【課題を解決するための手段】
【0009】
上記課題を解決するための本発明のマグネシウム−リチウム合金
は、表面に平面視15μm以上の最長離隔間距離を持つ独立した凸状突起が310μm×250μm四方の単位面積あたりに20個以上散在し、粘着力7.02±1N/cmの強度を有するテープを、質量2kg、直径85mm、幅45mmの圧着ローラにより圧着し、その後、圧着面に対して90度の引き剥がし角度で引き剥がした際に、テープに移行したパーティクルの量が2.0mg/m2以下となされ、ピン間10mm、ピン先直径2mmの円柱状2探針プローブ(1針の接触表面積3.14mm2)を、240gの荷重で表面に押圧した時の電流計の表面電気抵抗値が1Ω以下となされたものである。
【0010】
上記マグネシウム−リチウム合金は、
マグネシウム−リチウム合金の表面に、エポキシ系プライマーを膜厚12.5±2.5mmの厚みで焼付塗布後、アクリル系トップコートを膜厚12.5±2.5mmの厚みで焼付塗装し、60℃の温水に24時間浸漬した後、水分を除去し常温の室内環境雰囲気下で1時間放置した後に、JIS5400に準拠した100マスのクロスカット試験を行った際に、剥離するマス目を生じないものである。
【0011】
上記マグネシウム−リチウム合金は、
マグネシウム−リチウム合金の表面に、エポキシ系プライマーを膜厚12.5±2.5mmの厚みで焼付塗布後、アクリル系トップコートを膜厚12.5±2.5mmの厚みで焼付塗装し、60℃の温水に24時間浸漬した後、水分を除去し常温の室内環境雰囲気下で2カ月放置した後に、JIS5400に準拠した100マスのクロスカット試験を行った際に、剥離するマス目を生じないものである。
【0012】
上記課題を解決するための本発明のマグネシウム−リチウム合金
の表面処理方法は、上記のマグネシウム−リチウム合金を得るための表面処理方法であって、マグネシウム−リチウム合金の表面を、リン酸に150〜500ppmの中性フッ化アンモニウムを含有した水溶液からなるエッチング処理液で処理する工程の後、アルカリ系水溶液に浸漬してスマットの残留分を除去する表面調整処理を行った後、3.33〜40g/リットルのフッ素化合物を含有する化成処理液に浸漬して化成皮膜を形成する工程をさらに具備するものである。
【0013】
上記マグネシウム−リチウム合金
の表面処理方法は、化成処理液として、3.33〜40g/リットルのフッ素化合物を含有する化成処理液に、さらに、ポリアリルアミン、ポリアリルアミン部分カルボニル化、ポリアクリル酸、ポリアクリルアミドの中から選択される1種以上が50〜5000ppmの濃度で含有されたものを使用するものであってもよい。
【0014】
上記課題を解決するための本発明の電気機器筐体部品は、上記マグネシウム−リチウム合金からなるものである。
【0017】
本発明の処理対象となるマグネシウム−リチウム合金としては、冷間プレス加工に適合するリチウムを含有する種々のマグネシウム合金を用いることができる。例えば、先行技術文献に開示している各種のマグネシウム−リチウム合金を用いることができる。このマグネシウム−リチウム合金の大きさ、形状については特に限定されるものではない。好ましいマグネシウム−リチウム合金としては、リチウムを5〜20質量%、さらに好ましくは5〜16質量%含有し、残部がマグネシウムと不純物となされたものが挙げられる。具体的なマグネシウム−リチウム合金としては、リチウム9%、亜鉛1%、残部がマグネシウムと不純物となされたLZ91材、リチウム7%、亜鉛1%、残部がマグネシウムと不純物となされたLZ71材、リチウム7%、アルミニウム7%、亜鉛1%、残部がマグネシウムと不純物となされたLAZ771材、リチウム7%、アルミニウム3%、亜鉛1%、残部がマグネシウムと不純物となされたLAZ731材、リチウム7%、アルミニウム4%、亜鉛1%、残部がマグネシウムと不純物となされたLAZ741材、リチウム14%、アルミニウム1%、残部がマグネシウムと不純物となされたLA141材、リチウム14%、アルミニウム2%、残部がマグネシウムと不純物となされたLA142材、リチウム14%、アルミニウム3%、残部がマグネシウムと不純物となされたLA143材、また、LZ91材にCaが数%添加された合金、LAZ741材にYが数%添加された合金、その他、マグネシウムとリチウムを主成分として1種または複数種の金属元素が添加された各種のリチウム−マグネシウム合金が挙げられる。
