(58)【調査した分野】(Int.Cl.,DB名)
付加製造装置から廃インクを受け取るためのカートリッジであって、カートリッジは分配ヘッドと、硬化源と、容器とを含み、分配ヘッドは入口管と、前記カートリッジ全体に分散されたドリップ点のアレイとを含み、前記ドリップ点は、前記硬化源からの直接照射から保護するため、それぞれ遮蔽物で包囲され、前記硬化源は、前記容器の周りに配設された複数の放射位置を含む、カートリッジ。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本実施形態の目的は、未使用の液状樹脂の安全な廃棄の必要性を除去することによって、先行技術の問題を解決することである。
【0007】
未使用の液状樹脂は自動的に回収され、かつ硬化させてよい。硬化したインクはもはや有害物質ではなく、標準廃棄を使用することができる。硬化は廃棄物の発生直後の回収中に実行されてよく、本実施形態は、有害廃棄物の有意の貯蔵が決して存在しないようにすることができる。
【課題を解決するための手段】
【0008】
本発明の一部の実施形態の態様によれば、付加製造の過程で廃インクを発生する付加製造機器であって、
付加製造位置から廃インクを回収するように構成された廃インク回収装置と、
回収後すぐに廃インクを硬化するように構成された廃インク硬化装置と、
を備えた機器を提供する。
【0009】
一実施形態では、廃インク硬化装置は、
液状の廃インクを回収する回収カートリッジと、
廃インクを硬化させる硬化エネルギ源と、
を含む。
【0010】
一実施形態では、廃インク硬化装置は、インクがカートリッジ内に均等に分配されているときに、硬化エネルギ源を作動させるスイッチをさらに含む。
【0011】
一実施形態では、スイッチは、カートリッジ内に滴下する廃インクの液滴が合流する時間を見越して、硬化エネルギ源の作動を遅延させるように構成される。
【0012】
一実施形態では、廃インク回収装置は、
ローラからまたは印刷ヘッドの保守作業から廃インクを回収するためのリザーバと、
回収カートリッジ全体に均等に分散されたドリップ点に廃インクを分配するための配管システムと、
を含む。
【0013】
一実施形態では、廃インク回収カートリッジは、廃インク回収カートリッジ全体に廃インクを均等に分配するための分散ドリップ点のアレイを含む。
【0014】
一実施形態では、硬化エネルギ源は、カートリッジ全体にエネルギを均等に放射するように配置される。
【0015】
一実施形態では、硬化エネルギ源は、発光ダイオード、通常はUV発光ダイオードのバンクまたはストリップを含む。
【0016】
一実施形態では、硬化エネルギ源は、カートリッジに沿って片側に向けて長さ方向に配置される。
【0017】
一実施形態では、ドリップ点は、廃インクがドリップ点から滴下する前に硬化されるのを防止するために、硬化エネルギ源からの硬化エネルギに対する遮蔽物を含む。
【0018】
一実施形態では、遮蔽物は各ドリップ点を包囲するフードを含む。
【0019】
一実施形態は、滴下を方向付ける吐出シャベルを各ドリップ点の下に含んでよい。
【0020】
一実施形態では、硬化エネルギ源は3つのダイオードバンクを含み、第1バンクはカートリッジの第1側に長さ方向に配置され、第2バンクはカートリッジの第2側に長さ方向に配置され、かつ第3バンクは出口点の上に長さ方向に配置され、第3バンクは、カートリッジが満杯状態に達した後すぐに、1回動作して未滴下インクを硬化するように構成される。
【0021】
一実施形態では、カートリッジは、カートリッジ内の廃インクの現在の液位を検出し、それによってカートリッジが満杯のときにそれを決定する液位検出器を含む。
【0022】
一実施形態では、液位検出器は、廃インクに包囲されたとき以外は内部全反射を生じるように選択された屈折率を有するプリズムを含む。
【0023】
一実施形態では、硬化エネルギ源は、各々がカートリッジの床に対して斜角に向けられた第1バンクおよび第2バンクのダイオードを含む。
【0024】
本発明の第2態様によれば、
付加製造位置にインクを送達するステップと、
付加製造位置から廃インクを回収するステップと、
回収後すぐに廃インクを硬化させるステップと、
を含む、付加製造中の廃インク管理の方法を提供する。
【0025】
この方法は、
廃インクの流量を監視するステップと、
廃インクの流量に従って硬化を作動させるステップと、
を含んでよい。
【0026】
一実施形態では、廃インクの硬化ステップは、
液状の廃インクを回収するステップと、
廃インクを硬化エネルギにより硬化させるステップと、
を含む。
【0027】
この方法は、インクをカートリッジ内で均等に分散させた後、硬化エネルギ源を作動させてよい。
【0028】
この方法は、カートリッジ内に滴下する廃インクの液滴が合流する時間を見越して、硬化エネルギ源の作動を遅延させることを含んでよい。
【0029】
一実施形態では、廃インクの回収ステップは、
ローラからまたは印刷ヘッドの保守作業から廃インクを回収するステップと、
廃インクを回収カートリッジ全体に均等に分配するステップと、
を含む。
【0030】
この方法は、硬化エネルギをカートリッジ全体に均等に放射するステップを含んでよい。
【0031】
この方法は、
カートリッジが満杯のときにそれを検出するステップと、
カートリッジのドリップ管に照射して、未滴下インクを硬化させるステップと、
を含んでよい。
【0032】
本発明の第3態様によれば、付加製造装置から廃インクを受け取るためのカートリッジであって、カートリッジは分配ヘッドと、硬化源と、容器とを含み、分配ヘッドは入口管と、カートリッジ全体に分散されたドリップ点のアレイとを含み、ドリップ点は、硬化源からの直接照射から保護するため、それぞれ遮蔽物で包囲され、硬化源は、容器の周りに配設された複数の放射位置を含んで成る、カートリッジを提供する。
【0033】
ドリップ点は液滴形成のための鋭利な終端部を含んでよい。
【0034】
カートリッジは、各ドリップ点の下であって遮蔽物内にドリップ案内シャベルを含んでよい。
【0035】
カートリッジは、カートリッジが満杯になったときに分配ヘッド内に残っているインクを硬化するための第2硬化源を分配ヘッド内に含んでよい。
【0036】
カートリッジは、カートリッジの充填を検出する液位検出器を含んでよい。液位検出器はLED、検出器と単純反射、または本書で述べるようにプリズムを使用してよい。
【0037】
本発明の第4態様によれば、付加製造の過程で廃インクを発生する付加製造機器における硬化を制御する方法であって、
前記機器は、
付加製造位置から廃インクを回収するように構成された廃インク回収装置と、
回収後すぐに前記廃インクを硬化させるように構成された廃インク硬化装置と、
を備え、
前記廃インク回収装置への樹脂の流量を推定するステップと、
前記推定を用いて、樹脂が前記廃インク回収装置に到着するタイミングおよび樹脂の量を算出するステップと、
前記算出量に適したタイミングおよび適用量で前記硬化を作動させるステップと、
を含む方法を提供する。
【0038】
別途定義されない限り、本明細書で使用されるすべての技術的用語および/または科学的用語は、本発明が属する技術分野の当業者によって一般に理解されるのと同じ意味を有する。本明細書に記載される方法および材料と類似または同等である方法および材料を本発明の実施または試験において使用することができるが、例示的な方法および/または材料が下記に記載される。矛盾する場合には、定義を含めて、本特許明細書が優先する。加えて、材料、方法および実施例は例示にすぎず、限定であることは意図されない。
【0039】
本明細書では本発明のいくつかの実施形態を単に例示し添付の図面を参照して説明する。特に詳細に図面を参照して、示されている詳細が例示として本発明の実施形態を例示考察することだけを目的としていることを強調するものである。この点について、図面について行う説明によって、本発明の実施形態を実施する方法は当業者には明らかになるであろう。
【発明を実施するための形態】
【0072】
本発明は、その一部の実施形態では、付加製造中の廃インクまたは廃樹脂の処理に関し、さらに詳しくは、標準廃棄物処理を安全に使用することを可能にする方法に関するが、それに限定されない。
【0073】
未使用の樹脂は有害物質であり、特別な廃棄物処理技術を用いて処理しなければならず、それは一般的に樹脂供給者の責任になる。3D印刷プロセスはかなりの量の廃棄物、通常、ヘッドによって噴射された量の約10〜30%を発生する。さらなる廃棄物は、パージおよび吐出などのヘッドの保守手順によっても発生する。
