【文献】
Lesile Greengard, June-Yub Lee,Accelerating the Nonuniform Fast Fourier Transform,SIAM review,2004年,Vol.46, No.3,pp. 443-454
【文献】
June-Yub Lee, Leslie Greengard,The type 3 nonuniform FFT and its applications,Journal of Computational Physics,2005年,206,p. 1-5
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
本明細書で説明されるのは、磁気共鳴画像の再構成中に、勾配非線形性を補正するシステムおよび方法のための、システムおよび方法である。画像の再構成が行われた後に歪みが補正される、勾配非線形性を補正する従来の方法とは対照的に、本明細書で説明されるモデルに基づく方法は、再構成中に勾配非線形性の効果を予測的に考慮する。本明細書で説明される方法によって、幾何学的な補正と同一の水準に達しながら、従来の補正アルゴリズムによって引き起こされるぼけ効果および解像度の損失を低減できることは、本発明者の発見である。
【0012】
勾配非線形性の補正は、臨床的なMRIにおいて、ハードウェアの性能が不完全なことから生じる幾何学的な空間の歪みを除去するために日常的に行われており、このプロセスに何らかの改善を行うことによって、広範な利益をもたらすことができる。例えば、空間解像度を保護するための、予測的な勾配非線形性補正の性能は、微細な画像の変化を探す長期的なMRI研究にとって、ならびに高速ながら高感度な勾配システムに基づく新しいスキャナアーキテクチャの設計において、特に有益な場合がある。
【0013】
標準的な勾配非線形性補正プロセスは、勾配歪み磁場に関する特定の情報を必要とする。この情報は、通常は機密であって、一般的な公共利用には使用できない。さらに、ベンダが提供する歪み情報は、通常は個々のマシンではなく、そのタイプのMRIスキャナのみに固有のものであり、ハードウェアのばらつきによるスキャナ固有の歪みを考慮したものではない。
【0014】
本開示が提供するシステムおよび方法は、画像の再構成後ではなく画像の再構成中に、勾配非線形性による歪みを予測的に考慮する技術を含む。この手法により、遡及的な補正方法に固有の、幾何学的な精度と空間解像度との間のトレードオフが減少する。また、本開示の手法は、既存のMRI再構成方法に簡単に組み込まれ、採用を容易にすることができる。さらなる改善として、追加されたNUFFT演算の計算コストの削減が含まれ得る。
【0015】
いくつかの実施形態では、上述したように、勾配歪み磁場に関する情報は、磁気共鳴撮像(「MRI」)システムの記憶装置から提供される。いくつかの他の実施形態では、勾配歪み磁場は、ファントム画像から、または電磁シミュレーションを用いることによって、推定することができる。
【0016】
勾配非線形性の存在下で、MRIシステムを用いて生成された測定済みのMRI信号は、以下の式でモデル化することができる。
【数1】
【0017】
ここで、fは連続的な目標信号、xは空間位置ベクトル、Δ(x)は勾配非線形性による空間歪み関数、Ωは励起の磁場、g[k]はk空間位置ω[k]でのk番目(k
th)の信号測定、そしてnは複素ガウス雑音である。いくつかの実施形態では、勾配非線形性による空間歪み関数は既知とされるが、以下で説明するように、いくつかの実施形態では、この関数は、QA(quality assurance)ファントムその他のファントムから推定することができる。
【0018】
連続的な画像の関数f(x)を有限の測定ベクトルgから再構成する問題は、目標信号に関する補助仮定がなければ、本質的に不良設定(ill−posed)問題である。通常は、f(x)の有限級数表現が仮定される。すなわち、次の式で表される。
【数2】
【0019】
ここでb(x)は連続的な画素単位の関数、r[i]は画素位置ベクトル、そしてu(i)はi番目(i
th)の画素の、対応する表示係数である。ここではb(x)=δ(x)のディラックのデルタ画素モデルを仮定すると、式1の前進信号モデルは、次のようになる。
【数3】
【0020】
これは、以下のアフィン代数式で表すことができる。
【数4】
【0021】
ここでA(k、i)=e―
jω
[k]Δ
(r[i])は、前進空間エンコーディング演算子を示す。非加速のデカルト(Cartesian)撮像では、k空間サンプルのセットは、離散した等間隔のグリッド上に置かれている。画像画素もまた、通常は同様の等間隔のグリッドr[i]上に置かれると仮定されるが、歪み磁場の存在により(すなわち式4のΔ(r[i])≠r[i]のとき)、Δ(r[i])に従って、画像画素を離散前進モデルへと変位させる。したがって、式4で再構成された画像の公称空間グリッドは、実際には不等間隔になる場合がある。
