錠剤、及び丸薬の場合には、剤形はまた、緩衝剤を含んでもよい。これらは、不透明化剤を任意選択で含有してもよく、これらが、任意選択で遅延した様式で、腸管のある特定の部分においてのみ又はそこで優先的に、修飾された粒子を放出するような組成物であることもできる。使用し得る埋め込み組成物の例としては、重合物質及びワックスが挙げられる。
【0166】
本発明は、本発明の修飾された粒子の薬学的に許容される局所製剤を包含する。本明細書で使用する「薬学的に許容される局所製剤」という用語は、表皮への製剤の適用による、本発明の修飾された微粒子の皮膚内投与に対して薬学的に許容されるいずれの製剤も意味する。本発明のある特定の実施形態では、局所製剤は担体系を含む。薬学的に有効な担体としては、溶剤(例えば、アルコール、多価アルコール、水)、クリーム剤、ローション剤、軟膏、油剤、硬膏、リポソーム剤、粉末剤、エマルション、マイクロエマルション、及び緩衝溶液(例えば、低張又は緩衝食塩水)、又は医薬品を局所投与するための当技術分野で既知の任意の他の担体が挙げられるが、これらに限定されない。当技術分野で既知の担体のより完全な一覧は、当技術分野における基準である参照文献、例えば、共にMack Publishing Company,Easton,Pa.から出版されるRemington’s Pharmaceutical Sciences,16th Edition,1980、及び17th Edition,1985によって提供され、これらの開示はその全体が参照により本明細書に組み込まれる。ある特定の他の実施形態では、本発明の局所製剤は、賦形剤を含んでもよい。当技術分野で既知の任意の薬学的に許容される賦形剤を使用して、本発明の薬学的に許容される局所製剤を調製し得る。本発明の局所製剤に含めることができる賦形剤の例としては、防腐剤、抗酸化剤、保湿剤、軟化剤、緩衝剤、可溶化剤、他の浸透剤、皮膚保護剤、界面活性剤、及び噴射剤、並びに/又はこの修飾された粒子と組み合わせて使用される追加的な治療薬が挙げられるが、これらに限定されない。好適な防腐剤としては、アルコール、第4級アミン、有機酸、パラベン、及びフェノールが挙げられるが、これらに限定されない。好適な抗酸化剤としては、アスコルビン酸及びそのエステル、亜硫酸水素ナトリウム、ブチル化ヒドロキシトルエン、ブチル化ヒドロキシアニソール、トコフェノール、並びにEDTA及びクエン酸のようなキレート剤が挙げられるが、これらに限定されない。好適な保湿剤としては、グリセリン、ソルビトール、ポリエチレングリコール、尿素、及びプロピレングリコールが挙げられるが、これらに限定されない。本発明との使用に好適な緩衝剤としては、クエン酸、塩酸、及び乳酸緩衝溶液が挙げられるが、これらに限定されない。好適な可溶化剤としては、第4級アンモニウムクロリド、シクロデキストリン、安息香酸ベンジル、レシチン、及びポリソルベートが挙げられるが、これらに限定されない。本発明の局所製剤において使用し得る好適な皮膚保護剤としては、ビタミンE油、アラトイン、ジメチコーン、グリセリン、ペトロラタム、及び酸化亜鉛が挙げられるが、これらに限定されない。
【0167】
ある特定の実施形態では、本発明の薬学的に許容される局所製剤は、少なくとも本発明の修飾された粒子と浸透促進剤とを含む。局所製剤の選択は、治療される状態、本発明の化合物及び存在する他の賦形剤の物理化学的特徴、製剤中でのこれらの安定性、利用可能な製造設備、並びに費用上の制約を含むいくつかの要因に依存することになる。本明細書で使用する「浸透促進剤」という用語は、全身性吸収をほとんど又は全く行わずに、薬理学的に活性な化合物を、角質層を通して表皮又は真皮へと輸送することが可能な薬剤を意味する。多種多様な化合物が、皮膚を通した薬物の浸透速度を促進することにおけるその有効性について評価されている。例えば、種々の皮膚浸透促進剤の使用及び試験を調査している、Percutaneous Penetration Enhancers,Maibach H.I.and Smith H.E.(eds.),CRC Press,Inc.,Boca Raton,Fla.(1995)、並びにBuyuktimkin et al.,Chemical Means of Transdermal Drug Permeation Enhancement in Transdermal and Topical Drug Delivery Systems,Gosh T.K.,Pfister W.R.,Yum S.I.(Eds.),Interpharm Press Inc.,Buffalo Grove,Ill.(1997)を参照されたい。ある特定の例示的な実施形態では、本発明と共に使用するための浸透剤としては、トリグリセリド(例えば、大豆油)、アロエ組成物(例えば、アロエベラゲル)、エチルアルコール、イソプロピルアルコール、オクトリフェニルポリエチレングリコール(octolyphenylpolyethylene glycol)、オレイン酸、ポリエチレングリコール400、プロピレングリコール、N−デシルメチルスルホキシド、脂肪酸エステル(例えば、ミリスチン酸イソプロピル、ラウリン酸メチル、グリセロールモノオレエート、及びプロピレングリコールモノオレエート)、及びN−メチルピロリドンが挙げられるが、これらに限定されない。
【0168】
ある特定の実施形態では、本組成物は、軟膏、ペースト剤、クリーム剤、ローション剤、ゲル剤、粉末剤、溶剤、噴霧剤、吸入剤、又はパッチ剤の形態にあってもよい。ある特定の例示的な実施形態では、本発明に従う組成物の製剤はクリームであり、これは更に、飽和又は不飽和脂肪酸、例えば、ステアリン酸、パルミチン酸、オレイン酸、パルミトオレイン酸、セチル又はオレイルアルコールを含んでもよく、ステアリン酸が特に好ましい。本発明のクリーム剤は、非イオン性界面活性剤、例えば、ポリオキシ−40−ステアラートも含み得る。ある特定の実施形態では、活性成分は、滅菌条件下で、薬学的に許容される担体及び任意の必要な防腐剤又は必要に応じて緩衝剤と混合する。眼用製剤、点耳剤、及び点眼剤も、本発明の範囲内にあるものと企図される。加えて、本発明は、化合物の体内への制御送達を提供する付加的利点を有する経皮パッチ剤の使用を企図する。このような剤形は、化合物を適切な媒体に溶解又は分散させることによって作製される。上述のように、浸透促進剤は、皮膚を通した化合物の流量を増加させるためにも使用することができる。速度は、速度制御膜を提供するか、あるいは化合物を重合体マトリックス又はゲルに分散させることによって制御することができる。
【0169】
修飾された粒子は、エアロゾルによって投与することができる。これは、修飾された粒子を含有する水性エアロゾル、リポソーム調剤、又は固形粒子を調製することによって達成される。非水性(例えば、フルオロカーボン噴射剤)懸濁剤を使用し得る。
【0170】
通常は、水性エアロゾルは、従来の薬学的に許容される担体及び安定剤と共に薬剤の水溶液又は懸濁液を製剤化することによって作製される。担体及び安定剤は特定の化合物の要件によって異なるが、典型的には、非イオン性界面活性剤(Tweens、Pluronics(登録商標)、又はポリエチレングリコール)、血清アルブミンのような無害のタンパク質、ソルビタンエステル、オレイン酸、レシチン、グリシンなどのアミノ酸、緩衝液、塩、糖類、又は糖アルコールが挙げられる。エアロゾルは概して等張液から調製される。
【0171】
本発明の修飾された粒子及び薬学的組成物は、併用療法において製剤化し用いることができ、これはつまり、化合物及び薬学的組成物が、1つ若しくは2つ以上の他の所望される治療薬若しくは医療処置と共に製剤化するか、又はそれらと同時に、それらの前若しくは後に、投与することができるということも理解されるであろう。併用レジメンにおいて用いる療法(治療薬又は処置)の特定の組み合わせは、所望の治療薬及び/又は処置と達成が所望される治療効果との適合性を考慮に入れることになる。用いる療法は、同じ障害に対して所望の効果を達成し得る(例えば、本発明の化合物は、別の抗炎症剤と同時に投与し得る)か、又はこれらの療法は、異なる効果(例えば、任意の副作用の制御)を達成してもよい。
【0172】
ある特定の実施形態では、本発明の修飾された粒子を含有する薬学的組成物(例えば、抗炎症性及び/又は緩和的)は、1つ又は2つ以上の追加的な治療的活性成分を更に含む。本発明の目的では、「緩和的」という用語は、疾患の症状及び/又は治療レジメンの副作用の軽減に集中するが、治癒的ではない治療を指す。例えば、緩和的治療は、鎮痛剤、抗悪心薬(antinausea)、及び吐気止め薬(anti-sickness drug)を包含する。
【0173】
本発明は、個体、好ましくは哺乳動物、より好ましくはヒトにおいて免疫応答を調節する方法を提供し、本方法は、本明細書に記載の修飾された粒子を個体に投与することを含む。本発明によって提供される免疫調節の方法は、免疫賦活性ポリペプチド又はウイルス若しくは細菌成分によって刺激される免疫応答を含むがこれに限定されない、先天性免疫応答又は適応免疫応答を抑制及び/又は阻害するものを含む。
【0174】
修飾された粒子は、免疫応答を調節するのに十分な量で投与される。本明細書に記載のように、免疫応答の調節は、液性及び/又は細胞性であってもよく、当技術分野における標準的な技法を使用して、及び本明細書に記載のように、測定される。
【0175】
いくつかの実施形態では、本明細書に記載される組成物を、埋没物(例えば、デバイス)及び/又は移植片(例えば、組織、細胞、器官)と共に(例えば、同時に、先だって、又は後に)投与し、それに伴う免疫応答を媒介する、打ち消す、制御する、及び/又は低減する。
【0176】
ある特定の実施形態では、個体は、アレルギー性疾患又は状態、アレルギー、及び喘息などの不必要な免疫活性化と関連付けられる障害を患う。アレルギー性疾患又は喘息を有する個体とは、既存のアレルギー性疾患又は喘息の認識可能な症状を持つ個体である。このような個体において、例えば、アレルギー反応を惹起する、特定の食物(例えば、ピーナツタンパク質など)と複合した、物質(例えば、ハチ毒タンパク質など)を注入した、又は物質(例えば、ブタクサ花粉タンパク質、ペットのふけタンパク質など)を吸入した粒子によって、寛容を誘導できる。
【0177】
ある特定の実施形態では、個体は、自己免疫疾患及び炎症性疾患などの不必要な免疫活性化と関連付けられる障害を患う。自己免疫疾患又は炎症性疾患を有する個体とは、既存の自己免疫疾患又は炎症性疾患の認識可能な症状を持つ個体である。このような個体において、例えば、特定の自己免疫疾患を誘発する関連自己抗原と複合した粒子によって、寛容を誘導できる。
【0178】