【0074】
液状の廃樹脂は有害とみなされるが、硬化樹脂は有害ではなく、通常のごみ箱に廃棄することができる。したがって本実施形態は、廃樹脂を発生したままの状態で硬化させる。廃樹脂カートリッジが満杯になると、ユーザは単にカートリッジをごみ箱に捨て、カートリッジを新しいものに交換するだけである。
【0075】
本発明の少なくとも1つの実施形態を詳しく説明する前に、本発明は、その適用において、下記の説明に示されるか、および/または図面および/または実施例において例示される構成要素および/または方法の組み立ておよび構成の細部に必ずしも限定されないことを理解しなければならない。本発明は他の実施形態が可能であり、または様々な方法で実施または実行されることが可能である。
【0076】
本実施形態の方法およびシステムは、物体の形状に対応する構成パターン状に複数の層を形成することによって、三次元物体をコンピュータ・オブジェクト・データに基づいて1層ずつ製作する。コンピュータ・オブジェクト・データは、標準テッセレーション言語(STL)またはステレオリソグラフィ輪郭(SLC)フォーマット、仮想現実モデリング言語(VRML)、付加製造ファイル(AMF)フォーマット、図面交換フォーマット(DXF)、ポリゴン・ファイル・フォーマット(PLY)、またはコンピュータ支援設計(CAD)に適したいずれかの他のフォーマットを含め、それらに限らず、任意の公知のフォーマットにすることができる。
【0077】
本書で使用する用語「物体」は、物体全体またはその一部分を指す。
【0078】
各層は、二次元表面を走査してそれをパターン化する付加製造機器によって形成される。走査中に、機器は二次元の層または表面上の複数の目標位置を訪れ、各目標位置または1群の目標位置について、目標位置または目標位置群が構築材料によって占有されるべきか否か、かつどのタイプの構築材料をそこに送達すべきかを決定する。決定は、表面のコンピュータ画像に従って行われる。
【0079】
本発明の好適な実施形態では、AMは三次元印刷を、さらに好ましくは三次元インクジェット印刷を含む。これらの実施形態では、構築材料は1組のノズルを有する吐出ヘッドから吐出され、構築材料を支持構造上に層状に堆積する。AM機器はこうして、占有すべき目標位置に構築材料を吐出し、かつ他の目標位置を空所のままにする。機器は通常、複数の吐出ヘッドを含み、各吐出ヘッドは異なる構築材料を吐出するように構成することができる。したがって、異なる目標位置を異なる構築材料が占有することができる。構築材料の種類は主に、モデル材およびサポート材の2つのカテゴリに分類することができる。サポート材は、製作プロセス中に物体もしくは物体の一部分を支持するため、かつ/または他の目的で、例えば中空物体もしくは多孔質物体を提供するために、支持マトリクスまたは支持構造として働く。支持構造は、例えば支持強度を高めるために、さらにモデル材要素を含んでよい。
【0080】
モデル材は一般的に、付加製造用に調合された組成物であり、それ自体で、すなわち他の物質と混合または結合する必要なく、三次元物体を形成することができる。
【0081】
最終的な三次元物体はモデル材、またはモデル材の組合せ、またはモデル材とサポート材もしくはそれらの改質(例えば硬化後)との組合せから作製される。これらの作業は全て、立体自由造形の当業者にはよく知られている。
【0082】
本発明の一部の例示的実施形態では、物体は2つ以上の異なるモデル材を吐出することによって製造され、各材料はAMの異なる吐出ヘッドから吐出される。材料は、任意選択的にかつ好ましくは、印刷ヘッドの同一パス中に層状に堆積される。層内の材料および材料の組合せは、物体の所望の性質に従って選択される。本発明の一部の実施形態に係る、物体112のAMに適したシステム110の代表的かつ非限定的実施例を、
図1Aに示す。システム110は、複数の吐出ヘッドを含む吐出ユニット16を有する付加製造機器114を備える。各ヘッドは、下述する
図2A〜
図2Cに示すように、液状構築材料124がそれを介して吐出される1つ以上のノズル122のアレイを含むことが好ましい。
【0083】
機器114は三次元印刷機器であることが好ましいが、必須ではない。その場合、吐出ヘッドは印刷ヘッドであり、構築材料はインクジェット技術を介して吐出される。用途によっては、付加製造機器は三次元印刷技術を採用する必要がない場合があるので、これは必ずしも該当しない。本発明の様々な例示的実施形態に従って構想される付加製造機器の代表的実施例は、熱溶解積層造形機器および熱溶解材料堆積機器を含むが、それらに限定されない。
【0084】
各吐出ヘッドは任意選択的にかつ好ましくは構築材料リザーバを介して供給され、リザーバは任意選択的に、温度制御ユニット(例えば温度センサおよび/または加熱装置)および材料レベルセンサを含んでよい。構築材料を吐出するために、例えば圧電式インクジェット印刷技術の場合のように、吐出ヘッドノズルを介して材料の液滴が選択的に堆積されるように、電圧信号が吐出ヘッドに印加される。各ヘッドの吐出率は、ノズルの個数、ノズルの種類、および印加電圧の信号レート(周波数)に依存する。そのような吐出ヘッドは、立体自由造形の当業者には知られている。
【0085】
吐出ノズルまたはノズルアレイの総数は、吐出ノズルの半数がサポート材を吐出するように設計され、かつ吐出ノズルの半数がモデル材を吐出するように設計され、すなわちモデル材を噴出するノズルの個数がサポート材を噴出するノズルの個数と同数になるように、選択されることが好ましいが、必須ではない。
図1Aの代表的実施例には4つの吐出ヘッド16a、16b、16c、および16dが示される。ヘッド16a、16b、16c、および16dの各々がノズルアレイを有する。この実施例では、ヘッド16aおよび16bはモデル材用に設計することができ、ヘッド16cおよび16dはサポート材用に設計することができる。こうして、ヘッド16aは第1モデル材を吐出することができ、ヘッド16bは第2モデル材を吐出することができ、ヘッド16cおよび16dは両方ともサポート材を吐出することができる。代替的実施形態では、例えばヘッド16cおよび16dは、サポート材を吐出するための2つのノズルアレイを有する単一のヘッドに組み合わされてよい。
【0086】
それにも関わらず、それは本発明の範囲を限定することを意図するものではなく、モデル材吐出ヘッド(モデルヘッド)の個数およびサポート材吐出ヘッド(サポートヘッド)の個数は異なってもよいことを理解されたい。
【0087】
一般的に、モデルヘッドの個数、サポートヘッドの個数、およびそれぞれのヘッドまたはヘッドアレイの各々におけるノズルの個数は、サポート材の最大吐出率とモデル材の最大吐出率との間に所定の比率αがもたらされるように選択される。所定の比率αの値は、形成される各層におけるモデル材の高さがサポート材の高さに等しいことを確実にするように選択されることが好ましい。αの典型値は約0.6〜約1.5である。
【0088】
本明細書中で使用される用語「約」は、±10%を示す。
【0089】
例えばα=1の場合、全てのモデルヘッドおよび支持ヘッドが作動しているときに、サポート材の総吐出率はモデル材の総吐出率と略同一である。
【0090】
好適な実施形態では、ノズルp個のアレイm個を各々有するモデルヘッドM個、およびノズルq個のアレイs個を各々有するサポートヘッドS個が存在するので、M×m×p=S×s×qとなる。M×m個のモデルアレイおよびS×s個のサポートアレイの各々は、別個の物理ユニットとして製造することができ、それをアレイ群に組み立てたり、そこから分解したりすることができる。この実施形態では、そのようなアレイの各々は、任意選択的にかつ好ましくは、それ自体の温度制御ユニットおよび材料レベルセンサを含み、かつその動作のために個々に制御された電圧を受け取る。
【0091】
機器114は硬化装置324をさらに含むことができ、それは、堆積された材料を硬化させる光、熱などを放出するように構成された任意の装置を含むことができる。例えば硬化装置324は1つ以上の放射源を含むことができ、それは、使用されるモデル材に応じて、例えば紫外線もしくは可視光もしくは赤外線ランプ、または他の電磁放射源、または電子ビーム源とすることができる。本発明の一部の実施形態では、硬化装置324はモデル材を硬化または凝固させるように働く。
【0092】
