特許第6553799号(P6553799)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本たばこ産業株式会社の特許一覧

特許6553799エアロゾル吸引器、これ用の制御装置、これの制御方法並びにこれ用の制御装置の動作方法及びプログラム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6553799
(24)【登録日】2019年7月12日
(45)【発行日】2019年7月31日
(54)【発明の名称】エアロゾル吸引器、これ用の制御装置、これの制御方法並びにこれ用の制御装置の動作方法及びプログラム
(51)【国際特許分類】
   A24F 47/00 20060101AFI20190722BHJP
【FI】
   A24F47/00
【請求項の数】27
【全頁数】64
(21)【出願番号】特願2018-236963(P2018-236963)
(22)【出願日】2018年12月19日
【審査請求日】2018年12月19日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004569
【氏名又は名称】日本たばこ産業株式会社
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【弁理士】
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100153028
【弁理士】
【氏名又は名称】上田 忠
(72)【発明者】
【氏名】水口 一真
(72)【発明者】
【氏名】赤尾 剛志
(72)【発明者】
【氏名】中野 拓磨
(72)【発明者】
【氏名】辻 将之
(72)【発明者】
【氏名】藤田 創
【審査官】 根本 徳子
(56)【参考文献】
【文献】 米国特許出願公開第2017/0245553(US,A1)
【文献】 特表2014−501107(JP,A)
【文献】 特表2017−521076(JP,A)
【文献】 国際公開第2017/084818(WO,A1)
【文献】 特表2019−500896(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A24F 47/00
(57)【特許請求の範囲】
【請求項1】
エアロゾル吸引器用の制御装置であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより高くなるように構成され、前記制御装置は、
前記負荷の温度に関連する第1値を取得するためのセンサと、
制御部と
を含み、
前記制御部は、
前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断する
ように構成され、
前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値に正の第1既定値を加えた値であり、
前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値から正の第1既定値を引いた値である、
エアロゾル吸引器用の制御装置。
【請求項2】
前記第1既定値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値と、前記第1条件が満たされ且つ前記吸引があるときの前記第2値の差の絶対値である、
請求項1に記載のエアロゾル吸引器用の制御装置。
【請求項3】
前記第1既定値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値と、前記第1条件が満たされ且つ3秒間で55ccの前記吸引があるときの前記第2値の差の絶対値である、
請求項1に記載のエアロゾル吸引器用の制御装置。
【請求項4】
前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、
前記制御部は、前記第2値が前記閾値より大きいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項1に記載のエアロゾル吸引器用の制御装置。
【請求項5】
前記第1値は、前記負荷の温度が上昇したときに低下するものであり、
前記制御部は、前記第2値が前記閾値より小さいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項1に記載のエアロゾル吸引器用の制御装置。
【請求項6】
前記第1既定値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であり、且つ、前記吸引がない場合に定常状態となった前記第2値と、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値の差の絶対値である、
請求項1に記載のエアロゾル吸引器用の制御装置。
【請求項7】
前記第1既定値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であるという第2条件が満たされ、且つ、前記吸引がない場合に定常状態となった前記第2値と、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値の差の絶対値に、正の第2既定値を加えた値である、
請求項1に記載のエアロゾル生成器用の制御装置。
【請求項8】
前記第2既定値は、前記第2条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第2条件が満たされ且つ前記吸引があるときに定常状態となった前記第2値の差の絶対値である、
請求項7に記載のエアロゾル吸引器用の制御装置。
【請求項9】
前記第2既定値は、前記第2条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第2条件が満たされ且つ3秒間で55ccの前記吸引があるときに定常状態となった前記第2値の差の絶対値である、
請求項7に記載のエアロゾル吸引器用の制御装置。
【請求項10】
前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、
前記制御部は、前記第2値が前記閾値より大きいと1回検知される場合、前記枯渇又は前記不足の発生を判断するように構成される、
請求項7から9のいずれか1項に記載のエアロゾル吸引器用の制御装置。
【請求項11】
前記第1値は、前記負荷の温度が上昇したときに低下するものであり、
前記制御部は、前記第2値が前記閾値より小さいと1回検知される場合、前記枯渇又は前記不足の発生を判断するように構成される、
請求項7から9のいずれか1項に記載のエアロゾル吸引器用の制御装置。
【請求項12】
請求項1から11のいずれか1項に記載のエアロゾル吸引器用の制御装置と、
前記吸引が取り込む空気が流れる流路と、
前記流路外又は前記流路内の前記吸引により取り込まれる空気が当たらない箇所に配置される前記負荷と
を含むエアロゾル吸引器。
【請求項13】
エアロゾル吸引器用の制御装置の動作方法であって、前記エアロゾル吸引器は、
給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより高くなるように構成され、前記制御装置は、
前記負荷の温度に関連する第1値を取得するためのセンサと、
制御部と
を含み、
前記方法は、前記制御部が、
前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップ
を含み、
前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値に正の第1既定値を加えた値であり、
前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前吸引がない場合の前記第2値から正の第1既定値を引いた値である、
方法。
【請求項14】
エアロゾル吸引器用の制御装置であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより小さくなるように構成され、前記制御装置は、
前記負荷の温度に関連する第1値を取得するためのセンサと、
制御部と
を含み、
前記制御部は、
前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断する
ように構成され、
前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値以上であり、
前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値以下である、
エアロゾル吸引器用の制御装置。
【請求項15】
前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、
前記制御部は、前記第2値が前記閾値より大きいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項14に記載のエアロゾル吸引器用の制御装置。
【請求項16】
前記第1値は、前記負荷の温度が上昇したときに低下するものであり、
前記制御部は、前記第2値が前記閾値より小さいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項14に記載のエアロゾル吸引器用の制御装置。
【請求項17】
前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であるという第3条件が満たされ、且つ、前記吸引がない場合に定常状態となった前記第2値から、正の既定値を引いた値以上であり、
前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第3条件が満たされ且つ前記吸引がない場合に定常状態となった前記第2値に、正の既定値を加えた値以下である、
請求項14に記載のエアロゾル吸引器用の制御装置。
【請求項18】
前記既定値は、前記第3条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第3条件が満たされ且つ前記吸引があるときに定常状態となった前記第2値の差の絶対値である、
請求項17に記載のエアロゾル吸引器用の制御装置。
【請求項19】
前記既定値は、前記第3条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第3条件が満たされ且つ3秒間に55ccの前記吸引があるときに定常状態となった前記第2値の差の絶対値である、
請求項18に記載のエアロゾル吸引器用の制御装置。
【請求項20】
前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、
前記制御部は、前記第2値が前記閾値より大きいと1回検知される場合、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項18に記載のエアロゾル吸引器用の制御装置。
【請求項21】
前記第1値は、前記負荷の温度が上昇したときに低下するものであり、
前記制御部は、前記第2値が前記閾値より小さいと1回検知される場合、前記枯渇又は前記不足の発生を判断するよう構成される、
請求項18に記載のエアロゾル吸引器用の制御装置。
【請求項22】
請求項14から21のいずれか1項に記載のエアロゾル吸引器用の制御装置と、
外管と、
前記外管内に配置される内管と、
前記外管と前記内管の間に配置又は形成される前記貯留部と、
前記内管内に配置される前記負荷と、
前記貯留部が供給する前記エアロゾル源を前記負荷が加熱可能な位置で保持する保持部と
を含むエアロゾル吸引器。
【請求項23】
エアロゾル吸引器用の制御装置の動作方法であって、前記エアロゾル吸引器は、
給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより小さくなるように構成され、前記制御装置は、
前記負荷の温度に関連する第1値を取得するためのセンサと、
制御部と
を含み、
前記方法は、前記制御部が、
前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップ
を含み、
前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値以上であり、
前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値以下である、
方法。
【請求項24】
前記第2値は、
前記第1値と、
前記負荷へ給電された電力量により前記第1値が変化した量と、給電された前記電力量との比の値と、
時間の経過により前記第1値が変化した量と、経過した前記時間の長さとの比の値と
のいずれか1つである、
請求項1から11及び14から21のうちの何れか一項に記載のエアロゾル吸引器用の制御装置。
【請求項25】
前記第2値は、
前記第1値と、
前記負荷へ給電された電力量により前記第1値が変化した量と、給電された前記電力量との比の値と、
時間の経過により前記第1値が変化した量と、経過した前記時間の長さとの比の値と
のいずれか1つである
求項12又は22に記載のエアロゾル吸引器。
【請求項26】
前記第2値は、
前記第1値と、
前記負荷へ給電された電力量により前記第1値が変化した量と、給電された前記電力量との比の値と、
時間の経過により前記第1値が変化した量と、経過した前記時間の長さとの比の値と
のいずれか1つである、
請求項13又は23に記載のエアロゾル吸引器用の制御装置の動作方法。
【請求項27】
プロセッサにより実行されると、前記プロセッサに、請求項13、23又は26に記載の方法を実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ユーザが吸引するエアロゾルを生成するエアロゾル吸引器、これ用の制御装置、これの制御方法並びにこれ用の制御装置の動作方法及びプログラムに関する。なお、エアロゾル吸引器は、エアロゾル生成装置とも呼ばれることがある。
【背景技術】
【0002】
一般的な電子たばこ、加熱式たばこ、ネブライザーなどの、ユーザが吸引するエアロゾルを生成するためのエアロゾル吸引器においては、霧化されることでエアロゾルとなるエアロゾル源(以下、エアロゾル形成基質と呼ぶこともある)が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図した香喫味を有するエアロゾルを生成できないという問題が生じうる。
【0003】
この問題に対する解決策として、特許文献1には、給電初期のヒータ温度の上昇速度と閾値とに基づき、エアロゾル形成基質が空になったことを判定する技術が開示されている。特許文献2には、ヒータが動作していない間に、給電開始から所定の時間経過後のヒータ温度又は給電初期のヒータ温度の上昇速度に基づき、エアロゾル形成基材が空になったことを判定する技術が開示されている。
【0004】
しかしながら、ヒータ温度の挙動は、ユーザによるエアロゾルの吸引により影響を受ける可能性があるところ、特許文献1又は2に記載された技術は、このような点を何ら考慮していない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2012/085203号
【特許文献2】国際公開第2017/084818号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示は、上記の点に鑑みてなされたものである。
本開示が解決しようとする第1の課題は、吸引によるヒータ温度の変化を相殺可能なエアロゾル吸引器、これ用の制御装置、これの制御方法並びにこれ用の制御装置の動作方法及びプログラムを提供することである。
【0007】
本開示が解決しようとする第2の課題は、吸引によるヒータ温度の変化の影響を受けずにエアロゾル源の残量についての判断が可能なエアロゾル吸引器、これ用の制御装置、これの制御方法並びにこれ用の制御装置の動作方法及びプログラムを提供することである。
【課題を解決するための手段】
【0008】
上述した第1の課題を解決するため、本開示の実施形態によれば、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部と、を含み、前記制御部は、前記第1値に基づく第2値と、閾値とに基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断し、前記吸引を検知した場合、前記第2値と前記閾値のうち少なくとも一方を修正し、前記判断においては、少なくとも一方が修正された前記第2値と前記閾値の比較が行われるよう構成される、エアロゾル吸引器用の制御装置が提供される。
【0009】
かかる実施形態によれば、エアロゾル生成中に吸引された場合には、ヒータ温度に関連する値に基づく値又はエアロゾル源の枯渇若しくは不足判定用の閾値が修正されるために、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0010】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0011】
一実施形態において、前記第2センサ又は前記制御部は、前記吸引の強さに関連する値を取得するよう構成され、前記制御部は、前記第2値又は前記閾値を修正する量を、前記強さに関連する値に応じて変更又は調整するようよう構成されることができる。
【0012】
かかる実施形態によれば、吸引の強さ(速さ、圧力変化の大きさ等)に応じて、ヒータ温度に関連する値に基づく値又はエアロゾル源の枯渇若しくは不足判定用の閾値を修正するために、どのような強さの吸引が実行されても、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0013】
一実施形態において、前記エアロゾル吸引器は、前記負荷への給電中又は前記負荷のエアロゾル生成中に前記吸引があると、前記負荷の温度が低下するように構成され、前記制御部は、前記吸引を検知した場合、前記第1値が前記負荷の温度が低下したときに低下するものであるときには、前記第2値が大きくなるように又は前記閾値が小さくなるように修正し、前記第1値が前記負荷の温度が低下したときに上昇するものであるときには、前記第2値が小さくなるように又は前記閾値が大きくなるように修正するよう構成されることができる。
【0014】
かかる実施形態によれば、吸引によってヒータ温度が低下する系では、吸引されると、ヒータ温度に関連する値に基づく値がヒータ温度の低下により低下するものであるのか上昇するものであるのか(言い換えると、ヒータ温度の上昇により上昇するものであるのか低下するものであるのか)に基づき、当該値又は閾値を修正する。従って、吸引によってヒータ温度が低下する系で、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0015】
一実施形態において、前記エアロゾル吸引器は、前記負荷への給電中又は前記負荷のエアロゾル生成中に前記吸引があると、前記負荷の温度が上昇するように構成され、前記制御部は、前記吸引を検知した場合、前記第1値が前記負荷の温度が上昇したときに上昇するものであるときには、前記第2値が小さくなるように又は前記閾値が大きくなるように修正し、前記第1値が前記負荷の温度が上昇したときに低下するものであるときには、前記第2値が大きくなるように又は前記閾値が小さくなるように修正するよう構成されることができる。
【0016】
かかる実施形態によれば、吸引によってヒータ温度が上昇する系では、吸引されると、ヒータ温度に関連する値に基づく値がヒータ温度の上昇により上昇するものであるのか低下するものであるのかに基づき、当該値又は閾値を修正する。従って、吸引によってヒータ温度が上昇する系で、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0017】
上述した第1の課題を解決するため、本開示の実施形態によれば、上記エアロゾル吸引器用の制御装置と、前記吸引が取り込む空気が流れる流路と、前記流路外又は前記流路内の前記空気が当たらない箇所に配置される前記負荷とを含み、前記制御部は、前記吸引を検知した場合、前記第1値が前記負荷の温度が上昇したときに上昇するものであるときには、前記第2値が小さくなるように又は前記閾値が大きくなるように修正し、前記第1値が前記負荷の温度が上昇したときに低下するものであるときには、前記第2値が大きくなるように又は前記閾値が小さくなるように修正するよう構成される、エアロゾル吸引器が提供される。
【0018】
かかる実施形態によれば、流路外又は流路内の吸入した空気が当たらない箇所に負荷が配置される系では、吸引されると、ヒータ温度に関連する値に基づく値がヒータ温度の上昇により上昇するものであるのか低下するものであるのかに基づき、当該値又は閾値を修正する。従って、このような系で、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0019】
上述した第1の課題を解決するため、本開示の実施形態によれば、請求項1に記載のエアロゾル吸引器用の制御装置と、外管と、前記外管内に配置される内管と、前記外管と前記内管の間に配置又は形成される前記貯留部と、前記内管内に配置される前記負荷と、前記貯留部が供給する前記エアロゾル源を前記負荷が加熱可能な位置で保持する保持部とを含み、前記制御部は、前記吸引を検知した場合、前記第2値と前記閾値の少なくとも一方を前記吸引の強さに拠らず一定量だけ修正するよう構成される、エアロゾル吸引器が提供される。
【0020】
かかる実施形態によれば、吸引の強さがヒータ温度変化に大きな影響を与えない系では、吸引の強さによらず一定量の修正を行うために、制御装置を簡素化でき、さらにはコスト・重量・体積を削減できる。
【0021】
一実施形態において、前記制御部は、前記吸引を検知した場合、前記第2値と前記閾値のうち前記閾値のみ修正するよう構成されることができる。
かかる実施形態によれば、センサ誤差が出力値に乗ったり、不連続な値を取ったりしやすいヒータ温度に関連する値に比べて、固定値である閾値を修正するために、吸引に伴う修正を実行しても、エアロゾル源の枯渇又は不足判定の精度を担保できる。
【0022】