【0022】
したがって、勾配非線形性の存在において、Aは、不等間隔の画像空間グリッドから、デカルトMRI用の等間隔のk空間グリッドにマッピングしている。このとき、前進演算子は、タイプIの不等間隔高速フーリエ変換(「NUFFT」)演算子を用いて効率的に実施することができ、これは次の式で定義することができる。
【数5】
【0023】
ここでΓは、不規則な画像グリッドをオーバーサンプリングされた等間隔の画像グリッドにマッピングする、畳み込み補間演算を表す行列であり、Fは、(高速フーリエ変換を介して実施されてもよい)オーバーサンプリングされた離散フーリエ変換等の、オーバーサンプリングされたフーリエ変換演算子、そしてDは、畳み込みのカーネルΓによって誘発されたぼけを補償する、ピクセルワイズのデアポダイゼーション(deapodization)関数である。非デカルト(non−Cartesian)サンプリングでは、前進演算子は、タイプIIIのNUFFT演算子を用いて、効率的に実施することができる。
【0024】
いくつかの実施形態では、MRIデータは、複数のコイルおよび受信機チャンネルを用いて取得される。この構成で、データは、スキャン時間全体を低減するためにアンダーサンプリングすることができる(すなわち、スキャン中に通常得られるデータのサブセットのみが収集される)。K、C、およびNが、k空間サンプル、受信機コイル、および再構成された画像の画素の合計数をそれぞれ示すならば、式4の信号モデルは、次の式で一般化することができる。
【0026】
ここでGはK×Cの測定行列、φは、試験中に実際にサンプリングされたフーリエ要素のサブセットを示すK×Nの2進行選択行列、UはN×Cの、目標とする下地マルチチャンネル画像設定、そしてNは、固有のK×Cの固有複素ガウス雑音行列である。
【0027】
一例として、完全にサンプリングおよびアンダーサンプリングされたMRIデータは両方とも、ペナルティを付けた回帰アルゴリズムを用いて再構成することができ、これは潜在的に、疎性等の他の予想される特性を満たしつつ、雑音が加わった測定値のセットを生成している可能性が最も高い画像を生成しようとするものである。MRIの雑音はガウス分布であるため、次に示す一般形の、ペナルティを付けた最小二乗回帰が用いられることが多い。
【数7】
【0028】
ここで
【数8】
は行列のフロベニウスノルム、P(・)は、再構成された画像でいくつかの望ましい特性を促進する正則化またはペナルティの関数、そしてλ≧0は、ペナルティ関数およびデータ忠実度項に置かれた相対的な選好を制御する混合パラメータである。
【0029】
ヤコビアンに基づく強度補正は、前進信号モデルでその効果が暗黙のうちに考慮されるので、このモデルの明示的な部分ではないことに留意されたい。また、式7は、データ雑音の存在を予測的に考慮することに留意されたい。
【数9】
の特殊な事例では、式7は、Uの最尤推定をもたらす。さらに、加速されたスキャン中に収集された、アンダーサンプリングされたデータセットを再構成するときに、ロバスト性および安定性をもたらすために、ペナルティ関数の特定の定義を介して、Tikhonovおよび局所的低ランク(locally low rank、「LLR」)ペナルティが含まれてもよい。
【0030】
適切に設計された信号モデルを使用することによって、勾配非線形性補正を画像再構成プロセスに統合するための一般的な枠組みについて説明してきたが、このモデルに基づく補正を異なる再構成技術に組み込むいくつかの例が、ここで提供される。
【0031】
[実施例1:完全にサンプリングされたデカルト取得の再構成]
一例として、アンダーサンプリング(Φ=1)または正則化(λ=0)なしにデカルトサンプリングが用いられるときは、式7は、通常の最小二乗回帰まで削減され、次の式によって、簡素な閉じた式の解が与えられる。
【数10】
【0032】
これは、標準的な勾配降下、または共役勾配降下を介して反復的に解かれてもよい。逆グラム行列(A
*A)
-1は、歪み磁場のヤコビアン行列式Jから構成された対角行列によって高度に近似されてもよく、これは、完全にサンプリングされたデカルトMRIデータの、コイル毎に勾配非線形性を補正した再構成を行うための非反復的な経路を順に提供し、以下の式で表される。
【数11】
【0033】
式9の近似解法は、上述した信号モデルに基づく非反復的な方法であり、したがって、明示的なオーバーサンプリングされた補間およびデアポダイゼーションの手順を使用し、著しい画像のぼけをもたらすことなく、粗幾何学的な歪み補正を後に実行することが可能になる。