吐出ヘッドおよび放射源は、作業面として働くトレイ360上を往復運動するように動作することが好ましいフレームまたはブロック128に取り付けられることが好ましい。本発明の一部の実施形態では、放射源は、吐出ヘッドによって吐出されたばかりの材料を少なくとも部分的に硬化または凝固するために、放射源が吐出ヘッドの後に追従するようにブロックに取り付けられる。トレイ360は水平に配置される。一般的な取決めに従って、X‐Y‐Zデカルト座標系はX‐Y面がトレイ360と平行になるように選択される。トレイ360は、垂直方向に(Z方向に沿って)、通常は下方に移動するように構成されることが好ましい。本発明の様々な例示的実施形態では、機器114は1つ以上のレベリング装置132、例えばローラ326をさらに備える。レベリング装置326は、新たに形成された層の厚さを、その上に次の層が形成される前に矯正し、平準化し、かつ/または確立するように働く。レベリング装置326は、レベリング中に発生した余分な材料を回収するために、廃棄物回収装置136を含むことが好ましい。廃棄物回収装置136は廃棄物タンクまたは廃棄物カートリッジに材料を送達する何らかの機構を含んでよい。廃棄物回収については後でさらに詳述する。
【0093】
使用中に、ユニット16の吐出ヘッドは、本書ではX方向と呼ぶ走査方向に移動し、それらがトレイ360上を通過する過程で所定の構成に構築材料を選択的に吐出する。構築材料は通常、1種類以上のサポート材および1種類以上のモデル材を含む。ユニット16の吐出ヘッドの通過に続いて、放射源126によるモデル材の硬化が行われる。堆積されたばかりの層のためのヘッドの出発点に戻るヘッドの逆方向の通過中に、所定の構成に従って構築材料の追加吐出が実行されてよい。吐出ヘッドの順方向または逆方向の通過中に、こうして形成された層は、レベリング装置の順方向および/または逆方向の移動中に好ましくは吐出ヘッドの経路に従うレベリング装置326によって矯正される。吐出ヘッドがX方向に沿ってそれらの出発点に戻ると、吐出ヘッドは、本書ではY方向と呼ぶ割出し方向に沿って別の位置に移動し、X方向に沿った往復運動によって同じ層を構築し続けてよい。代替的に、吐出ヘッドは、順方向および逆方向の移動の間に、または2回以上の順方向‐逆方向移動の後に、Y方向に移動してよい。単一の層を完成させるために吐出ヘッドによって実行される一連の走査は、本書で単一走査サイクルと呼ばれる。
【0094】
層が完成すると、次に印刷される層の所望の厚さに応じて、トレイ360はZ方向に所定のZレベルまで下降する。この手順は三次元物体112が層毎に形成されるように繰り返される。
【0095】
別の実施形態では、トレイ360は、層内で、ユニット16の吐出ヘッドの順方向および逆方向の通過の間に、Z方向に変位されてよい。そのようなZ変位は、レベリング装置を1方向に表面と接触させ、かつ他の方向の接触を防止するために実行される。
【0096】
システム110は任意選択的にかつ好ましくは、構築材料容器またはカートリッジを含みかつ複数の構築材料を製造機器114に供給する、構築材料供給システム330を備える。
【0097】
制御ユニット340は製造機器114および任意選択的にかつ好ましくは供給システム330をも制御する。制御ユニット340は通常、制御動作を実行するように構成された電子回路を含む。制御ユニット340は、コンピュータ・オブジェクト・データ、例えば標準テッセレーション言語(STL)フォーマットなどの形式でコンピュータ可読媒体に表されたCAD構成に基づいて、製作命令に関するデジタルデータを送信するデータプロセッサ154と通信することが好ましい。通常、制御ユニット340は、各吐出ヘッドまたはノズルアレイに印加される電圧、およびそれぞれの印刷ヘッドの構築材料の温度を制御する。
【0098】
製造データが制御ユニット340にロードされると、制御ユニットはユーザの介入なしに動作することができる。一部の実施形態では、制御ユニット340は、例えばデータプロセッサ154を用いて、あるいはユニット340と通信するユーザインタフェース116を用いて、オペレータから追加の入力を受信する。ユーザインタフェース116は、例えばキーボード、タッチスクリーンなど、しかしそれらに限らず、当業界で公知の任意の種類とすることができる。例えば制御ユニット340は、追加の入力として、1つ以上の構築材料の種類および/または属性、例えば色、特性歪み、および/または転移温度、粘度、電気特性、磁気特性などを受信することができるが、それらに限定されない。他の属性および属性群も考えられる。
【0099】
本発明の一部の実施形態に係る物体のAMに適したシステム10の別の代表的かつ非限定的実施例を
図1B〜
図1Dに示す。
図1B〜
図1Dは、システム10の上面図(
図1B)、側面図(
図1C)、および等角図(
図1D)を示す。
【0100】
本実施形態では、システム10は、トレイ12と、各々が複数の分離したノズルを有する複数のインクジェット印刷ヘッド16とを備える。トレイ12は円板の形状を有することができ、あるいは環状とすることができる。垂直軸線を中心に回転することができることを前提として、非円形の形状も考えられる。
【0101】
トレイ12およびヘッド16は、任意選択的にかつ好ましくは、トレイ12とヘッド16との間の相対的回転運動ができるように取り付けられる。これは、(i)トレイ12がヘッド16に対して垂直軸線14を中心に回転するようにトレイを構成することによって、(ii)ヘッド16がトレイ12に対して垂直軸線14を中心に回転するようにヘッドを構成することによって、または(iii)トレイ12およびヘッド16の両方が垂直軸線14を中心に、しかし異なる回転速度で回転(例えば逆方向に回転)するように構成することによって、達成することができる。以下の実施形態は、トレイが、ヘッド16に対して垂直軸線14を中心に回転するように構成された回転トレイである構成(i)を特に重点的に記載するが、本願は構成(ii)および(iii)をも企図していることを理解されたい。本書に記載する実施形態はいずれも、構成(ii)および(iii)のいずれかに適用できるように調整することができ、本書に記載する詳細を前提として、そのような調整をどのように行うかが当業者には分かるであろう。
【0102】
以下の説明では、トレイ12と平行で軸線14から外向きの方向を半径方向rと呼び、トレイ12と平行で半径方向rに垂直な方向をここでは方位角方向φと呼び、トレイ12に直角な方向をここでは垂直方向zと呼ぶ。
【0103】
本書で使用する用語「半径方向位置」とは、軸線14から特定の距離にあるトレイ12上またはトレイ12より上の位置を指す。この用語が印刷ヘッドに関連して使用される場合、この用語は、軸線14から特定の距離にあるヘッドの位置を指す。この用語がトレイ12上の点に関連して使用される場合、この用語は、半径が軸線14から特定の距離にあってその中心が軸線14にある円を描く点の軌跡に属する任意の点に対応する。
【0104】
本書で使用する用語「方位角位置」は、所定の基準点に対して特定の方位角にあるトレイ12上またはトレイ12より上の位置を指す。したがって、半径方向位置は、基準点に対して特定の方位角を形成する直線を描く点の軌跡に属する任意の点を指す。
【0105】
本書で使用する用語「垂直位置」は、特定の点で垂直軸線14と交差する面全体の位置を指す。
【0106】
トレイ12は三次元印刷のための支持構造として働く。1つ以上の物体が印刷される作業領域は通常、トレイ12の総面積より小さいが、必ずしもそうである必要はない。本発明の一部の実施形態では、作業領域は環状である。作業領域は符号26で示される。本発明の一部の実施形態では、トレイ12は物体の形成中ずっと、同一方向に連続的に回転し、本発明の一部の実施形態では、トレイは物体の形成中に少なくとも1回(例えば振動するように)回転方向を逆転する。トレイ12は任意選択的にかつ好ましくは取外し可能である。トレイ12の取外しは、システム10の保守のために、あるいは希望する場合には、新しい物体を印刷する前にトレイを交換するために、行うことができる。本発明の一部の実施形態では、システム10には1つ以上の異なる交換トレイ(例えば交換トレイのキット)が提供され、2つ以上のトレイが異なる種類の物体(例えば異なる重量)、異なる動作モード(例えば異なる回転速度)等のために設計される。トレイ12の交換は希望通り手動または自動にすることができる。自動交換が採用された場合、システム10は、トレイ12をヘッド16の下にあるその位置から取り外して、それを交換トレイ(図示せず)と交換するように構成されたトレイ交換装置36を含む。