一実施形態であるエアロゾル吸引器用の制御装置は、第1開閉器を有する第1回路と、第2開閉器を有し、前記第1回路より抵抗値が高く且つ前記第1回路に並列接続される第2回路とを含み、前記第1センサは、温度に応じて変化する前記負荷の抵抗値に関連する値を、前記第1値として出力し、前記制御部は、前記第1回路と前記第2回路のうち前記第2回路のみ機能させている間の前記第1値に基づき、前記枯渇又は前記不足の発生を判断するよう構成されることができる。
【0023】
かかる実施形態によれば、抵抗値が高い第2回路を使ってヒータ温度を検出するために、抵抗値が低い第1回路を使った場合と比べてヒータ温度にノイズが乗りにくくなり、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0024】
上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部とを含み、前記方法は、前記制御部が、前記第1値に基づく第2値と、閾値とに基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップであって、前記吸引を検知した場合に、前記第2値と前記閾値のうち少なくとも一方を修正するステップと、少なくとも一方が修正された前記第2値と前記閾値の比較を行うステップとを含むステップとを含む、方法が提供される。
【0025】
かかる実施形態によれば、エアロゾル生成中に吸引された場合には、ヒータ温度に関連する値に基づく値又はエアロゾル源の枯渇若しくは不足判定用の閾値が修正されるために、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0026】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0027】
上述した第1の課題を解決するため、本開示の実施形態によれば、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部とを含み、前記制御部は、前記第1値に基づく第2値と、閾値とに基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断し、前記吸引を検知した場合、前記判断においては、前記第2値と、前記吸引を検知しなかった場合の閾値とは異なる閾値の比較が行われるよう構成される、エアロゾル吸引器用の制御装置が提供される。
【0028】
上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部とを含み、前記方法は、前記制御部が、前記第1値に基づく第2値と、閾値とに基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップであって、前記吸引を検知したか否かに応じて異なる閾値を取得するステップと、前記第2値と取得した前記閾値の比較を行うステップとを含む、ステップとを含む、方法が提供される。
【0029】
かかる実施形態によれば、エアロゾル生成中に吸引された場合と吸引されなかった場合とで異なる閾値を用いることができるために、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0030】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0031】
上述した第1の課題を解決するため、本開示の実施形態によれば、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部とを含み、前記制御部は、前記第1値に基づき、前記負荷の温度又は前記負荷の温度の時系列的な変化を取得し、前記吸引を検知した場合、前記負荷の温度又は前記負荷の温度の時系列的な変化を修正するよう構成される、エアロゾル吸引器用の制御装置が提供される。
【0032】
上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の温度に関連する第1値を取得するための第1センサと、吸引を検知する第2センサと、制御部とを含み、前記方法は、前記制御部が、前記第1値に基づき、前記負荷の温度又は前記負荷の温度の時系列的な変化を取得するステップと、前記吸引を検知した場合、前記負荷の温度又は前記負荷の温度の時系列的な変化を修正するステップとを含む、方法が提供される。
【0033】
かかる実施形態によれば、吸引を検知した場合には、ヒータ温度又は温度プロファイルを修正するために、吸引の有無に関わらず、適切なヒータ温度又は温度プロファイルを取得できる。
【0034】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0035】
一実施形態において、前記第2値は、前記第1値と、前記負荷へ給電された電力量により前記第1値が変化した量と、給電された前記電力量との比の値と、時間の経過により前記第1値が変化した量と、経過した前記時間の長さとの比の値とのいずれか1つであってよい。
【0036】
かかる実施形態によれば、ヒータ温度に関連した値に基づく様々な値を用いることができるために、設計の自由度が向上する。
上述した第1の課題を解決するため、本開示の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上記方法を実行させるプログラムが提供される。
【0037】
かかる実施形態によれば、エアロゾル生成中に吸引された場合には、ヒータ温度に関連する値に基づく値と、エアロゾル源の枯渇若しくは不足判定用の閾値と、ヒータ温度若しくは温度プロファイルのいずれか1つが修正されるか、又は、吸引されなかった場合とは異なる閾値が用いられる。従って、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる、又は、適切なヒータ温度又は温度プロファイルを取得できる。
【0038】
上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより高くなるように構成され、前記制御装置は、前記負荷の温度に関連する第1値を取得するためのセンサと、制御部とを含み、前記制御部は、前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するように構成され、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値に正の第1既定値を加えた値であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値から正の第1既定値を引いた値である、エアロゾル吸引器用の制御装置が提供される。
【0039】
かかる実施形態によれば、吸引によってヒータ温度が上昇する系では、ヒータ温度がエアロゾル生成温度に達したときのヒータ温度に関連する値に基づく値から、当該値がヒータ温度の上昇により上昇するものであるのか低下するものであるのかに基づき既定値を増減させた値を、エアロゾル源の枯渇又は不足判定用の閾値に用いるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0040】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0041】
一実施形態において、前記第1既定値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値と、前記第1条件が満たされ且つ前記吸引があるときの前記第2値の差の絶対値であってよい。
【0042】
一実施形態において、前記第1既定値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値と、前記第1条件が満たされ且つ3秒間で55ccの前記吸引があるときの前記第2値の差の絶対値であってよい。
【0043】
かかる実施形態によれば、閾値の算出の際に設ける既定値(バッファ)は、吸引に起因するものであるために、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0044】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、前記制御部は、前記第2値が前記閾値より大きいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成されることができる。
【0045】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに低下するものであり、前記制御部は、前記第2値が前記閾値より小さいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するよう構成されることができる。
【0046】
かかる実施形態によれば、ヒータ温度に関連する値に基づく値と閾値の大小関係が複数回エアロゾル源の枯渇又は不足が疑われる条件を満たさない限り、エアロゾル源の枯渇又は不足の判定をしないために、より確実にエアロゾル源の枯渇又は不足の発生を検知できる。
【0047】
一実施形態において、前記第1既定値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であり、且つ、前記吸引がない場合に定常状態となった前記第2値と、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値の差の絶対値であってよい。
【0048】
かかる実施形態によれば、吸引の有無に関わらずヒータ温度がエアロゾル源の枯渇時又は不足時の温度以上である場合のみ、エアロゾル源の枯渇又は不足の発生を検知するために、より確実にエアロゾル源の枯渇又は不足の発生を検知できる。
【0049】
一実施形態において、前記第1既定値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であるという第2条件が満たされ、且つ、前記吸引がない場合に定常状態となった前記第2値と、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値の差の絶対値に、正の第2既定値を加えた値であってよい。
【0050】
かかる実施形態によれば、エアロゾル源の枯渇時又は不足時における温度に既定値を加えた値を、エアロゾル源の枯渇又は不足判定用の閾値に用いるために、液枯渇時に吸引が有った場合でも、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0051】
一実施形態において、前記第2既定値は、前記第2条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第2条件が満たされ且つ前記吸引があるときに定常状態となった前記第2値の差の絶対値であってよい。
【0052】
一実施形態において、前記第2既定値は、前記第2条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第2条件が満たされ且つ3秒間で55ccの前記吸引があるときに定常状態となった前記第2値の差の絶対値であってよい。
【0053】
かかる実施形態によれば、閾値の算出の際に設ける第2既定値(バッファ)は、吸引に起因するものであるために、エアロゾル源の枯渇時又は不足時における吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0054】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、前記制御部は、前記第2値が前記閾値より大きいと1回検知される場合、前記枯渇又は前記不足の発生を判断するように構成されることができる。
【0055】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに低下するものであり、前記制御部は、前記第2値が前記閾値より小さいと1回検知される場合、前記枯渇又は前記不足の発生を判断するように構成されることができる。
【0056】
かかる実施形態によれば、エアロゾル源の枯渇又は不足の発生が強く疑われる場合には、ヒータ温度に関連する値に基づく値と閾値の大小関係が1回でもエアロゾル源の枯渇又は不足が疑われる条件を満たしたら、エアロゾル源の枯渇又は不足が発生していると判断する。従って、製品の品質及び判断のスピードを向上できる。
【0057】
上述した第2の課題を解決するため、本開示の実施形態によれば、上記エアロゾル吸引器用の制御装置と、前記吸引が取り込む空気が流れる流路と、前記流路外又は前記流路内の前記吸引により取り込まれる空気が当たらない箇所に配置される前記負荷とを含むエアロゾル吸引器が提供される。
【0058】
上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより高くなるように構成され、前記制御装置は、前記負荷の温度に関連する第1値を取得するためのセンサと、制御部とを含み、前記方法は、前記制御部が、前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップを含み、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値に正の第1既定値を加えた値であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前吸引がない場合の前記第2値から正の第1既定値を引いた値である、方法が提供される。
【0059】
かかる実施形態によれば、吸引によってヒータ温度が上昇する系では、ヒータ温度がエアロゾル生成温度に達したときのヒータ温度に関連する値に基づく値から、当該値がヒータ温度の上昇により上昇するものであるのか低下するものであるのかに基づき既定値を増減させた値を、エアロゾル源の枯渇又は不足判定用の閾値に用いるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0060】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0061】
上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより小さくなるように構成され、前記制御装置は、前記負荷の温度に関連する第1値を取得するためのセンサと、制御部とを含み、前記制御部は、前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するように構成され、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値以上であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がない場合の前記第2値以下である、エアロゾル吸引器用の制御装置が提供される。
【0062】
かかる実施形態によれば、吸引によってヒータ温度が低下する系では、エアロゾル源の枯渇又は不足判定用の適切な閾値を用いるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0063】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0064】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、前記制御部は、前記第2値が前記閾値より大きいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するようよう構成されることができる。
【0065】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに低下するものであり、前記制御部は、前記第2値が前記閾値より小さいと複数回検知される場合のみ、前記枯渇又は前記不足の発生を判断するようよう構成されることができる。
【0066】
かかる実施形態によれば、ヒータ温度に関連する値に基づく値と閾値の大小関係が複数回エアロゾル源の枯渇又は不足が疑われる条件を満たさない限り、エアロゾル源の枯渇又は不足の判定をしないために、より確実にエアロゾル源の枯渇又は不足の発生を検知できる。
【0067】
一実施形態において、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記枯渇又は前記不足が発生し、前記負荷へ給電中であるという第3条件が満たされ、且つ、前記吸引がない場合に定常状態となった前記第2値から、正の既定値を引いた値以上であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第3条件が満たされ且つ前記吸引がない場合に定常状態となった前記第2値に、正の既定値を加えた値以下であってよい。
【0068】
かかる実施形態によれば、エアロゾル源が枯渇又は不足したときのヒータ温度に関連する値に基づく値から、当該値がヒータ温度の上昇により上昇するものであるのか低下するものであるのかに基づき既定値を増減させた値を、エアロゾル源の枯渇又は不足判定用の閾値に用いるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0069】
一実施形態において、前記既定値は、前記第3条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第3条件が満たされ且つ前記吸引があるときに定常状態となった前記第2値の差の絶対値であってよい。
【0070】
一実施形態において、前記既定値は、前記第3条件が満たされ且つ前記吸引がないときに定常状態となった前記第2値と、前記第3条件が満たされ且つ3秒間に55ccの前記吸引があるときに定常状態となった前記第2値の差の絶対値であってよい。
【0071】
かかる実施形態によれば、閾値の算出の際に設ける既定値(バッファ)は、吸引に起因するものであるために、吸引の有無に関わらず、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できる。
【0072】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに上昇するものであり、前記制御部は、前記第2値が前記閾値より大きいと1回検知される場合、前記枯渇又は前記不足の発生を判断するよう構成されることができる。
【0073】
一実施形態において、前記第1値は、前記負荷の温度が上昇したときに低下するものであり、前記制御部は、前記第2値が前記閾値より小さいと1回検知される場合、前記枯渇又は前記不足の発生を判断するよう構成されることができる。
【0074】
かかる実施形態によれば、エアロゾル源の枯渇又は不足の発生が強く疑われる場合には、ヒータ温度に関連する値に基づく値と閾値の大小関係が1回でもエアロゾル源の枯渇又は不足が疑われる条件を満たしたら、エアロゾル源の枯渇又は不足が発生していると判断する。従って、製品の品質と判断のスピードを向上できる。
【0075】
上述した第2の課題を解決するため、本開示の実施形態によれば、上記エアロゾル吸引器用の制御装置と、外管と、前記外管内に配置される内管と、前記外管と前記内管の間に配置又は形成される前記貯留部と、前記内管内に配置される前記負荷と、前記貯留部が供給する前記エアロゾル源を前記負荷が加熱可能な位置で保持する保持部とを含むエアロゾル吸引器が提供される。
【0076】
上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより小さくなるように構成され、前記制御装置は、前記負荷の温度に関連する第1値を取得するためのセンサと、制御部とを含み、前記方法は、前記制御部が、前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断するステップを含み、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値以上であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値以下である、方法が提供される。
【0077】
かかる実施形態によれば、吸引によってヒータ温度が低下する系では、エアロゾル源の枯渇又は不足判定用の適切な閾値を用いるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【0078】
かかる実施形態によれば、エアロゾル源の枯渇又は不足が発生したか否かを適切に判断できるため、エアロゾル源を十分に消費してから新たなエアロゾル源に交換できるという省エネルギー効果を有する。
【0079】
一実施形態において、前記第2値は、前記第1値と、前記負荷へ給電された電力量により前記第1値が変化した量と、給電された前記電力量との比の値と、時間の経過により前記第1値が変化した量と、経過した前記時間の長さとの比の値とのいずれか1つであってよい。
【0080】
かかる実施形態によれば、ヒータ温度に関連した値に基づく様々な値を用いることができるために、設計の自由度が向上する。
上述した第2の課題を解決するため、本開示の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上記方法を実行させるプログラムが提供される。
【0081】
かかる実施形態によれば、吸引によってヒータ温度が上昇する系であっても低下する系であっても、また、ヒータ温度に関連する値に基づく値がヒータ温度の上昇により上昇するものであっても低下するものであっても、エアロゾル源の枯渇又は不足判定用の閾値が適切なものとなるために、吸引の有無に応じてヒータ温度や閾値を修正しなくても、エアロゾル源の枯渇又は不足が発生しているか否かの判定精度が向上する。
【図面の簡単な説明】
【0082】
図1A】本開示の一実施形態による、エアロゾル吸引器の構成の概略的なブロック図である。
図1B】本開示の一実施形態による、エアロゾル吸引器の構成の概略的なブロック図である。
図2】本開示の一実施形態による、エアロゾル吸引器の一部に関する例示的な回路構成を示す図である。
図3】エアロゾル吸引器の負荷の温度プロファイルを概略的に表すグラフと、所定時間又は所定電力量あたりの負荷の温度変化を図解している。
図4A】エアロゾル吸引器の負荷付近の例示的且つ概略的構造を表している。
図4B】様々な構造を有するエアロゾル吸引器の負荷の例示的温度プロファイルを表すグラフである。