【0034】
[実施例2:部分フーリエホモダイン取得]
別の例として、勾配非線形性は、部分フーリエホモダイン取得を用いて取得されたデータの再構成中に補正することができる。部分フーリエの加速は、目標信号が厳密に実数値であり、偽の画像位相は、既知または低周波の基準信号から簡単に推定可能のいずれかであるという仮定に基づく。実数値信号のフーリエ変換は、共役対称であるため、部分フーリエ法により、2倍もの加速が可能になる。
【0035】
目標信号は実数値であると仮定して、式4の信号モデルは、次の式の通りに表し直すことができる。
【数12】
【0036】
ここで記号U
rは、目標信号が実数値であることを示す。対角行列Ψ(ここでは
【数13】
)は、B
1の磁場不均一性、オフレゾナンス、渦電流効果、またはこれらの組み合わせを受けたことに起因する場合がある、見かけ上の画像位相を表す。以下で説明するように、この見かけ上の画像位相は、k空間の完全にサンプリングされた、低周波領域から推定することができる。
【0037】
標準的な部分フーリエ法は、測定値gから、u
rのモーメント法推定を構成する。式10の期待値はAΨu
rであり、実数値信号u
rは、次の式の通りに推定できることに留意されたい。
【数14】
【0038】
ここで、アンサンブル平均(すなわち期待値)は、標本平均または観測ベクトルに置き換えられている。上述したように、演算子(A
*A)
-1は、実数値の対角行列diag[J]によって近似することができ、ここでJは、勾配非線形性に誘発された歪み磁場のヤコビアン行列式である。したがって、式11は、次の式に書き直すことができる。
【数15】
【0039】
Φ
Lを、k空間の中央のローパス領域を抽出する2値演算子として示し、
【数16】
および
【数17】
を、k空間の中央の上方および下方のハイパス領域を対称に抽出する2値演算子としてそれぞれ示し、次に信号測定ベクトルは、次の式の通りに、位相エンコーディング方向または読み出し方向に沿って分割することができる。
【数18】
【0040】
ホモダイン再構成は、k空間測定値の共役対称を仮定することによって、実数値の画像ベクトルを回復し、次の式が導かれる。
【数19】
【0041】
したがって、u
rは、次の式によって再構成される。
【数20】
【0042】
その元の対応物と同様に、式15のようなホモダイン再構成は、非反復的である。
【0043】
標準的な部分フーリエ法では、画像位相推定Ψは、k空間の完全にサンプリングされた低周波領域から構成される。しかしながら、式10は、位相マップに、本質的に勾配非線形性歪みがないことを前提としている。結果として、基準信号は、好ましくは、統合された勾配非線形性補正を用いて生成された低解像度画像に由来し、これは例えば、以下の式による。
【数21】
【0044】
ここで∠(・)演算子は、複素ベクトルの位相マップを返す。
【0045】
[実施例3:GRAPPA]
通常、統合された勾配非線形性および画像再構成技術は、例えば並列撮像技術用に実施される、加速取得用に適合することができる。通常、並列撮像技術は、MR画像を生成するのに必要なデータの量を削減するために、位相アレイ受信機を用いて取得されたデータ間の冗長性を利用する。
【0046】
一例として、統合された勾配非線形性および画像再構成技術は、GRAPPAに基づく取得および再構成用に適合することができる。GRAPPAは、アンダーサンプリングされたk空間データからコイル画像のフルセットを再構成する、自動較正の、k空間に基づく並列撮像法である。
【0047】
GをM×Cのマルチチャンネルk空間データ行列として示し、ここでMおよびCはそれぞれ、コイル毎のk空間測定値の数およびコイルの数であり、GRAPPAの前進信号モデルは、次の式で表される。
【数22】
【0048】
ここでUは、コイル画像のセットを表すN×Cの行列(ここでNは画像画素の総数を示す)であり、行列Nは、N×Cの固有ガウス雑音行列である。加速取得の場合は、N(Mとなる。式17は、式6と同様に、式4を一般化したものであることに留意されたい。自動較正に続いて、GRAPPAは、フーリエ―ドメイン補間を用いて失われたk空間値を推定する。
GRAPPA
【数23】
によって推定された、N×Cの完全にサンプリングされたマルチコイルk空間データ行列は、次の式で示すことができる。
【数24】
【0049】
ここでH
GRAPPA[・]は、画像再構成に先立つ自動較正信号(autoーcalibration signal、「ACS」)データに由来する、k空間補間演算子である。
【0050】
GRAPPA再構成はk空間全体で生じるため、統合された勾配非線形性補正は、このプロセスに組み込まれる必要はなく、完全なk空間サンプリングの場合と同様の方法で、再構成結果をk空間から画像ドメインへと変換しながら簡単に行うことができ、これは次の式で表される。