特定の実施形態では、個体は、酵素補充療法に関連する疾患を患っている。このような個体において、例えば、遺伝的欠損を有する患者が産生できない酵素と複合した粒子によって、特定の欠損の治療のために投与される組み替え的に産生された酵素に対する中和抗体応答をもたらすのを予防するための寛容、例えば、第VIII因子の産生能における遺伝的欠損に起因する血友病患者のヒト第VIII因子に対する寛容を誘導できる。別の例として、ムコ多糖蓄積症、ガンクリオシド蓄積症、アルカリ性低ホスファターゼ症、コレステロールエステル蓄積症、高尿酸血症、成長ホルモン欠乏症、腎性貧血、又はファブリー病、ゴーシェ病、ハーラー病、ハンター症候群、マロトーラミー病、ニーマン・ピック病、テイ−サックス病、及びポンペ病などのライソゾーム病(lysomal storage disorders)などの症状における、酵素補充が挙げられる。
【0179】
特定の実施形態では、個体は、患者の健康又は治療を実際に又は潜在的に損なう、疾患の治療に投与された薬剤に対する、強いないしは有害な免疫応答に苦しんでいる。加えて、本発明によって提供される新規化合物は、薬剤に対する免疫応答を示していないが、将来的に示す可能性がある個体に提供できる。特定の実施形態では、個体は酵素補充療法を受けている。特定の実施形態では、治療薬として、ペプチド又はタンパク質系薬剤、DNAワクチン、siRNA、スプライス部位変更オリゴマー、及びRNA系ナノ粒子が挙げられるが、これらに限定されない。いくつかの実施形態では、治療薬として、Advate、抗血友病因子、Kogenate、Eloctate、遺伝子組み換え第VIII因子Fc融合タンパク質、Refacto、Novo VIIa、遺伝子組み換え第VII因子、エピタコグアルファ、Helixate、Monanine、凝固第IX因子、Wilate、Ceredase、アルグルセラーゼ、Cerezyme、イミグルセラーゼ、Elelso、タリグルセラーゼアルファ、Fabrazyme、アガルシダーゼベータ、Aldurazyme、−I−イズロニダーゼ、Myozyme、酸グルコシダーゼ、Elaprase、イズロン酸−2−スルファターゼ、NaglazymeアリルスルファターゼB、及びN−アセチルガラクトサミン−4−スルファターゼが挙げられるが、これらに限定されない。いくつかの実施形態では、個体は、血友病、血友病A、血友病B、ヴォン・ヴィレブランド病、ゴーシェ病、ファブリー病、ハーラー病、ポンペ病、ハンター病、ムコ多糖蓄積症、ガンクリオシド蓄積症、アルカリ性低ホスファターゼ症、コレステロールエステル蓄積症、高尿酸血症、成長ホルモン欠乏症、腎性貧血、及びマロトーラミー病が挙げられるが、これらに限定されない、疾患を治療するために投与される治療薬を投与される。
【0180】
特定の実施形態では、個体は希少な自己免疫性状態を患っている。かかる状態として、特発性血小板減少性紫斑病、膜性腎症、水疱性類天疱瘡、尋常性天疱瘡、及び重症筋無力症が挙げられるが、これらに限定されない。
【0181】
特定の実施形態では、個体は、病気の治療に関連する疾患を患っている。遺伝子組み換え抗体の場合、例えば、患者の抗体治療薬に対する中和抗体産生を予防するという治療的観点において使用されているヒト化抗体に対する寛容、例えば、自己免疫疾患の治療剤として使用されている、ヒト化免疫サブセットを枯渇する抗体又は抗サイトカイン抗体に対する寛容が誘導される。
【0182】
自己免疫疾患は、臓器特異性及び全身性という2つの広義のカテゴリーに分類することができる。自己免疫疾患としては、リウマチ性関節炎(RA)、全身性エリテマトーデス(SLE)、1型糖尿病、2型糖尿病、多発性硬化症(MS)、早発閉経などの免疫介在性不妊症、強皮症、シェーグレン病、白斑、脱毛症(禿頭症)、多腺性不全、グレーブス病、甲状腺機能低下症、多発性筋炎、尋常性天疱瘡、落葉状天疱瘡、クローン病及び潰瘍性大腸炎を含む炎症性腸疾患、B型肝炎ウイルス(HBV)及びC型肝炎ウイルス(HCV)と関連付けられるものを含む自己免疫性肝炎、下垂体機能低下症、移植片対宿主病(GvHD)、心筋炎、アジソン病、自己免疫性皮膚疾患、ブドウ膜炎、悪性貧血、セリアック病、副甲状腺機能低下症、視神経脊髄炎(neuomyelitis optica)、膜性腎症(membraneous nephropathy)、水疱性類天疱瘡、尋常性天疱瘡、重症筋無力症が挙げられるが、これらに限定されない。
【0183】
自己免疫疾患としてはまた、橋本病甲状腺炎、1型及び2型自己免疫性多腺性症候群、腫瘍随伴性天疱瘡、ブルス類天疱瘡、疱疹状皮膚炎、線状IgA病、後天性表皮水疱症、結節性紅斑、妊娠性類天疱瘡、瘢痕性類天疱瘡、本態性混合型クリオグロブリン血症、幼少期の慢性水疱性疾患、溶血性貧血、血小板減少性紫斑病、グッドパスチャー症候群、自己免疫性好中球減少症、重症筋無力症、イートン・ランバート筋無力症症候群、スティフマン症候群、急性散在性脳脊髄炎、ギラン・バレー症候群、慢性炎症性脱髄性多発性神経障害、伝導障害を伴う多巣性運動ニューロパチー、単クローン性免疫グロブリン血症を伴う慢性神経障害、オプソノクローヌス・ミオクローヌス症候群、小脳変性症、脳脊髄炎、網膜症、原発性胆汁性肝硬変、硬化性胆管炎、グルテン過敏性腸疾患、強直性脊椎炎、反応性関節炎、多発性筋炎/皮膚筋炎、混合性結合組織疾患、ベチェット病、乾癬、結節性多発動脈炎、アレルギー性血管炎性肉芽腫症(チャーグ・ストラウス症候群)、多発性血管炎重複症候群、過敏性血管炎、ウェゲナー肉芽腫症、側頭動脈炎、高安動脈炎、川崎病、中枢神経系孤立性血管炎、閉塞性血栓性血管炎、サルコイドーシス、糸球体腎炎、及び寒冷症が挙げられるが、これらに限定されない。これらの状態は医学の分野で周知であり、例えば、Harrison’s Principles of Internal Medicine,14th ed.,Fauci A S et al.,eds.,New York:McGraw−Hill,1998中で説明される。
【0184】
自己免疫疾患の研究のための動物モデルは、当技術分野で既知である。例えば、ヒトの自己免疫疾患に最も類似しているように思われる動物モデルとしては、特定の疾患の高い発症率を自然発現する動物系統が挙げられる。このようなモデルの例としては、1型糖尿病と同様の疾患を発症する非肥満糖尿病(NOD)マウス、並びにニュージーランドハイブリッド、MRL−Fas
lpr、及びBXSBマウスなどのループス様疾患にかかりやすい動物が挙げられるが、これらに限定されない。自己免疫疾患を誘導した動物モデルとしては、多発性硬化症に対するモデルである実験的自己免疫性脳脊随炎(EAE)、リウマチ性関節炎に対するモデルであるコラーゲン誘導性関節炎(CIA)、尋常性天疱瘡の実験的モデルとして使用できるデスモグレイン3トランスジェニックT細胞マウス、及びブドウ膜炎に対するモデルである実験的自己免疫性ブドウ膜炎(EAU)が挙げられるが、これらに限定されない。自己免疫疾患のための動物モデルはまた、遺伝子操作によって創出し、例えば、炎症性腸疾患に対するIL−2/IL−10ノックアウトマウス、SLEに対するFas又はFasリガンドノックアウトマウス、及びリウマチ性関節炎に対するIL−I受容体アンタゴニストノックアウトマウスを含む。
【0185】
ある特定の実施形態では、個体は細菌又はウイルス感染を患う。細菌又はウイルス感染を有する個体とは、既存の細菌又はウイルス感染の認識可能な症状を持つ個体である。
【0186】
本発明の修飾された粒子で治療可能なウイルス感染の非限定的な一覧は、ヘルペスウイルス感染、肝炎ウイルス感染、西ナイルウイルス感染、フラビウイルス感染、インフルエンザウイルス感染、ライノウイルス感染、パピローマウイルス感染、パロミクソウイルス感染、パラインフルエンザウイルス感染、及びレトロウイルス感染を含む。好ましいウイルスは、対象の中枢神経系に感染するウイルスである。最も好ましいウイルスは、出血熱(hemorrgic fever)、脳炎又は髄膜炎を引き起こすウイルスである。
【0187】
本発明の修飾された粒子で治療可能な細菌感染の非限定的な一覧は、ブドウ球菌感染、連鎖球菌感染、抗酸菌感染、バシラス感染、サルモネラ菌感染、ビブリオ感染、スピロヘータ感染、及びナイセリア感染を含む。対象の中枢神経系に感染する細菌が好ましい。脳炎又は髄膜炎を引き起こす細菌が最も好ましい。
【0188】
いくつかの実施形態では、本発明は、疾患の発症前に本発明の組成物を使用することに関する。他の実施形態では、本発明は、進行中の疾患を阻害するために本発明の組成物を使用することに関する。いくつかの実施形態では、本発明は、対象において疾患を寛解させることに関する。対象において疾患を寛解させることとは、対象において疾患を治療、予防、又は抑制することを含む。
【0189】
いくつかの実施形態では、本発明は、疾患の再発を予防することに関する。例えば、不必要な免疫応答は、ペプチドの1つの領域(抗原決定基など)で発生し得る。不必要な免疫応答と関連付けられる疾患の再発は、ペプチドの異なる領域で免疫応答攻撃を有することによって発生し得る。本発明の免疫修飾粒子は、結合したペプチド又は抗原部分を含まないため、粒子は複数のエピトープに対して効果的となる。MS及び他のThI/17介在性自己免疫疾患を含む一部の免疫応答障害におけるT細胞応答は動的であり、再発寛解型疾患及び/又は慢性進行性疾患の経過中に進化し得る。T細胞レパートリーの動的性質は、疾患が進行するにつれて標的が変化し得るため、ある特定の疾患の治療に対する影響を有する。これまでは、疾患の進行を予測するためには、応答パターンの事前の知識が必要とされた。本発明は、動的に変化する疾患の作用である「エピトープ伝播」の機能を予防することができる組成物を提供する。再発に対する既知のモデルは、多発性硬化症(MS)に対するモデルのように、プロテオリピドタンパク質(PLP)に対する免疫反応である。初期の免疫応答は、PLP139−15に対する応答によって発生し得る。後続の疾患の発症は、PLP[pi]s−iβiに対する再発免疫応答によって発生し得る。
【0190】
本発明の他の実施形態は、移植に関する。これは、ドナー個体からレシピエント個体への組織試料又は移植片の移動を指し、組織によって提供される生理学的機能を復元するために組織を必要とするヒトレシピエントに対して頻繁に行われる。移植される組織としては、腎臓、肝臓、心臓、肺などの全臓器;皮膚移植片及び眼の角膜などの臓器構成要素;並びに骨髄細胞、及び骨髄又は循環血液から選択し増殖させた細胞の培養物などの細胞浮遊液、並びに全血輸血が挙げられる(しかしこれらに限定されない)。
【0191】