図1Bの代表図では、トレイ交換装置36は、トレイ12を引っ張るように構成された可動アーム40を持つドライブ38として示されるが、他の種類のトレイ交換装置も考えられる。
【0107】
印刷ヘッド16の例示的実施形態を
図2A〜
図2Cに示す。これらの実施形態は、システム110およびシステム10を含め、それらに限らず、上述したAMシステムのいずれかに採用することができる。
【0108】
図2A〜
図2Bは、1つ(
図2A)および2つ(
図2B)のノズルアレイ22を持つ印刷ヘッド16を示す。アレイにおけるノズルは直線に沿って線状に並ぶことが好ましい。特定の印刷ヘッドが2つ以上のリニア・ノズル・アレイを有する実施形態では、ノズルアレイは、任意選択的にかつ好ましくは、相互に平行にすることができる。
【0109】
システム110と同様のシステムが使用される場合、全ての印刷ヘッド16は、任意選択的にかつ好ましくは、走査方向に沿ったそれらの位置が互いにずらされ、割出し方向に沿って向き付けられる。
【0110】
システム10と同様のシステムが使用される場合、全ての印刷ヘッド16は、任意選択的にかつ好ましくは、それらの方位角位置が互いにずらされ、放射状に(放射方向と平行に)向き付けられる。したがって、これらの実施形態では、異なる印刷ヘッドのノズルアレイは互いに平行ではなく、むしろ互いに角度を成しており、その角度はそれぞれのヘッド間の方位角のずれに略等しい。例えば1つのヘッドは放射状に向き付け、かつ方位角位置φ
1に配置することができ、別のヘッドは放射状に向き付け、かつ方位角位置φ
2に配置することができる。この実施例では、2つのヘッド間の方位角のずれはφ
1−φ
2であり、2つのヘッドのリニア・ノズル・アレイ間の角度もまたφ
1−φ
2である。
【0111】
一部の実施形態では、2つ以上の印刷ヘッドを組み立てて、1ブロックの印刷ヘッドにすることができる。その場合、そのブロックの印刷ヘッドは一般的に、互いに平行である。幾つかのインクジェット印刷ヘッド16a、16b、16cを含むブロックが
図2Cに示される。
【0112】
一部の実施形態では、システム10は、トレイ12が支持構造30とヘッド16との間にくるように、ヘッド16の下に位置する支持構造30を含む。支持構造30は、インクジェット印刷ヘッド16が作動している間発生することのあるトレイ12の振動を防止または低減するように働く。印刷ヘッド16が軸線14を中心に回転する構成では、支持構造30が常にヘッド16の真下にくるように(トレイ12と共にヘッド16とトレイ12の間で)支持構造30も回転することが好ましい。
【0113】
トレイ12および/または印刷ヘッド16は、任意選択的にかつ好ましくは、トレイ12と印刷ヘッド16との間の垂直距離が変動するように垂直方向zに沿って垂直軸線14と平行に移動するように構成される。トレイ12を垂直方向に沿って移動させることによって垂直距離が変動する構成では、支持構造30もトレイ12と共に垂直方向に移動することが好ましい。トレイ12の垂直位置は固定されたままで、垂直距離がヘッド16によって垂直方向に沿って変動する構成では、支持構造30もまた固定垂直位置に維持される。
【0114】
垂直移動は垂直ドライブ28によって確立することができる。ある層が完成すると、次に印刷される層の所望の厚さに応じて所定の垂直間隔だけ、トレイ12とヘッド16との間の垂直距離を増大させることができる(例えばヘッド16に対してトレイ12を下降させる)。この手順は三次元物体112が層毎に形成されるように繰り返される。
【0115】
インクジェット印刷ヘッド16の向き、および任意選択的にかつ好ましくは、システム10の1つ以上の他の構成部品の向き、例えばトレイ12の移動の向きも、コントローラ20によって制御される。コントローラは電子回路および回路によって読出し可能な不揮発性記憶媒体を有することができ、記憶媒体は、回路によって読み出されたときに、以下でさらに詳述するように制御動作を回路に実行させるプログラム命令を格納する。
【0116】
コントローラ20はまた、例えば標準テッセレーション言語(STL)またはステレオリソグラフィ輪郭(SLC)フォーマット、仮想現実モデリング言語(VRML)、付加製造ファイル(AMF)フォーマット、図面交換フォーマット(DXF)、ポリゴン・ファイル・フォーマット(PLY)、またはコンピュータ支援設計(CAD)に適したいずれかの他のフォーマットの形のコンピュータ・オブジェクト・データに基づいて、製作命令に関するデジタルデータを送信するホストコンピュータ24と通信することもできる。オブジェクト・データ・フォーマットは一般的に、デカルト座標系に従って構成される。このような場合、コンピュータ24は、コンピュータ・オブジェクト・データにおける各スライスの座標をデカルト座標系から極座標系に変換するための手順を実行することが好ましい。コンピュータ24は、任意選択的にかつ好ましくは、変換された座標系で製作命令を送信する。代替的に、コンピュータ24は、コンピュータ・オブジェクト・データによって提供された元の座標系で、製作命令を送信することができ、その場合、座標の変換はコントローラ20の回路によって実行される。
【0117】
座標の変換は回転トレイ上の三次元印刷を可能にする。従来の三次元印刷では、印刷ヘッドは静止トレイ上を直線に沿って往復運動する。そのような従来のシステムでは、ヘッドの吐出率が均一であることを前提として、印刷解像度はトレイ上のどの点でも同じである。従来の三次元印刷とは異なり、ヘッド点の全てのノズルが同時にトレイ12全体で同一距離をカバーするわけではない。座標の変換は、任意選択的にかつ好ましくは、異なる半径方向位置における過剰な材料の均等な量が確保されるように実行される。本発明の一部の実施形態に係る座標変換の代表的実施例が、物体の3つのスライスを示す
図3A〜
図3Fに提示される(各スライスは物体の異なる層の製作命令に対応する)。
図3A、
図3C、および
図3Eはスライスをデカルト座標系で示し、
図3B、
図3D、および
図3Fは、座標変換手順がそれぞれのスライスに適用された後の同じスライスを示す。
【0118】
通常、コントローラ20は、製作命令に基づき、かつ下述する格納されたプログラム命令に基づいて、システム10のそれぞれの構成部品に印加される電圧を制御する。
【0119】
一般的に、コントローラ20は、トレイ12の回転中に、トレイ12上で三次元物体を印刷するために構築材料の液滴を層状に吐出するように、印刷ヘッド16を制御する。
【0120】
システム10は、任意選択的にかつ好ましくは、1つ以上の放射源18を備え、それは、使用するモデル材に応じて、例えば紫外線もしくは可視光もしくは赤外線ランプ、または他の電磁放射源、または電子ビーム源とすることができる。放射源は、発光ダイオード(LED)、デジタル・ライト・プロセシング(DLP)システム、抵抗ランプ等をはじめ、それらに限らず、任意の種類の放射線放出素子を含むことができる。放射源18はモデル材を硬化または凝固させるように働く。本発明の様々な例示的実施形態では、放射源18の動作はコントローラ20によって制御され、それは、放射源18を作動させたり停止させたりすることができ、かつ任意選択的に放射源18によって発生する放射線の量も制御することができる。
【0121】
本発明の一部の実施形態では、システム10は、ローラまたはブレードとして製造することのできる1つ以上のレベリング装置32をさらに備える。レベリング装置32は、新たに形成された層を、次の層がその上に形成される前に矯正するのに役立つ。一部の実施形態では、レベリング装置32は円錐ローラの形状を有し、その対称軸線34がトレイ12の表面に対して傾斜し、かつその表面がトレイの表面と平行になるように配置される。この実施形態をシステム10の側面図に示す(
図1C)。
【0122】
円錐ローラは円錐または円錐台の形状を有することができる。
【0123】
円錐ローラの開き角は、その軸線34に沿った任意の位置における円錐の半径と、その位置と軸線14との間の距離との比率が一定になるように選択されることが好ましい。ローラが回転する間、ローラの表面上の点pはどれも、点pの鉛直下方に位置する点のトレイの線速度に比例する(例えば同一の)線速度を有するので、この実施形態はローラ32が層を効率的に平準化することを可能にする。一部の実施形態では、ローラは高さh、軸線14から最も近い距離位置における半径R
1、および軸線14から最も遠い距離位置における半径R
2を有する円錐台の形状を有する。ここでパラメータh、R
1、およびR
2は、R