【数25】
【0051】
ここで再び、ヤコビアン行列式近似が用いられる。同様に、目標信号が実数値であると仮定される場合は、ホモダイン技術もまた、この再構成プロセスに組み込むことができ、以下の式が得られる。
【数26】
【0052】
ここで、u
e、g
e、およびΨ
cはそれぞれ、実数値画像、GRAPPA再構成したk空間信号、およびc
thのコイルの位相マップを示す。
【0053】
当業者に理解されるように、上述の手法は、部分フーリエ再構成を含めて、GRAPPAについて説明されてきたが、この手法は、GRAPPA以外のk空間またはハイブリッドk空間/画像自動較正マルチチャンネル再構成方法でも容易に実施することができる。
【0054】
[実施例4:SENSE]
別の例として、統合された勾配非線形性および画像再構成技術は、SENSEに基づく取得および再構成に適合することができる。SENSEは、加速取得用に広く用いられている別の並列撮像法である。GRAPPAは、コイル画像を個々に再構成するのに対して、SENSEは、測定済みのマルチチャンネルデータセットから単一の画像を再構成する。等間隔のデカルトアンダーサンプリングを仮定すると、標準的なSENSE取得中に観測されるk空間MR信号は、次の式のようにモデル化することができる。
【数27】
【0055】
ここでgは、MC×1のマルチコイルk空間データベクトル、Sは、受信コイルの真の(すなわち歪みのない)感度プロファイルを表すNC×Nのブロック対角行列、φは、等間隔のアンダーサンプリング演算子を表すM×Nの行列、uはN×1の目標画像ベクトル、そしてnはMC×1の雑音ベクトルである。また、IはC×Cの単位行列を示し、「(」演算子はクロネッカー積である。
【0056】
SENSE再構成は、次の式で表される正則化最小二乗推定問題を解くことによって、目標画像ベクトルuを推定する。
【数28】
【0057】
ここで、正則化パラメータλ>0は、この問題に潜在する行列反転プロセスを安定化する。この問題は、(例えば共役勾配反復を介して)反復的に解くことができるが、この手法の計算効率は、特に、(統合された勾配非線形性補正のない)標準的なSENSE再構成が非反復的であることを考慮すると、日常的な臨床用途には十分でない場合がある。数28のような2次推定の問題を解くために、CG反復が広く用いられているが、多くの実行可能な別の数値的な方法がある。このような別の最適化方法の1つは、交互方向乗数法(alternating direction method−of−multipliers、「ADMM」)であり、これは、数28のような複合した最適化問題を一連の比較的容易なタスクに分解する。
【0058】
標準的な再構成および勾配非線形性補正技術では、アンダーサンプリングされたデータ上で従来のSENSE再構成が最初に行われ、その後、画像ドメイン勾配非線形性補正が、結果画像に適用される。直接的な方法で、提案されている統合された勾配非線形性補正を使用するために、未補正のSENSE画像結果が代わりにフーリエ変換されてk空間に戻されてもよく、完全にサンプリングされたデータ用の、標準的な統合された勾配非線形性補正プロセスを適用することができる。このプロセスは実際には、式22を解くための特定のADMMルーチンの最初の反復に相当し、ゼロ値の初期化を仮定している。具体的には、勾配非線形性補正しない最初の標準的なSENSE再構成は、次の式の通りに行われる。
【数29】
【0059】
ここで
【数30】
は勾配非線形性によって歪められた(すなわち未補正の)コイル感度プロファイルのセットを表し、Fは離散フーリエ変換(「DFT」)演算子である。パラメータμ(0は、独立したADMM最適化パラメータであり、式22においては、パラメータλと同様の方法で、SENSE反転プロセスを安定化する。後続の変換および勾配非線形性補正プロセスは、次の式で表される。
【数31】
【0060】
ここでαは、λの関数である、任意選択の正規化定数である。式22のADMMスキームの1回のみの反復を実行することにより、標準的なSENSE再構成および勾配非線形性補正パイプラインに関連した空間解像度の改善につながる。多くの実用的な用途に対し、この簡素で非反復的なルーチンが、十分な利点をもたらすと考えられる。さらなる性能の増大が望まれる場合は、ADMM手順の反復を追加で実行することができ、あるいは反復的な共役勾配アルゴリズムを実行することができる。
【0061】
追加加速を可能にするために、GRAPPAのように、ホモダイン法もSENSE再構成アルゴリズムに統合することができる。このプロセスは、完全にサンプル化されたデータ用の、統合された勾配非線形性補正プロセスの代わりに、式24の勾配非線形性補正されたSENSE再構成プロセス(次の式25でH