いかなる移植の重度の起こり得る合併症も、宿主レシピエントと移植された組織との間の抗原性の差異の結果として起きる。差異の性質及び程度に応じて、宿主による移植片の、又は移植片による宿主の、又は両方の免疫学的攻撃が発生し得る危険性があり得る。危険性の程度は、同様の表現型を持つ同様に治療された対象の集団における応答パターンをたどり、広く受け入れられている臨床手順に従って種々の考えられる要因を相互に関連付けることによって決定する。免疫学的攻撃は、既存の免疫応答(事前に形成された抗体など)、又は移植時の前後に始動される免疫応答(Th細胞の生成など)の結果であり得る。抗体、Th細胞、又はTc細胞は、相互、並びに種々のエフェクター分子及び細胞との任意の組み合わせで関与し得る。しかしながら、免疫応答に関与する抗原は概して知られていないため、抗原特異的療法の設計又は抗原特異的寛容の誘導に困難をもたらしている。
【0192】
本発明のある特定の実施形態は、レシピエントによる組織移植片の拒絶反応をもたらす宿主対移植片病の危険性を減少させることに関する。治療は、超急性、急性、又は慢性拒絶反応の影響を予防するか、又は減少させるために行い得る。治療は、移植片を導入するときに寛容が整っているように、移植の十分はるか前に優先的に開始するが、それが可能でない場合には、治療は、移植と同時か、又は移植の後に開始することができる。開始の時に関わらず、治療は概して、少なくとも移植後最初の月の間、一定間隔で継続することになる。移植片の十分な順応が起こる場合にはフォローアップの投薬は不要であり得るが、移植片の拒絶反応又は炎症の兆候が何かある場合には、再開することができる。もちろん、本発明の寛容化手順は、免疫抑制の他の形態と組み合わせて、更に低いレベルの危険性を達成してもよい。
【0193】
本発明のある特定の実施形態は、手術に対する応答として誘導される炎症応答を減少させるか、あるいは寛解させることに関する。本発明の一実施形態では、免疫修飾粒子は手術前に投与する。本発明の更なる実施形態では、免疫修飾粒子は、手術と並行して、又は手術中に投与する。本発明のなお更なる実施形態では、免疫修飾粒子は手術後に投与する。
【0194】
本発明の粒子はまた、膿瘍又は膿胸を治療するために使用して、細菌又は寄生生物などの病原体への曝露後に対象において産生される炎症応答を減少させ得る。本発明の一実施形態では、免疫修飾粒子は、当技術分野で既知の抗細菌及び/又は抗寄生生物治療と共に投与する。
【0195】
本発明の粒子はまた、スポーツ損傷、創傷、脊髄損傷、脳損傷、及び/又は軟部組織損傷を含むがこれらに限定されない身体的外傷又は損傷に対する応答として誘導される炎症応答を減少させ得るか、あるいは寛解させ得る。本発明の一実施形態では、免疫修飾粒子は、対象が外傷又は損傷を経た後に投与する。
【0196】
本発明の粒子はまた、癌細胞の発現及び/又は増殖と関連付けられる炎症応答を減少させるために使用してもよい。治療可能であり得る癌としては、中枢神経系癌、基底細胞癌腫、癌性脳腫瘍、バーキットリンパ腫、リンパ腫、子宮頸癌、卵巣癌、精巣癌、肝臓癌、非小細胞及び小細胞肺癌、黒色腫、膀胱癌、乳癌、結腸及び直腸癌、子宮内膜癌、腎臓(腎細胞)癌、白血病、非ホジキンリンパ腫、膵臓癌、前立腺癌、黒色腫、並びに甲状腺癌が挙げられるが、これらに限定されない。一実施形態では、本発明の粒子の皮下投与により、抑制性好中球の蓄積を予防することで、癌患者において炎症を減少させる。
【0197】
本発明の粒子は、傷害を受けた組織の再生にも有用である。一実施形態では、患者への粒子の投与は、消化管中の傷害を受けた上皮細胞の再生を増加させる。更なる実施形態では、患者は、大腸炎、クローン病、又は炎症性腸疾患を患っている。別の実施形態では、患者への本発明の粒子の投与は、ニューロンの再ミエリン化を増加させる。更なる実施形態では、患者は多発性硬化症を患う。
【0198】
いくつかの実施形態では、本発明の組成物(例えば、抗原性分子を結合したPLG担体)は、1つ又は2つ以上のスキャフォールド、マトリックス、及び/又は送達システムと共に使用される(例えば、米国特許出願公開第2009/0238879号、米国特許第7,846,466号、同第7,427,602号、同第7,029,697号、同第6,890,556号、同第6,797,738号、同第6,281,256号(これらの開示はその全体が参照により本明細書に組み込まれる)を参照されたい)。いくつかの実施形態では、粒子(例えば、抗原に結合したPLG粒子)は、スキャフォールド、マトリックス、及び/又は送達システム(例えば、対象への化学的/生物由来物質、細胞、組織、及び/又は器官の送達用)に結合、上部への吸着、内部への封入、コンジュゲートなどをされる。いくつかの実施形態では、スキャフォールド、マトリックス、及び/又は送達システム(例えば、対象への化学的/生物由来物質、細胞、組織、及び/又は器官の送達用)は、本明細書に記載する材料(例えば、1つ又は2つ以上の抗原ペプチドにコンジュゲートしたPLG)を含む、及び/又はそれらから作られる。
【0199】
いくつかの実施形態では、微多孔性スキャフォールド(例えば、生物由来物質(例えば、細胞、組織など)を対象に移植するため)が提供される。いくつかの実施形態では、その上面に薬剤(例えば、細胞外マトリックスタンパク質、エキセンジン−4)及び生物由来物質(例えば、膵島細胞)を有する微多孔性スキャフォールドが提供される。いくつかの実施形態では、スキャフォールドは、疾患(例えば、1型糖尿病)の治療、及び関連法(例えば、診断法、研究法、薬物スクリーニング)で使用される。いくつかの実施形態では、スキャフォールド上及び/又は内部に本明細書に記載の抗原コンジュゲート化担体を有するスキャフォールドが提供される。いくつかの実施形態では、スキャフォールドは抗原コンジュゲート化材料(例えば、抗原コンジュゲート化PLG)から作製される。
【0200】
いくつかの実施形態では、スキャフォールド及び/又は送達システムは、1つ若しくは2つ以上の層を含み、及び/又は、1つ若しくは2つ以上の化学的及び/若しくは生物学的物体/薬剤(例えば、タンパク質、ペプチドコンジュゲート化粒子、低分子、細胞、組織など)を有する(例えば、米国特許出願公開第2009/0238879号(この開示はその全体が参照により本明細書に組み込まれる)を参照されたい)。いくつかの実施形態では、抗原結合粒子はスキャフォールド送達システムと同時投与され、スキャフォールド及び付随物質に対する免疫寛容の誘導を惹起する。いくつかの実施形態では、スキャフォールド上又は内部に本明細書に記載の粒子を有する微多孔性スキャフォールドが対象に投与される。いくつかの実施形態では、抗原結合粒子は、スキャフォールド送達システムに結合する。いくつかの実施形態では、スキャフォールド送達システムは抗原結合粒子を含む。
【0201】
本発明の範囲又は趣旨から逸脱することなく、記載される特徴及び実施形態について様々な修正、組み換え、及び変更が当業者には明らかであろう。特定の実施形態が記載されているが、請求される本発明がこのような特定の実施形態に不当に制限されるべきではないと理解されるべきである。実際、関連分野における当業者には明らかな、記載の方法及び実施形態の様々な修正は、以下の「特許請求の範囲」の範囲内であることが意図される。例えば、米国特許出願公開第2012/0076831号、同第2002/0045672号、同第2005/0090008号、同第2006/0002978号、及び同第2009/0238879号(それぞれの全体が参照により本明細書に組み込まれる)、並びに、米国特許第7,846,466号、同第7,427,602号、同第7,029,697号、同第6,890,556号、同第6,797,738号、及び同第6,281,256号(それぞれの全体が参照により本明細書に組み込まれる)は、本明細書に記載される様々な実施形態に用いられる詳細点、修正点、及び変更点を提供している。
【0202】
本出願で述べられる及び/又は以下に列挙される全ての出版物及び特許は、それらの全体を参照により本明細書に組み込まれる。
【実施例】
【0203】
以下の実施例を本発明の利点及び特徴を更に例解するために提供するが、本開示の範囲を制限することは意図しない。
【0204】
材料及び方法
キメラマウスの発生
6〜8週齢のB6.SJL−Ptprc
aPep3
b/BoyJ(CD45.1)マウスを、950ラドで1回照射した。12時間後、C57BL/6−7.2fms−EGFPドナーから、10
7個の骨髄細胞を用いてマウスを再構成した。照射後10日間、マウスに、飲料水中のスルファメトキサゾール(Sigma Aldrich)及びトリメトプリム(Sigma Aldrich)を与えた。照射6週間後、上記のようにマウスをWNVに感染させた。キメラ現象をフローサイトメトリーを用いて確認し、以前に示されたように(Getts et al.,J Neurochem.103:1019,2007)96〜99%がドナー起源であることが常に見つかった。
【0205】
免疫組織学
マウスに麻酔し、50mLの滅菌PBSを用いて灌流した。処理してパラフィンブロックにした(Getts et al.,J.Neurochem 103:10919−1030,2007)心臓を除いた全臓器を単離し、Optimum Cutting Temperature Compound(OCT、Tissue−Tek(Tokyo,Japan))中で急速凍結させた。8ミクロンの組織切片をクリオスタットミクロトーム上で切り取り、一晩空気乾燥させ、その後必要になるまで−80℃で保管した。凍結させた切片を解凍し、組織学検査(標準的なヘマトキシリン及びエオシン染色)又は免疫組織化学検査を行った(Getts et al.,J.Exp Med 205:2319〜2337,2008)。MARCO、SIGN−R1、及びSIGLEC−1(R&D Systems(MN,USA))、CD68(Abcam(MA,USA))及びKi67(Abcam)に対する抗体を指示通りに使用した。DP−70カメラ及びDPマネージャ2.2.1ソフトウェア(Olympus(Tokyo,Japan))を使用して、Olympus BX−51顕微鏡上で画像を取得した。
【0206】
顕微鏡検査及び画像取得
DP−70カメラ及びDPマネージャ2.2.1ソフトウェア(Olympus)を使用して、Olympus BX−51顕微鏡(Olympus(Japan))上で画像を取得した。
【0207】
脳及び肝臓からの白血球の単離
事前に記載されているように(Getts et al,J Exp Med.29:2319,2007)、PBS中で、デオキシリボヌクレアーゼ(0.005g/mL、Sigma Aldrich)及びコラゲナーゼIV(0.05g/mL、Sigma Aldrich)を用いて、37℃で脳を60分間消化することによって、PBSで灌流したマウスの脳から白血球を得た。10% FCSによって消化を止め、70μmのナイロン製セルストレーナー(Becton Dickinson(NJ,USA))にホモジネートを通過させた。340×gで10分間遠心分離後に得られたペレットを、30%のPercoll(Amersham(Norway))に再懸濁し、80%のPercoll上に重層した。1140×gで25分間室温での遠心分離後、30%/80%界面から白血球を回収した。同じ方法を用いて、処理前に組織重量を測り、肝臓からも白血球を得た。