【0018】
なお、マグネシウム−リチウム合金の極表層では、リチウムが多量に偏析しているため、その表面では非常に腐食し易い状態になっている。したがって、このマグネシウム−リチウム合金は、通常の化成処理でも行われているように、必要に応じて、脱脂工程、水洗工程、エッチング工程等を経て表面酸化物層や偏析層の除去等を行ってから使用される。
【0019】
脱脂工程は、水酸化ナトリウム等による高アルカリ溶液中に浸漬させる等の方法によることができる。水酸化ナトリウムによる場合、好ましくは1〜20質量%の濃度の高アルカリ溶液として調製される。高アルカリ溶液中への浸漬時間は、1〜10分間であることが好ましい。水酸化ナトリウム水溶液の濃度が、1質量%未満であったり、浸漬時間が1分間未満であると、脱脂不足により外観不良を生じることとなる。また、20質量%よりも高い濃度の水酸化ナトリウム水溶液を用いると、アルカリ残が原因となる白粉が発生する。なお、上記した水酸化ナトリウム水溶液以外の高アルカリ溶液を使用する場合は、遊離アルカリ度(FAL)が21.0〜24.0ポイントとなるように調整したものを用いることが好ましい。
【0020】
エッチング処理液による処理工程は、主成分としてリン酸を9〜35g/リットルの濃度とした水溶液に、150〜500mg/リットルの中性フッ化アンモニウムを含有させたエッチング処理液で、マグネシウム−リチウム合金を浸漬処理することによって行われる。このエッチング処理液で処理することにより、従来では得られなかった、パーティクルの発生が無いマグネシウム−リチウム合金を得ることができる。しかも、表面電気抵抗値を低くすることができ、優れた塗装性能、耐食性も得られる。
【0021】
中性フッ化アンモニウムのエッチング処理液中の含有率は、150〜500mg/リットルであることが好ましく、より好ましくは、150〜400mg/リットルである。中性フッ化アンモニウムの含有量が、150mg/リットル未満の場合、マグネシウム−リチウム合金の表面に、表面電気抵抗値を低くするための微細な凸状突起を形成した化成処理膜を形成することができず、500mg/リットルを超える場合、隣接する凸状突起同士が繋がって連続した突起となってしまうとともに、パーティクルの発生が多くなりすぎてしまう。
【0022】
エッチング処理液における無機酸の濃度は、遊離酸度(FA)が9.0〜12.0ポイントの範囲となるように調整する。9.0ポイント未満であると、処理不足、外観不良、表面電気抵抗値の上昇、塗膜密着性の低下などを生じることがあり、12.0ポイントを超えると、過剰処理による肌荒れ、寸法不良、皮膜耐食性低下などを生じることがある。この際、無機酸において、リン酸が主成分となるように、エッチング処理液中、9〜35g/リットルの濃度でリン酸を使用する。
【0023】
マグネシウム−リチウム合金を表面処理した後に生じる、当該マグネシウム−リチウム合金の表面におけるパーティクルは、エッチングで発生した過剰エッチング成分が残留したものと考えられ、このパーティクルの発生を防止するためには、この過剰エッチングによって発生する遊離フッ素成分を一定量以下に制限する必要がある。一方、表面電気抵抗値を低くするためには、表面近傍の組成、汚れ、押し圧など様々な影響因子が考えられるが、特にマグネシウム−リチウム合金の表面に、所定高さがある複数の独立した凸状突起を形成することが有効である。これらのことから、中性フッ化アンモニウムを一定量の範囲の量に制御することで、遊離フッ素成分を完全に封鎖して、マグネシウム−リチウム合金の表面に発生するパーティクルの量を低減させるとともに、マグネシウム−リチウム合金の表面に、所定高さがある複数の独立した凸状突起を適度に散在した状態で形成して表面電気抵抗値を低く設定できることとなる。この際、凸状突起は、小さすぎると表面電気抵抗値を低くするために有効なものとならないので、最長離隔間距離、すなわち、凸状突起における最も離れた位置の間の直線距離が15μm以上となるように形成されたものであることが必要である。また、凸状突起の数としては、310μm×250μm四方の単位面積あたりに20個以上散在している必要がある。20個未満の場合は、表面電気抵抗値を低くすることができなくなる。なお、この凸状突起の数の上限については、特に限定されるものではないが、凸状突起の数を増やそうとして中性フッ化アンモニウムの量を増やすと、過剰エッチングで発生した遊離フッ素成分がパーティクルとなってマグネシウム−リチウム合金の表面に発生し易くなるとともに隣接する凸状突起同士が繋がってしまい、独立した凸状突起が形成され難くなる。したがって、凸状突起としては、310μm×250μm四方の単位面積あたりに20個〜85個、より好ましくは、30個〜70個が理想的な散在状態となる。