SENSE[・]として示される)を用いて式15を反映する。
【数32】
【0062】
基準位相は、ここでは以下のように推定される。
【数33】
【0063】
式25は、Δ(x)=0のとき(すなわち、統合された勾配非線形性補正なしに)、ホモダイン取得で標準的なSENSEまで削減される。
【0064】
ここで
図1を参照すると、上記で詳しく説明したような、統合された画像再構成および勾配非線形性補正技術を用いて、磁気共鳴データから画像を再構成する方法の一例のステップを説明するフローチャートが示されている。この方法は、ステップ102で示されているように、再構成用のデータを提供することから始まる。いくつかの態様では、データは、任意適当な取得方法を用いるMRIシステムで、データを取得することによって提供することができる。いくつかの他の態様では、MRIデータは、データ記憶装置から読み出された、事前に取得したデータであってもよい。上述したように、本発明の方法は、アンダーサンプリングも実施されるかどうかに関わらず、デカルトおよび非デカルト取得(エコープラナー撮像(「EPI」)を含む)の両方に容易に適合することができる。
【0065】
統合された再構成および勾配非線形性補正プロセスの一部として、ステップ104に示すように、MRIシステム用の勾配歪み磁場の推定が提供される。勾配歪み磁場の推定は、MRIシステムデータ記憶装置から適切な情報を読み出すことによって、適切な電磁シミュレーションを行うことによって、またはMRIシステムで取得されたファントム画像に基づく較正手順を用いることによって、提供することができる。
【0066】
上述したように、いくつかの実施形態では、勾配歪み磁場は、MRIスキャナの記憶装置からもたらされるか、あるいは電磁シミュレーションを用いてシミュレーションすることができる。しかしながら、他の実施形態では、統合された画像再構成および勾配非線形性補正は、個別のスキャナで勾配歪みを推定するための、独立した較正プロセスを含んでいてもよい。一例として、既知の形状を有する、MRIのQAファントムが、歪み磁場の推定に用いられる。推定歪み磁場情報を用いて補正された画像に存在する残留歪みは、その後、反復的に最小化される。このプロセスは、ベンダ固有の情報、または機密情報を必要とせず、したがって広範に実施することができる。また、画像化されたファントムから推定された勾配歪み磁場は、単にモデル固有なだけではなくスキャナ固有なので、このような推定は、通常、普遍的モデルよりも正確である。
【0067】
以下でより詳しく説明する1つの例では、この較正手順は、アルツハイマー病神経撮像イニシアチブ(Alzheimer´s Disease Neuroimaging Initiative、「ADNI」)ファントム等のQAファントム、およびAQUALソフトウェア等の対応する分析ソフトウェアを用いて実施することができるが、上述した方法は、他の類似のファントム、およびその関連ソフトウェア、あるいは適切な分析ソフトウェアに容易に適用することができる。
【0068】
概してステップ106で示されているように、画像は、次に、勾配非線形性効果も補正しながら再構成される。例えば、画像は、モデルに基づいた推定プロセスを用いて再構成され、これは、画像再構成の後ではなく再構成中に、勾配非線形性を補正する。通常このプロセスは、式4、式6、式10、式17、または式21で参照される信号モデルのような、勾配非線形性効果を考慮するために勾配歪み磁場を組み込む信号モデルに基づく。
【0069】
[ファントム画像からの勾配歪み推定]
ファントムの画像から勾配歪み磁場を推定する例示的な方法が、ここで説明される。通常、磁気共鳴画像xは、従来のMRI理論で期待されるように、その性能が必ずしも線形ではない空間エンコーディング勾配を用いて取得されたと仮定する。勾配磁場の球面調和関数展開のためのN×3の係数セットCが知られている場合は、この画像は、標準的な勾配非線形性補正技術を用いて幾何学的に補正することができ、つまり、補正された画像x
correctedは、次の式の通りに生成することができる。
【数34】
【0070】
MRIスキャナのベンダは、一般に、表示する全ての画像に対してこの種の補正を行うが、係数行列Cは、通常は機密情報として扱われ、一般に公開して使用することはできない。通常、MRIベンダは、電磁(「EM」)シミュレーションを介して、特定の磁気モデル用の係数行列Cを推定し、この行列を所与のタイプの全てのスキャナモデルに用いる。しかしながら実際には、磁気コイルの巻線、スキャナの位置その他の要因の相違によって、同種のスキャナ毎に異なる、真の係数または理想的係数Cがもたらされる場合がある。上述の要因に基づき、機密の係数行列情報を必要とせずに、任意の個別のMRIスキャナを独立して較正できる、勾配歪み推定方法の開発動機が存在する。