【0208】
脾臓、血液、及び骨髄からの白血球の単離
フローサイトメトリーによる解析のため、右大腿骨を切り出し、PBSを入れた注射器を用いて骨髄細胞を洗い出した。骨髄前駆体の単離には、少なくとも4例のマウス由来の大腿骨及び頚骨を用いた。洗い出した後に得られた細胞懸濁液を70μmのセルストレーナーで濾過し、340gで5分間遠心分離した。得られたペレット中の赤血球をNH
4Cl系赤血球溶解用緩衝液(BD Pharm Lyse(商標);BD Pharmingen)中で溶解し、340×gで5分間遠心分離した。末梢血の場合、血液を心穿刺によって採取し、直ちにクエン酸緩衝液(mMol、Sigma Alrich)中に移した。得られた懸濁液を70%のPercoll上に重層し、1140×gで20分間、室温にてブレーキをかけずに遠心分離した。界面を回収し、細胞をPBSで1回洗浄して、340×gで遠心分離した。脾臓白血球の単離には、7070μmのセルストレーナーに脾臓を通過させ、5分間340gで遠心分離した。得られたペレット中の赤血球をNH
4Cl系赤血球溶解用緩衝液(BD Pharm Lyse(商標);BD Pharmingen)中で溶解し、340×gで5分間遠心分離した。
【0209】
フローサイトメトリー
脳、肝臓、血液、及び骨髄から収集された細胞(上記のように)をPBSで洗浄し、抗CD16/CD32抗体(Biolegend)でブロッキングした。トリパンブルーによる排除を用いて生細胞を数えたが、これは通常>95%の細胞生存率を示した。
【0210】
細胞表面分子の発現を計測し、アルゴンイオン及びヘリウムネオンレーザーを備えたFACS ARIA(Becton Dickinson)で細胞選別を実施した。生存集団を前方及び側方散乱によってゲーティングし、その後前方ゲーティングによって決定された蛍光集団を特定した。目的とする集団を同定する特定の蛍光及び散乱パラメータを用いて、選別を行った。選別の厳密性は、骨髄集団において純度>98%を達成する純度に設定した。
【0211】
得られたFACSデータファイルを、フローサイトメトリープログラムFlow Jo(FlowJo(Ashland,OR,USA))を使用して分析した。目的とする細胞集団の定量を、分析でのフローサイトメトリーの百分率及び各臓器からの絶対細胞数に基づいて計算した。
【0212】
養子移入
本発明の実施形態の開発中に実験を行い、養子移入と名付けられた活動性疾患の第2のモデルを研究した。動物をペプチドで免疫化するのではなく、活動性疾患を有するマウスの脾臓由来リンパ球を、後に発症するであろうレシピエントに移入した。本発明の実施形態の開発中に実験を行い、PLGナノ粒子による、養子移入された活性化エフェクター細胞の不活化能を確認した。対照ペプチドと結合した粒子又は脾細胞で処理されたマウスは、4日目から臨床スコアの上昇が始まった。2日目にPLG−PLP
139〜151粒子で処理されたマウスの平均臨床スコアは、40日目までの2回のタイムポイント以外全て0であり、その他のタイムポイントの平均臨床スコアは0.25であった。
【0213】
多重ELISA
製造業者の説明書どおりに、多重プレートによるELISAを行った(Quansys Biosciences(Logan,Utah,USA))。簡潔に言えば、脳、脾臓、及び肝臓組織をPBS中でホモジナイズし、1000×gの遠心分離で清澄化して、アッセイが行われるまで−20℃で保管した。血清サンプルも用いた。解凍したサンプルと標準品を提供される緩衝液で希釈し、それぞれに特定の可溶性タンパク質の捕捉抗体が含まれる16ヶ所を含む各ウェルに、それぞれ30μLをプレーティングした。続いて、120r.p.m.の軌道振盪器上でプレートを1時間インキュベートした。プレートを3回洗浄し、30μLの検出抗体を各ウェルに加え、更に1時間インキュベートした。3回洗浄した後、ストレプトアビジン(strepavidin)−HRPを加え、更に15分間インキュベートした。その後、プレートを6回洗浄し、基質混合液を加えた。直ちにプレートをCCDイメージャ(Kodak(Rochester NY,USA))で読み取った。Quansys Q−viewソフトウェア(Quansys Biosciences)を使用してプレート画像を分析した。
【0214】
実験的自己免疫性脳炎(EAE)の誘導及び評価
0.1mgのMOGペプチド(MEVGWYRSPFSRVVHLYRNGK(配列番号1)、Auspep(Parkville,Victoria,Australia)、>95% HPLC精製済)、及び、2mg/mLの結核菌を含む完全フロイントアジュバント(Sigma Aldrich)を含有するエマルションを、マウスの皮下に投与した。2日後、マウスに、500μLの百日咳毒素(Sigma Aldrich)をi.p.で投与した。疾患の進行についてマウスを観察し、1、尻尾挙上不全及び/又は後肢1本の脱力;2、2本以上の肢の脱力、歩行障害;3、1本の肢の麻痺;4、2本以上の肢の麻痺、失禁;5、瀕死のスケールで段階評価した。
【0215】
統計
グラフを作成し、コンピュータによる統計解析を、それぞれGraphPad Prism及びInStat(両方ともGraphPad software(San Diego,CA,USA)のプログラム)で行った。データに応じて、対応のない両側スチューデントのt検定、又は、テューキー−クレーマーポスト検定と併用する一元配置分散分析を行い、P<0.05を有意をみなした。
【0216】
体重減少、浸潤、及びウイルス力価などのパラメータ間の相関分析には、非線形回帰(曲線フィット)を二次多項式(Y=A+B
*X+C
*X^2)で用いた。
【0217】
(実施例1)
負に荷電した免疫修飾粒子(IMP)の調製
D
2O中のポリ(エチレン−無水マレイン酸)(PEMA)の溶液(4mL、1% w/v)に、ジクロロメタン(DCM)中のポリ(ラクチド−コ−グリコール酸)(PLG)の溶液(2mL、20% w/v)を滴加した。VC 30 Ultrasonic Processorを使用して、混合物を30秒間16ワットで氷上で超音波分解させた。得られた均質化した粗物質を、その後、D
2Oの溶液(0.5% w/vのPEMAを含有する200mL)中に注ぎ入れた。Bellco Glass,Inc.,Bellstir Multi−stir 9電磁撹拌機を使用して、3.5の速度設定で、均質化したスラリーを一晩撹拌させた(10Wで10秒間、16Wで10秒間、16Wで30秒間)。
【0218】
結果
3時間の撹拌の後、粒径分析を、使い捨てのポリスチレンキュベット中で動的光散乱を使用して行った。
a.10W、10秒−Z平均=499.9nm−PdI=0.23、ピーク=634.5nm
b.16W、10秒−Z平均=528.9nm−PdI=0.227、ピーク=657.5nm
c.16W、30秒−Z平均=471.6nm−PdI=0.228、ピーク=580.5nm
d.16W、60秒−Z平均=491.1nm−PdI=0.275、ピーク=600.8nm
【0219】
反応が完了した後、得られた粗懸濁液を次いで精製した。
【0220】
精製
新たなD
2O及び10倍重炭酸ナトリウム緩衝液を一晩かけて4℃に冷却した。40μmのセルストレーナーを使用して、36mLの粒子懸濁液を、各バッチから、4mLの冷却した10倍重炭酸ナトリウム緩衝液を含む適切にラベル付けした50mLの遠心分離管中に濾過した。各ビーカーからは約6個のこのような管が得られた。全ての管を、4℃で7000gで約15分間遠心分離させ、上清を吸引した。上述の手順を使用して懸濁液の調製を繰り返し、できるだけ多くの粒子ペレットを1mLの冷却したD
2O中に懸濁した。
【0221】
4mLの冷却した10倍重炭酸ナトリウム緩衝溶液を入れた新たな管に再懸濁した粒子を移した。(工程1)
【0222】
全粒子ペレットの再懸濁が成功するまで粒子の再懸濁を繰り返した。(工程2)
【0223】
6個の遠心分離管を1つの遠心分離管(50mL管)にまとめ、40mLの冷却したD
2Oになるまで管に残りの容積を充填した(洗浄1)。
【0224】
管を、4℃で7000gで約20分間遠心分離させ、上清を吸引した。
【0225】
工程1及び2、並びに得られた粒子の洗浄1を、各回、少なくとも更に2回、繰り返した。最後に、次いで得られた粒子ペレットを液体窒素中での瞬間冷凍に付し、多岐管中で凍結乾燥させて負のIMPを得た。
【0226】
図1は、動的光散乱分析による、表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒2.5×10
5計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、567nmのZ平均粒径、670nmのピーク粒径、及び0.209の多分散性指数を有した。
【0227】
表4は、表面機能化PLG−PEMA粒子についての測定値を示す。各バッチはわずかに異なるため、表中のデータは代表としてのものである。しかし、表中の数字は、粒子のいくつかのバッチの組み合わせに基づく。二重エマルション粒子についての測定値は、表2中の測定値と同様である。
【0228】
【表5】
【0229】
(実施例2)
抗原に結合したPLGAビーズの投与は、再発性実験的自己免疫性脳炎を予防する
再発性実験的自己免疫性脳炎(R−EAE)の予防に対する寛容を誘導するための免疫優性プロテオリピドタンパク質PLP
139〜151エピトープ(PLG−PLP
139〜151)を用いて、PLGナノ粒子を検討した。R−EAEマウスを上記のように作製した。
【0230】
動物に投与するペプチドを、500nmの平均径を有する粒子に結合させた。免疫化時点(0日)に対して−7日目に、PLP
139〜151−PLGA(N=5)、OVA
323〜339−PLGA(N=5)、又はコンジュゲートしていないPLGA(N=5)のいずれかでマウスを処理した。典型的には、疾患のピークは12〜14日目あたりで見られ、マウスを臨床疾患についてスコア化する。ペプチドを含まない、又は対照ペプチドOVA
323〜339で修飾された粒子は、疾患の誘導を予防しなかった。しかしながら、PLP
139〜151で修飾されたPLGA粒子は、20〜30日目で示した1という低い臨床スコア以外は、全てにおいて臨床スコア0(疾患なし)を生じた(
図2)。非修飾PLG又はポリスチレン粒子を用いる予備試験では、このような有効な疾患低減を生じず、ポリスチレンに結合した粒子は一般にアナフィラキシーを引き起こす。