1/R
2=(R−h)/hの関係を満たし、ここでRは軸線14からのローラの最遠距離である(例えばRはトレイ12の半径とすることができる)。
【0124】
レベリング装置32の動作は、任意選択的にかつ好ましくは、コントローラ20によって制御される。コントローラは、レベリング装置32を作動させたり停止させたりすることができ、かつ任意選択的に、垂直方向(軸線14と平行)に沿ったその位置、および/または放射方向(トレイ12と平行に、軸線14に近づくかまたはそれから離れる方向)に沿ったその位置をも制御することができる。
【0125】
本発明の一部の実施形態では、印刷ヘッド16は、径方向rに沿ってトレイに対して往復運動するように構成される。これらの実施形態は、ヘッド16のノズルアレイ22の長さがトレイ12上の作業領域26の径方向に沿った幅より短いときに、有用である。径方向に沿ったヘッド16の運動は、任意選択的にかつ好ましくはコントローラ20によって制御される。
【0126】
一部の実施形態は、異なる吐出ヘッドから異なる材料を吐出することによって物体を製作することを企図している。これらの実施形態は、とりわけ、所与の数の材料から材料を選択し、かつ選択された材料およびそれらの性質の所望の組合せを画定する能力を提供する。本実施形態によれば、異なる材料による異なる三次元空間位置の占有を達成するか、あるいは2つ以上の異なる材料による略同一の三次元位置または隣接する三次元位置の占有を達成するように、層における各材料の堆積の空間位置が画定され、層内の材料の堆積後の空間的組合せが可能になり、それによってそれぞれの位置(単数または複数)で複合材料を形成することが可能になる。
【0127】
モデル材の任意の堆積後の組合せまたは混合が企図される。例えば特定の材料が吐出された後、それはその元の性質を維持することができる。しかし、別のモデル材または他の吐出材料と同時に、同じ位置あるいは近傍位置で吐出された場合、吐出された材料とは異なる性質を有する複合材料が形成される。
【0128】
こうして本実施形態は、広範囲の材料の組合せの堆積を可能にし、かつ物体の各部分を特徴付けるために望ましい特性に応じて、物体の異なる部分を複数の異なる材料の組合せから構成することのできる物体の製作を可能にする。
【0129】
本実施形態に適したAMシステムの原理および動作のさらなる詳細は米国特許第9031680号に見られ、その内容を参照によって本書に援用する。
【0130】
次に
図4を参照すると、それは本実施形態に係る付加製造機器の廃インク処理サブシステムを示す簡易図である。
図1Aに関して上述した通り、付加製造機器114は、ローラ326のような1つ以上のレベリング装置をさらに備える。レベリング装置326は、新たに形成された層の厚さを、その上に次の層が形成される前に矯正し、平準化し、かつ/または確立するように働く。レベリング装置326は、平準化中に発生した過剰な樹脂材を回収するための廃棄物回収装置136を含むことが好ましい。廃棄物回収装置136は、材料を廃棄物タンクまたは廃棄物カートリッジ400に送達するいずれかの機構を含んでよい。カートリッジ400内に内蔵されてよい廃インク硬化装置402は、廃棄材料または廃インク404をカートリッジ400内に回収した後で硬化させるために、発光ダイオードまたは1つ以上の発光ダイオードバンクのようなエネルギ源を含む。
【0131】
次に
図5を参照すると、それは廃インク回収装置136をより詳細に示している。装置は、内部ポンプを有してよいローラ326に接続され、かつローラ326から廃インクを回収するリザーバ410を含む。リザーバはさらに、印刷ヘッドの周期的パージングなどの印刷ヘッドの保守作業から、廃インクを回収することができる。配管系412は、一般的に重力を利用して廃インクをリザーバからカートリッジ400への排水口または廃棄物出口管414に排出させ、リザーバ410からインクを回収する。シャワーヘッド構成を有する分配ヘッド416は、シャワーヘッド入口418からウィッキングチャネルを介して、回収カートリッジ400の領域全体に均等に分布するドリップ点420へ廃インクを分配する。後でさらに詳述するように、カートリッジの回収面全体に廃インクを均等に吐出させるという着想である。
【0132】
次に
図6を参照すると、それは分配ヘッド416のシャワーヘッド構成の上からの略図である。廃棄物管414からの4つの入口418の各々は、一連のウィッキングチャネル422に通じ、次いで11個のドリップ点またはドリップ案内部出口420に通じる。ドリップ点の着想は、廃棄物出口をカートリッジを介して均等に分散させることである。廃棄物回収カートリッジの床全体における廃インクの均等な分散のために、ドリップ点は分散アレイとして配設される。
【0133】
次に
図7および
図8を参照すると、それらは廃インク404がカートリッジ400の床全体に分散する連続的段階を示す。
図7では、区別できる液滴が明瞭であるが、
図8では、より多くのインクが到着し、液滴は合体している。本実施形態では、液滴は、硬化を実行する前に合体する時間を与えられる。すなわち、硬化エネルギ源は、インクがカートリッジ内に均等に分配されるだけの時間が経過した後でだけ作動する。硬化装置の動作は、例えば廃インクの流量に応じて設定されてよい。流量が大きければ大きいほど、硬化は早く、またはより頻繁に実行される。硬化を実行する前に液滴が合体し損なうと、下述するように石筍の形成を導くことがある。
【0134】
次に
図9を参照すると、それは、紫外発光ダイオード(LED)の取付け台バンクとしての硬化エネルギ源を示す、カートリッジ400の簡易図である。バンクは、インクが全部硬化されかつ液貯まりが残っているような影が存在しないように、カートリッジ内の廃インク全体を均等に照射するように設置される。本実施形態では、3つのバンクが設けられる。第1バンク430は、カートリッジ400に沿って片側に向けて長さ方向に配置される。第2バンクはシャワーヘッドがあるため分かりにくいが、バンク430の反対側に当たるカートリッジの第2の側に長さ方向に配置される。どちらのバンクも斜角に設置され、第3バンク432は出口点の上で分配ヘッドに長さ方向に配置される。第3バンク432は、処理中に有害な液状樹脂がカートリッジ内のどこにも残らないことを確実にするために、カートリッジ400が満杯になったときに硬化作業を実行し、分配ヘッド416に残ったインク、未滴下インクを硬化させる。
【0135】
次に
図10を参照すると、それは、分配ヘッド416の底部で各々のドリップ点420の周りに配置された遮蔽物440を示す簡略図である。遮蔽物は、LEDからの硬化エネルギからドリップ点を保護するために設けられる。さもなくば、ドリップ点で硬化したインクはドリップ点を閉塞し、あるいは後でさらに詳述するようにつらら石の形成を導くことがある。遮蔽物は直接照射から保護し、かつ多くの方向からの反射による照射から保護することもある。廃インク面からドリップ点への直線的正反射は防止できないが、そのような反射の総エネルギは、有効な硬化を引き起こすのに充分ではない。すなわち、直接的な垂直方向の光線は最小限であり、カートリッジの底のインクからの正反射によってのみ引き起こされる。上述の通り、LEDバンクは斜角で床に向けられ、したがってドリップ出口点に達するいかなる直接反射をも防止する。
【0136】
遮蔽物はフードまたは各ドリップ点を包囲し下方に延びる筒状延長部の形を取ることができる。
図11は、ウィッキングチャネル422、ドリップ点420、および遮蔽物440の切欠き図を示す。
【0137】
次に
図12A、
図12B、および
図12Cを参照すると、それらはそれぞれ、カートリッジ400の略縦断面図、カートリッジの略横断面図、および遮蔽物アレイの略下面図である。
図12Aは、不透明なプラスチックから作られたシャワーヘッドまたはドリップアレイ416、および透明なプラスチックから作られてよいカートリッジ本体壁460を示す。遮蔽物440は不透明なプラスチック製である。
図12Bでは、ドリップ点420が実際には、ドリップが形成され成長する先の尖った終端であることが分かる。ドリップを案内するために、遮蔽物内の各ドリップ点の下にシャベル450が設けられてよい。ドリップはシャベル上に落下し、次いで、迷走UV光による目詰まりをより起こしにくい、より大きい開口を介して排出する。
図12Cには、ドリップ点が周囲の遮蔽物および各ドリップ点の下のシャベルと共に示される。
【0138】