【0071】
ここでxは、ADNIファントム等の既知の形状を有するファントム物体の画像を表し、かつ画像x内でマーカーMの空間位置を識別する演算子A[・]が存在すると仮定すると、すなわち次の式のようになる。
【数35】
【0072】
ここでPは、M×3の行列である。また、P
0を、マーカーの予想される真の位置を表すM×3の行列とする。勾配非線形性による画像の空間歪みは、測定されたマーカー位置対実際のマーカー位置の平均二乗誤差(mean square error、「MSE」)によって要約でき、以下の式で表される。
【数36】
【0073】
同様に、補正された画像の空間歪みMSEは、以下の式で表される。
【数37】
【0074】
歪んだ画像xが修正されると仮定すると、勾配歪み磁場は、球面調和基底関数に基づく係数Cを見つけることによって推定でき、これにより上述のMSE量を最小化し、これはすなわち次の式で表される。
【数38】
【0075】
この推定プロセスは、任意の数の適当な数値最適化ルーチンを用いて実施することができ、この2つの例がここで説明される。
【0076】
画像が知られていると想定すると、次のアフィン関数を定義することができる。
【数39】
【0077】
また、係数行列C
priorに関する推測は、知られているかあるいは合理的に選択できるものとする。C=C
prior+ΔCを設定すると、式31は次の式と等価的に表すことができる。
【数40】
【0078】
H[・]は、非線形であり、閉形式の数式表現では定義できない可能性があるため、式33を解くために、ガウス―ニュートン最適化法が用いられてもよい。この手法は、H[・]の線形近似を含み、これは、1次のテイラー展開を用いて達成することができ、すなわち、次の式で表される。
【数41】
【0079】
ここでJ
H[・]は、H[・]のためのランク4のヤコビアンテンソルを示し、「
【数42】
」は、多重線型内積演算子である。具体的には、次の式で表される。
【数43】
【0081】
これらの定義に基づき、式33を解くためのガウス―ニュートンアルゴリズムは、次のステップによって一般化することができる。
【0083】
前述のアルゴリズムは、勾配歪み推定を行うための論理的な方法を表しているが、空間歪み関数H[・]のランク4ヤコビアンを決定かつ評価することは、総じて非実用的または実行不可能な可能性がある。その結果として、ヤコビアン演算子を適当な低次元近似に置換する、近似ガウス―ニュートンアルゴリズムが実施されてもよい。空間歪み関数の機能的動作は、おおよそ次の式で表される。
【数45】
【0084】
M×Pの行列で、S
0は、真のマーカーの空間位置P
0で評価された球面調和基底関数である。つまり、式37は、未補正の画像と補正済みの画像とのマーカー位置の相違が、歪み磁場によってのみ決定されることを意味する。実際には、用いられる特定の補正方法、および分析ソフトウェアのばらつき等の他の要因も、この量に影響を与える。しかし、このような要因は、妥当な近似を達成しているうちは無視することができる。式37と同様の他の近似もまた実行可能であることが、当業者には理解されるべきである。式34から、続いて次のようになる。
【数46】
【0085】
その結果、アルゴリズム1の最初のステップは、次の式を用いる。
【数47】
【0086】
ここで上付き文字「†」は、(左側)擬似逆を示す。式39に続いて、アルゴリズム1は、その後、次のアルゴリズムに変換する。
【0088】
この高速な近似アルゴリズムは、実施および実行が非常に簡単である。さらに、通常は小さいカラムサイズS
0とすれば、直説法を用いて行列擬似逆も計算することができる。
【0089】
QAファントムの画像に基づいて、勾配歪み磁場を推定するステップの一例がここで説明される。ADNIのQAファントムは、事後補正MR画像における残留幾何歪みを推定するための一般的な器具である。AQUAL等のソフトウェアもまた、ファントム基準マーカーの公称位置対実際の位置の推定に使用可能である。ADNIファントムは画像化することができ、画像ボリュームは、最初はスキャナ時に勾配非線形性補正することなく再構成され、幾何学的に歪んだ結果を得る(
図2の第1列を参照)。
【0090】
ADNIファントムの最初の歪んだ画像x、および(例えばAQUALソフトウェアからの)基準マーカー位置P
0を前提として、上述の較正手順で、25回の反復が行われた。このアルゴリズムはC=0で初期化され、その結果、推定プロセスのどの段階でも、ベンダの機密情報が用いられることはなかった。全ての中間の推定Cに対して、画像―ドメイン3次スプライン補間を介して勾配非線形性補正が行われた。