【0231】
更に、ミエリン特異的CD4
+T細胞の特異的不活化が、免疫化PLP
139〜151エピトープの両方に対する遅延型過敏性(DTH)応答が欠如していることによって示された。総合すれば、7日目のPLG−PLP
139〜151による予防的治療は、EAEの発症を特異的に予防し、疾患予防に対する粒子の能力の改善が示される。粒子によって得られたスコアは、抗原に結合した脾細胞によって得られたスコアと同等であり、恐らくは良好である。
【0232】
投与された粒子の種類も、マウスモデルにおけるEAEの発症への影響を有する。免疫化時点(0日)に対して−7日目に、OVA
323〜339−PLS(N=5)、OVA
323〜339−PLGA
PHOSPOREX(N=5)、OVA
323〜339−PLGA
PEMA(N=5)、PLP
139〜151−PLA(N=5)、PLP
139〜151−PLGA
PHOSPOREX(N=5)、又はPLP
139〜151−PLG
PEMA(N=5)のいずれかでマウスを処理した。典型的には、疾患のピークは12〜14日目あたりで見られ、マウスを臨床疾患についてスコア化する。対照ペプチドOVA
323〜339で修飾された任意の組成物の粒子は、疾患の誘導を予防しなかった。しかしながら、PLP
139〜151を結合したPLGビーズは、PLP
139〜151を結合した市販の(Phosphorex)pLG又はポリスチレンよりも、R−EAEの下方制御誘導に有効であった(
図3A及び3B)。
【0233】
(実施例3)
抗原に結合したPLG粒子の点滴静注は、OVA/ミョウバンで予め感作した動物におけるアナフィラキシー誘発性体温低下を誘導しない
活動性疾患が存在するため、抗原に対するアナフィラキシーが懸念点であり、これは即死の原因となり得、ポリスチレンに結合した粒子で見られている。アナフィラキシーは、体温の顕著な低下を伴う。OVA−PLGの静脈内投与が予め感作した動物においてアナフィラキシー誘発性体温低下を誘導するかどうかを調べるため、0日目に、腹腔内投与による10μgのOVA/ミョウバンでマウスを免疫化した。14日目、腹腔内投与による10μgのOVA/ミョウバンでマウスを再度免疫化し、その後21日目に、OVA−PLGを静脈内に投与して寛容化した。28日目、静脈内投与によって、OVA−PLG粒子又はOVAのいずれかでマウスを続いて寛容化した。
【0234】
図4に示されるように、28日目に可溶性OVAで処理したこれらのマウスは、OVA−PLG粒子で処理した動物と比較して、体温の低下を示した。粒子送達後1時間以内には、体温の低下は見られなかった。
【0235】
図5は、寛解中のPLP−PLG投与が、アナフィラキシー関連死亡率に全く影響しないことを示す。EAEは、CFA中PLP
139〜151を皮下投与することによって、6〜8週齢の雌性SJL/Jマウスにおいて誘導され、臨床疾患の発症を観察し、記録した(
図5B)。疾患誘導21日目に、可溶性PLP
139〜151(白四角)、可溶性OVA
323〜339(白丸)、又はPLGナノ粒子に同じペプチドを結合したもの(黒)を、マウスにiv投与した。動物の体温を観察し、投与後1時間まで10分ごとに記録した(
図5A)。
【0236】
(実施例4)
PLP−PLG粒子による予防的治療は、長期間の抗原特異的寛容を誘導する
疾患誘導の7日前に、PLP
139〜151−PLGの濃度を上げながら静脈内投与して至適用量を決定し、OVA
323〜339−PLGで処理したSJL/Jマウスと比較して、臨床疾患の発症を観察した(
図6A)。6〜8週齢の雌性SJL/Jマウスに、PLP
139〜151(四角)又はOVA
323〜339(丸)のいずれかを結合したPLGナノ粒子をiv投与した。7日後(
図6B)、25日後(
図6C)、又は50日後(
図6D)、CFA中PLP
139〜151の皮下投与によって、EAEを誘導した。パネルBの動物の臨床疾患について、100日間追跡調査した。
図6Eは、疾患誘導8日目、パネルBに示すマウスのサブセットにおいて、遅延型過敏性(DTH)反応を行ったことを示す。パネルBのPLP
139〜151/CFAで一次感作させた群から選択された代表的な動物(OVA
323〜339−PLG及びPLP
139〜151−PLG)に対し、一次感作したPLP
139〜151エピトープ及びOVA
323〜339対照ペプチドを耳に惹起投与した。DTHの尺度としての耳腫脹を24時間後に測定し、惹起前の反応を差し引いた。
図6Fは、6〜8週齢の雌性SJL/Jマウスに、PLP
178〜191(三角)、OVA
323〜339(丸)
、若しくはPLP
139〜151(四角)を結合したPLGナノ粒子、又は未結合の粒子単独(白抜き丸)を静脈内に投与したことを示す。EAEは、CFA中PLP
178〜191の皮下投与後7日目に誘導され、示される時点において疾患を観察した。
【0237】
(実施例5)
再発性実験的自己免疫性脳炎の抗原結合粒子による治療
本発明の実施形態の開発中に実験を行い、PLG−PLP
139〜151粒子の、疾患の予防ではなく疾患の治療に対する能力を調べ、投与経路が疾患の発症に影響するかを判定した。PLP
139〜151及びアジュバントを用いて、0日目にマウスを免疫化した。マウスは通常は、12〜14日目に最大の臨床スコアを有する。このモデルでは、10日目に、PLG−PLP
139〜151粒子又は対照PLG−OVA
323〜339粒子を用いて、静脈内(iv)投与、腹腔内(ip)投与、皮下(sc)投与、又は経口のいずれかでマウスを処理した。
図7に示されるように、PLG−PLP
139〜151粒子を静脈内又は腹腔内のいずれかに投与するとき、予防的寛容が最も効率的である。静脈内投与されたPLP
139〜151−PLGで処理された動物は、疾患を発症せず、ほとんどの時点での平均臨床スコアが0であった。これは、観察した>70%の動物がアナフィラキシーで死亡した、PLP
139〜151ポリスチレン(polystrene)粒子で処理した動物と対照的である。
【0238】
(実施例6)
抗原結合粒子の寛容は、活動性再発性実験的自己免疫性脳炎において、抗原特異的Th1及びTh17応答の誘導を阻害する
抗原結合粒子の投与がTヘルパー細胞の誘導を阻害するかどうかを判定するため、MOG
35〜55−PLG又はOVA
323〜339−PLG粒子のいずれかを、−7日目にBALB/cマウスの静脈内に投与した。0日目、OVA
323〜339−PLG粒子及び完全フロイントアジュバント(CFA)をマウスに皮下投与した。10日目に、MOG
35〜55−PLG又はOVA
323〜339−PLG粒子のいずれかで動物を再刺激し、流入領域リンパ節細胞を単離した。CPM、並びにIL−17、GM−CSF、IFN−γ、IL−10、及びIL−4の濃度を10日目に測定した。
図8に示されるように、OVA
323〜339−PLG粒子の投与が、処理された動物におけるTh1及びTh17応答を阻害した。
【0239】
(実施例7)
寛容は、PLP−
139〜151を結合したPLGA粒子によって誘導される
PLP
139〜151−PLG又はOVA
323〜339 PLGをマウスに送達することによって、追加の治療的寛容戦略を行った。組織学的解析は、PLP
139〜151−PLG粒子の投与により、頚髄の炎症と脱髄が阻害されたことを示した。マウスを、PLP−PLG又はOVA
323〜339−PLGで処理し、40日目に組織を回収した。頚髄を単離して切断し、R−EAE及び多発性硬化症の病的状態の根拠となる、CNS中での免疫応答を調べた。
図9は、PLP
139〜151−PLGで処理した動物の脊髄内への免疫細胞浸潤の低下を示し、これは、OVA
323〜339−PLGで処理された動物の組織よりも、天然組織に近かった。OVA
323〜339−PLGで処理された動物は、CD45、CD4、及びCD11b染色に陽性を示したが、一方PLP
139〜151−PLGで処理された動物は、これらの因子の染色が最小限であった。
【0240】
PLP
139〜151−PLG粒子の投与は、処理されたマウスの血液脳関門(BBB)の破壊と、脊髄におけるマクロファージ活性化についても阻害する。動物を、完全フロイントアジュバント(CFA)、OVA
323〜339 PLG粒子、又はPLP
139〜151−PLG粒子で処理した。EAEの臨床スコア及び発生率を判定し(
図10B)、in vivo画像診断によって脊髄を観察した(
図10A及び11)。Angiosenseは、CNS中の血管漏出を測定し、prosenseは、活性化マクロファージを報告する(カテプシンの活性化がリポーターを切断し、蛍光シグナルを示す)。棒グラフは、脳及びSCスキャンで示されたシグナル強度に対する数値を与える。
【0241】
寛容は、抗原が封入されている粒子によっても誘導できる。
図12は、PLP
139〜151が封入されているPLG粒子の投与が、マウスにおいてR−EAEの誘導を阻害することを示す。自己抗原の封入能によって、タンパク質又は更には臓器ホモジネートの複雑な混合物の使用が可能になり、抗原の適用範囲が広くできることによって、より効果的なepitope spreadingに対応する。
【0242】
(実施例8)
PLP−
139〜151に結合したPLGA粒子によって誘導された寛容は、制御性T細胞の増殖/活性化に一部依存する。
SJL/Jマウスを、−9日目に、制御性T細胞(Treg)の共通マーカーである抗CD25抗体で処理し、続いて−7日目に、OVA
323〜339 PLG粒子と抗CD25抗体、OVA
323〜339 PLG粒子と対照IgG抗体、PLP
139〜151−PLG粒子と抗CD25抗体、又はPLP
139〜151−PLG粒子と対照IgG抗体のいずれかで処理した。
図13に示されるように、PLP
139〜151−PLG粒子及び抗CD25抗体で処理した動物が、PLP
139〜151−PLG粒子及び対照IgG抗体で処理した動物よりも高い平均臨床スコアを、時として示した。これは、Treg、又は少なくともCD25を発現するT細胞が、寛容の開始に関与することを示している。
【0243】
(実施例9)
能動的及び養子的EAEにおいて、治療的寛容はPLP
139〜151−PLG粒子によって誘導される
PLP
139〜151−PLG粒子によって誘導された治療的寛容を、能動的及び養子的EAEにおいて比較した。2.5×10
6個のPLP
139〜151活性化芽球の養子移入によって、6〜8週齢の雌性SJL/Jマウスにおいて養子的EAEを誘導した。PLP
139〜151(四角)又はOVA
323〜339(丸)ペプチドを結合させた500nmのPLGナノ粒子を、疾患誘導2日後(
図14A)、14日後(
図14C)、18日後(
図14E)、又は21日後(
図14F)に、マウスにiv投与した。臨床疾患スコアを、抗原を結合させた脾細胞で処理後のもの(