【0024】
上記エッチング処理液による浸漬は、35℃〜70℃、好ましくは55〜65℃の温度状態として行うのが好ましい。35℃未満であると、処理不足、外観不良、表面電気抵抗値の上昇、塗膜密着性低下などを生じることがあり、70℃を越えると、過剰処理による肌荒れ、寸法不良、皮膜耐食性低下などを生じることがある。また、浸漬時間は、0.5〜2分間、より好ましくは1分間である。0.5分間未満であると、処理不足、表面電気抵抗値の上昇、塗膜密着性低下などを生じることがあり、2分を越えると、皮膜耐食性が低下することがある。
【0025】
アルカリ系水溶液による脱脂処理の後、以上の組成で構成されるエッチング処理液により凸状突起を形成するための工程を行った後、スマットの残留分を除去するために、再度、アルカリ系水溶液により表面調整処理を実施する。このアルカリ系水溶液による表面調整処理は、脱脂工程と同様に、水酸化ナトリウム等による高アルカリ溶液中に浸漬させる等の方法によることができる。水酸化ナトリウムによる場合、好ましくは5〜30質量%の濃度の高アルカリ溶液として調製される。高アルカリ溶液中への浸漬時間は、0.5〜10分間であることが好ましい。また、浸漬温度は45〜70℃である。水酸化ナトリウム水溶液の濃度が、5質量%未満であったり、浸漬時間が0.5分間未満であったり、温度が45℃未満の場合は、スマットが残留し、皮膜耐食性が低下する可能性がある。また、30質量%よりも高い濃度の水酸化ナトリウム水溶液を用いると、アルカリ残が原因となる白粉が発生する可能性がある。なお、上記した水酸化ナトリウム水溶液以外の高アルカリ溶液を使用する場合は、遊離アルカリ度(FAL)が31.5〜35.5ポイントとなるように調整したものを用いることが好ましい。
【0026】
この表面調整処理の後に、フッ化物を含有する化成処理液により、皮膜化成処理する工程を行う。この工程によって耐食性が強化される。
【0027】
皮膜化成処理する工程は、フッ素を含有する化成処理液に浸漬することによって得られる。
【0028】
この化成処理液中のフッ素としては、フッ酸、フッ化ナトリウム、フッ化水素酸、酸性フッ化ナトリウム、酸性フッ化カリウム、酸性フッ化アンモニウム、ケイフッ化水素酸およびその塩、ならびにホウフッ化水素酸およびその塩から選ばれる少なくとも1種から供給されることが好ましい。これらの化合物によれば、フッ素が活性状態で十分に溶け込んだものとして得ることができるからである。この中でも特に、酸性フッ化アンモニウムが好ましい。
【0029】
化成処理液におけるフッ素の含有量は、好ましくは3.33〜40g/リットルの範囲の割合である。より好ましくは8.0〜30.0g/リットルである。フッ素の含有量が3.33g/リットル未満であると、皮膜付着量不足、皮膜耐食性低下などを生じることがあり、また、40g/リットルを超えると、表面電気抵抗値の上昇、塗膜密着性の低下などを生じることがあるからである。
【0030】
化成処理液における酸の濃度は、遊離酸度(FA)が8.0〜12.0ポイントの範囲となるように調整する。8.0ポイント未満であると、皮膜付着量不足、皮膜耐食性低下などを生じることがあり、12.0ポイントを超えると、表面電気抵抗値の上昇、塗膜密着性の低下などを生じることがあるからである。
【0031】
化成処理液による皮膜化成処理は、マグネシウム−リチウム合金を化成処理液中に浸漬する等、処理液をマグネシウム−リチウム合金の表面に一定時間接触させることができる一般的な方法によって行うことができる。
【0032】
上記した浸漬する方法による場合、化成処理液は、40〜80℃、好ましくは約55〜65℃の温度状態で行われるのが好ましい。マグネシウム及びリチウムと、フッ素との化学反応を迅速かつ良好に行わせるためである。また、浸漬時間は、好ましくは0.5〜5分間、より好ましくは約1.5〜4.5分間である。マグネシウム−リチウム合金の表面にフッ化マグネシウム及びフッ化リチウムを生じさせると共に、その複合作用を十分に発揮させるためである。浸漬時間が0.5分間未満であると、皮膜付着量不足、皮膜耐食性低下などを生じることがあり、5分間を超えると、過剰処理のため表面電気抵抗値の上昇、塗膜密着性の低下などを生じることがある。