図5】吸引を考慮した、ある構造を有するエアロゾル吸引器の負荷の温度プロファイルを概略的に表すグラフと、所定時間又は所定電力量あたりの負荷の温度変化を図解している。
図6】吸引を考慮した、ある構造を有するエアロゾル吸引器の負荷の温度プロファイルを概略的に表すグラフと、所定時間又は所定電力量あたりの負荷の温度変化を図解している。
図7】吸引を考慮した、ある構造を有するエアロゾル吸引器の負荷の温度プロファイルを概略的に表すグラフと、所定時間又は所定電力量あたりの負荷の温度変化を図解している。
図8A】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8B】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8C】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8D】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8E】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8F】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8G】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8H】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理のフローチャートである。
図8I】本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理を強制終了するための例示処理のフローチャートである。
図9A】本開示の一実施形態による、ヒータ温度に関連する値を取得するためのより具体的な例示処理のフローチャートである。
図9B】本開示の一実施形態による、異なる時点におけるヒータ温度に関連する値を取得するためのより具体的な例示処理のフローチャートである。
図9C】本開示の一実施形態による、異なる時点におけるヒータ温度に関連する値を取得するためのより具体的な例示処理のフローチャートである。
図9D】本開示の一実施形態による、異なる時点におけるヒータ温度に関連する値を取得するためのより具体的な例示処理のフローチャートである。
図10A】本開示の一実施形態による、修正値を設定するための例示処理のフローチャートである。
図10B】本開示の一実施形態による、修正値を設定するための例示処理のフローチャートである。
図10C】本開示の一実施形態による、修正値を設定するための例示処理のフローチャートである。
図11】本開示の一実施形態による、エアロゾル源が低残量であるときに実行されるより具体的な例示処理のフローチャートである
【発明を実施するための形態】
【0083】
以下、図面を参照しながら本開示の実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこ、加熱式たばこ及びネブライザーを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾルを生成するための様々なエアロゾル吸引器を含みうる。
【0084】
1 エアロゾル吸引器の概要
図1Aは、本開示の一実施形態に係るエアロゾル吸引器100Aの構成の概略的なブロック図である。図1Aは、エアロゾル吸引器100Aが備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル吸引器100Aの厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。
【0085】
図1Aに示されるように、エアロゾル吸引器100Aは、第1の部材102(以下、「本体102」という)及び第2の部材104A(以下、「カートリッジ104A」という)を備える。図示されるように、一例として、本体102は、制御部106、通知部108、電源110、センサ112及びメモリ114を含んでもよい。エアロゾル吸引器100Aは、流速センサ、流量センサ、圧力センサ、電圧センサ、電流センサ、温度センサなどのセンサを有してもよく、本開示においてはこれらをまとめて「センサ112」ともいう。本体102はまた、後述する回路134を含んでもよい。一例として、カートリッジ104Aは、貯留部116A、霧化部118A、空気取込流路120、エアロゾル流路121、吸口部122、保持部130及び負荷132を含んでもよい。本体102内に含まれるコンポーネントの一部がカートリッジ104A内に含まれてもよい。カートリッジ104A内に含まれるコンポーネントの一部が本体102内に含まれてもよい。カートリッジ104Aは、本体102に対して着脱可能に構成されてもよい。あるいは、本体102及びカートリッジ104A内に含まれるすべてのコンポーネントが、本体102及びカートリッジ104Aに代えて、同一の筐体内に含まれてもよい。
【0086】
貯留部116Aは、エアロゾル源を収容するタンクとして構成されてもよい。この場合、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体やこれらの混合液体である。エアロゾル吸引器100Aが電子たばこである場合、貯留部116A内のエアロゾル源は、加熱することによって香喫味成分を放出する成分を含んでいてもよい。保持部130は、貯留部116Aが供給するエアロゾル源を負荷132が加熱可能な位置で保持する。例えば、保持部130は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維やセラミック、またはたばこ原料などを用いることができる。エアロゾル吸引器100Aがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、貯留部116Aは、消費されたエアロゾル源を補充することができる構成を有してもよい。あるいは、貯留部116Aは、エアロゾル源が消費された際に貯留部116A自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部116Aは、空洞の容器であってもよい。
【0087】
霧化部118Aは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作やユーザによる他の操作が検知されると、霧化部118Aはエアロゾルを生成する。例えば、保持部130は、貯留部116Aと霧化部118Aとを連結するように設けられる。この場合、保持部130の一部は貯留部116Aの内部に通じ、エアロゾル源と接触する。保持部130の他の一部は霧化部118Aへ延びる。なお、霧化部118Aへ延びた保持部130の他の一部は、霧化部118Aに収められてもよく、あるいは、霧化部118Aを通って再び貯留部116Aの内部に通じてもよい。エアロゾル源は、保持部130の毛細管効果によって貯留部116Aから霧化部118Aへと運ばれる。一例として、霧化部118Aは、電源110に電気的に接続された負荷132を含むヒータを備える。ヒータは、保持部130と接触又は近接するように配置される。吸引動作やユーザによる他の操作が検知されると、制御部106は、霧化部118Aのヒータへの電力供給を制御し、保持部130を通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Aには空気取込流路120が接続され、空気取込流路120はエアロゾル吸引器100Aの外部へ通じている。霧化部118Aにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Aにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。
【0088】
吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121をエアロゾル吸引器100Aの外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。
【0089】
通知部108は、LEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどを含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動などによって、ユーザに対して何らかの通知を行うように構成される。
【0090】
なお、カートリッジ104Aは外管として、空気取込流路120及びエアロゾル流路121の一方又は双方は外管内に配置される内管として構成することができる。また、負荷132は、内管である空気取込流路120又はエアロゾル流路121内に配置することができる。貯留部116Aは、外管であるカートリッジ104Aと内管である空気取込流路120又はエアロゾル流路121の間に配置又は形成することができる。
【0091】
電源110は、通知部108、センサ112、メモリ114、負荷132、回路134などのエアロゾル吸引器100Aの各コンポーネントに電力を供給する。電源110は、一次電池であるか、又は、エアロゾル吸引器100Aの所定のポート(図示せず)を介して外部電源に接続することにより充電することができる二次電池であってよい。電源110のみを本体102又はエアロゾル吸引器100Aから取り外すことができてもよく、新しい電源110と交換することができてもよい。また、本体102全体を新しい本体102と交換することによって電源110を新しい電源110と交換することができてもよい。一例として、電源110は、リチウムイオン二次電池やニッケル水素二次電池やリチウムイオンキャパシタなどから構成されていてよい。
【0092】
センサ112は、回路134の全体又は特定の部分に印加される電圧の値、回路134の全体又は特定の部分に流れる電流の値、負荷132の抵抗値に関連する値又は温度に関連する値などを取得するために用いられる1つ又は複数のセンサを含んでもよい。センサ112は回路134に組み込まれてもよい。センサ112の機能が制御部106に組み込まれてもよい。センサ112はまた、空気取込流路120及び/又はエアロゾル流路121内の圧力の変動を検知する圧力センサ、流速を検知する流速センサ及び流量を検知する流量センサのうちの1以上を含んでもよい。センサ112はまた、貯留部116Aなどのコンポーネントの重量を検知する重量センサを含んでもよい。センサ112はまた、エアロゾル吸引器100Aを用いたユーザによるパフの回数を計数するように構成されてもよい。センサ112はまた、霧化部118Aへの通電時間を積算するように構成されてもよい。センサ112はまた、貯留部116A内の液面の高さを検知するように構成されてもよい。センサ112はまた、電源110のSOC(State of Charge,充電状態)、電流積算値、電圧などを求める又は検知するように構成されてもよい。SOCは、電流積算法(クーロン・カウンティング法)やSOC−OCV(Open Circuit Voltage,開回路電圧)法等によって求められてもよい。センサ112はまた、ユーザが操作可能な操作ボタンなどに対する操作を検出可能であってもよい。
【0093】
制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従ってエアロゾル吸引器100Aの動作を制御するように構成されてもよい。メモリ114は、ROM、RAM、フラッシュメモリなどの記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、エアロゾル吸引器100Aの制御に必要な設定データ等が格納されてもよい。例えば、メモリ114は、通知部108の制御方法(発光、発声、振動等の態様等)、センサ112により取得及び/又は検知された値、霧化部118Aの加熱履歴等の様々なデータを格納してもよい。制御部106は、必要に応じてメモリ114からデータを読み出してエアロゾル吸引器100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。
【0094】
図1Bは、本開示の一実施形態に係るエアロゾル吸引器100Bの構成の概略的なブロック図である。
図示されるように、エアロゾル吸引器100Bは、図1Aのエアロゾル吸引器100Aと類似した構成を有する。但し、第2の部材104B(以下、「エアロゾル発生物品104B」又は「スティック104B」という)の構成は第2の部材104Aの構成とは異なっている。一例として、エアロゾル発生物品104Bは、エアロゾル基材116B、霧化部118B、空気取込流路120、エアロゾル流路121、吸口部122を含んでもよい。本体102内に含まれるコンポーネントの一部がエアロゾル発生物品104B内に含まれてもよい。エアロゾル発生物品104B内に含まれるコンポーネントの一部が本体102内に含まれてもよい。エアロゾル発生物品104Bは、本体102に対して挿抜可能に構成されてもよい。あるいは、本体102及びエアロゾル発生物品104B内に含まれるすべてのコンポーネントが、本体102及びエアロゾル発生物品104Bに代えて、同一の筐体内に含まれてもよい。
【0095】
エアロゾル基材116Bは、エアロゾル源を担持する固体として構成されてもよい。図1Aの貯留部116Aの場合と同様に、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体やこれらの混合液体であってもよい。エアロゾル基材116B内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。 なお、エアロゾル基材116Bそのものがたばこ原料から構成されていてもよい。エアロゾル吸引器100Bがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。エアロゾル基材116Bは、エアロゾル源が消費された際にエアロゾル基材116B自体を交換することができるように構成されてもよい。エアロゾル源は液体に限られるものではなく、固体でも良い。
【0096】
霧化部118Bは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作やユーザによる他の操作が検知されると、霧化部118Bはエアロゾルを生成する。霧化部118Bは、電源110に電気的に接続された負荷を含むヒータ(図示せず)を備える。吸引動作やユーザによる他の操作が検知されると、制御部106は、霧化部118Bのヒータへの電力供給を制御し、エアロゾル基材116B内に担持されたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Bには空気取込流路120が接続され、空気取込流路120はエアロゾル吸引器100Bの外部へ通じている。霧化部118Bにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Bにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。
【0097】
制御部106は、本開示の実施形態に係るエアロゾル吸引器100A及び100B(以下、まとめて「エアロゾル吸引器100」ともいう)を様々な方法で制御するように構成される。
【0098】
図2は、本開示の一実施形態による、エアロゾル吸引器100の一部に関する例示的な回路構成を示す図である。
図2に示す回路200は、電源110、制御部106、センサ112A乃至D(以下、まとめて「センサ112」ともいう)、負荷132(以下、「ヒータ抵抗」ともいう)、第1回路202、第2回路204、第1電界効果トランジスタ(FET)206を含むスイッチQ1、変換部208、第2FET210を含むスイッチQ2、抵抗212(以下、「シャント抵抗」ともいう)を備える。負荷132の電気抵抗値は温度に応じて変化する。換言すれば、負荷132はPTCヒータを含んでいてよい。シャント抵抗212は、負荷132と直列に接続され、既知の電気抵抗値を有する。シャント抵抗212の電気抵抗値は温度に対して殆ど又は完全に不変であってもよい。シャント抵抗212は負荷132より大きな電気抵抗値を有する。実施形態に応じて、センサ112C、112Dは省略されてもよい。FETだけでなく、IGBT、コンタクタなどの様々な素子をスイッチQ1及びQ2として用いることができることは当業者にとって明らかであろう。また、スイッチQ1及びQ2は、同一の特性を有していることが好ましいが、そうでなくてもよい。従って、スイッチQ1及びQ2として用いるFET、IGBT、コンタクタ等は、同一の特性を有していることが好ましいが、そうでなくてもよい。
【0099】
変換部208は、例えばスイッチング・コンバータであり、FET214、ダイオード216、インダクタ218及びキャパシタ220を含みうる。変換部208が電源110の出力電圧を変換して、変換された出力電圧が回路全体に印加されるように、制御部106は変換部208を制御してもよい。ここで、変換部208は、制御部106による制御により、少なくともスイッチQ2がオン状態である間は、一定の電圧を出力するよう構成されていることが好ましい。また、変換部208は、制御部106による制御により、スイッチQ1がオン状態である間も、一定の電圧を出力するように構成されていてもよい。なお、スイッチQ1がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧と、スイッチQ2がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧は、同じでもよいし異なっていてもよい。これらが異なる場合、スイッチQ1がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧は、スイッチQ2がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧より、高くてもよいし低くてもよい。かかる構成によれば、電圧や他のパラメータが安定するため、エアロゾルの残量の推定精度が向上することになる。更に、変換部208は、制御部106による制御により、スイッチQ1のみがオン状態である間は、電源110の出力電圧が直接第1回路に印加されるように構成されていてもよい。このような態様は、制御部106が、スイッチング・コンバータをスイッチング動作が停止する直結モードで制御することによって実現されてもよい。なお、変換部208は必須のコンポーネントではなく、省略することも可能である。
【0100】
図1A及び図1Bに示される回路134は、電源110と負荷132とを電気的に接続し、第1回路202及び第2回路204を含みうる。第1回路202及び第2回路204は、電源110及び負荷132に対して並列接続される。第1回路202はスイッチQ1を含みうる。第2回路204はスイッチQ2及び抵抗212(及び、オプションとして、センサ112D)を含みうる。第1回路202は第2回路204よりも小さい抵抗値を有してもよい。この例において、センサ112B及び112Dは電圧センサであり、それぞれ、負荷132及び抵抗212の両端の電位差(以下、「電圧」又は「電圧値」ということもある。)を検知するように構成される。しかし、センサ112の構成はこれに限定されない。例えば、センサ112は電流センサであってもよく、負荷132及び/又は抵抗212を流れる電流の値を検知してもよい。
【0101】
図2において点線矢印で示すように、制御部106は、スイッチQ1、スイッチQ2等を制御することができ、センサ112により検知された値を取得することができる。制御部106は、スイッチQ1をオフ状態からオン状態に切り替えることにより第1回路202を機能させ、スイッチQ2をオフ状態からオン状態に切り替えることにより第2回路204を機能させるように構成されてもよい。制御部106は、スイッチQ1及びQ2を交互に切り替えることにより、第1回路202及び第2回路204を交互に機能させるように構成されてもよい。
【0102】
第1回路202はエアロゾル源の霧化に主に用いられる。スイッチQ1がオン状態に切り替えられて第1回路202が機能するとき、ヒータ(すなわち、ヒータ内の負荷132)に電力が供給され、負荷132は加熱される。負荷132の加熱により、霧化部118A内の保持部130に保持されているエアロゾル源(図1Bのエアロゾル吸引器100Bの場合、エアロゾル基材116Bに担持されたエアロゾル源)が霧化されてエアロゾルが生成される。
【0103】
第2回路204は、負荷132に印加される電圧の値、負荷132に流れる電流の値、抵抗212に印加される電圧の値、抵抗212に流れる電流の値等を取得するために用いられる。
【0104】
取得された電圧又は電流の値は、負荷132の抵抗値を取得するために用いることができる。以下、スイッチQ1がオフ状態であり第1回路202が機能しておらず、スイッチQ2がオン状態であり第2回路204が機能している場合を考える。この場合、電流はスイッチQ2、シャント抵抗212及び負荷132を流れるため、負荷132の温度がTHTRであるときの負荷132の抵抗値RHTR(THTR)は、例えば以下の式を用いて計算により取得することが可能である。
【0105】
【数1】
【0106】
ここで、Voutは、センサ112Cより検知されうる電圧又は変換部208が出力する予め定められた目標電圧であって、第1回路202及び第2回路204全体に印加される電圧を表している。なお、変換部208を用いない場合には、電圧Voutはセンサ112Aにより検知されうる電圧VBattであってもよい。VHTRはセンサ112Bにより検知されうる負荷132に印加される電圧を表しており、Vshuntはセンサ112Dにより検知されうるシャント抵抗212に印加される電圧を表している。IHTRは、図示しないセンサ(例えば、ホール素子)等により検知されうる負荷132に流れる電流(この場合にはシャント抵抗212に流れる電流と同じ)を表している。Rshuntは予め決定可能なシャント抵抗212の既知の抵抗値を表している。
【0107】
なお、負荷132の抵抗値は、スイッチQ1がオン状態である場合にも、スイッチQ2が機能しているか否かに関わらず、少なくとも式(4)を用いれば求めることが可能である。このことは、本開示の実施形態は、スイッチQ1がオン状態であるときに取得したセンサ112の出力値を用いることや、第2回路204が存在しない回路を用いることが可能であることを意味している。また、上述した手法は例示にすぎず、負荷132の抵抗値は任意の手法により求めてよいことに留意されたい。