図14A)と比較した。42日目に、PLP
139〜151又はOVA
323〜339で寛容化したマウスから、組織学的解析用に脳及び脊髄を採取した。パネルAのマウスの切片は、PLPタンパク質及びCD45について染色した(
図14B)。パネルCのマウスの脊髄切片は、ルクソールファストブルーで染色した(
図14D)。脱髄及び細胞浸潤の領域を矢印で示す。結果は、寛容が、養子的EAEマウスにおいてPLP
139〜151−PLG粒子によって誘導されることを示す。
【0244】
図15は、OVA
323〜339又はPLP
139〜151にコンジュゲートしたSP又はPLG粒子のいずれかで処理後の、能動的EAE及び養子的EAEであるマウスの平均臨床スコアを示すグラフを示す。PLP
139〜151−SP、PLP
139〜151−PLG、又はOVA
323〜339−SP、又はOVA
323〜339−PLGペプチドを結合させた500nmのナノ粒子を、疾患誘導10日後(
図15A)又は2日後(
図15B)に、マウスにiv投与し、平均臨床スコアを判定した。両方の場合において、PLP
139〜151−PLG粒子の投与は、疾患を軽減し、寛容の誘導を示す。
【0245】
中枢神経系免疫細胞の浸潤も、PLP−PLG寛容化マウスにおいて劇的に低減する。PLP
139〜151(四角)又はOVA
323〜339(丸)を結合した500nmのPLGナノ粒子を、養子移入によるEAE誘導2日後に、SJL/Jマウスにi.v.投与した。疾患のピーク(14日目)において、脳及び脊髄を採取し、リンパ球(
図16B)、APC(
図16C)、小神経膠細胞(
図16D)、末梢樹状細胞(
図16E)、骨髄系樹状細胞(
図16F)、及びマクロファージ(
図16G)の数をフローサイトメトリーによって数えた。これらの集団に対するゲーティング戦略を(
図16A)に示す。CNS細胞調製物を、IL−17A及びIFN−γに対する細胞内染色5時間前に、PMA及びイオノマイシンで刺激した(
図16H)。
【0246】
(実施例10)
養子移入EAEにおいて、抗PD−1モノクローナル抗体による治療は、PLP
139〜151を封入するPLGナノ粒子による寛容誘導を抑制する
養子的EAEマウスにおける、PLP
139〜151により誘導される寛容に対する抗PD−1抗体による治療の効果を調べるため、0日目に、3×10
6個のPLP
139〜151活性化T細胞芽球を、静脈内投与によってマウスに投与した。2日目、PLG粒子に封入されたPLP
139〜151又はOVA
323〜339を、PBS又は抗PD−1抗体のいずれかと共に、静脈内投与で投与した。4、6、8、10、及び12日目、全ての動物に、250μgの抗PD−1抗体又はPBSを投与した。
【0247】
図17に示されるように、粒子をPBSと投与するとき、PLG粒子に封入されたPLP
139〜151ペプチドの投与が寛容を誘導する。しかしながら、抗PD−1抗体の投与により、この寛容は減じる。
【0248】
(実施例11)
養子移入EAEにおいて、アゴニストである抗CD40モノクローナル抗体による治療は、PLP
139〜151を封入するPLGナノ粒子による寛容誘導をIL−12依存的に抑制する
養子的EAEマウスにおける、PLP
139〜151により誘導される寛容に対するアゴニストである抗CD40抗体による治療の効果を調べるため、0日目に、3×10
6個のPLP
139〜151活性化T細胞芽球を、静脈内投与によってマウスに投与した。2日目、PLG粒子に封入されたPLP
139〜151又はOVA
323〜339を、マウスに静脈内投与で投与した。3日目、対照のIgG2a抗体、抗CD40抗体、又は抗CD40抗体及び抗Il−12抗体を動物に投与した。
【0249】
図18に示されるように、粒子をPBSと投与するとき、PLG粒子に封入されたPLP
139〜151ペプチドの投与が寛容を誘導する。アゴニストである抗CD40抗体の投与によりこの寛容は減じるが、この寛容の低減は、抗IL−12抗体の添加によって回復される。
【0250】
(実施例12)
PLG粒子に封入されたOVAは、アレルギー性気道炎症及びin vivoのOVA特異的Th2応答を予防的に阻害する
PLG粒子に封入されたOVAの、気道炎症に対する予防効果を調べるため、−7日目に、マウスにOVA−PLGを静脈内投与した。0日目、OVA/ミョウバンを10μg/マウスの用量でマウスに腹腔内投与した。7日目、OVA−PLGをマウスに再度静脈内投与し、14日目に、OVA/ミョウバンを更に10μg/マウスでip投与した。28〜30日目に、エアロゾル化OVAを用いてマウスを3回処理した。
【0251】
図19に示されるように、OVA−PLGの予防的投与は、IL−4、IL−5、IL−13、及びIL−10の分泌を低下させ、血清OVA IgE及び肺中好酸球のレベルを下げた。
【0252】
PLG粒子に封入されたOVAが、縦隔リンパ節のOVA特異的in vitroリコール応答を予防的に阻害する。
図20Aに示されるように、25μgのOVAによる再刺激後観察されるリンパ節の増殖は、OVA−PLGで処理された動物において低下する。更に、OVA−PLGによる処理は、OVAによる再刺激後のサイトカインの放出を低下させる。
図20Bは、IL−4、IL−5、IL−13、及びIL−10のレベルが、OVA−PLGで処理されたマウスにおいて低下することを示す。
【0253】
(実施例13)
PLG粒子に封入されたOVAは、アレルギー性気道炎症及びin vivoのOVA特異的Th2応答を治療的に阻害する
PLG粒子に封入されたOVAの、気道炎症に対する治療効果を調べるため、0日目及び14日目に、マウスにOVA/ミョウバンを10μg/マウスの用量で腹腔内投与した。28日目及び42日目に、マウスにOVA−PLGを静脈内投与した。56〜58日目に、エアロゾル化OVAを用いてマウスを3回処理した。
【0254】
図21に示されるように、OVA−PLGの治療的投与は、IL−4、IL−5、IL−13、及びIL−10の分泌を低下させ、血清OVA IgE及び肺中好酸球のレベルを下げた。
【0255】
図22は、PLG粒子内に封入されたOVAが、OVAを結合させたPLG粒子よりも良好に、BAL液中のOVA特異的Th2サイトカインを治療的に下方制御することを示す。28日目及び42日目に、PLG粒子に封入されたOVA、又はPLG粒子に結合したOVAのいずれかでマウスを処理した以外は、上で記載するように動物を処理した。驚くべきことに、封入化OVAは、PLG粒子の表面に結合したOVAペプチドよりも、Th2サイトカインの分泌を抑制した。
【0256】
(実施例14)
クロモグラニンA p31ペプチド−PLG粒子によって誘導される寛容は、1型糖尿病を抑制する
3週齢のマウスから脾臓、腋窩、上腕、鼠径、及び膵リンパ節細胞を単離することによって、BDC2.5マウスに1型糖尿病を誘発した。単離細胞を培養し、2×10
6個/mLの細胞を0.5μMのp31ペプチドと共に96時間インキュベートすることによって、in vitroで活性化した。5×10
6個の細胞を、0時において、NOD.SCIDマウス(6〜8週齢)に静脈内投与によって移植した。2時間〜3日間後、SP又はPLGに結合したp31又はMOG
35〜55ペプチドを静脈内投与することによって、マウスを寛容化した。
【0257】
図23A及び23Bは、治療後の動物の血糖値を示す。p31ペプチドが結合したPLGの投与により、MOG
35〜55ペプチドが結合した粒子の投与後に見られるものと比べて、血糖値の低下がもたらされる。
図23Cは、動物で見られるIFNγ分泌細胞の割合も、MOG
35〜55ペプチド−PLGで処理されたマウスと比較して、p31−PLGで処理されたマウスにおいて低下したことを示す。
【0258】
p31−PLG誘導性寛容は、Tregを必要とする。1型糖尿病を上記のようにマウスで誘導し、活性化細胞をNOD.SCIDマウスに移植して2時間後、p31−PLG又はMOG
35〜55PLG粒子のいずれかでマウスを寛容化した。
図24に示されるように、Tregの枯渇は、p31−PLG粒子の投与により誘導される寛容を抑制する。
【0259】
(実施例15)
インスリンに結合したPLG粒子により誘導される寛容は、NODマウスにおける自発的1型糖尿病の発症を抑制する
NODマウスを、6、8、10週齢の時点で静脈投与することによって、BSA(N=22)又はインスリン(N=23)を結合させたPLG粒子のいずれかで処理した。その後、血糖が>250mg/dLで定義される糖尿病の発症について、マウスをアッセイした。
図25に示されるように、インスリンを結合したPLG粒子の投与により、300日間糖尿病を発症しなかったマウスの割合が優位に増加した(22.7%に対し69.6%、p=0.0027)。
【0260】
(実施例16)
生着速度
−7日目に、OVA−PLG又は対照ペプチドであるDby−PLG(雄性C57BL/6マウスによって発現された主要HY抗原)のいずれかで、雌性CD45.2マウスを寛容化した。−1日目に、マウスを200ラドで照射し、その後、0日目に、雄性CD45.1マウスから1×10
6個、5×10
6個、又は1×10
7個の骨髄細胞を移植した。続いて、1日目に、レシピエントマウスをOVA−PLG、Dby−SP、又はDby−PLGのいずれかで寛容化し、キメラ現象のFACS解析をするために血液を回収した。
図26は、レシピエントマウスで見られるCD45.1ドナー細胞の割合を示す。
【0261】
図27は、1日目に、OVA−PLG、Dby−SP、又はDby−PLGのいずれかで寛容化した後の、レシピエントマウスにおけるドナーCD45.1細胞の割合を示す。陽性対照マウスの1例は、顕著な生着を示さなかった(〜10%)。陰性対照マウスは全て、ドナー細胞が生着しなかった。Dby−SPマウスの1例は、顕著な生着を示さなかった(〜10%)。OVA−PLGマウス2例はドナー細胞が生着し(〜10%)、1例は16週までに完全に拒絶された。Dby−PLGマウスの1例は、12週において拒絶し始め、16週までには10%であった。Dby−PLG群では、16週までの生着は10%〜56%の範囲であった。OVA−PLGマウスは、1)自発的生着、2)OVA323とDbyとの間の配列相同性、又は3)粒子の免疫寛容誘発性を示した。Dby−PLGは、Dby−SP及びOVA−PLGよりも生着が可能である。
【0262】
図28は、寛容の時期が、レシピエントマウスにおけるCD45.1細胞の割合に影響を及ぼすことを示す。陽性対照は、予想値(〜10%)よりも低い生着率(〜4%)を示す。陰性対照マウスの1例の生着率は5%であり、OVA−PLG群全体の3例のうち、−7日+1日群のマウス1例が生着を示した(12%)。1日目における寛容は、−7目での寛容よりも臨床的に意義がある。