ドリップ案内部の形状は、ドリップ点におけるつらら石の形成を防止するように設計される。したがって、ドリップ点が露出していると、ドリップ案内部からつらら石が形成されることがある。液滴がドリップ案内部から落下するまで、液滴をUV露光から遮蔽するドリップ案内部の設計は、この挙動を示さない。
【0139】
次に
図13Aおよび
図13Bを参照すると、それらは、カートリッジ400が満杯であるか否かを検出する液位検出器470の略側面図である。液位検出器470は、不透明な離隔棒476によって分離されかつ透明なカートリッジ壁460の外に配置される、エミッタ472および検出器474を含む。
図13Aに示す実施例では、そのような液位センサが3個存在し、
図13Bにおいて、上部の画像は、廃棄物の不在時にはエミッタからの光が検出器に反射しないことを示す。下部の画像では、廃棄材料がエミッタからビームを反射するので、それが検出器に検知され、こうしてカートリッジは、それがどの程度充填されたか、およびその交換が必要になったときを決定することができる。
【0140】
満杯のカートリッジは、ユニットの後部の液位検出器470によって検出される。
【0141】
カートリッジが満杯であることを検出すると、印刷は中断され、残留している廃棄物はカートリッジ内に流入する。UV光の最終パルスが、側面に取り付けられたLEDストリップ430によって提供され、カートリッジの主チャンバ内の最後の廃棄物を硬化させる。シャワー・ヘッド・アセンブリの頂部に位置する第3のLEDストリップ432(
図9参照)は次いで、ウィッキングチャネルに残っているすべての材料を硬化させる。
【0142】
カートリッジはユーザが安全に取り外して処分することができ、新しい廃棄物カートリッジが設置された後、印刷が再開される。
【0143】
次に
図14を参照すると、それは、透明なカートリッジ壁460内にプリズム480が成形された、液位検出器470の変形例を示す。プリズムは、カートリッジが空のときに内部全反射を引き起こすが、カートリッジが満杯のときに反射できない屈折率を持つように設計される。
図13Aおよび
図13Bに優るプリズム実施形態の利点は、光が検出されるのがデフォルト位置であることである。
【0144】
次に
図15を参照すると、それは付加製造中の廃インクの管理方法を示している。製造が行われ(490)、廃インクは取り除かれ、回収される(492)。回収後に、廃インクは硬化され(494)、次いで廃棄のため固形の塊として取り出される(496)。
【0145】
次に
図16を参照すると、それは本発明の一実施形態に係る硬化の制御方法を示す簡易流れ図である。廃棄物の流量は監視または推測され(500)、硬化は、より低い流量にはより長く、より高い流量にはより短い間隔で実行される。加えて、硬化エネルギ源は、インク滴が均等に分配される充分な時間、すなわち液滴が成長して溶け込まされるのに充分な時間を取った場合に作動するように制限することができる。
【0146】
タイミングと硬化の量を意味する適用量とを流量に整合させることで、石筍の形成が防止される。適用量が高すぎると、樹脂が硬化前に拡散する時間が無いので、石筍が形成される。他方、適用量が低すぎると、貯留部が形成され得る。貯留部が深すぎると、UVは貯留部の上に層を硬化することができ、下に液状樹脂が閉じ込められる。これが起きると、閉じ込められた液体は、その上の硬化した層がUVを遮断するので、硬化することができない。
【0147】
サーボコントローラ付き蠕動ポンプを用いて試験を実施した。2つの8ワットUV LEDライトストリップを使用して硬化を実行し、サイクルタイマに取り付けた。タイミングは14ml/分の最大廃棄物流量、およびObjet VeroBlack樹脂とFC705サポート樹脂の50‐50混合の混合物に基づいた(どちらもイスラエル国のストラタシス社製)。
【0148】
未硬化樹脂は貯蔵された廃棄物内のポケットから漏れることがあり、廃棄物を有害にする。
【0149】
次に
図17を参照すると、それはカートリッジにおける廃樹脂の蓄積の5つの連続的段階を示す。樹脂が基本的に平坦な層状に蓄積することを見ることができる。
【0150】
図18は、カートリッジから取り出された硬化した廃棄物210を示す。縁部212は層化の証拠を明示する。
【0151】
次に
図19を参照すると、それは石筍220の形成を示している。石筍は、硬化適用量が高すぎて、廃棄物が拡散する機会を持たないうちに硬化したときに、形成される。適用量が低すぎると、未硬化樹脂の貯留部が残り、それは硬化した樹脂の下に埋もれてしまい、したがってその後硬化することができない。
【0152】
次に
図20を参照すると、それは、適用量が低すぎる場合に起きることを示している。廃樹脂は2つに切断され、ポケット230が形成されたことが分かる。ポケットは未硬化樹脂を含み、それは貯留部232に漏れ出す。
【0153】
次に
図21A〜
図21Cを参照する。つらら石および石筍の存在はさらにシャドーイングを引き起こし、特定の領域からUVを遮断し、一般的にこれらの領域に低すぎる硬化適用量をもたらす。その結果、多数の未硬化樹脂のポケットが生じる。
図21Aはシャドーイングが生じた領域の断面を示し、そこに多くのそのようなポケット240を見ることができる。
図21Bは、石筍の後ろに現われる未硬化樹脂の貯留部242を示し、
図21Cは対照的に、シャドーイングが生じなかった領域の断面を示し、そこに良好な層化244が見られ、液体ポケットは存在しない。
【0154】
次に
図22を参照すると、それは三角形250を用いて、黄色の円で象徴的に示された照明点252からの照明パターンを示している。全てのドリップ点が両側から直接照射を受けるようにしたドリップ案内部およびLEDの配置は、影を生じる特徴が形成されても、両側から完全に影になる点が生じないことを確実にする。
【0155】
より一般的に、優れたドリップ案内部の設計、流量に整合させたUVタイミング、およびLED/ドリップ案内部の配置の組合せは、影に関連付けられる問題を防止することができる。ドリップ案内部の設計およびUVのタイミングは、つらら石および石筍の形成を防止し、したがって影の形成を防止または低減することができる。この設計はまた、ドリップ点が少なくとも2つの光源から少なくとも照射され、したがって影を生じる特徴が実際形成された場合の問題を緩和することも確実にすることができる。
【0156】
次に
図23を参照すると、それは、廃棄物処理システムの一実施形態の組み立てられた状態の
図260を示す。これまでの実施形態と同様に、システムは以下を含む特定の機能を有する。
1)廃樹脂を移送し、廃棄物カートリッジ内に樹脂を均等に分配する。
2)廃樹脂が生じたときに、それを硬化させる。
3)カートリッジが満杯になった後、廃インクが全部硬化され、したがって満杯のカートリッジを処分する前に化学的に安全であることを確実にするために、最終硬化プロセスを実行する。
【0157】
廃樹脂は、ヘッドの保守手順を実行する保守ステーション、およびローラの2つの場所で発生する。これらの場所からの廃棄物は、管および継手から成る配管セットを介して、廃棄物硬化システムに移送される。より長い管262はローラから廃棄物を得、より短い管264は保守ステーションから廃棄物を得る。配管セットはローラおよび保守ステーションから来る廃樹脂の流れを2つの管の間の接合部266で合流させ、流れを廃棄物ダイバータ268の単一の入口に送達する。
図24の分解組立図を参照されたい。この移送は通常、重力によって誘導される。しかし、本発明の一部の実施形態では、配管セットにおける廃棄材料の移送は、蠕動ポンプのような1つ以上の機械的装置によって制御されてよい。
【0158】
この時点から、カートリッジの容器内への廃棄材料の均等な分散は、廃棄物ダイバータ268およびシャワーヘッド270の構成部品によって取り扱われる。
図25に関連して、廃棄物ダイバータ268は流れを均等に配置された4つのドリップ点272、274、276、および278に分割する。これらのドリップ点はシャワーヘッド270の4つの入口と整列し、各ドリップ点への通路は同一長さである。図示する実施例では、この結果は、より遠いドリップ点276および278へのより直線状のチャネルとは対照的に、より近いドリップ点272および274へのループ状のチャネルを使用することによって達成される。距離は同じであるという事実は、全ての経路で液圧が同じであることを確実にすることに役立つ。再び、優先される経路が無く、樹脂の流量が可能な限り均等になることを確実にするために、経路は同一高さに配置されてよい。
【0159】