【0108】
取得した負荷132の抵抗値は、負荷132の温度を取得するために用いることができる。詳細には、負荷132が温度に応じて抵抗値が変わる正又は負の温度係数特性(正の温度係数特性は、「PTC特性」と呼ばれることがある。)を有している場合、予め知られている負荷132の抵抗値と温度との間の関係と、上述のようにして求められたと負荷132の抵抗値RHTR(THTR)とに基づいて、負荷132の温度THTRを推定することができる。なお、負荷132の温度は、負荷132の抵抗値を取得又は計算せずに、取得された電圧又は電流の値から直接取得又は計算することができることは理解されよう。また、取得された電圧又は電流の値そのものを負荷132の温度に相当するものとして扱ってよいことも理解されよう。
【0109】
なお、エアロゾル吸引器100が含む回路は、上述したセンサのうちの少なくとも1つに代えて又は加えて、負荷132の温度に対応した値を直接出力する温度センサを含んでいてもよい。
【0110】
2 エアロゾル源の枯渇又は不足の発生を判断する原理
本開示の一実施形態によるエアロゾル吸引器100は、エアロゾル源の枯渇又は不足の発生を判断する。以下、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断する原理について説明する。
【0111】
なお、本開示において、エアロゾル源の残量が「枯渇」しているとは、エアロゾル源の残量がゼロ又はほぼゼロである状態を意味している。
また、本開示において、エアロゾル源の残量が「不足」しているとは、エアロゾル源の残量が十分ではないが枯渇はしていない状態を意味していてもよい。あるいは、エアロゾル源の残量が瞬時的なエアロゾル生成には十分ではあるが、継続的なエアロゾル生成には不十分な状態を意味していてもよい。あるいは、エアロゾル源の残量が十分な香喫味を有するエアロゾルを生成できない不十分な状態を意味していてもよい。
【0112】
更に、エアロゾル基材116B又は保持部130においてエアロゾル源が飽和状態にあるときには、負荷132の温度は、エアロゾル源の沸点やエアロゾル源の蒸発によりエアロゾルの生成が生じる温度(以下、「沸点等」という。)で定常状態となる。この事象は、電源110から供給される電力によって負荷132で発生する熱が、これらの温度を境にエアロゾル源の昇温ではなくエアロゾル源の蒸発やエアロゾルの生成に用いられることから理解されよう。ここで、エアロゾル基材116B又は保持部130においてエアロゾル源が飽和状態ではないが、その残量が一定量以上ある場合にも、負荷132の温度は沸点等で定常状態となる。本開示においてエアロゾル基材116B又は保持部130におけるエアロゾル源の残量が「十分」であるとは、エアロゾル基材116B若しくは保持部130におけるエアロゾル源の残量が当該一定量以上であるか、又は、エアロゾル基材116B若しくは保持部130におけるエアロゾル源の残量が、負荷132の温度が沸点等で定常状態となる程度である状態(飽和状態を含む)を意味している。なお、後者の場合、エアロゾル基材116B又は保持部130におけるエアロゾル源の具体的な残量を特定する必要はないことに留意されたい。また、エアロゾル源の沸点とエアロゾルの生成が生じる温度とは、エアロゾル源が単一の組成の液体である場合には一致する。一方で、エアロゾル源が混合液である場合には、ラウールの法則で求めた理論的な混合液体の沸点をエアロゾルの生成が生じる温度にみなしてもよいし、エアロゾル源の沸騰によってエアロゾルが生成される温度を実験で求めてもよい。
【0113】
更にまた、貯留部116Aにおけるエアロゾル源の残量が一定量未満である場合には、原則的には、貯留部116Aから保持部130へのエアロゾル源の供給がなされなくなる(極めて少量のエアロゾル源が供給されることや、エアロゾル吸引器100を傾けたり、振ったりすることによって多少の供給がなされることはある)。本開示において貯留部116Aについてエアロゾル源の残量が「十分」であるとは、貯留部116Aにおけるエアロゾル源の残量が当該一定量以上あるか、又は、保持部130におけるエアロゾル源を飽和状態に若しくはエアロゾル源の残量を上記一定量以上にする供給が可能な程度である状態を意味している。なお、後者の場合、負荷132の温度が沸点等で定常状態となっていることによって貯留部116Aにおけるエアロゾル源の残量が十分であることを推定又は判断できるために、貯留部116Aにおけるエアロゾル源の具体的な残量を特定する必要はないことに留意されたい。また、この場合、保持部130におけるエアロゾル源の残量が十分でない(即ち、不足又は枯渇している)ときには、貯留部116Aにおけるエアロゾル源の残量が十分でない(即ち、不足又は枯渇している)と推定する又は判断することができる。
【0114】
以下、貯留部116A、エアロゾル基材116B及び保持部130を、まとめて「保持部等」という。
2−1 基本的原理
図3は、負荷132に給電を開始してからの負荷132の温度(以下、「ヒータ温度」ともいう。)の時系列的な変化(以下、「温度プロファイル」ともいう。)を概略的に表すグラフ300と、所定時間あたり又は供給される所定電力あたりの負荷132の温度変化350を図解している。
【0115】
グラフ300における310は、保持部等におけるエアロゾル源の残量が十分であるときの負荷132の概略的な温度プロファイルを示しており、TB.P.は、エアロゾル源の沸点等を示している。温度プロファイル310は、保持部等におけるエアロゾル源の残量が十分であるときには、負荷132の温度が、上昇を開始した後、エアロゾル源の沸点等TB.P.に又は沸点等TB.P.の近傍おいて定常状態となることを示している。これは、最終的に、負荷132に供給される電力のほぼ全てが保持部等におけるエアロゾル源の霧化に費やされるために、供給電力による負荷132の温度上昇が生じなくなるためであると考えられる。
【0116】
なお、温度プロファイル310はあくまで概略を模式的に表したものであり、実際には、負荷132の温度には、局所的な上下動が含まれ、図示されていない何らかの過渡的変化が生じる場合もあることに留意されたい。これらの過渡的変化は、負荷132において一時的に発生し得る温度の偏りや、負荷132の温度そのものや負荷132の温度に相当する電気的なパラメータを検出するセンサなどに生じるチャタリングなどによって生じ得る。この点は、以下に説明する「概略的な温度プロファイル」についても同様である。
【0117】
グラフ300における320は、保持部等におけるエアロゾル源の残量が十分でないときの負荷132の概略的な温度プロファイルを示している。温度プロファイル320は、保持部等におけるエアロゾル源の残量が十分でないときには、負荷132の温度が、上昇を開始した後、エアロゾル源の沸点等TB.P.よりも高い平衡温度Tequi.において定常状態となる場合があることを示している。これは、最終的に、負荷132に印加される電力による昇温と、負荷132付近の物質(負荷132の周りの気体や、エアロゾル吸引器100の構造の一部等を含む)への熱移動による降温と、場合によっては、エアロゾル基材116B又は保持部130における少量のエアロゾル源の気化熱による降温とが釣り合うためであると考えられる。なお、保持部等におけるエアロゾル源の残量が十分でないときには、エアロゾル基材116B又は保持部130におけるエアロゾル源の残量や貯留部116Aにおけるエアロゾル源の残量(保持部130へのエアロゾル源の供給速度に影響を与えうる。)、エアロゾル基材116B又は保持部130におけるエアロゾル源の分布等に応じて、負荷132は異なる温度で定常状態となる場合があることが確認されている。平衡温度Tequi.は、そのような温度のうちの1つ、好ましくは、そのような温度のうちの1つであって、最も高い温度(エアロゾル基材116B又は保持部130におけるエアロゾル源の残量が完全にゼロであるときの温度)ではない温度である。なお、保持部等におけるエアロゾル源の残量が十分でない場合、負荷132の温度が定常状態にならないときがあることも確認されているが、このときであっても、負荷132の温度がエアロゾル源の沸点等TB.P.よりも高い温度に達することに変わりはない。
【0118】
以上に述べた保持部等におけるエアロゾル源が十分であるとき及び十分でないときの負荷132の概略的な温度プロファイルに基づくと、基本的には、負荷132の温度が、エアロゾル源の沸点等TB.P.以上平衡温度Tequi.以下の所定の温度閾値Tthreを越えたか否かを判定することによって、保持部等におけるエアロゾル源の残量が十分であること又は十分でないこと(即ち、不足若しくは枯渇していること)を判断可能である。
【0119】
所定時間あたりの負荷132の温度変化350は、グラフ300における時点tから時点tまでの間の所定時間Δtあたりの負荷132の温度変化を示している。360及び370は、それぞれ、保持部等におけるエアロゾル源の残量が十分であるとき及び十分でないときの温度変化に対応する。温度変化360は、保持部等におけるエアロゾル源の残量が十分であるときには、負荷132の温度が、所定時間ΔtあたりΔTsatだけ上昇することを示している。また、温度変化370は、保持部等におけるエアロゾル源の残量が十分でないときには、負荷132の温度が、所定時間ΔtあたりΔTsatより大きなΔTdepだけ上昇することを示している。なお、ΔTsat及びΔTdepは、所定時間Δtの長さにより変化し、また、長さを固定したとしても、t(及びt)を変化させると変化する。以下、ΔTsat及びΔTdepは、ある長さの所定時間Δtにおいてt(及びt)を変化させたときにとりうる最大の温度変化であるものとする。
【0120】
以上に述べた保持部等におけるエアロゾル源が十分であるとき及び十分でないときの負荷132の所定時間あたりの温度変化に基づくと、基本的には、所定時間Δtあたりの温度変化が、ΔTsat以上ΔTdep以下の所定の温度変化閾値ΔTthreを越えたか否かを判定することによっても、保持部等におけるエアロゾル源の残量が十分であること又は十分でないこと(即ち、不足若しくは枯渇していること)を判断可能である。
【0121】
なお、所定時間Δtあたりの温度変化に代えて、負荷132に供給される所定電力ΔWあたりの負荷132の温度変化を用いて、保持部等におけるエアロゾル源の残量が十分であること又は十分でないことを判断できることが理解されるであろう。
【0122】
以上、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断する基本的原理について述べた。しかしながら、このように設定された閾値は、実用上問題を生じさせることがある。というのは、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100を吸引することによって、定常状態となる負荷132の温度や、所定時間あたりの負荷132の温度変化が変化することが確認されたためである。以下、この点について説明する。
【0123】
2−2 ヒータ温度の挙動と改良された原理
図4Aは、エアロゾル吸引器100の負荷132付近の例示的且つ概略的構造を表している。400A〜400Cはそれぞれ異なる例示的構造を示している。410は保持部等に相当するものを示し、420は少なくともその一部が負荷132に相当するものを示している。430は、エアロゾル吸引器100を吸引することにより生ずる気流の流れる方向を示している。なお、構造400Aにおいて、負荷132は、上記気流が当たらない箇所に配置されている。具体的には、保持部410の一部窪んだ箇所に負荷132が配置されることで、構造400Aにおいては負荷132に上記気流が当たらない。なお、上記気流の流路から離間して負荷132を配置することで、負荷132に上記気流が当たらないようにしてもよい。
【0124】
図4Bは、構造400A〜400Cを有するエアロゾル吸引器100を用いて実験することにより取得した、例示的温度プロファイルを表すグラフ450A〜450Cをそれぞれ表している。460は、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときに取得した、負荷132の複数の温度プロファイルの平均を示している。470は、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を3秒間に55cc(cm)の流量が生じるように吸引しているときに取得した、負荷132の複数の温度プロファイルの平均を示している。480は、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を3秒間に110cc(cm)の流量が生じるように吸引しているときに取得した、負荷132の複数の温度プロファイルの平均を示している。ここで、温度プロファイル480に係る吸引の強さは、温度プロファイル470に係る吸引の強さより大きいことに留意されたい。
【0125】
図5は、理解を容易にするために図4Bのグラフ450Aにおける例示的温度プロファイルを簡略化した、負荷132の概略的な温度プロファイルを含むグラフ500と、所定時間当たりの負荷132の温度変化550を図解している。
【0126】
グラフ500における510Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの負荷132の概略的な温度プロファイルを示しており、図3における温度プロファイル310に相当する。一方、510Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さで吸引しているときの負荷132の概略的な温度プロファイルを示している。温度プロファイル510Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さ(以下、その流速をvとする。)で吸引しているときには、負荷132の温度が、上昇を開始した後、エアロゾルの沸点等TB.P.よりも大きな温度T’satmax(v)において定常状態となることを示している。510Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さよりも大きな第2の強さで吸引しているときの負荷132の概略的な温度プロファイルを示している。温度プロファイル510Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さ(以下、その流速をvとする。)で吸引しているときには、負荷132の温度が、上昇を開始した後、温度T’satmax(v)よりも大きな温度T’satmax(v)において定常状態となることを示している。
【0127】
即ち、温度プロファイル510A〜510Cは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の定常状態となる温度が上昇する系が存在することを示している。このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度閾値を用いると、保持部等におけるエアロゾル源の残量が十分であるにもかかわらず、十分でないと誤判断する可能性があるという問題がある。例えば、温度閾値としてグラフ500におけるTthreを用いた場合には、エアロゾル吸引器100を第1の強さv以上で吸引した場合に、保持部等におけるエアロゾル源の残量が十分であるときでも、十分でないとの誤判断がなされてしまう。
【0128】
この問題は、負荷132の温度を、吸引の強さ(以下、その流速をvとする。)に応じた負荷132の定常状態となる温度T’satmax(v)以上平衡温度Tequi.以下の所定の温度閾値T’thre(v)と比較することによって対処可能である。具体的一例として、負荷132の温度が温度閾値T’thre(v)を超える場合のみ、保持部等におけるエアロゾル源の残量が十分でないと判断すればよい。
【0129】
別の観点から述べると、グラフ500におけるTthreをエアロゾル吸引器100に対する吸引を考慮せずに設定された温度閾値であるとし、エアロゾル源の沸点等TB.P.と温度T’satmax(v)の差の大きさをε(v)とすると、比較すべき温度閾値T’thre(v)をTthre+ε(v)に設定すれば、上記問題は生じない。例えば、エアロゾル吸引器100を第1の強さv及び第2の強さvで吸引したときに、比較すべき温度閾値T’thre(v)及びT’thre(v)を、それぞれ、Tthre+ε(v)及びTthre+ε(v)に動的に設定すれば、保持部等におけるエアロゾル源の残量についての誤判断は生じない。
【0130】
また発明者等は、このような系においては、保持部等におけるエアロゾル源の残量が十分でないときにも、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ負荷132が達する平衡温度Tequi.が上昇する可能性があることを発見した。グラフ500における520A及び520Bは、それぞれ、保持部等におけるエアロゾル源の残量が十分でなく、且つ、エアロゾル吸引器100を吸引していないとき及びある強さで吸引しているときの負荷132の例示的且つ概略的な温度プロファイルを示している。従って、以下、保持部等におけるエアロゾル源の残量が十分でないときに、吸引の強さに応じた負荷132が達する平衡温度をT’depmax(v)とすると、比較すべき温度閾値は、T’satmax(v)以上T’depmax(v)以下であってもよい。
【0131】
なお、様々な吸引の強さに応じたT’satmax(v)、ε(v)及びT’depmax(v)の値又はそれらの関数は、実験等により予め求めておくことができる。また、T’satmax(v)、ε(v)及びT’depmax(v)は、流速vではなく、対応する流量又は圧力の関数であってもよい。ここで、これら流速、流量及び圧力の値は、吸引の強さに関連する値である。
【0132】
所定時間当たりの負荷132の温度変化550は、グラフ500における時点tから時点tまでの時間Δtあたりの負荷132の温度変化を示している。560Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの、所定時間Δtあたりの負荷132の温度変化を示しており、図3における温度変化360に相当する。一方、560Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときの、所定時間Δtあたりの負荷132の温度変化を示している。温度変化560Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときには、所定時間Δtあたり負荷132の温度がΔTsatより大きなΔT’sat(v)だけ上昇することを示している。560Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときの、所定時間Δtあたりの負荷132の温度変化を示している。温度変化560Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときには、所定時間Δtあたり、負荷132の温度が、ΔT’sat(v)より大きなΔT’sat(v)だけ上昇することを示している。
【0133】
即ち、温度変化560A〜560Cは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間あたりの負荷132の温度上昇が大きくなる系が存在することを示している。このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度変化閾値を用いると、保持部等におけるエアロゾル源の残量が十分であるにもかかわらず、十分でないと誤判断する可能性があるという問題がある。例えば、温度変化閾値として温度変化550におけるΔTthreを用いた場合には、エアロゾル吸引器100を第1の強さv以上で吸引した場合に、保持部等におけるエアロゾル源の残量が十分であるときでも、十分でないとの誤判断がなされてしまう。
【0134】
以下、保持部等におけるエアロゾル源の残量が十分であり、且つ、流速がvである場合に、ある長さの所定時間Δtにおいてt(及びt)を変化させたときにとりうる最大の温度変化をΔT’sat(v)とすると、この問題は、所定時間Δtあたりの負荷132の温度変化を、吸引の強さに応じた温度変化であるΔT’sat(v)以上ΔTdep以下の所定の温度変化閾値ΔT’thre(v)と比較することによって対処可能である。具体的一例として、所定時間Δtあたりの負荷132の温度変化が温度変化閾値ΔT’thre(v)を超える場合のみ、保持部等におけるエアロゾル源の残量が十分でないと判断すればよい。
【0135】
別の観点から述べると、温度変化550におけるΔTthreをエアロゾル吸引器100に対する吸引を考慮せずに設定された温度変化閾値であるとし、ΔTsatとΔT’sat(v)の差の大きさをΔε(v)とすると、比較すべき温度変化閾値ΔT’thre(v)をΔTthre+Δε(v)に設定すれば、上記問題は生じない。例えば、エアロゾル吸引器100を第1の強さv及び第2の強さvで吸引したときに、比較すべき温度変化閾値ΔT’thre(v)及びΔT’thre(v)を、それぞれ、ΔTthre+Δε(v)及びΔTthre+Δε(v)に動的に設定すれば、保持部等におけるエアロゾル源の残量についての誤判断は生じない。
【0136】
また発明者等は、このような系においては、保持部等におけるエアロゾル源の残量が十分でないときにも、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が大きくなる可能性があることを発見した。温度変化550における570A及び570Bは、それぞれ、保持部等におけるエアロゾル源の残量が十分でなく、且つ、エアロゾル吸引器100を吸引していないとき及びある強さで吸引しているときの負荷132の例示的温度変化を示している。従って、以下、保持部等におけるエアロゾル源の残量が十分でなく、且つ、流速がvである場合に、ある長さの所定時間Δtにおいてt(及びt)を変化させたときにとりうる最大の温度変化をΔT’dep(v)とすると、比較すべき温度変化閾値ΔT’thre(v)は、ΔT’sat(v)以上ΔT’dep(v)以下であってもよい。
【0137】