【0263】
(実施例17)
クマリン−6PLGA粒子は、投与24時間後に検出可能ではない
抗原を結合した、又は抗原を含まないクマリン−6PLGA粒子で、マウスを処理した。
図29に示されるように、粒子は、投与後3時間では検出できたが、投与後24時間ではできなかった。未処理未投与のマウス(上段)を、蛍光PLGA/PEMA微粒子をiv投与されたマウスと比べて、投与後3時間(中段)及び投与後24時間(下段)において、脾臓(左列)、肝臓(中央列)及び肺(左列)の切片をDAPIで対比染色した。
【0264】
(実施例18)
ナノ粒子はin vivoでマクロファージと関連する
投与6時間及び15間後の肝臓の解析により、PLGA粒子の肝臓中のF4/80
+細胞との共局在化が示される(
図30)。
【0265】
静脈内注射24時間後に、辺縁帯マクロファージは、TAMRAで標識したPLP
139〜151結合粒子を主に取り込む。
図31に示されるように、PLP
139〜151+細胞のうち割合が最も高いのは辺縁帯マクロファージである。
【0266】
(実施例19)
コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子を用いる、SJL/JマウスにおけるR−EAEの抑制
0日目のPLP139−151/CFAによる初回刺激に対して、−7日及び−1日目に、コア内に可溶性PLP139〜151ペプチドを有する500nm〜700nmの表面機能化ポリ(ラクチド−コ−グリコリド)粒子を2.5mg、SJL/Jマウスの群にIV投与した。対照マウスは0日目に初回刺激を受けたが、−7日目又は−1日目の粒子処理は受けなかった。更に20日間、R−EAEの臨床徴候についてマウスを観察した。
【0267】
図32に示される結果は、PLP139〜151/CFAによる初回刺激後の日数に対する毎日の平均臨床スコアを示す。PLP139〜151/CFAにより誘導されたR−EAEは、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子を用いて免疫寛容を誘導することによって、SJL/Jマウスにおいて阻害される。
【0268】
(実施例20)
可溶性オボアルブミンを含有する表面機能化ポリ(ラクチド−コ−グリコリド)粒子によるアレルギー性気道炎症の抑制
アレルギー性気道炎症(AIA)をマウスに誘発した。0日目及び+14日目のオボアルブミン/ミョウバンによる初回刺激より前の、−7日目及び+7日目に、コア内に可溶性オボアルブミン又は可溶性ウシ血清アルブミン(対照)を有する500nm〜700nmの表面機能化ポリ(ラクチド−コ−グリコリド)粒子を2.5mg、Balb/cマウスの群に静脈内投与した。+28〜30日目、エアロゾル化オボアルブミンをマウスに惹起投与する。続いてマウスを屠殺し、気管支肺胞洗浄液を得た。オボアルブミン特異的IgEの血清レベルも測定した。
【0269】
気管支肺胞洗浄液中の好酸球数はAAIの重篤度を示し、高いほど悪化していることを示した。IgEの血清レベルは、AAIの重篤度を示し、高いほど悪化していることを示した。
【0270】
図33は、封入化OVA−PLGによって処理されたマウスが、好酸球集積を最大に低下させたことを示す。
図34は、封入化OVA−PLGによって処理されたマウスが、未処理又は対照で処理された動物と比べて、血清IgEレベルを最大に低下させたことを示す。
【0271】
Balb/cマウスにおいてオボアルブミン/ミョウバンにより誘導されたアレルギー性気道炎症は、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子を用いて免疫寛容を誘導することによって抑制された。
【0272】
(実施例21)
抗原を封入する表面機能化ポリ(ラクチド−コ−グリコリド)粒子の合成
本実施例は、高密度のカルボキシレート基で表面機能化されており、ポリ(ラクチド−コ−グリコリド)のシェルに囲まれるコア内に可溶性抗原を含む、自己免疫疾患における寛容誘導及びアレルギーの治療のための生分解性ポリ(ラクチド−コ−グリコリド)粒子の処方及び部分的特徴について詳述する。
【0273】
高密度のカルボキシレート基は、骨格中にカルボキシレート基を含む重合体である、ポリ(エチレン−alt−無水マレイン酸(PEMA))を界面活性剤として用いることによって達成された。
【0274】
上記のように、コア内に可溶性PLP139〜151を含み、高密度のカルボキシレート基で表面機能化されている生分解性ポリ(ラクチド−コ−グリコリド)粒子は、多発性硬化症のSJL/J PLP139〜151/CFA誘導性R−EAEマウスモデルにおける免疫寛容の誘導に有効である。更に、コア内に可溶性オボアルブミンを含み、高密度のカルボキシレート基で表面機能化されている生分解性ポリ(ラクチド−コ−グリコリド)粒子は、アレルギー性喘息のBalb/cオボアルブミン/ミョウバン誘導性AAIマウスモデルにおける免疫寛容の誘導に有効である。
【0275】
コア内に可溶性オボアルブミン又はウシ血清アルブミンを含み、高密度のカルボキシレート基で表面機能化されているポリ(ラクチド−コ−グリコリド)粒子を、以下のように、二重乳化−溶媒蒸発法を用いて合成した。
1.20mLのシンチレーションバイアルで、150μLの、エンドトキシンを含まない水中200mg/mLオボアルブミン又はウシ血清アルブミンを、2mLの、ジクロロメタン中20% w/vポリ(ラクチド−コ−グリコリド)に滴加した。
2.得られた混合液を氷上に置き、プローブ超音波発生装置を用いて10ワットで30秒間超音波処理した。
3.10mLの、水中1% w/vポリ(エチレン−alt−無水マレイン酸)を加えた。
4.得られた混合液を氷上に置き、プローブ超音波発生装置を用いて16ワットで30秒間超音波処理した。
5.得られたエマルションを、600mL容のビーカー中の200mLの0.5% w/vポリ(エチレン−alt−無水マレイン酸)に注ぎ、一晩撹拌して、粒子を硬化させた。
6.次に、硬化した粒子を遠心分離によって精製し、p H9.6の重炭酸緩衝液で3回洗浄した。
7.精製した粒子を、水中4% w/vスクロース及び3% w/vD−マンニトールに再懸濁し、液体窒素中で素早く凍らせ、凍結乾燥した。
【0276】
図35は、動的光散乱分析による、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒1.792×105計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、584nmのZ平均粒径、679nmのピーク粒径、及び0.162の多分散性指数を有した。これらの結果は、上記実験計画書に基づく、合成6バッチのうちの代表的なものである。
【0277】
図36は、ζ電位測定による、コア内に可溶性PLP139〜151を含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒6.67×104計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、−48.9mVのピークζ電位、及び5.14mVのζ偏差を有していた。これらの結果は、上記実験計画書に基づく、合成6バッチのうちの代表的なものである。
【0278】
図37は、動的光散乱分析による、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒1.822×105計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、569.7nmのZ平均粒径、700.3nmのピーク粒径、及び0.230の多分散性指数を有した。これらの結果は、上記実験計画書に基づく、合成3バッチのうちの代表的なものである。
【0279】
図38は、ζ電位測定による、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子の特徴を示す。表面機能化ポリ(ラクチド−コ−グリコリド)粒子を、18.2MΩの水中で毎秒2.67×104計数の計数速度でMalvern Zetasizer Nano ZS(Malvern Instruments,Westborough,MA)において分析した。表面機能化ポリ(ラクチド−コ−グリコリド)粒子の集団は、−52.2mVのピークζ電位、及び5.38mVのζ偏差を有していた。これらの結果は、上記実験計画書に基づく、合成3バッチのうちの代表的なものである。
【0280】
(実施例22)
コア内に可溶性PLP
139〜151を含む表面機能化リポソームは、多発性硬化症のマウスR−EAEモデルにおいて免疫寛容を誘導する
本発明の発明者らは、高密度の負に荷電した基で表面機能化されており、コア内に可溶性抗原を含む生分解性リポソーム送達溶媒が、多発性硬化症のR−EAEマウスモデルにおいて免疫寛容を誘導することも発見している。
【0281】
この試験で使用したリポソームは、30:30:40のモル比のホスファチジルコリン:ホスファチジルグリセロール:コレステロールの脂質から構成されていた。コア内に可溶性PLP
139〜151ペプチドを有する200nmの表面機能化リポソーム(マウス当たりの総脂質10μモル)を、0日目のPLP
139〜151/CFAによる初回刺激に対して−7日目に、SJL/Jマウスの群にIV投与した。対照マウスは0日目に初回刺激を受け、コア内に可溶性OVA
323〜339ペプチドを有する500nm〜700nmの表面機能化リポソーム(マウス当たりの総脂質10μモル)を、−7日目に投与した。更に17日間、R−EAEの臨床徴候についてマウスを観察した。
【0282】
結果は、PLP
139〜151/CFAによる初回刺激後の日数に対する毎日の平均臨床スコアを示す。
図39に示されるように、コア内に可溶性PLP
139〜151ペプチドを有する表面機能化リポソームで処理された動物は、可溶性OVA
323〜339ペプチドを含む表面機能化リポソームで処理された動物よりも、低い臨床スコアを有していた。
【0283】
この試験の結果は、コア内に可溶性PLP
139〜151を含み、高密度の負に荷電した基で表面機能化されている生分解性リポソームは、多発性硬化症のSJL/J PLP
139〜151/CFA誘導性R−EAEマウスモデルにおける免疫寛容の誘導に有効であることを示す。
【0284】
抗原に結合した又は抗原を封入した粒子によって誘導される寛容は、抗原特異的で、用量依存性で、かつ長期間持続する(>150日間)。直径が500nm〜1μm、ゼータ電位が≦−5−mVである、結合した粒子の静脈内投与によって寛容が最も誘導される。寛容の誘導は、ポリアニオン性表面(例えば、カルボキシル化PS/PLG粒子)を有するMARCOスカベンジャー受容体による粒子の取り込みに依存する。寛容は、アネルギー(抗PD−1及びアゴニストである抗CD40抗体で部分的に取り消される)及びiTreg(抗CD25抗体によって部分的に取り消される)の組み合わせによって、誘導され維持される。本発明の粒子は、肝臓及び脾臓の辺縁帯マクロファージ(CD11b