【0091】
図2に示されているように、提案した較正方法は、このデータに存在する勾配歪みを外部情報なしに効率的に推定し、これを画像内でうまく補正できるようにする。
【0092】
ここで特に
図3を参照すると、磁気共鳴撮像(「MRI」)システム300の一例が示されている。MRIシステム300は、オペレータワークステーション302を備え、これは通常はディスプレイ304、キーボードおよびマウス等の1つ以上の入力装置306、およびプロセッサ308を含む。プロセッサ308は、市販のオペレーティングシステムを実行する、市販のプログラム可能なマシンを含んでもよい。オペレータワークステーション302は、MRIシステム300に入力されるスキャン指示を可能にする、オペレータインタフェースを提供する。通常、オペレータワークステーション302は、パルスシーケンスサーバ310、データ取得サーバ312、データ処理サーバ314、およびデータ記憶サーバ316の4つのサーバに連結することができる。オペレータワークステーション302と、各サーバ310、312、314、316とは、互いに通信するように接続されている。例えば、サーバ310、312、314および316は、通信システム340を介して接続することができ、これは、有線、無線、またはその両方の組み合わせの任意適当なネットワーク接続を含んでいてもよい。一例として、通信システム340は、固有または専用のネットワーク、ならびにインターネット等のオープンなネットワークの両方を含んでいてもよい。
【0093】
パルスシーケンスサーバ310は、勾配システム318および高周波(「RF」)システム320を動作させるための、オペレータワークステーション302からダウンロードされた命令に応答して機能する。指示されたスキャンを実行するために必要な勾配波形が生成され、勾配システム318に適用され、この勾配システム318は、磁気共鳴信号の位置エンコーディングに使用される磁場勾配G
x、G
y、およびG
zを生成するために、アセンブリ322の勾配コイルを励起させる。勾配コイルアセンブリ322は、分極磁石326および全身用RFコイル328を含む、磁石アセンブリ324の一部を形成する。
【0094】
指示された磁気共鳴パルスシーケンスを実行するために、RF波形が、RFシステム320によって、RFコイル328、または別の局所コイル(
図3に図示せず)に適用される。RFコイル328、または別の局所コイル(
図3には図示せず)によって検出された応答磁気共鳴信号は、RFシステム320によって受信され、パルスシーケンスサーバ310によって生成されたコマンドの命令下で増幅され、復調され、フィルタリングされ、かつデジタル化される。RFシステム320は、MRIパルスシーケンスで使用される様々なRFパルスを生成する、RF送信機を含む。RF送信機は、所望の周波数、位相、およびパルス振幅波形のRFパルスを生成するために、パルスシーケンスサーバ310からのスキャン指示およびスキャン命令に応答する。生成されたRFパルスは、全身用RFコイル328、あるいは1つ以上の局所コイルまたはコイルアレイ(
図3には図示せず)に適用することができる。
【0095】
RFシステム320はまた、1つ以上のRF受信機チャンネルを含む。各RF受信機チャンネルは、それが接続されているコイル328によって受信した磁気共鳴信号を増幅する、RF前置増幅器と、受信した磁気共鳴信号のIおよびQの直交成分を検出し、デジタル化する検出器とを含む。したがって、受信した磁気共鳴信号の大きさは、式40で表されるIおよびQの成分の二乗和の平方根によって、任意のサンプリングされた点において決定することができる。
【数48】
【0096】
そして、受信した磁気共鳴信号の位相もまた、次の関係に従って決定することができる。
【数49】
【0097】
パルスシーケンスサーバ310もまた、必要に応じて、生体的取得コントローラ330から患者データを受け取る。例として、生体的取得コントローラ330は、患者に接続されたいくつかの異なるセンサから、電極からの心電図(「ECG」)信号、または呼吸器ベローズその他の呼吸器の監視装置からの呼吸信号等の信号を受信する。このような信号は、通常、スキャンの性能を被験者の心拍、または呼吸に同期するか、あるいは「ゲート(gate)」するために、パルスシーケンスサーバ310によって使用される。
【0098】
パルスシーケンスサーバ310はまた、患者および磁石システムの条件に関連付けられた各種センサから信号を受信する、スキャンルームインタフェース回路332に接続する。患者位置決めシステム334もまた、スキャンルームインタフェース回路332を通して、スキャン中に所望の位置に患者を移動させるコマンドを受信する。
【0099】