なお、様々な吸引の強さに応じたΔT’sat(v)、Δε(v)及びΔT’dep(v)の値又はそれらの関数は、実験等により予め求めておくことができる。また、ΔT’sat(v)、Δε(v)及びΔT’dep(v)は、流速vではなく、対応する流量又は圧力の関数であってもよい。
【0138】
図6は、理解を容易にするために図4Bのグラフ450Bにおける例示的温度プロファイルを簡略化した、負荷132の概略的な温度プロファイルを含むグラフ600と、所定時間当たりの負荷132の温度変化650を図解している。
【0139】
グラフ600における610Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの負荷132の概略的な温度プロファイルを示しており、図3における温度プロファイル310に相当する。一方、610Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときの負荷132の概略的な温度プロファイルを示している。温度プロファイル610Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときには、負荷132の温度が、上昇を開始した後、エアロゾルの沸点等TB.P.よりも小さな温度T’satmax(v)において定常状態となることを示している。610Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときの負荷132の概略的な温度プロファイルを示している。温度プロファイル610Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときには、負荷132の温度が、上昇を開始した後、温度T’satmax(v)よりも小さな温度T’satmax(v)において定常状態となることを示している。
【0140】
即ち、温度プロファイル610A〜610Cは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の定常状態となる温度が低下する系が存在することを示している。このような系においては、保持部等におけるエアロゾル源の残量が十分でないときにも、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132が達する平衡温度Tequi.が低下する可能性があり、従って、このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度閾値を用いると、保持部等におけるエアロゾル源の残量が十分でないにもかかわらず、十分であると誤判断する可能性があるという問題がある。グラフ600における620A及び620Bは、それぞれ、保持部等におけるエアロゾル源の残量が十分でなく、且つ、エアロゾル吸引器100を吸引していないとき及びある強さで吸引しているときの負荷132の例示的且つ概略的な温度プロファイルを示している。例えば、温度閾値としてグラフ600におけるTthreを用いた場合には、エアロゾル吸引器100を上記ある強さ以上で吸引した場合に、保持部等におけるエアロゾル源の残量が十分でないときでも、十分であるとの誤判断がなされてしまう。
【0141】
この問題は、負荷132の温度を、エアロゾル源の沸点等TB.P.又は吸引の強さに応じた温度であるT’satmax(v)以上、吸引の強さに応じた平衡温度であるT’depmax(v)以下の所定の温度閾値T’thre(v)と比較することによって対処可能である。具体的一例として、負荷132の温度が温度閾値T’thre(v)を超える場合のみ、保持部等におけるエアロゾル源の残量が十分でないと判断すればよい。
【0142】
別の観点から述べると、グラフ600におけるTthreをエアロゾル吸引器100に対する吸引を考慮せずに設定された温度閾値であるとし、平衡温度Tequi.と温度T’depmax(v)の差の大きさをε(v)とすると、比較すべき温度閾値T’thre(v)をTthre−ε(v)に設定すれば、上記問題は生じない。
【0143】
所定時間当たりの負荷132の温度変化650は、グラフ600における時点tから時点tまでの時間Δtあたりの負荷132の温度変化を示している。660Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの、所定時間Δtあたりの負荷132の温度変化を示しており、図3における温度変化360に相当する。一方、660Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときの、所定時間Δtあたりの負荷132の温度変化を示している。温度変化660Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さvで吸引しているときには、所定時間Δtあたり負荷132の温度がΔTsatより小さなΔT’sat(v)だけ上昇することを示している。660Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときの、所定時間Δtあたりの負荷132の温度変化を示している。温度変化660Cは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さvで吸引しているときには、所定時間Δtあたり、負荷132の温度が、ΔT’sat(v)より小さなΔT’sat(v)だけ上昇することを示している。
【0144】
即ち、温度変化660A〜660Cは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間あたりの負荷132の温度上昇が小さくなる系が存在することを示している。このような系においては、保持部等におけるエアロゾル源の残量が十分でないときにも、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が小さくなる可能性があり、従って、このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度変化閾値を用いると、保持部等におけるエアロゾル源の残量が十分でないにもかかわらず、十分であると誤判断する可能性があるという問題がある。温度変化650における670A及び670Bは、それぞれ、保持部等におけるエアロゾル源の残量が十分でなく、且つ、エアロゾル吸引器100を吸引していないとき及びある強さで吸引しているときの負荷132の例示的温度変化を示している。例えば、温度変化閾値として温度変化650におけるΔTthreを用いた場合には、エアロゾル吸引器100を上記ある強さ以上で吸引した場合に、保持部等におけるエアロゾル源の残量が十分でないときでも、十分であるとの誤判断がなされてしまう。
【0145】
この問題は、所定時間Δtあたりの負荷132の温度変化を、ΔTsat又は吸引の強さに応じた温度変化であるΔT’sat(v)以上、吸引の強さに応じた温度変化であるΔT’dep(v)以下の所定の温度変化閾値ΔT’thre(v)と比較することによって対処可能である。具体的一例として、所定時間Δtあたりの負荷132の温度変化が温度変化閾値ΔT’thre(v)を超える場合のみ、保持部等におけるエアロゾル源の残量が十分でないと判断すればよい。
【0146】
別の観点から述べると、温度変化650におけるΔTthreをエアロゾル吸引器100に対する吸引を考慮せずに設定された温度変化閾値であるとし、ΔTdepとΔT’dep(v)の差の大きさをΔε(v)とすると、比較すべき温度変化閾値ΔT’thre(v)をΔTthre−Δε(v)に動的に設定すれば、上記問題は生じない。
【0147】
図7は、理解を容易にするために図4Bのグラフ450Cにおける例示的温度プロファイルを簡略化した、負荷132の概略的な温度プロファイルを含むグラフ700と、所定時間当たりの負荷132の温度変化750を図解している。
【0148】
グラフ700における710Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの負荷132の概略的な温度プロファイルを示しており、図3における温度プロファイル310に相当する。一方、710Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さで吸引しているときの負荷132の概略的な温度プロファイルを示している。温度プロファイル710Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さで吸引しているときには、負荷132の温度が、上昇を開始した後、エアロゾルの沸点等TB.P.よりも大きな温度T’satmaxにおいて定常状態となることを示している。しかしながら、710Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さと異なる第2の強さで吸引しているときの負荷132の概略的な温度プロファイルも示している。従って、温度プロファイル710Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さで吸引しているときにも、負荷132の温度が、上昇を開始した後、温度T’satmaxにおいて定常状態となることを示している。
【0149】
即ち、温度プロファイル710A及び710Bは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引により、負荷132の定常状態となる温度が上昇するものの、その上昇の大きさが少なくともある範囲の吸引の強さにおいてほぼ変化しない系が存在することを示している。このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度閾値を用いると、保持部等におけるエアロゾル源の残量が十分であるにもかかわらず、十分でないと誤判断する可能性があるという問題がある。例えば、温度閾値としてグラフ700におけるTthreを用いた場合には、エアロゾル吸引器100を吸引した場合に、保持部等におけるエアロゾル源の残量が十分であるときでも、十分でないとの誤判断がなされてしまう可能性がある。
【0150】
このような系において生ずる問題は、図5のグラフ500に関して上述した手法において、吸引の強さに応じたT’satmax(v)、ε(v)及びT’depmax(v)並びにT’thre(v)を、定数T’satmax、ε及びT’depmax並びにT’threとみなすことにより、同様に対処可能である。
【0151】
また発明者等は、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引により、負荷132の定常状態となる温度が低下するものの、その低下の大きさが少なくともある範囲の吸引の強さにおいてほぼ変化しない系が存在する可能性もあることを発見した。このような系において生ずる問題も、図6のグラフ600に関して上述した手法において、吸引の強さに応じたT’satmax(v)、ε(v)及びT’depmax(v)並びにT’thre(v)を、定数T’satmax、ε及びT’depmax並びにT’threとみなすことにより、同様に対処可能である。
【0152】
所定時間当たりの負荷132の温度変化750は、グラフ700における時点tから時点tまでの時間Δtあたりの負荷132の温度変化を示している。760Aは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を吸引していないときの、所定時間Δtあたりの負荷132の温度変化を示しており、図3における温度変化360に相当する。一方、760Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さで吸引しているときの、所定時間Δtあたりの負荷132の温度変化を示している。温度変化760Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さで吸引しているときには、所定時間Δtあたり負荷132の温度が、ΔTsatより大きなΔT’satだけ上昇することを示している。しかしながら、760Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第1の強さと異なる第2の強さで吸引しているときの、所定時間Δtあたりの負荷132の温度変化も示している。従って、温度変化760Bは、保持部等におけるエアロゾル源の残量が十分であり、且つ、エアロゾル吸引器100を第2の強さで吸引しているときにも、所定時間Δtあたり負荷132の温度がΔT’satだけ上昇することを示している。
【0153】
即ち、温度変化760A及び760Bは、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引により、所定時間あたりの負荷132の温度上昇が大きくなるものの、その温度上昇が大きくなる程度が少なくともある範囲の吸引の強さにおいてほぼ変化しない系が存在することを示している。このような系において、エアロゾル吸引器100に対する吸引を考慮せずに設定された温度変化閾値を用いると、保持部等におけるエアロゾル源の残量が十分であるにもかかわらず、十分でないと誤判断する可能性があるという問題がある。例えば、温度変化閾値として温度変化750におけるΔTthreを用いた場合には、エアロゾル吸引器100を吸引した場合に、保持部等におけるエアロゾル源の残量が十分であるときでも、十分でないとの誤判断がなされてしまう可能性がある。
【0154】
このような系において生ずる問題は、図5の温度変化550に関して上述した手法において、吸引の強さに応じたΔT’sat(v)、Δε(v)及びΔT’dep(v)並びにΔT’thre(v)を、定数ΔT’sat、Δε及びΔT’dep並びにΔT’threとみなすことにより、同様に対処可能である。
【0155】
また発明者等は、負荷132の構造によっては、保持部等におけるエアロゾル源の残量が十分であるときに、エアロゾル吸引器100に対する吸引により、所定時間あたりの負荷132の温度上昇が小さくなるものの、その温度上昇が小さくなる程度が少なくともある範囲の吸引の強さにおいてほぼ変化しない系が存在する可能性もあることを発見した。このような系において生ずる問題も、図6の温度変化650に関して上述した手法において、吸引の強さに応じたΔT’sat(v)、Δε(v)及びΔT’dep(v)並びにΔT’thre(v)を、定数ΔT’sat、Δε及びΔT’dep並びにΔT’threとみなすことにより、同様に対処可能である。
【0156】
2−3 ヒータ温度の挙動についての考察
以下、上述したような系が存在することの1つの可能性ある原因について説明する。
時点tから所定時間Δt経過後の負荷132の温度THTR(t+Δt)は、基本的には以下のように表せる。
【0157】
【数2】
【0158】
ここで、vrising及びvcoolingは、それぞれ、負荷132の温度を上昇及び低下させる要因による負荷132の昇温速度及び冷却速度を表している。冷却速度vcoolingは、系内の冷媒によるもの(即ち、エアロゾル源や系内に定常的に存在する空気などへの熱移動によるもの)vcoolantと、エアロゾル吸引器100の吸引による空冷によるもの(即ち、吸引時のみ生じる負荷132に積極的に空気が当たることによる冷却効果によるもの)vairとに分けて扱うことができるため、式(5)は以下のように書き直せる。なお、vcoolantもvairも負荷132の周囲に存在する空気の影響を受けるものではあるが、vcoolantは非吸引時にも作用するものであり、vairは吸引時にのみ作用するものである点に留意されたい。
【0159】
【数3】
【0160】
負荷132の温度上昇は、負荷132に印加される電力によるため、昇温速度vrisingは以下のように表される。
【0161】
【数4】
【0162】
ここで、PHTR、VHTR、IHTR及びRHTRは、それぞれ、負荷132に印加される電力、当該負荷に印加される電圧、当該負荷に流れる電流及び当該負荷の抵抗を表している。なお、電圧VHTRは一定とすることができるものの、抵抗RHTRが負荷132の温度THTRに依存する即ち温度THTRの関数であるために、電力PHTR及び電流IHTRは温度THTRの関数である。QHTR及びCHTRは、それぞれ、負荷132と一体となって温度変化が生ずるもの(負荷132そのものやエアロゾル基材116B又は保持部130の少なくとも一部、エアロゾル基材116B又は保持部130に保持されるエアロゾル源の少なくとも一部等を含む。)の熱量の合計及び熱容量の合計を表している。
【0163】
負荷132の系内の冷媒による冷却速度vcoolantは、ニュートンの冷却の法則より、以下のように表される。
【0164】
【数5】
【0165】
ここで、α、α、S及びSは、エアロゾル吸引器100の負荷132付近の構造等によって定まる係数を表している。Tm1及びTm2は、それぞれ、負荷132付近の気体及びエアロゾル源の温度を表している。
【0166】
式(7)及び(8)を用いて式(6)を書き直すと、
【0167】
【数6】
【0168】
熱容量CHTRについて検討する。エアロゾル基材116B又は保持部130においてエアロゾル源が存在する場合に負荷132に給電がなされると、エアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源が霧化することによってエアロゾルが生成される。このことは、霧化により、エアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源が消費されることを意味する。この消費分は、霧化されなかった周囲のエアロゾル源によって補充されようとする。これに関し、吸引がない場合には、生成されたエアロゾルは霧化部118A又は118B(以下、「霧化部118」という。)に留まり、霧化部118がエアロゾルで飽和状態になるために、エアロゾル生成が抑制され、霧化によるエアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源の消費量は相対的に小さくなる傾向がある。一方で、吸引がある場合には、生成されたエアロゾルは吸引されるために、エアロゾル生成が促進され、霧化によるエアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源の消費量は相対的に大きくなる傾向がある。従って、エアロゾル源の補充される速度が吸引による影響を受けないか、又は、受けたとしても消費量が受ける影響よりも小さいと仮定すると、吸引がある場合には、ない場合と比較して、負荷132に給電がなされているときのエアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源の量即ち質量は少ない傾向があることになる。ここで、ある物質の熱容量は、当該物質の比熱と、当該物質の質量との積によって決定されるから、上記した「負荷132と一体となって温度変化が生ずるもの」に負荷132付近のエアロゾル源が含まれるものと考えると、熱容量CHTRは、吸引に応じて変化することになる。
【0169】
また、冷却速度vairは、定義より、吸引に応じて変化する。
以上に鑑みて、熱容量CHTR及び冷却速度vairを流速vの関数CHTR(v)及びvair(v)として表すと、式(9)は以下のように書き直せる。
【0170】
【数7】
【0171】
式(10)は、負荷132の温度が流速vの関数でもあることを表している。また、上述したような性質の異なる系が存在するのは、流速vの変化に応じた式(10)における第2項〜第4項それぞれの変化の程度が、少なくとも負荷132付近の構造によって異なるためであると考えられる。
【0172】
2−4 負荷132付近の構造とヒータ温度の挙動の関係
図4Aに示した負荷132付近の構造とヒータ温度の挙動の関係を、式(10)でモデル化した負荷132の温度を用いて、さらに考察する。
【0173】
負荷132付近の構造400A〜400Cのいずれにおいても、ユーザが吸引をすると、負荷132によるエアロゾル生成が促進されるため、エアロゾル基材116B又は保持部130における負荷132付近のエアロゾル源が減少する。つまり、ユーザによる吸引が強くなるほど熱容量が小さくなり、式(10)の右辺第2項は増加する。
【0174】
負荷132付近の構造400Aでは、保持部410の一部窪んだ箇所に負荷132(420)が配置されるため、構造400Aにおいては負荷132に直接気流が当たらない。これにより、式(10)の右辺第4項で示された吸引による空冷効果が弱まる。負荷132付近の構造400Aでは式(10)の右辺第2項による昇温速度の方が第3項及び第4項による冷却速度より強まる傾向があるため、吸引の強さに依存してヒータ温度が増加する可能性がある。
【0175】
負荷132付近の構造400Bでは、負荷132(420)の全体に気流が当たる。これにより、式(10)の右辺第4項で示された吸引による空冷効果が強まる。負荷132付近の構造400Bでは式(10)の右辺第3項及び第4項による冷却速度の方が第2項による昇温速度より強まる傾向があるため、吸引の強さに依存してヒータ温度が低下する可能性がある。
【0176】
負荷132付近の構造400Cでは、負荷132(420)の中心部分に気流が当たる。これよりに、式(10)の右辺第3項で示された吸引による空冷効果が少し強まる。負荷132付近の構造400Cでは吸引を強くすると、式(10)の右辺第3項及び第4項による冷却速度と第2項による昇温速度が釣り合う傾向があるため、ヒータ温度が増加するものの吸引の強さに依存しない可能性がある。
【0177】
2−5 原理についての備考
上述したように、負荷132の温度は、負荷132の抵抗値や負荷132等に印加される電圧の値、負荷132等に流れる電流の値等から取得することが可能である。そのため、負荷132の抵抗値、負荷132等に印加される電圧の値又は負荷132等に流れる電流の値を、上記所定の温度閾値T’thre(v)又はT’threに相当する抵抗閾値、電圧閾値又は電流閾値と比較することによっても、保持部等におけるエアロゾル源の残量についての判断は可能である。
【0178】
また、所定時間Δtあたりの負荷132の抵抗値の変化、負荷132等に印加される電圧の値の変化又は負荷132等に流れる電流の値の変化を、上記所定の温度変化閾値ΔT’thre(v)又はΔT’threに相当する抵抗変化閾値、電圧変化閾値又は電流変化閾値と比較することによっても、保持部等におけるエアロゾル源の残量についての判断は可能である。