大きい開口280は、シャワーヘッド270に残っている廃棄材料を硬化し、かつ標準ごみ箱に廃棄する前に廃棄物カートリッジを密封するためのLEDランプの挿置を可能にする。ランプの分布は、カートリッジを処分する前に、シャワーヘッド270に存在する残存材料を全部硬化させることを確実にするように行われる。安全開口282は、廃棄物が溢れる状態になった場合に、廃棄物ダイバータ268から廃棄材料を退避させるのを助けるために、シャワーヘッド270のドリップ点の少なくとも幾つかの上に位置する。
【0160】
次に
図26Aを参照すると、それはシャワーヘッド270の簡易図である。シャワーヘッド270は廃棄物ダイバータ268の4つのドリップ点と合致し、4つの流れの各々を、十字と対角線パターン284の6つの新しいドリップ点に分割して、全部で24個のドリップ点を形成する。24個のドリップ点は、シャワーヘッドのドリップ点がカートリッジの平面図で均等に配置されるので、カートリッジにおける樹脂の均等な分散を確実にする。こうして、樹脂は、廃棄物カートリッジの容器部分内に滴下するにつれて、均等に堆積する。硬化LEDは断続的に点灯するだけであるので、廃棄物は、硬化サイクルの間に、その液位を確認して比較的均等な層に合流するための時間が得られる。廃棄物ダイバータ268およびシャワーヘッドの両方を介する移送は、重力とウィッキングの組合せによって引き起こされる。しかし、本発明の一部の実施形態では、廃棄物ダイバータおよび/またはシャワーヘッドにおける廃棄材料の移送は、蠕動ポンプのような1つ以上の機械的装置によって制御されてよい。
【0161】
図26Bは、十字および対角線パターン284の詳細を示す。シャワーヘッドは、角部の丸みを使用してウィッキングを助長または阻止することを示す。樹脂は、印刷ヘッド発射チャンバの小さい範囲内にウィッキングされるように特別に設計される。これは、印刷ヘッドをプライミングし、かつプライミングされた状態を維持するのに役立つ。当然のことながら、樹脂からの積極的なウィッキング挙動は、印刷ヘッドの外側でも起きる。ウィッキング作用は、半径が小さいかあるいは半径の無い狭い隅部で最もよく発生するので、樹脂の流出または滞留を希望する場所に、鋭利な隅部が実現される。こうして、シャワーヘッドには、樹脂が流動するように意図された流路の内側の底部に鋭利な隅部が設けられる。逆に、流路の外壁は、流路からのいかなるウィッキングをも阻止するために、非常に大きい半径を有する。
【0162】
材料の均等な分散が達成されると、一貫した層の厚さ、およびしたがって優れた硬化性能がもたらされる。本実施形態の廃棄物硬化システムでは、単一の入口への流れは、上述の通り、廃棄物ダイバータ268およびシャワーヘッド270によって、24個の別々の流れに分割される。記載したこの設計要素は、流れをシャワーヘッド270の24個のドリップ点の間に均等に分割されることを確実にする。
【0163】
再び
図24を参照すると、側面ストリップ290は、カートリッジの容器内部の樹脂に硬化を実行する1つ以上のプリント回路アセンブリ(PCA)上に幾つかのLED素子を保持している。
【0164】
特定の実施形態では、硬化機能は、容器294の両側の研磨されたシート・メタル・リフレクタ292上に配置された、少なくとも2つのそのようなUV LED担持側面ストリップ290を介して達成される。リフレクタ292は、LEDからの光を容器内部で散乱させるのを助け、それによって硬化の均等性を向上させることができる。周期的に、廃棄物が生じると、LEDは硬化サイクルのために作動して、容器の床または容器内の硬化した樹脂の上に蓄積された液状廃棄物の層を硬化させる。
【0165】
カートリッジが満杯になると、カートリッジを廃棄する前に、最終硬化ステップが行われる。液状樹脂は有害物質とみなされるので、カートリッジを廃棄する前に、シャワーヘッドの上の分配チャネル内に残っている残留樹脂を硬化させる必要がある。UV LEDを備えた第3PCAは、この目的のためにシャワーヘッドの上に配置することができる。廃棄物カートリッジが満杯になると、第3基板上のLEDが作動する。第3基板の作動は、シャワーヘッド270内に残っているすべての液状樹脂を硬化させる。最終硬化は、カートリッジの頂部の穴を密封するのにも役立つ。硬化した廃樹脂から多少の水が浸出することがあるので、そのような密封は望ましい。最終硬化ステップが行われると、シャワーヘッドのドリップ点は密封されるので、カートリッジはそれ以上使用できない。
【0166】
次に
図27、
図28、および
図29を参照すると、それらは、廃棄物ダイバータ268の詳細をそれぞれ3つの異なる角度から示す。廃棄物流入管は廃棄物を中央位置300に滴下させ、そこでは遮蔽壁302が樹脂をUV穴304から遠ざけておく。表面のウィッキングチャネル306はダクトとして働き、4つの出口方向の各々の樹脂の流れを分割し、滴下する樹脂を4つの別々の方向に流動を始めさせる。
【0167】
廃棄物は、入口で小さい暫定的なリザーバとして役立つ中央位置300に滴下する。リザーバは、樹脂を4つのダイバータ経路全部の入口に均等に分散させる。リザーバの底部に小さいウィッキングチャネル306が形成される。これらは再び、リザーバの表面全体に樹脂を分散させるのに役立つ。チャネルは、それが無いので樹脂が片側に貯留し、全ての流路ではなく、流路の1つまたはもう1つに優先的にウィッキングし始める可能性がある場合に、流量を低下させることを目的とする。充分な樹脂がリザーバ内に蓄積されると、樹脂の液位が上昇し、流路の始点に合致する。流路の入口もウィッキング機能を取り込む。これらの目的は、樹脂が4つの経路全部に引き込まれることを確実にすることであり、再び流れが経路の1つか2つに優先的に流れ落ちることを防止する。
【0168】
図30は、廃棄物ダイバータ268の略断面図であり、1つの入口310が4つの等間隔に配置された出口312、314、316、および318に分割されることを示す。
【0169】
図31は、一緒に取り付けられた廃棄物ダイバータ268およびシャワーヘッド270を示す略断面図である。図示するように、廃棄物ダイバータの4つの出口はシャワーヘッドの4つの入口と合致し、均等に配置されたシャワーヘッド出口320に流れをさらに分割する。
【0170】
次に
図32、
図33、および
図34を参照すると、それらは、ノズルから滴下する樹脂の意図しない硬化のためノズルが目詰まりするのを防止する、シャワーヘッド270のノズルの構造を示す。必然的に、廃棄物ダイバータおよびシャワーヘッド両方におけるドリップ点の底部は、液滴が落下できるように露出させる必要がある。これは、迷走UV光が樹脂をそこで硬化させた場合に、目詰まりを起こし易くする。シャワーヘッドは使い捨てカートリッジの一部であり、したがって製品の寿命期間ではなく、カートリッジの寿命期間だけ目詰まりにならない状態を維持する必要がある。しかし、シャワーヘッドは廃棄物ダイバータより頻繁に、かつより大きい線量のUVに曝されるので、シャワーヘッドのドリップ点の保護も課題である。
【0171】
したがって、依然としてそれらと接触している間に樹脂が硬化し、したがってそれらを密封するのを防止するために、廃棄物ダイバータおよびシャワーヘッドの両方におけるドリップ点を、迷走UVから保護しなければならない。これは、上述の通り、ドリップノズル332の周りにランプシェード構造330を形成するように配設することのできる、遮蔽壁を組み込むことにより達成することができる。廃棄物ダイバータ268では、ランプシェード構造330は、カートリッジの挿置および取外しを可能にするための最小限の隙間だけを残して、シャワーヘッド270の頂部の下まで延ばすことができる。一部の実施形態では、廃棄物ダイバータ268はプリンタの寿命期間にわたって存続するように意図されているので、保護はできるだけ完全であることが好ましい。
【0172】
シャワーヘッド270のドリップ点320もまた、
図31に見られるように、UVへのそれらの曝露を最小化するためにランプシェード構造330を有する。ランプシェード構造330の大きさを決める上でトレードオフすべき幾つかのパラメータが存在する。最初のパラメータは内壁から先端までの角度である。実験的に、50°未満の夾角334(
図33参照)は、本実施形態のLED/リフレクタ/ドリップ点の構成に対し充分な保護をもたらすことが見いだされた。第2のパラメータは内径である。内径がドリップ点に近すぎる場合、樹脂はドリップ点とランプシェードの内壁との間で橋絡しかねず、ドリップ案内部ではなくランプシェードから滴下し始め、結果的につらら石が形成されるかもしれない。つらら石の形成を防止するのに役立つ別の特徴は、ドロップ点およびランプシェードの根元の半径である。ここで半径が大きいと、ドリップ点からランプシェードへの樹脂のウィッキングが阻止される。