RFシステム320によって生成された、デジタル化された磁気共鳴信号サンプルは、データ取得サーバ312によって受信される。データ取得サーバ312は、データオーバーランによってデータが失われないように、リアルタイムの磁気共鳴データを受信し、かつバッファ記憶装置を提供するために、オペレータワークステーション302からダウンロードされた指示に応答して動作する。いくつかのスキャンでは、データ取得サーバ312は、取得された磁気共鳴データをデータ処理サーバ314に渡す役割をするに過ぎない。しかしながら、スキャンのさらなる性能を制御するために、取得された磁気共鳴データに由来する情報を必要とするスキャンにおいて、データ取得サーバ312は、このような情報を生成し、パルスシーケンスサーバ310にそれを伝えるようにプログラムされる。例えば、予備スキャン中に、磁気共鳴データが取得されて、パルスシーケンスサーバ310によって実行されるパルスシーケンスを較正するために使用される。別の例として、ナビゲータ信号が取得されて、RFシステム320または勾配システム318の動作パラメータを調整するために、またはk空間がサンプリングされるビューの順序を制御するために使用されてもよい。さらに別の例では、データ取得サーバ312はまた、磁気共鳴血管造影(「MRA」)スキャンにおいて造影剤の到着を検出するために使用される、磁気共鳴信号を処理するのに用いられる場合もある。例として、データ取得サーバ312は、磁気共鳴データを取得して、スキャンを制御するのに用いられる情報を生成するために、リアルタイムでこれを処理する。
【0100】
データ処理サーバ314は、データ取得サーバ312から磁気共鳴データを受信し、オペレータワークステーション302からダウンロードされた指示に従ってこれを処理する。このような処理は、例えば、未処理のk空間データのフーリエ変換を行うことによる2次元または3次元画像の再構成、反復または逆投影画像再構成アルゴリズム等の他の画像再構成アルゴリズムの実行、未処理のk空間データまたは再構成された画像へのフィルタの適用、機能的磁気共鳴画像の生成、および動きまたは流れ画像の計算等のうちの1つ以上を含んでもよい。
【0101】
データ処理サーバ314によって再構成された画像は、オペレータワークステーション302に戻され記憶される。リアルタイムの画像は、データベースメモリキャッシュ(
図3に図示せず)に記憶され、ここから、関与する医師が使用するために、磁石アセンブリ324の近くに配置されたオペレータディスプレイ312またはディスプレイ336に出力することができる。バッチモード画像または選択されたリアルタイム画像は、ディスク記憶装置338のホストデータベースに記憶される。このような画像が再構成され、記憶装置に転送されたとき、データ処理サーバ314は、オペレータワークステーション302のデータ記憶サーバ316に通知する。オペレータワークステーション302は、画像を保存し、フィルムを生成し、またはネットワークを介してその他の設備へ画像を送信するために、オペレータが使用することができる。
【0102】
MRIシステム300はまた、1つ以上のネットワーク化されたワークステーション342を備えていてもよい。例として、ネットワーク化されたワークステーション342は、ディスプレイ344、キーボードおよびマウス等の1つ以上の入力装置346、およびプロセッサ348を含んでいてもよい。ネットワーク化されたワークステーション342は、オペレータワークステーション302と同一の施設内、または異なる医療施設または病院に配置されてもよい。
【0103】
ネットワーク化されたワークステーション342は、オペレータワークステーション302と同一の施設内にあっても異なる施設にあっても、通信システム340を介して、データ処理サーバ314またはデータ記憶サーバ316への遠隔アクセスを得ることができる。したがって、複数のネットワーク化されたワークステーション342が、データ処理サーバ314およびデータ記憶サーバ316にアクセスすることができる。この方法で、磁気共鳴データ、再構成された画像その他のデータは、データ処理サーバ314またはデータ記憶サーバ316と、ネットワーク化されたワークステーション342との間で交換することができ、その結果、データまたは画像は、ネットワーク化されたワークステーション342によって遠隔で処理することができる。このデータは、伝送制御プロトコル(「TCP」)、インターネットプロトコル(「IP」)その他の知られている、あるいは適当なプロトコル等の任意適当な形式に置換することができる。
【0104】
本発明は、1つ以上の好ましい実施形態に関して説明し、明示的に定めた場合を除き、多くの均等物、代替物、変形、および修正が可能であり、かつ本発明の範囲内であることが理解されるべきである。