【0033】
なお、上記した化成処理液による皮膜化成処理において、化成処理液には、ポリアリルアミン、ポリアリルアミン部分カル
ボニル化、ポリアクリル酸、ポリアクリルアミドの中から選択される少なくとも1種以上の有機化合物が、さらに加えられることが好ましい。この中でも特にポリアリルアミンが好ましい。すなわち、マグネシウム−リチウム合金の場合、上記した化成処理液によって皮膜化成処理を行うと、マグネシウム−リチウム合金の成分により、塗装性能(特に耐久性)が低下することが懸念されるが、上記したポリアリルアミン、ポリアリルアミン部分カル
ボニル化、ポリアクリル酸、ポリアクリルアミドの中から選択される少なくとも1種以上の有機化合物を加えることで、後に塗装を行う場合、塗膜の密着性能を向上させることができることとなる。この場合、上記有機化合物の添加量としては、化成処理液中に、50〜5000mg/リットルの量で含有されることが好ましく、2000〜4000mg/リットルの量で含有されることがより好ましい。
【0034】
本発明のマグネシウム−リチウム合金の表面処理方法においては、脱脂、エッチング処理液による処理工程、および表面調整処理を行った後に、この化成処理液による皮膜化成処理工程を行うことが好ましい。なお、脱脂、エッチング処理液による処理工程、および表面調整処理、皮膜化成処理は、それぞれ個別に行われ、各処理の間に水洗処理が施される。
【0035】
本発明の方法により表面処理したマグネシウム−リチウム合金は、その表面に形成した塗装膜に密着性を良好に保持させることができる。この塗装処理は、上記した本発明の表面調整処理後に、水洗、乾燥の過程を経た後に行うことができる。塗装方法としては、エポキシカチオン電着塗装によるプライマー処理、さらにはメラミン樹脂等による上塗り処理、一般焼付け塗装等の方法によることができる。
【0036】
また、本発明の方法により表面処理したマグネシウム−リチウム合金は、優れた耐食性が得られるだけでなく、粘着力7.02±1N/cmの強度を有するテープを、質量2kg、直径85mm、幅45mmの圧着ローラにより圧着し、その後、圧着面に対して90度の引き剥がし角度で引き剥がした際に、テープに移行したパーティクルの量を2.0mg/m2以下にすることができる。また、上記マグネシウム−リチウム合金は、ピン間10mm、ピン先直径2mmの円柱状2探針(1針の接触表面積3.14mm2)のAプローブ(株式会社三菱化学アナリテック社製)を、240gの荷重で表面に押圧した時の電流計の表面電気抵抗値を1Ω以下とすることができる。また、このプローブを60gの荷重で押圧した時の電流計の表面電気抵抗値でも10Ω以下、好ましい条件に整えると1Ω以下とすることができる。240gの荷重は、ビス固定によってマグネシウム−リチウム合金にアースを取る場合の固定力を想定しており、60gの荷重は、マグネシウム−リチウム合金の表面にテープ固定によってアースを取る場合の固定力を想定している。
【0037】
したがって、本発明の方法による表面処理を行って得られるマグネシウム−リチウム合金は、例えば、携帯電話、ノートパソコン、携帯翻訳機、ビデオカメラ、デジタルカメラなどのように、高い電磁波シールド性や、基板からのアースをとるために表面電気抵抗値が低いことを要求される、各種の電子機器筐体部品として有効利用することができる。
【0038】
さらに、本発明の方法による表面処理は、マグネシウム−リチウム合金の圧延材に施した後、得られた圧延材をプレス加工などで加工しても優れた耐食性と表面電気抵抗値を低く保つことができる。したがって、本発明の方法による表面処理は、プレス加工した後の部品の状態になったマグネシウム−リチウム合金に行うものであってもよいし、加工前の圧延材の状態のマグネシウム−リチウム合金に行うものであってもよい。
【0039】
さらに、このようにして得られるマグネシウム−リチウム合金に、後工程で塗装を行う場合には、化成処理液に上記したポリアリルアミン、ポリアリルアミン部分カル
ボニル化、ポリアクリル酸、ポリアクリルアミドの中から選択される少なくとも1種以上の有機化合物を加えて化成処理を行えば、塗膜の密着性を向上させ、塗膜耐久性を高めることができる。したがって、上記したような、各種の電子機器筐体部品の場合、筐体内でアースを取り、筐体外面に塗装を行うことができ、好適に利用することができる。