【0179】
更に、上の説明では所定時間Δtあたりの温度変化について述べたが、負荷132に供給又は給電された所定電力量ΔWあたりの温度変化、抵抗変化、電圧変化又は電流変化を用いても、同様に、保持部等におけるエアロゾル源の残量についての判断は可能である。
【0180】
3 エアロゾル源の枯渇又は不足の発生を判断するための処理
以下、本開示の一実施形態による、上述した原理に基づくエアロゾル源の枯渇又は不足の発生を判断するための処理について説明する。以下に説明する処理については、制御部106がすべてのステップを実行するもの仮定している。しかしながら、一部のステップがエアロゾル吸引器100の別のコンポーネントによって実行されてもよいことに留意されたい。
【0181】
3−1 処理の概要
図8Aは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理800Aのフローチャートである。例示処理800Aは、吸引によって負荷132の温度が変化するエアロゾル吸引器100に対して好適なものである。
【0182】
810は、エアロゾルの生成が要求されたかを判定するステップを示している。例えば、圧力センサや流速センサ、流量センサ等から得られた情報に基づき、制御部106がユーザによる吸引開始を検知した場合に、エアロゾルの生成が要求されたと判定してよい。より詳細には、例えば、制御部106は、圧力センサの出力値即ち圧力が所定の閾値を下回った場合に、ユーザによる吸引開始が検知されたと判定することができる。また、例えば、制御部106は、流速センサ又は流量センサの出力値即ち流速又は流量が所定の閾値を越えた場合に、ユーザによる吸引開始が検知されたと判定することができる。かかる判定手法においては、ユーザの感覚に合ったエアロゾル生成が可能なため、流速センサ又は流量センサは特に好適である。あるいは、制御部106は、これらのセンサの出力値が連続的に変化し始めた場合、ユーザによる吸引開始が検知されたと判定してもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが押されたことなどに基づいて、ユーザによる吸引開始が検知されたと判定してもよい。あるいは、制御部106は、圧力センサ、流速センサ又は流量センサから得られた情報とボタンの押下の双方に基づいて、ユーザによる吸引開始が検知されたと判定してもよい。
【0183】
方法800Aはループ処理を含んでおり、820は、ループ処理に入る前に実行すべき事前処理を実行するステップを示している。なお、実施形態によっては、ステップ820は不要である場合がある。
【0184】
830Aは、負荷132へ通電し、ヒータ温度に関連する値xを取得するステップを示している。ヒータ温度に関連する値xは、抵抗値、電圧値、電流値その他のヒータ温度に応じて変化するか又はヒータ温度を求めることが可能な任意の値であってよい。なお、ヒータ温度に関連する値xは、ヒータ温度そのものであってもよい。また、ヒータ温度に関連する値xは、負荷132の抵抗値に関連する値を含む。負荷132の抵抗値に関連する値は、電圧値、電流値その他の負荷132の抵抗値に応じて変化するか又は負荷132の抵抗値を求めることが可能な任意の値であってよい。なお、負荷132の抵抗値に関連する値は、負荷132の抵抗値そのものであってもよい。
【0185】
840は、吸引を検知したかを判定するステップを示している。ステップ840においては、ステップ810における吸引の検知と類似の手法を用いてよいが、エアロゾル吸引器100を実際に吸引していることを検知する必要がある。従って、上述した圧力センサや流速センサ、流量センサによる検知は好適である。また、ステップ810における吸引の検知と、ステップ840における吸引の検知とは同一の手法を用いる必要はなく、例えば、一方は圧力センサにより、他方は流量センサにより、吸引を検知してよい。更に、閾値を用いて吸引の検知を行う場合、ステップ810及び840において用いる閾値は、同一であっても異なってもよい。吸引を検知したと判定された場合、処理はステップ842に進み、そうでない場合、処理はステップ844に進む。
【0186】
842は、後述するステップ850A等において用いられる修正値α及びβを、吸引による誤判定を防ぐように設定するステップを示している。844は、修正値α及びβをデフォルト値に設定するステップを示している。
【0187】
850Aは、ヒータ温度に関連する値x並びに修正値α及びβに基づき、エアロゾル源が十分であるかを判定するステップを示している。エアロゾル源が十分であると判定された場合、処理はステップ860に進み、そうでない場合、処理はステップ852に進む。
【0188】
852は、エアロゾルの残量が低い場合に行う低残量時処理を実行するステップを示している。
860は、エアロゾル生成が要求されていないかを判定するステップを示している。例えば、圧力センサや流速センサ、流量センサ等から得られた情報に基づき、制御部106がユーザによる吸引終了を検知した場合に、エアロゾルの生成が要求されていないと判定してよい。ここで、例えば、制御部106は、圧力センサの出力値即ち圧力が所定の閾値を越えた場合に、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定することができる。また、例えば、制御部106は、流速センサ又は流量センサの出力値即ち流速又は流量が所定の閾値を下回った場合に、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定することができる。なお、この閾値は、ステップ810における閾値より大きくても、当該閾値と等しくても、当該閾値より小さくてもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが離されたことなどに基づいて、ユーザによる吸引終了が検知された、換言すれば、エアロゾルの生成が要求されていないと判定してもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが押下されてから、所定時間が経過するなどの所定の条件が満たされたら、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定してもよい。エアロゾル生成が要求されていないと判定された場合、処理はステップ870に進み、そうでない場合、処理はステップ830Aに戻り、処理はループする。
【0189】
870は、ループ処理から抜けた後に実行すべき事後処理を実行するステップを示している。なお、実施形態によっては、ステップ870は不要である場合がある。
図8Bは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための別の例示処理800Bのフローチャートである。例示処理800Bは、吸引によって所定時間あたりの負荷132の温度変化が変化するエアロゾル吸引器100に対して好適なものである。例示処理800Bが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Bに含まれるステップのうち、上述していないステップについて説明する。
【0190】
830Bは、ヒータへ通電し、異なる時点t及びtにおけるヒータ温度に関連する値x(t)及びx(t)を取得するステップを示している。ヒータ温度に関連する値x(t)及びx(t)については、ステップ830Aに関して述べたヒータ温度に関連する値xと同様である。
【0191】
850Bは、時点t及びt、ヒータ温度に関連する値x(t)及びx(t)並びに修正値α及びβに基づき、エアロゾル源が十分であるかを判定するステップを示している。エアロゾル源が十分であると判定された場合、処理はステップ860に進み、そうでない場合、処理はステップ852に進む。
【0192】
図8Cは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するためのまた別の例示処理800Cのフローチャートである。例示処理800Cは、例示処理800Aのうちの一部を、並列に実行される別の処理又は割り込み処理(図8Iに関して後述する)として実現したものである。従って、例示処理800Cは、吸引によって負荷132の温度が変化するエアロゾル吸引器100に対して好適なものである。例示処理800Cが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Cに含まれるステップのうち、上述していないステップについて説明する。
【0193】
850Cは、ヒータ温度に関連する値x並びに修正値α及びβに基づき、エアロゾル源が十分であるかを判定するステップを示している。ステップ850Cにおける処理の内容はステップ850Aと同一であるが、その分岐が異なる。即ち、エアロゾル源が十分であると判定された場合、処理はステップ830Aに戻り、ループする。そうでない場合、処理はステップ852に進む。
【0194】
図8Dは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための更に別の例示処理800Dのフローチャートである。例示処理800Dは、例示処理800Bのうちの一部を、並列に実行される別の処理又は割り込み処理(図8Iに関して後述する)として実現したものである。従って、例示処理800Dは、吸引によって所定時間あたりの負荷132の温度変化が変化するエアロゾル吸引器100に対して好適なものである。例示処理800Dが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Dに含まれるステップのうち、上述していないステップについて説明する。
【0195】
850Dは、時点t及びt、ヒータ温度に関連する値x(t)及びx(t)並びに修正値α及びβに基づき、エアロゾル源が十分であるかを判定するステップを示している。ステップ850Dにおける処理の内容はステップ850Bと同一であるが、その分岐が異なる。即ち、エアロゾル源が十分であると判定された場合、処理はステップ830Bに戻り、ループする。そうでない場合、処理はステップ852に進む。
【0196】
図8Eは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理800Eのフローチャートである。例示処理800Eは、特に、吸引によって負荷132の温度が変化するものの、その変化の大きさが吸引の強さに依存しないエアロゾル吸引器100等に対して好適なものである。例示処理800Eが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Eが含むステップのうち、上述していないステップについて説明する。
【0197】
850Eは、ヒータ温度に関連する値xに基づき、エアロゾル源が十分であるかを判定するステップを示している。エアロゾル源が十分であると判定された場合、処理はステップ860に進み、そうでない場合、処理はステップ854に進む。
【0198】
854及び856は、それぞれ、カウンタNを、例えば1だけインクリメントするステップ及びカウンタNが0以上の所定の閾値より大きいかを判定するステップを示している。なお、カウンタNは、エアロゾル吸引器100の出荷時において、例えば0に初期化されていてよい。カウンタNが所定の閾値より大きい場合には、処理はステップ858に進み、そうでない場合、処理はステップ860に進む。
【0199】
ステップ854及び856によれば、エアロゾルが十分でないと所定の閾値+1回判定された場合に、処理はステップ858に進むことになる。なお、所定の閾値はカウンタNの初期値例えば0であってもよく、そのような場合には、エアロゾルが十分でないと1回判定されただけで、処理はステップ858に進ことになる。このことは、実施形態によっては、ステップ854及び856が不要であることを意味している。
【0200】
858は、エアロゾルの残量が低い場合に行う低残量時処理を実行するステップを示している。このステップは、ステップ852(低残量時処理)に、ステップ854及び856に関して述べたカウンタNを初期化するステップを加えたステップであってよい。
【0201】
例示処理800A〜800Dがステップ840、842、844を有しているのに対し、例示処理800Eはこれらのステップを有していない。つまり、例示処理800A〜800Dでは、エアロゾル源が十分であるかを判定するステップ850A、850B、850C、850Dで用いる閾値と当該閾値と比較する変数(値)の少なくとも一方が、吸引の有無に応じて修正される。一方、例示処理800Eでは、これらのステップに相当するステップ850Eで用いる閾値と当該閾値と比較される変数(値)が吸引の有無に関わらず修正されない。換言すれば、例示処理800Eでは、吸引が有る場合と無い場合で同じ値である閾値を、吸引が有る場合と無い場合で異なる変数(値)と比較することで、エアロゾル源が十分であるかを判定する。
【0202】
これにより、例示処理800Eでは、吸引の有無に応じて閾値や当該閾値と比較する変数(値)を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。このような判定を可能にする閾値の設定の仕方については、後述する。
【0203】
なお、後述する通り、例示処理800Eは、吸引による負荷132の温度の変化の大きさが吸引の強さに依存するエアロゾル吸引器100等に対しても用いることができる。
図8Fは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための例示処理800Fのフローチャートである。例示処理800Fは、特に、吸引によって所定時間あたりの負荷132の温度変化が変化するものの、その変化の大きさが吸引の強さに依存しないエアロゾル吸引器100等に対して好適なものである。例示処理800Fが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Fに含まれるステップのうち、上述していないステップについて説明する。
【0204】
850Fは、時点t及びt並びにヒータ温度に関連する値x(t)及びx(t)に基づき、エアロゾル源が十分であるかを判定するステップを示している。エアロゾル源が十分であると判定された場合、処理はステップ860に進み、そうでない場合、処理はステップ854に進む。
【0205】
例示処理800Eと同様に、例示処理800Fは吸引の有無に応じて閾値や当該閾値と比較する変数(値)を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。このような判定を可能にする閾値の設定の仕方については、後述する。
【0206】
なお、後述する通り、例示処理800Fは、吸引による負荷132の温度の変化の大きさが吸引の強さに依存するエアロゾル吸引器100等に対しても用いることができる。
図8Gは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するためのまた別の例示処理800Gのフローチャートである。例示処理800Gは、例示処理800Eのうちの一部を、並列に実行される別の処理又は割り込み処理(図8Iに関して後述する)として実現したものである。従って、例示処理800Gは、特に、吸引によって負荷132の温度が変化するものの、その変化の大きさが吸引の強さに依存しないエアロゾル吸引器100等に対して好適なものである。例示処理800Gが含むステップの一部は、既に上述したものと同一である。以下、例示処理800Gに含まれるステップのうち、上述していないステップについて説明する。
【0207】
850Gは、ヒータ温度に関連する値xに基づき、エアロゾル源が十分であるかを判定するステップを示している。ステップ850Gにおける処理の内容はステップ850Eと同一であるが、その分岐が異なる。即ち、エアロゾル源が十分であると判定された場合、処理はステップ830Aに戻り、ループする。そうでない場合、処理はステップ854に進む。
【0208】
857は、カウンタNが所定の閾値より大きいかを判定するステップを示している。ステップ857における処理の内容はステップ856と同一であるが、その分岐が異なる。即ち、カウンタNが所定の閾値より大きい場合には、処理はステップ858に進み、そうでない場合、処理はステップ830Aに戻り、ループする。
【0209】
例示処理800Eや800Fと同様に、例示処理800Gは吸引の有無に応じて閾値や当該閾値と比較する変数(値)を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。このような判定を可能にする閾値の設定の仕方については、後述する。
【0210】
なお、後述する通り、例示処理800Gは、吸引による負荷132の温度の変化の大きさが吸引の強さに依存するエアロゾル吸引器100等に対しても用いることができる。
図8Hは、本開示の一実施形態による、エアロゾル源の枯渇又は不足の発生を判断するための更に別の例示処理800Hのフローチャートである。例示処理800Hは、例示処理800Fのうちの一部を、並列に実行される別の処理又は割り込み処理(図8Iに関して後述する)として実現したものである。従って、例示処理800Hは、特に、吸引によって所定時間あたりの負荷132の温度変化が変化するものの、その変化の大きさが吸引の強さに依存しないエアロゾル吸引器100等に対して好適なものである。例示処理800Hが含むステップの一部については既に上述しているため、以下、例示処理800Hに含まれるステップのうち、上述していないステップについて説明する。
【0211】
850Hは、時点t及びt並びにヒータ温度に関連する値x(t)及びx(t)に基づき、エアロゾル源が十分であるかを判定するステップを示している。ステップ850Hにおける処理の内容はステップ850Fと同一であるが、その分岐が異なる。即ち、エアロゾル源が十分であると判定された場合、処理はステップ830Bに戻り、ループする。そうでない場合、処理はステップ854に進む。
【0212】
例示処理800Eや800Fや800Gと同様に、例示処理800Hは吸引の有無に応じて閾値や当該閾値と比較する変数(値)を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。なお、このような判定を可能にする閾値の設定の仕方については、後述する。
【0213】
なお、後述する通り、例示処理800Hは、吸引による負荷132の温度の変化の大きさが吸引の強さに依存するエアロゾル吸引器100等に対しても用いることができる。
図8Iは、本開示の一実施形態による、例示処理800C、800D、800G及び800Hを終了させる(強制終了する)ための例示処理800Iのフローチャートである。例示処理800Iは、例示処理800C、800D、800G又は800Hと同時に即ち並列に実行される。
【0214】
865は、エアロゾル生成が要求されていないかを判定するステップを示している。ステップ865における処理の内容はステップ860と同一であるが、その分岐が異なる。即ち、エアロゾル生成が要求されていないと判定された場合、処理はステップ865に戻り、そうでない場合、処理はステップ875に進む。
【0215】
875は、並列に実行されている例示処理800C、800D、800G及び800Hの実行を途中で終了させる又は強制終了させるステップを含む。
なお、例示処理800C、800D、800G及び800Hの終了は、例示処理800Iを並列に実行することではなく、エアロゾル生成が要求されていないときに生ずる何らかの割り込みによって実現してもよい。この場合には、例示処理800C、800D、800G又は800Hを実行する前に又はステップ820において当該割り込みを有効にし、当該割り込みをトリガとして、例示処理800C、800D、800G又は800Hの実行を強制終了し、後述するようにスイッチQ1及びQ2(又はQ1のみ)がオフ状態となるように制御部106を構成してよい。なお、この割り込みは例示処理800C、800D、800G及び800Hの終了を目的とするものであるから、当該割り込みの後に、実行されていた例示処理800C、800D、800G又は800Hに処理が戻ることはない(新たに例示処理800C、800D、800G又は800Hの実行が開始することはありうる)ことに留意されたい。
【0216】
3−2 処理の詳細
以下、例示処理800A〜800Iにおける一部のステップにおいて実行されるより詳細な例示処理について説明する。
【0217】
3−2−1 ステップ830Aについて
図9Aは、例示処理800A、800C、800E又は800G(以下、「例示処理800A等」という。)におけるステップ830Aにおいて実行されるより具体的な例示処理900Aのフローチャートである。
【0218】
902は、スイッチQ1をオン状態にするステップを示している。このステップの実行により、負荷132にスイッチQ1を介して電流が流れ、負荷132が発熱することになる。
【0219】
904及び906は、それぞれ、スイッチQ1をオフ状態にするステップ及びスイッチQ2をオン状態にするステップを示している。これらステップの実行により、シャント抵抗212及び負荷132にスイッチQ2を介して電流が流れることになる。
【0220】
908は、負荷132の抵抗値RHTRを取得するステップを示している。このステップは、例えばセンサ112B及び112Dの一方又は双方からの出力値を用いて、負荷132の抵抗値RHTRを計算するステップを含むことができる。
【0221】
910は、スイッチQ2をオフ状態にするステップを示している。
912は、ヒータ温度に関連する値xとして、負荷132の温度係数特性と取得した負荷132の抵抗値RHTRから、負荷132の温度THTRを取得するステップを示している。
【0222】
なお、ステップ908では、負荷132の抵抗値RHTRに代えて負荷132又はシャント抵抗212に印加される電圧値そのものを取得してもよい。この場合、ステップ912では、ヒータ温度に関連する値xとして、負荷132の温度係数特性と取得した負荷132又はシャント抵抗に印加される電圧値から、負荷132の温度THTRを取得される点に留意されたい。
【0223】