hiCD11c
loMARCO
+Sign−R1
+Siglec−1
−)に主に蓄積する。
【0285】
抗原に曝露された若しくは抗原指向性の未熟な寛容誘発性樹状細胞、又は操作した抗原特異的Tregの使用と比較して、自己免疫疾患の治療に対する抗原結合粒子の使用は、数多くの利点がある。GMP製造可能な既製の一般的な寛容誘発性担体を用いる、寛容原の調製及び誘導の迅速性及び簡易性;未熟樹状細胞又はTregをex vivoで単離して増殖させる必要がない;移植後に、未熟樹状細胞が、ex vivoでの処置により活性化され寛容誘発性ではなく刺激性になること、又はTregがTh1/17に変換することを懸念する必要がない;これらの未熟辺縁帯APCが寛容誘発的に抗原を処理して再現するため、宿主APCは、完全自己抗原又は組織抽出物を封入するPLG粒子から対応する免疫優性自己エピトープを選択できる(例えば、OVAを封入したPLG粒子は、OVA/ミョウバン誘導性AADを予防する);並びに、この方法は、バイスタンダー抑制を含まない抗原特異的であり、安全で、有効性が高く、epitope spreadingに関与するエフェクターT細胞(Th1、Th2、Th17、及びCD8)及びナイーブなT細胞の両方で不応性を誘導できる。
【0286】
合成生分解性粒子及びリポソームは、製造容易性、治療薬の幅広い利用可能性、及び可能性のある治療部位数の増加につながる場合がある。この目的を達成するために、高密度の表面カルボキシレート基を有する表面機能化生分解性ポリ(ラクチドコ−グリコリド)粒子を、界面活性剤であるポリ(エチレン−alt−無水マレイン酸)を用いて特異的に設計した。
【0287】
また、30:30:40の比のホスファチジルコリン:ホスファチジルグリセロール:コレステロールを用いて、表面機能化リポソームも開発した。
【0288】
更に、ペプチド又はタンパク質の表面コンジュゲートにまつわる化学的汚染と純度の問題を回避するため、コア内に可溶性オボアルブミンを含めるようにこれらの粒子を設計した。これらのコア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチド−コ−グリコリド)粒子は、疾患の発症予防に、ひいてはアレルギー性喘息のBalb/cオボアルブミン/ミョウバン誘導性AAIマウスモデルにおける免疫寛容の誘導に有効である。EDCを用いてペプチド又はタンパク質にコンジュゲートしたカルボキシレート機能化ポリ(ラクチド−コグリコリド)粒子は無差別に付着され、均一集団として特徴付け、精製するのが困難な抗原凝集体及び粒子−抗原−粒子凝集体になる。
【0289】
我々は、抗原の表面コンジュゲートの必要がない、コア内に可溶性オボアルブミンを含む表面機能化ポリ(ラクチドコ−グリコリド)粒子の均一集団を産出している。
【0290】
更に、コア内に可溶性PLP
139〜151を含み、高密度の負に荷電した基で表面機能化されている生分解性リポソームは、多発性硬化症のSJL/J PLP
139〜151/CFA誘導性R−EAEマウスモデルにおける免疫寛容の誘導に有効であることを示している。
【0291】
本発明のリポソーム及びポリ(ラクチド−コ−グリコリド)粒子は、数多くの利点をもたらす。利点として以下が挙げられる。
1)生分解性粒子は、体内で長期間維持されず、完全に分解する時間を制御できる。
2)粒子及びリポソームを機能化し、細胞活性化をせずに内在化を促進できる。この目的へ向けて、PLG微小球内にホスファチジルセリンを充填している。
3)粒子及びリポソームを設計し、特定の細胞集団を標的化するリガンドを含めることもできる。
4)IL−10及びTGF−βなどの抗炎症性サイトカインを含み、粒子を内在化させる細胞型の活性化を制限し、制御性T細胞のアネルギー及び/又は欠失、並びに活性化を介する寛容の誘導を促進できる。
【0292】
この粒子又はリポソームの組み合わせ機能は、多くの観点より寛容誘導を標的化できるため、デザイナー粒子はポリスチレン粒子に比べて大幅に進歩している。この寛容誘導技術の考えられる臨床用途としては、以下のものが挙げられる。
(1)T細胞及び抗体媒介性自己免疫疾患(例えば、多発性硬化症、1型糖尿病、リウマチ性関節炎、全身性狼瘡など)−特定の自己免疫疾患を誘発する関連自己抗原と複合した粒子によって、寛容が誘導される。
(2)食事性及び肺アレルギー、皮膚アレルギー、並びに喘息−アレルギー反応を惹起する、特定の食物(例えばピーナツタンパク質など)と複合した、物質(ハチ毒タンパク質など)、又は物質(例えば、ブタクサ花粉タンパク質、ペットのふけタンパク質など)を吸入した粒子によって、寛容が誘導される。
(3)移植拒絶反応−器官移植に先立ち、ドナーの器官又は細胞上の移植片抗原に対する寛容が誘導され、レシピエントによる拒絶反応を予防する。
(4)酵素補充療法−遺伝的欠損を有する患者が産生できない酵素に対する寛容が誘導され、特定の欠損の治療のために投与される組み替え的に産生された酵素に対する中和抗体応答をもたらすのを予防する。
【0293】
(実施例23)
寛容の誘導に最も効果的な粒子は、負に荷電しており、平均粒径は500nmである
寛容の誘導に重要な粒子パラメータは、組成物の寸法と電荷である。
図40A及びBに示されるように、粒子の電荷は寛容誘導の効率に影響する。−25mv又は−60mvの電荷を有するOVAをコンジュゲートした粒子で処理したEAEマウスの比較によって、−60mvの電荷を有する粒子を含む組成物が、−25mVの電荷を有するものよりもより効率的に寛容を誘導することがわかった。マウスに、−60mv又は−25mvのいずれかの電荷を有するTIMP(寛容誘発性免疫修飾粒子)を投与した。OVA
323〜339−TIMP
−60mv、OVA
323〜339−PLGA
−25mv、PLP
139〜151−TIMP
−60mv、又はPLP
139〜151−PLGA
−25mvのいずれか(全ての抗原は封入化されている)でマウスを処理し、臨床疾患についてスコア化した。パネル(A)は平均臨床スコアを示し、パネル(B)はEAE動物の平均蓄積スコアを示す。
【0294】
粒子の負電荷は、粒子がMARCOスカベンジャー受容体と相互作用する能力に影響する。
図41は、免疫修飾粒子の電荷が、抗原提示細胞に対する免疫修飾粒子の標的化に重要であることを示す。野生型又はMARCO−/+動物を、PS−IMP又は溶媒のいずれかで処理した。その結果は、正に荷電したコラーゲン様ドメインを有するMARCOなどのスカベンジャー受容体との相互作用が低下しているため、負電荷が減少した粒子の効果が低いことを示している。
【0295】
電荷に加えて、生分解性TIMPの寸法及び組成が寛容の誘導に影響する。
図42Aに示されるように、EAEモデルにおいて寛容を誘導するのに最も有効な粒子は、平均径が約500nmのものである。500nmのOVA
323〜339−PSB、100nmのPLP
139〜151−PSB、500nmのPLP
139〜151−PSB、1.75μmのPLP
139〜151−PSB、又は4.5μmのPLP
139〜151−PSBのいずれかでマウスを処理し、臨床疾患についてスコア化した。PLGA担体は、1ヶ月にわたって持続放出速度を有し、重合体比を変更すると、粒子の放出に影響し得る。寛容には、迅速な粒子の取り込みと、クリアランス/分解を必要とする。50:50を超えるラクチド:グリコリドの比は分解速度を遅延させるため、一実施形態における本発明の粒子は、50:50のラクチド:グリコリドである。
図42Bは、粒子が迅速に破壊されることを示す。
【0296】
TIMPの電荷及び平均径に加え、アレルギーモデルにおいて、粒子内に封入された抗原は、抗原に結合した粒子よりも優れている。アレルギーモデルでは、結合したナノ粒子は、アナフィラキシーを引き起こす傾向を有し、効果的な治療ではない。反対に、
図43に示されるように、−60mvの電荷を有するTIMPは、マウスアレルギーモデルにおいて治療効果がある。動物をアレルゲンとしてのOVAに曝露し、その後、シャムPLG若しくはTIMP粒子、OVAを有するPLG若しくはTIMP粒子、又は未処理のいずれかで処理した。パネル(A)は、OVA−PLG粒子が、アレルギーにおけるTH2応答を低減できないことを示す。パネル(B)は、TIMP
PEMA−60mvが、このTH2応答を阻害することを示す。パネル(C)は、TIMP
PEMA−60mvが、リコール応答を阻害することを示す。
【0297】
(実施例24)
抗原を封入する表面機能化ポリ(ラクチド−コ−グリコリド)粒子の一重乳化合成
ポリペプチド抗原を、二重乳化法(実施例21参照)を用いてポリ(ラクチド−コ−グリコリド)粒子内に含めることができるが、本発明の発明者らは、グリアジンなどのより疎水性が高いポリペプチドを含めるとき、溶媒を使用する一重乳化法によって抗原を粒子中に含める方がよいことを見いだした。
【0298】
カルボキシレート末端基、50:50のD,L−ラクチド:グリコリド比、0.18dL/gの固有粘度を有する、ヘキサフルオロ−2−プロパノール中のポリ(ラクチド−コ−グリコリド)を用いて、グリアジンを含む粒子を作製した。コア内にグリアジンを含み、高密度のカルボキシレート基で表面機能化されているポリ(ラクチド−コ−グリコリド)粒子を、以下のように、一重乳化−溶媒蒸発法を用いて合成した。
1.5ミリグラムのグリアジン及び200mgのPLGを、50μLのトリフルオロ酢酸(TFA)及び700μLのジメチルスルホキシド及び1250μLのジクロロメタン(DCM)に溶解した。
2.得られた混合液を、4mLの1% w/v PEMA水溶液に滴状に加え、100%の振幅で30秒間超音波処理した。
3.得られたエマルションを、200mLの0.5% w/v PEMA水溶液に12時間撹拌しながら注ぎ、DCMを完全に蒸発させた。
4.続いて粒子を、0.1M炭酸ナトリウム−重炭酸ナトリウム緩衝液(pH 9.6)中で3回洗浄した。あるいは、ddH
2Oを用いて粒子を洗浄してもよい。
5.精製した粒子を、水中4% w/vスクロース及び3% w/vD−マンニトールに再懸濁し、−80℃まで徐々に凍らせて凍結乾燥した。
【0299】
本発明の特定の実施形態を説明し例解してきたが、このような実施形態は、本発明の例解のみであると見なされ、添付の特許請求の範囲に従って解釈されるほど本発明を限定するべきではない。
【0300】
本明細書で引用される全ての特許、出願、及び他の参考文献は、その全体が参照によって組み込まれる。