なお、例示処理900Aを実行する場合には、例示処理800A等におけるステップ820(事前処理)及び870(事後処理)は不要である。また、例示処理900Aを実行する場合には、例示処理900Iにおけるステップ875(強制終了処理)は、スイッチQ1及びQ2の状態にかかわらず、当該スイッチをオフ状態にするステップを更に含むことができる。
【0224】
3−2−2 ステップ830Bについて
図9Bは、例示処理800B、800D、800F又は800H(以下、「例示処理800B等」という。)におけるステップ830Bにおいて実行されるより詳細な例示処理900Bのフローチャートである。
【0225】
922は、スイッチQ1をオン状態にするステップを示している。このステップの実行により、負荷132にスイッチQ1を介して電流が流れ、負荷132が発熱することになる。
【0226】
924及び926は、それぞれ、スイッチQ1をオフ状態にするステップ及びスイッチQ2をオン状態にするステップを示している。これらステップの実行により、シャント抵抗212及び負荷132にスイッチQ2を介して電流が流れることになる。
【0227】
928は、負荷132の抵抗値を取得するステップを示している。このステップは、例えばセンサ112B及び112Dの一方又は双方からの出力値を用いて、負荷132の抵抗値を計算するステップを含むことができる。ここで、ステップ928において負荷132の抵抗値を取得した時点か、又は、当該抵抗値を取得するためのセンサの出力値を取得した時点をtとし、時点tにおける負荷132の抵抗値をRHTR(t)とする。
【0228】
930は、スイッチQ2をオフ状態にするステップを示している。
932は、時点tにおけるヒータ温度に関連する値x(t)として、負荷132の温度係数特性と取得した負荷132の抵抗値RHTR(t)から、時点tにおける負荷132の温度THTR(t)を取得するステップを示している。なお、ステップ932は、ステップ930と同時に実行されてもよく、ステップ928の後〜ステップ952の前の任意のタイミングで実行されてよい点に留意されたい。
【0229】
942〜952は、それぞれ、時点tではなく時点tについてのステップである点を除き、ステップ922〜932と同一である。
なお、例示処理900Bを実行する場合には、例示処理800B等におけるステップ820(事前処理)は、時点t及びtを決定するためのタイマを起動するステップを含むことができる一方で、ステップ870(事後処理)は不要である。また、例示処理900Bを実行する場合には、例示処理900Iにおけるステップ875(強制終了処理)は、スイッチQ1及びQ2の状態にかかわらず、当該スイッチをオフ状態にするステップを更に含むことができる。
【0230】
なお、ステップ928及びステップ948では、負荷132の抵抗値RHTRに代えて負荷132又はシャント抵抗212に印加される電圧値そのものを取得してもよい。この場合、ステップ932及びステップ952では、ヒータ温度に関連する値xとして、負荷132の温度係数特性と取得した負荷132又はシャント抵抗に印加される電圧値から、負荷132の温度THTRを取得される点に留意されたい。
【0231】
図9Cは、例示処理800B等におけるステップ830Bにおいて実行されるより詳細な別の例示処理900Cのフローチャートである。例示処理900Cは、例示処理900Bからステップ922〜926、930、934〜946及び950を除外したものに相当する。例示処理900Cは、図2で示された第1回路202と第2回路204が並列接続された回路構成に代えて、第2回路204のみ有する回路構成に対して好適なものである。
【0232】
なお、例示処理900Cを実行する場合には、例示処理800B等におけるステップ820(事前処理)は、時点t及びtを決定するためのタイマを起動するステップと、スイッチQ1をオン状態にするステップとを含むことができ、ステップ870(事後処理)は、スイッチQ1をオフ状態にするステップを含むことができる。また、例示処理900Cを実行する場合には、例示処理800Iにおけるステップ875(強制終了処理)は、スイッチQ1の状態にかかわらず、当該スイッチをオフ状態にするステップを更に含むことができる。
【0233】
なお、ステップ928及びステップ948では、負荷132の抵抗値RHTRに代えて負荷132又はシャント抵抗212に印加される電圧値そのものを取得してもよい。この場合、ステップ932及びステップ952では、ヒータ温度に関連する値xとして、負荷132の温度係数特性と取得した負荷132又はシャント抵抗に印加される電圧値から、負荷132の温度THTRを取得される点に留意されたい。
【0234】
図9Dは、例示処理800B等におけるステップ830Bにおいて実行されるより詳細なまた別の例示処理900Dのフローチャートである。例示処理900Dは、図2で示された電圧センサ112Bや112Dを有する回路構成に代えて、負荷132の温度を出力する温度センサ112を有する回路構成に対して好適なものである。
【0235】
982は、時点tにおけるヒータ温度に関連する値x(t)として、負荷132の温度を測定する温度センサの出力値に基づき、時点tにおけるヒータ温度THTR(t)を取得するステップを示している。
【0236】
984は、時点tではなく時点tについてのステップである点を除き、ステップ982と同一である。
なお、例示処理900Dを実行する場合には、例示処理800B等におけるステップ820(事前処理)は、時点t及びtを決定するためのタイマを起動するステップと、スイッチQ1をオン状態にするステップとを含むことができ、ステップ370(事後処理)は、スイッチQ1をオフ状態にするステップを含むことができる。また、例示処理900Dを実行する場合には、例示処理800Iにおけるステップ875(強制終了処理)は、スイッチQ1の状態にかかわらず、当該スイッチをオフ状態にするステップを含むことができる。
【0237】
3−2−3 ステップ850A及び850C(以下、「ステップ850A等」という。)について
3−2−3−1 判定の概要について
ステップ850A等においては、ヒータ温度に関連する値x並びに修正値α及びβの関数である所定の不等式が満たされた場合にエアロゾル源が十分と判定し、満たされなかった場合にそうでないと判定することができる。そのような不等式は、負荷132の温度が上昇した場合にヒータ温度に関連する値xが増加するのか低下するのか、及び、吸引によって、グラフ500、600及び700に関して上述したように負荷132の達する温度が上昇するのか低下するのかに依存する。以下の説明では、ヒータ温度に関連する値xは、負荷132の温度の値であり、負荷132の温度が上昇した場合に増加するものであると仮定している。
【0238】
上述したように、負荷132の温度を、温度閾値T’thre(v)と比較することによって、保持部等におけるエアロゾル源の残量が十分であるかを判断することが可能である。この比較は、以下の不等式(11)で表すことができる。
【0239】
【数8】
【0240】
ここで、実験により求めることが可能な、エアロゾル吸引器100に対するユーザによる吸引を考慮せずに設定された温度閾値をTthre(エアロゾル源の沸点等TB.P.以上平衡温度Tequi.以下。)とし、正の値、ゼロ及び負の値をとりうる修正値をα及びβとし、
【0241】
【数9】
【0242】
とすると、不等式(11)を以下の不等式(12)に変形することができる。
【0243】
【数10】
【0244】
従って、ステップ850A等は、不等式(11)又は(12)を満たすかを判定することができる。つまり、不等式(12)が成り立つ場合にエアロゾル源が十分と判定し、不等式(12)が成り立たない場合にエアロゾル源が枯渇又は不足していると判定してよい。なお、これら不等式の不等号は、「<」であってもよい。
【0245】
なお、不等式(12)におけるx−αは、ヒータ温度に関連する値xを修正したものとみなせる。また、不等式(12)におけるTthre+βは、閾値Tthreを修正したものとみなせる。換言すれば、αはヒータ温度に関する値xを修正する作用を持ち、βは閾値Tthreを修正する作用を持つ。
【0246】
ステップ850A等は繰り返し実行されるものであるから、従って、ステップ850A等は、ヒータ温度に関連する値又はヒータ温度に関連する値の時系列的な変化を修正するステップの例であることに留意されたい。
【0247】
3−2−3−2 判定に用いるパラメータについて
エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の達する温度が上昇する場合には、上述したように、温度閾値T’thre(v)は、T’satmax(v)以上Tequi.以下であるか、又は、T’satmax(v)以上T’depmax(v)以下であることができる。この条件は、以下の不等式(13)又は(14)で表すことができる。
【0248】
【数11】
【0249】
従って、修正値α及びβは、不等式(13)又は(14)を満たすものであることができる。より具体的には、修正値α及びβは、α=0、β=Δ(v)であるか、α=Δ(v)、β=0であるか、又は、α=Δ’(v)、β=Δ’’(v)と表すことができ、ここで、Δ(v)は、以下の不等式(15)又は(16)を満たす予め求められた線形又は非線形の関数であり、Δ’(v)及びΔ’’(v)は、以下の不等式(17)又は(18)を満たす予め求められた線形又は非線形の関数である。
【0250】
【数12】
【0251】
別の観点から述べると、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の達する温度が上昇する場合には、上述したように、温度閾値T’thre(v)は、Tthre+ε(v)であってもよい。従って、Δ(v)、Δ’(v)及びΔ’’(v)は、以下の式を満たす関数であってもよい。
【0252】
【数13】
【0253】
また、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の達する温度が低下する場合には、上述したように、温度閾値T’thre(v)は、TB.P.以上T’depmax(v)以下であるか、又は、T’satmax(v)以上T’depmax(v)以下であることができる。この条件は、以下の不等式(19)又は(20)で表すことができる。
【0254】
【数14】
【0255】
従って、上述したように修正値α及びβをΔ(v)、Δ’(v)及びΔ’’(v)で表すと、この場合のΔ(v)は、以下の不等式(21)又は(22)を満たす予め求められた関数であり、Δ’(v)及びΔ’’(v)は、以下の不等式(23)又は(24)を満たす予め求められた関数である。
【0256】
【数15】
【0257】
別の観点から述べると、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、負荷132の達する温度が低下する場合には、上述したように、温度閾値T’thre(v)は、Tthre−ε(v)であってもよい。従って、Δ(v)、Δ’(v)及びΔ’’(v)は、以下の式を満たす関数であってもよい。
【0258】
【数16】
【0259】
前述した通り、修正値αはヒータ温度に関する値xを修正する作用を持ち、修正値βは閾値Tthreを修正する作用を持つ。α=0、β=Δ(v)である場合は、ヒータ温度に関する値xと閾値Tthreのうち閾値Tthreのみが修正されることを意味する。α=Δ(v)、β=0である場合は、ヒータ温度に関する値xと閾値Tthreのうちヒータ温度に関する値xのみが修正されることを意味する。α=Δ’(v)、β=Δ’’(v)である場合は、ヒータ温度に関する値xと閾値Tthreの双方が修正されることを意味する。
【0260】
3−2−3−3 判定についての備考
上の説明では、ヒータ温度に関連する値xは負荷の温度の値である仮定したが、そうでないヒータ温度に関連する値xを用いる場合には、Δ(v)、Δ’(v)及びΔ’’(v)をそのようなヒータ温度に関連する値xに基づいて求められた関数とすればよいことに留意されたい。特に、ヒータ温度に関連する値xが負荷132の温度が上昇した場合に減少するものである場合には、不等式(11)及び(12)における不等号を逆にする等すればよいことに留意されたい。また、関数Δ(v)、Δ’(v)及びΔ’’(v)は、流速v等の吸引の強さを表すパラメータをキーとしたテーブルによって実現してもよい。
【0261】
3−2−4 ステップ850B及び850D(以下、「ステップ850B等」という。)について
3−2−4−1 判定の概要について
ステップ850B等においては、時点t及びt、ヒータ温度に関連する値x(t)及びx(t)並びに修正値α及びβの関数である所定の不等式が満たされた場合にエアロゾル源が十分と判定し、満たされなかった場合にそうでないと判定することができる。そのような不等式は、負荷132の温度が上昇した場合にヒータ温度に関連する値xが増加するのか低下するのか、及び、吸引によって、温度変化550、650及び750に関して上述したように所定時間あたりの負荷132の温度上昇が大きくなるのか小さくなるのかに依存する。以下の説明では、ヒータ温度に関連する値xは、負荷132の温度の値であり、負荷132の温度が上昇した場合に増加するものであると仮定している。
【0262】
上述したように、所定時間Δtあたりの負荷132の温度変化を、温度変化閾値ΔT’thre(v)と比較することによって、保持部等におけるエアロゾル源の残量が十分であるかを判断することが可能である。しかしながら、上述したように、所定時間Δtの長さにより、負荷132の温度変化の大きさは変化する。従って、この比較は、時間の経過によりヒータ温度が変化した量と、経過した時間の長さとの比の値、例えば、負荷132の温度変化速度を用いることが好ましい。
【0263】
具体的には、この比較は、以下の不等式(25)で表すことができる。
【0264】
【数17】
【0265】
ここで、実験により求めることが可能な、エアロゾル吸引器100に対するユーザによる吸引を考慮しない場合に、エアロゾル源の残量が十分であるかを判断可能な閾値をThre図3におけるΔTthre/Δtに相当する。ΔTthreはΔTsat以上ΔTdep以下。)とし、正の値、ゼロ及び負の値をとりうる修正値をα及びβとし、
【0266】
【数18】
【0267】
とすると、不等式(25)を以下の不等式(26)に変形することができる。
【0268】
【数19】
【0269】
不等式(26)における左辺は、所定時間Δtあたりの負荷132の温度変化又は負荷132の温度変化速度を修正したものとみなせる。また、不等式(26)におけるThre+βは、閾値ΔTthre又はThreを修正したものとみなせる。換言すれば、αは所定時間Δtあたりの負荷132の温度変化又は負荷132の温度変化速度を修正する作用を持ち、βは閾値ΔTthre又はThreを修正する作用を持つ。
【0270】
また、上述したように、所定電力量ΔWあたりの負荷132の温度変化を、温度変化閾値ΔT’thre(v)と比較することによって、保持部等におけるエアロゾル源の残量が十分であるかを判断することも可能である。しかしながら、同様に、所定電力量ΔWの大きさにより、負荷132の温度変化の大きさは変化する。従って、この比較も、負荷132への給電によりヒータ温度に関連する値が変化した量と、負荷132に給電された電力量との比の値(以下、時間の経過によりヒータ温度が変化した量と、経過した時間の長さとの比の値と同様に、便宜上「温度変化速度」という。)を用いることが好ましい。
【0271】
具体的には、この比較は、実験により求めることが可能な、エアロゾル吸引器100に対するユーザによる吸引を考慮しない場合に、エアロゾル源の残量が十分であるかを判断可能な閾値をThre図3におけるΔTthre/ΔWに相当する。)とし、正の値、ゼロ及び負の値をとりうる修正値をα及びβとし、Thre’=Thre+α+βとし、時点tにおいて負荷132に供給又は給電される電力をP(t)とすると、以下の不等式(27)で表すことができる。
【0272】
【数20】
【0273】
不等式(26)における左辺は、所定電力量ΔWあたりの負荷132の温度変化又は負荷132の温度変化速度を修正したものとみなせる。また、不等式(26)におけるThre+βは、閾値ΔTthre又はThreを修正したものとみなせる。換言すれば、αは所定電力量ΔWあたりの負荷132の温度変化又は負荷132の温度変化速度を修正する作用を持ち、βは閾値ΔTthre又はThreを修正する作用を持つ。
【0274】
従って、ステップ850B等は、不等式(25)〜(28)のうちの何れか1つを満たすかを判定することができる。つまり、不等式(26)又は(28)が成り立つ場合にエアロゾル源が十分と判定し、当該不等式が成り立たない場合にエアロゾル源が枯渇又は不足していると判定してよい。なお、不等式(27)又は(28)を用いる場合には、制御部106は、時点tを時点t+所定時間Δtとして決定するのではなく、時点tから負荷132に供給又は給電された延べ電力量を監視し、延べ電力量が所定電力量となった時点をtとして決定してよい。また、これら不等式の不等号は、「<」であってもよい。
【0275】
3−2−4−2 判定に用いるパラメータについて
以下、ステップ850B等において不等式(26)を用いると仮定する。
エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が大きくなる場合には、上述したように、温度変化閾値ΔT’thre(v)は、ΔT’sat(v)以上ΔTdep以下であるか、又は、ΔT’sat(v)以上ΔT’dep(v)以下であることができる。この条件は、以下の不等式(29)又は(30)で表すことができる。
【0276】
【数21】
【0277】
従って、修正値α及びβは、不等式(29)又は(30)を満たすものであることができる。より具体的には、修正値α及びβは、α=0、β=Δ(v)であるか、α=Δ(v)、β=0であるか、又は、α=Δ’(v)、β=Δ’’(v)と表すことができ、ここで、Δ(v)は、以下の不等式(31)又は(32)を満たす予め決定された関数であり、Δ’(v)及びΔ’’(v)は、以下の不等式(33)又は(34)を満たす予め決定された関数である。
【0278】
【数22】
【0279】
別の観点から述べると、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が大きくなる場合には、上述したように、温度変化閾値ΔT’thre(v)は、ΔTthre+Δε(v)であってもよい。従って、Δ(v)、Δ’(v)及びΔ’’(v)は、以下の式を満たす関数であってもよい。
【0280】
【数23】
【0281】
また、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が小さくなる場合には、上述したように、温度変化閾値ΔT’thre(v)は、ΔTsat以上ΔT’dep(v)以下であるか、又は、ΔT’sat(v)以上ΔT’dep(v)以下であることができる。この条件は、以下の不等式(35)又は(36)で表すことができる。
【0282】
【数24】
【0283】
従って、上述したように修正値α及びβをΔ(v)、Δ’(v)及びΔ’’(v)で表すと、この場合、Δ(v)は、以下の不等式(37)又は(38)を満たす予め決定された関数であり、Δ’(v)及びΔ’’(v)は、以下の不等式(39)又は(40)を満たす予め決定された関数である。
【0284】
【数25】
【0285】
別の観点から述べると、エアロゾル吸引器100に対する吸引の強さが大きくなるにつれ、所定時間Δtあたりの負荷132の温度変化が小さくなる場合には、上述したように、温度変化閾値ΔT’thre(v)は、ΔTthre−Δε(v)であってもよい。従って、Δ(v)、Δ’(v)及びΔ’’(v)は、以下の式を満たす関数であってもよい。
【0286】
【数26】
【0287】
前述した通り、修正値αは所定時間Δtあたり若しくは所定電力量ΔWあたりの負荷132の温度変化又は負荷132の温度変化速度(以下、「温度変化等」という。)を修正する作用を持ち、修正値βは閾値ΔTthre、Thre又はThre(以下、「ΔTthre等」という。)を修正する作用を持つ。α=0、β=Δ(v)である場合は、負荷132の温度変化等と閾値ΔTthre等のうち閾値ΔTthre等のみが修正されることを意味する。α=Δ(v)、β=0である場合は、負荷132の温度変化等と閾値ΔTthre等のうち負荷132の温度変化等のみが修正されることを意味する。α=Δ’(v)、β=Δ’’(v)である場合は、負荷132の温度変化等と閾値ΔTthre等の双方が修正されることを意味する。
【0288】
3−2−4−3 判定についての備考
上の説明では、ステップ850B等において不等式(26)を用いると仮定したが、ステップ850B等において不等式(27)又は(28)を用いる場合には、上記不等式における分母のΔtをΔWとすればよい。また、上の説明では、ヒータ温度に関連する値xは負荷の温度の値である仮定したが、そうでないヒータ温度に関連する値xを用いる場合には、Δ(v)、Δ’(v)及びΔ’’(v)をそのようなヒータ温度に関連する値xに基づいて求められた関数とすればよいことに留意されたい。特に、ヒータ温度に関連する値xが負荷132の温度が上昇した場合に減少するものである場合には、不等式(25)〜(28)における不等号を逆にする等すればよいことに留意されたい。
【0289】
3−2−5 ステップ842について
3−2−5−1 吸引の強さを考慮する場合
ステップ842においては、図10Aにそのフローチャートが表されるような処理1000Aを行うことができる。1010は、吸引の強さを表すパラメータとして、流速vを取得するステップを示している。取得されるパラメータは、流量又は圧力であってもよい。1020は、取得したパラメータに基づいて、α=0、β=Δ(v)に設定するか、α=Δ(v)、β=0に設定するか、又は、α=Δ’(v)、β=Δ’’(v)に設定するステップを示している。
【0290】
なお、ステップ1020は、α及びβを設定するのではなく、ステップ850A〜850Dにおいて用いられる温度閾値T’thre(v)又は温度変化閾値ΔT’thre(v)に相当するものを直接設定してもよい。また、温度閾値T’thre(v)又は温度変化閾値ΔT’thre(v)に相当するものは、流速v等の吸引の強さを表すパラメータをキーとしたテーブルによって実現してもよい。
【0291】
3−2−5−2 吸引の強さを考慮しない場合
吸引によって負荷132の達する温度が上昇するか若しくは低下するものの、その上昇又は低下の大きさが吸引の強さによって変化しない場合、又は、吸引によって所定時間Δt若しくは所定電力量ΔWあたりの負荷132の温度変化が大きくなるか若しくは小さくなるものの、その程度が吸引の強さによって変化しない場合には、上記T’satmax(v)及びT’depmax(v)、又は、ΔT’sat(v)及びΔT’dep(v)は定数であるとみなせる。
【0292】
また、負荷132の達する温度が上昇するか若しくは低下する大きさ、又は、負荷132の上記温度変化が大きくなるか若しくは小さくなる程度が、ある範囲の強さの吸引によっては変化しない場合や、ある強さ以上の吸引によっては変化しない場合等も、当該吸引の強さに対応した上記T’satmax(v)及びT’depmax(v)、又は、ΔT’sat(v)及びΔT’dep(v)を定数T’satmax及びT’depmax、又は、ΔT’sat及びΔT’depとみなすことができる。例えば、ある構造を有するエアロゾル吸引器100においては、3秒間で55cc(cm)以上の流量が生じる強さの吸引によっては、負荷132の達する温度が上昇する大きさ及び負荷132の上記温度変化が大きくなる程度が変化しないことがわかっている。
【0293】
このような場合には、関数Δ(v)、Δ’(v)及びΔ’’(v)を、それぞれ、対応する上記不等式を満たす予め求められた定数Δ、Δ’及びΔ’’とみなして、ステップ842においては、図10Bにそのフローチャートが表されるような処理1000Bを行うことができる。1030は、α=0、β=Δに設定するか、α=Δ、β=0に設定するか、又は、α=Δ’、β=Δ’’に設定するステップを示している。即ち、例示処理1000Bにおいては、吸引の強さを表すパラメータを取得する必要がない。
【0294】
なお、ステップ1030は、α及びβを設定するのではなく、ステップ850A〜850Dにおいて用いられる温度閾値T’thre又は温度変化閾値ΔT’threに相当するものを直接設定してもよい。
【0295】
前述した通り、修正値αは閾値Tthre又はΔTthre等(以下、「Tthre等」という。)と比較する変数(値)を修正する作用を持ち、修正値βは閾値Tthre等を修正する作用を持つ。α=0、β=Δ(v)である場合は、閾値Tthre等と比較する変数(値)と閾値Tthre等のうち閾値Tthre等のみが修正されることを意味する。α=Δ(v)、β=0である場合は、閾値Tthre等と比較する変数(値)と閾値Tthre等のうち閾値Tthre等と比較する変数(値)のみが修正されることを意味する。α=Δ’(v)、β=Δ’’(v)である場合は、閾値Tthre等と比較する変数(値)と閾値Tthre等の双方が修正されることを意味する。
【0296】
3−2−6 ステップ844について
図10Cは、ステップ844において実行される例示処理1000Cのフローチャートである。1040は、α=0、β=0に設定するステップを示している。ここで、0はデフォルト値の一例である。このステップにより、ステップ850A〜850Dにおいて、エアロゾル吸引器100に対するユーザによる吸引を考慮せずに設定された即ち当該吸引のないときの閾値を用いた比較を行うことができる。
【0297】
なお、ステップ1040は、α及びβを設定するのではなく、ステップ850A〜850Dにおいて用いられる温度閾値T’thre(v)若しくはT’thre又は温度変化閾値ΔT’thre(v)若しくはΔT’threに相当するものを直接設定してもよい。
【0298】
3−2−7 ステップ850E又は850G(以下、「ステップ850E等」という。)について
3−2−7−1 判定の概要について
ステップ850E等においては、ヒータ温度に関連する値xの関数である所定の不等式が満たされた場合にエアロゾル源が十分と判定し、満たされなかった場合にそうでないと判定することができる。そのような不等式は、負荷132の温度が上昇した場合にヒータ温度に関連する値xが増加するのか低下するのか、及び、吸引によって、グラフ700に関して上述したように負荷132の達する温度が上昇するのか低下するのかに依存する。以下の説明では、ヒータ温度に関連する値xは、負荷132の温度の値であり、負荷132の温度が上昇した場合に増加するものであると仮定している。
【0299】
上述したように、吸引によって負荷132の達する温度が上昇するか若しくは低下するものの、その上昇又は低下の大きさが吸引の強さによって変化しない場合には、負荷132の温度を、定数である温度閾値T’threと比較することによって、保持部等におけるエアロゾル源の残量が十分であるかを判断することが可能である。この比較は、以下の不等式(41)で表すことができる。
【0300】
【数27】
【0301】
ここで、実験により求めることが可能な、エアロゾル吸引器100に対するユーザによる吸引を考慮せずに設定された温度閾値をTthre(エアロゾル源の沸点等TB.P.以上平衡温度Tequi.以下。従って、TB.P.であってもよい。)とし、正の値及び負の値をとりうる修正値をγとし、
【0302】
【数28】
【0303】
とすると、不等式(41)を以下の不等式(42)に変形することができる。
【0304】
【数29】
【0305】
従って、ステップ850E等は、不等式(41)又は(42)を満たすかを判定することができる。つまり、不等式(42)が成り立つ場合にエアロゾル源が十分と判定し、不等式(42)が成り立たない場合にエアロゾル源が枯渇又は不足していると判定してよい。なお、これら不等式の不等号は、「<」であってもよい。
【0306】
3−2−7−2 判定に用いるパラメータについて
吸引によって負荷132の達する温度が上昇する場合には、上述したように、温度閾値T’threは、定数T’satmax以上Tequi.以下であるか、又は、定数T’satmax以上定数T’depmax以下であることができる。この条件は、以下の不等式(43)又は(44)で表すことができる。
【0307】
【数30】
【0308】
ここで、不等式(43)及び(44)は、吸引の強さに依存しないから、これら不等式を満たす修正値γ又は温度閾値T’threは、予め求めておくことが可能である。なお、これら不等式を満たすγを正の値とすると、不等式(42)の右辺は、温度閾値Tthre(Tthre=TB.P.であってよい。)に正の既定値γを加えた値となることに留意されたい。また、T’depmax=Tequi.+δ(0<δ≦T’depmax−Tequi.)とすると、不等式(43)は、γ=Tequi.−Tthre+δ(上述したように、Tthre=TB.P.であってよい。)であってよいことを示している。
【0309】
別の観点から述べると、吸引によって負荷132の達する温度が上昇する場合には、上述したように、温度閾値T’threは、Tthre+ε(上述したように、Tthre=TB.P.であってよい。)であってもよい。ここで、ε(定義上、正の値である。)は吸引の強さに依存しないから、不等式(42)におけるγとして、εを用いてもよい。
【0310】
なお、負荷132の達する温度の上昇する大きさが、ある範囲の強さの吸引によっては変化しない場合や、ある強さ以上の吸引によっては変化しない場合等にも、その吸引の強さに対応した上記T’satmax(v)、T’depmax(v)及びε(v)を定数T’satmax、T’depmax及びεとすることができる。上述したように、例えば、ある構造を有するエアロゾル吸引器100においては、3秒間で55cc(cm)以上の流量が生じる強さの吸引によっては、負荷132の達する温度が上昇する大きさが変化しないことがわかっている。
【0311】
また、吸引によって負荷132の達する温度が低下する場合には、上述したように、温度閾値T’thre(v)は、TB.P.以上定数T’depmax以下であるか、又は、定数T’satmax以上定数T’depmax以下であることができる。この条件は、以下の不等式(45)又は(46)で表すことができる。
【0312】
【数31】
【0313】
ここで、不等式(45)及び(46)は、吸引の強さに依存しないから、これら不等式を満たす修正値γ又は温度閾値T’threは、予め求めておくことが可能である。なお、これら不等式を満たすγを負の値とすると、不等式(42)の右辺は、温度閾値Tthre(吸引によって負荷132の達する温度が低下するためにT’depmax<Tequi.であるから、Tthre=T’depmaxであってよい。)から正の既定値|γ|を引いた値となることに留意されたい。
【0314】
別の観点から述べると、吸引によって負荷132の達する温度が低下する場合には、上述したように、温度閾値T’threは、Tthre−ε(上述したように、Tthre=T’depmaxであってよい。)であってもよい。ここで、ε(定義上、正の値である。)は吸引の強さに依存しないから、不等式(42)におけるγとして、−εを用いてもよい。
【0315】
温度閾値T’threは、予め求めておくことができる。従って、センサ112を用いてヒータ温度に関する値xさえ取得すれば、不等式(41)を用いることで、ステップ850E等における判定を実行することができる。特に、不等式(45)又は(46)を満たす温度閾値T’threを用いれば、例示処理800E等で吸引の有無に応じて温度閾値T’threとヒータ温度に関する値xを修正しなくてもエアロゾル源が十分であるか否かを判定することができる。
【0316】
なお、負荷132の達する温度の低下する大きさが、ある範囲の強さの吸引によっては変化しない場合や、ある強さ以上の吸引によっては変化しない場合等にも、その吸引の強さに対応した上記T’satmax(v)、T’depmax(v)及びε(v)を定数T’satmax、T’depmax及びεとすることができる。そのような吸引は、3秒間で55cc(cm)の流量が生じる強さであってよい。
【0317】
また、吸引による負荷132の温度の変化の大きさが吸引の強さに依存する系では、既定の吸引の強さを基準として、温度閾値T’threを設定してもよい。一例として、既定の吸引の強さは、複数のユーザの吸引情報から予め取得した統計情報に基づいて設定されてもよい。一例として、既定の吸引の強さは、3秒間で55cc(cm)の流量が生じる強さであってよい。
【0318】
これにより、吸引による負荷132の温度の変化の大きさが吸引の強さに依存する系でも、例示処理800E等で吸引の有無に応じて温度閾値T’threとヒータ温度に関する値xを修正しなくてもエアロゾル源が十分であるか否かを判定することができる。
【0319】
3−2−7−3 判定についての備考
上の説明では、ヒータ温度に関連する値xは負荷の温度の値である仮定したが、そうでないヒータ温度に関連する値xを用いる場合には、γをそのようなヒータ温度に関連する値xに基づいて求められた値とすればよいことに留意されたい。特に、ヒータ温度に関連する値xが負荷132の温度が上昇した場合に減少するものである場合には、不等式(41)及び(42)における不等号を逆にする等すればよいことに留意されたい。
【0320】
3−2−8 ステップ850F及び850H(以下、「ステップ850F等」という。)について
3−2−8−1 判定の概要について
ステップ850F等においては、時点t及びt並びにヒータ温度に関連する値x(t)及びx(t)の関数である所定の不等式が満たされた場合にエアロゾル源が十分と判定し、満たされなかった場合にそうでないと判定することができる。そのような不等式は、負荷132の温度が上昇した場合にヒータ温度に関連する値xが増加するのか低下するのか、及び、吸引によって、温度変化750に関して上述したように所定時間あたりの負荷132の温度上昇が大きくなるのか小さくなるのかに依存する。以下の説明では、ヒータ温度に関連する値xは、負荷132の温度の値であり、負荷132の温度が上昇した場合に増加するものであると仮定している。
【0321】
上述したように、吸引によって所定時間Δtあたりの負荷132の温度変化が大きくなるか若しくは小さくなるものの、その程度が吸引の強さによって変化しない場合には、所定時間Δtあたりの負荷132の温度変化を、定数である温度変化閾値ΔT’threと比較することによって、保持部等におけるエアロゾル源の残量が十分であるかを判断することが可能である。
【0322】
具体的には、この比較は、以下の不等式(47)で表すことができる。
【0323】
【数32】
【0324】
ここで、実験により求めることが可能な、エアロゾル吸引器100に対するユーザによる吸引を考慮しない場合に、エアロゾル源の残量が十分であるかを判断可能な閾値をThre図3におけるΔTthre/Δtに相当する。ΔTthreはΔTsat以上ΔTdep以下。)とし、正の値及び負の値をとりうる修正値をγとし、
【0325】
【数33】
【0326】
とすると、不等式(47)を以下の不等式(48)に変形することができる。
【0327】
【数34】
【0328】
また、この比較は、Thre’=Thre+γ(Thre図3におけるΔTthre/ΔWに相当する。)とすると、以下の不等式(49)又は(50)によっても表すことができる。
【0329】
【数35】
【0330】
従って、ステップ850F等は、不等式(47)〜(50)のうちの何れか1つを満たすかを判定することができる。つまり、不等式(48)又は(50)が成り立つ場合にエアロゾル源が十分と判定し、当該不等式が成り立たない場合にエアロゾル源が枯渇又は不足していると判定してよい。
【0331】
なお、不等式(49)又は(50)を用いる場合には、制御部106は、時点tを時点t+所定時間Δtとして決定するのではなく、時点tから負荷132に供給又は給電された延べ電力量を監視し、延べ電力量が所定電力量となった時点をtとして決定してよい。また、これら不等式の不等号は、「<」であってもよい。
【0332】
3−2−8−2 判定に用いるパラメータについて
以下、ステップ850F等において不等式(48)を用いると仮定する。
吸引によって所定時間Δtあたりの負荷132の温度変化が大きくなる場合には、上述したように、温度変化閾値ΔT’threは、定数ΔT’sat以上ΔTdep以下であるか、又は、定数ΔT’sat以上定数ΔT’dep以下であることができる。この条件は、以下の不等式(51)又は(52)で表すことができる。
【0333】
【数36】
【0334】
ここで、不等式(51)及び(52)は、吸引の強さに依存しないから、これら不等式を満たす修正値γ又は閾値Thre’は、予め求めておくことが可能である。
別の観点から述べると、吸引によって所定時間Δtあたりの負荷132の温度変化が大きくなる場合には、上述したように、温度変化閾値ΔT’threは、ΔTthre+Δεであってもよい。ここで、Δεは吸引の強さに依存しないから、修正値γとして、Δε/Δtを用いてもよい。
【0335】
また、吸引によって所定時間Δtあたりの負荷132の温度変化が小さくなる場合には、上述したように、温度変化閾値ΔT’threは、ΔTsat以上定数ΔT’dep以下であるか、又は、定数ΔT’sat以上定数ΔT’dep以下であることができる。この条件は、以下の不等式(53)又は(54)で表すことができる。
【0336】
【数37】
【0337】
ここで、不等式(53)及び(54)は、吸引の強さに依存しないから、これら不等式を満たす修正値γ又は閾値Thre’は、予め求めておくことが可能である。
別の観点から述べると、吸引によって所定時間Δtあたりの負荷132の温度変化が小さくなる場合には、上述したように、温度変化閾値ΔT’threは、ΔTthre−Δεであってもよい。ここで、Δεは吸引の強さに依存しないから、修正値γとして、−Δε/Δtを用いてもよい。
【0338】
閾値Thre’は、予め求めておくことができる。従って、センサ112を用いて不等式(47)の左辺さえ取得すれば、不等式(47)を用いることで、ステップ850F等における判定を実行することができる。特に、不等式(53)又は(54)を満たす閾値Thre’を用いれば、例示処理800F等で吸引の有無に応じて閾値Thre’と不等式(47)の左辺を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。
【0339】
なお、所定時間Δt若しくは所定電力量ΔWあたりの負荷132の温度変化が大きくなるか若しくは小さくなる程度が、ある範囲の強さの吸引によっては変化しない場合や、ある強さ以上の吸引によっては変化しない場合等にも、その吸引の強さに対応した上記ΔT’satmax(v)、ΔT’depmax(v)、Δε(v)及びΔεを定数ΔT’satmax、ΔT’depmax、Δε及びΔεとすることができる。そのような吸引は、3秒間で55cc(cm)の流量が生じる強さであってよい。
【0340】
また、吸引による負荷132の温度の変化の大きさが吸引の強さに依存する系では、既定の吸引の強さを基準として、閾値Thre’を設定してもよい。一例として、既定の吸引の強さは、複数のユーザの吸引情報から予め取得した統計情報に基づいて設定されてもよい。一例として、既定の吸引の強さは、3秒間で55cc(cm)の流量が生じる強さであってよい。
【0341】
これにより、吸引による負荷132の温度の変化の大きさが吸引の強さに依存する系でも、例示処理800F等で吸引の有無に応じて閾値Thre’と不等式(47)の左辺を修正しなくてもエアロゾル源が十分であるか否かを判定することができる。
【0342】
3−2−8−3 判定についての備考
上の説明では、ステップ850F等において不等式(48)を用いると仮定したが、ステップ850F等において不等式(49)又は(50)を用いる場合には、上記不等式における分母のΔtをΔWとすればよい。また、上の説明では、ヒータ温度に関連する値xは負荷の温度の値である仮定したが、そうでないヒータ温度に関連する値xを用いる場合には、修正値γをそのようなヒータ温度に関連する値xに基づいて求められた値とすればよいことに留意されたい。特に、ヒータ温度に関連する値xが負荷132の温度が上昇した場合に減少するものである場合には、不等式(47)〜(50)における不等号を逆にすればよいことに留意されたい。
【0343】
3−2−9 ステップ852及び858について
図11は、例示処理800A〜800Dにおけるステップ852において実行されるより詳細な例示処理1100のフローチャートである。
【0344】
1110は、エラーをメモリに記憶するステップを示している。
1120は、エラー信号を生成するステップを示している。
なお、例示処理800E〜800Hにおけるステップ858においては、例示処理1100が含むステップに加えて、上述したカウンタNを初期化するステップを実行することができる。
【0345】
4 おわりに
上述の説明において、本開示の実施形態は、エアロゾル吸引器及びエアロゾル吸引器を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施されうることが理解されよう。
【0346】
以上、本開示の実施形態が説明されたが、これらが例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。
【符号の説明】
【0347】
100A、100B…エアロゾル吸引器、
102…本体、
104A…カートリッジ、
104B…エアロゾル発生物品、
106…制御部、
108…通知部、
110…電源、
112A〜112D…センサ、
114…メモリ、
116A…貯留部、
116B…エアロゾル基材、
118A、118B…霧化部、
120…空気取込流路、
121…エアロゾル流路、
122…吸口部、
124…エアロゾルと空気の混合流体の流れる方向
130…保持部、
132…負荷、
134、200…回路、
202…第1回路、
204…第2回路、
206、210、214…FET、
208…変換部、
212…抵抗、
216…ダイオード、
218…インダクタ、
220…キャパシタ、
300、500、600、700…負荷の温度プロファイルを表すグラフ、
310、460、470、480、510A、510B、510C、610A、610B、610C、710A、710B、710C…エアロゾル源が十分であるときの温度プロファイル、
320、520A、520B、620A、620B、720A、720B…エアロゾル源が十分でないときの温度プロファイル、
350、550、650、750…所定時間あたりの負荷の温度変化、
360、560A、560B、560C、660A、660B、660C、760A、760B、760C…エアロゾル源が十分であるときの温度変化、
370、570A、570B、670A、670B、770A、770B…エアロゾル源が十分でないときの温度変化、
400A、400B、400C…負荷付近の例示的構造、
410…保持部等に相当するもの、
420…少なくとも一部が負荷に相当するもの、
430…吸引により生ずる気流の方向
【要約】
【課題】吸引によるヒータ温度の変化の影響を受けずにエアロゾル源の残量についての判断が可能なエアロゾル吸引器用の制御装置を提供する。
【解決手段】前記エアロゾル吸引器は、給電による発熱で、貯留部に貯留される又はエアロゾル基材に保持されるエアロゾル源を霧化する負荷の、給電中又はエアロゾル生成中の温度が、吸引があるときにより高くなるように構成され、前記制御装置は、前記負荷の温度に関連する第1値を取得するためのセンサと、制御部とを含み、前記制御部は、前記第1値に基づく第2値と、閾値との比較に基づき、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の枯渇又は不足を判断する(850E)ように構成され、前記第1値が前記負荷の温度が上昇したときに上昇するものである場合には、前記閾値は、前記貯留部又は前記エアロゾル基材における前記エアロゾル源の残量が十分及び前記負荷においてエアロゾル生成中であるという第1条件が満たされ、且つ、前記吸引がないときの前記第2値に正の第1既定値を加えた値であり、前記第1値が前記負荷の温度が上昇したときに低下するものである場合には、前記閾値は、前記第1条件が満たされ且つ前記吸引がないときの前記第2値から正の第1既定値を引いた値である。
【選択図】図8E
図1A
図1B
図2
図3
図4A
図4B
図5
図6
図7
図8A
図8B
図8C
図8D
図8E
図8F
図8G
図8H
図8I
図9A
図9B
図9C
図9D
図10A
図10B
図10C
図11