【0173】
最後のトレードオフパラメータは高さである。直径が大きくなればなるほど(つらら石の防止には望ましい)、かつ先端の夾角が小さければ小さいほど(ドリップ点の保護の観点から望ましい)、ランプシェードの高さを高くする必要がある。しかし、ランプシェードの高さが高ければ高いほど、カートリッジの使用可能な高さは小さくなる。課題は、カートリッジの使用可能な容積を最大するために、ランプシェードの直径をつらら石の形成を防止する最小の直径にし、かつ目詰まりを防止する最大の夾角にすることである。
【0174】
次に
図35を参照すると、それは、不適切に遮蔽されたノズル338におけるつらら石336の形成を示す。つらら石はノズルを目詰まりさせ、満杯になるずっと前にカートリッジを役に立たなくする。
【0175】
次に
図36を参照すると、それは、LEDランプ340がカートリッジの両側に設置されたシャワーヘッド270の下面図である。この図は、できるだけ均一な硬化をもたらすシャワーヘッド270のドリップ点の周りのLEDランプ340の配置を示す。
【0176】
廃棄物硬化システムの設計における課題の1つは、つらら石/石筍が形成される場合でも、均等なUV露光を確実にすることであった。この課題に応えるには、LED340およびドリップ点320の相互の配置構成に特別な注意を払う必要がある。ドリップ点320は、8つの傾斜したカラムに、各々3つずつ配置される。同時に、本実施形態の各UV LED担持側面ストリップ290に、8個のLEDが存在する。この配置構成は、全ての液滴の着地領域が3〜4個のLEDから見通せることを確実にするので、該領域は、たとえつらら石/石筍が形成され、一方向または他の方向から遮られても、LED露光が得られる。
図36の配置構成は、陰によって生じる未硬化樹脂の貯留を防止するのに有効であった。
【0177】
次に
図37を参照すると、それは本発明の実施形態に係る印刷廃棄物処分プロセスの仮想廃棄物パイプライン(VWP)モデルを示す。VWPは、樹脂の流れならびにUV曝露の必要量およびタイミングを計算するために、プリンタにおける実際の廃棄物パイプラインをモデル化する。
【0178】
UV線量制御には幾つかの課題がある。材料に対する適切な線量を適用すること、正しい量の材料がカートリッジに到着したときに適用のタイミングを図ること、および過少または過剰適用しないことである。VWPモデルはこれらの課題の克服に役立つ。高いレベルで、VWPは、様々な材料、異なる種類の作業に関連付けられる変動する容積、および廃棄物をカートリッジに移送するためのタイミング差だけでなく、それらが組み合された効果をも考慮して、投与のタイミングを調整することを可能にする。この仮想パイプラインは、製品が現場で遭遇する著しく多様な条件を補完するために使用することができる。
【0179】
UV線量は廃棄物硬化性能に効果を有する。所与の条件(樹脂の種類、流量)に対し良好に作用する線量の範囲が存在する。したがって線量を厳密に明確にする必要はない。しかし、UV露光が多すぎたり少なすぎたりすると、上述したような問題を引き起こすことがある。適用のタイミングも関係する。硬化事象の間に容器内に形成される層が厚すぎる場合、層の下方部分に含まれる材料は、適用量が過少になる。他方、硬化事象の発生が早すぎる場合、硬化事象が実行されるときに、全部の材料は容器内に入っていないことがある。この結果、次の硬化サイクルの層の厚さが高すぎることになる。
【0180】
上述の通り、UV光の過剰線量は石筍の形成を導くことがあり得、かつ目詰まりおよびしたがって硬化陰(石筍構造によって生じる)を引き起こす。UV光の過少線量は、それ以上硬化することのできない液状樹脂を含む中空を導くことがあり得る。異なる材料に必要な線量は異なり、ある種類の樹脂にとっての過少線量は、別の種類の樹脂にとって過剰線量であるかもしれない。
【0181】
VWPモデルは、廃樹脂材の体積に硬化係数を掛けた値に対応する適用量単位(DU)に基づいており、硬化係数は、前記樹脂材のUVエネルギに対する硬化応答に直接関係する。廃樹脂が「純粋」である(1種類の樹脂から構成される)場合、単一の硬化係数が適用される。他方、廃樹脂が「複合」材である(2種類以上の樹脂を含む)場合、幾つかの硬化係数が適用され、各々の硬化係数が回収された各樹脂材のそれぞれの体積に適用される。特定の各樹脂材の廃棄体積の決定は、廃棄物が回収されるまで物体の印刷に使用された樹脂の量(各樹脂材により印刷されたボクセル数を知る)およびローラによってまたは印刷ヘッドの洗浄事象中に除去された廃棄材料の量に基づいて計算することができる。DUモデルはパイプラインに沿って様々な入口に適用されるので、異なる源からの実際の廃樹脂がカートリッジに到達するまでに掛かる時間をモデル化することができる。一般的に3つの異なる廃棄物発生事象が存在する。1つは廃棄材料がローラによって除去されることであり、他の2つは、保守ステーションにおける印刷ヘッドの洗浄事象によって生じる。印刷は印刷ヘッドおよびノズルを用いて実行され、ローラは表面上を通過してモップ掛けを行い、材料の約20%、より一般的には10〜30%を除去する。その結果、印刷材料の体積が得られ、どれだけの廃棄材料が生じたかを推測することができる。この推測は、必要な硬化エネルギの量についての手引きになる。
【0182】
一部の実施形態では、廃棄材料は管内をカートリッジまでゆっくり流れる。上述の通り、重力は主要な供給因子であるので、推定と硬化の実施との間に時間がある。主要な供給因子としての重力により、速度はいつでも発生する廃棄物の量に依存する。発生する廃棄物が多ければ多いほど、廃樹脂は管内を速く供給される。これらの複雑さは、硬化しにくい樹脂の過少線量および硬化し易い樹脂の過剰線量を防止する、全ての適用量に適合する1つのサイズというものは無いことを意味する。同じことは適用のタイミングについてもいえる。あらゆる状況で材料の過剰硬化および過少硬化を防止するような、硬化事象間または保守後の単一のタイミングは存在しない。これらの問題に対処するために、
図37のVWPモデルを使用することができる。
【0183】
用量ユニットは樹脂材料に適用され、再び廃棄物カートリッジにおける予想量を推定することを可能にする。印刷ヘッドを洗浄するプロセスもまた廃棄物をもたらし、少量であるが、再び予測可能である。
【0184】
(1)廃棄材料を累積し、かつ(2)所定の堆積閾値に達したときに前記累積された廃棄材料を解放するために、洗浄ステーション近くの小さいタンクおよび/またはローラを含む、1つ以上のアキュムレータを追加することが可能である。アキュムレータによって解放された廃棄材料の体積が分かると、カートリッジに到達しかつ硬化を必要とする樹脂の量がずっと正確に分かり、適切な硬化エネルギ(またはDU)を適用することができる。アキュムレータはまた、廃棄材料を所定の速度でパイプラインに導入するために使用することもできる。大量の廃棄材料を発生する事象(例えば洗浄ステーションで印刷ヘッド材料が空になる事象)が生じた場合に、速度制限機能は重要であり、硬化システムに入る廃棄材料の量を制御することができる。これもまた、適用されるDUのより厳格な制御を可能にする。
【0185】
VWPモデルでは、パイプライン自体をセルに分割することができる。DUは、そのセルの現在の総DUに追加される。設定可能な間隔で、セルの中身は全て次のセルに移される。パイプライン356の終端部で、最後のセルの中身がカートリッジセル358に加えられる。
【0186】
充分な樹脂がカートリッジに到達すると、(特定の数のDUを適用して)硬化サイクルが開始され、カートリッジセル内の樹脂はゼロになる。このサイクルは印刷プロセス中ずっと続く。
【0187】
図37は、ローラからだけでなく、洗浄ステーションに関連付けられた2つの樹脂廃棄物源352および354からの樹脂の蓄積350をも示す。樹脂は定常流量で管356内を流れるので、カートリッジセル358の到着時間は、移動しなければならない管の長さに依存する。硬化エネルギのタイミングを樹脂の到着に合せることができるように、各事象の計算に遅延を入力することができる。
【0188】
本出願から成熟する特許の存続期間の期間中には、多くの関連する付加製造技術が開発されることが予想され、「付加製造」の用語の範囲は、すべてのそのような新しい技術を先験的に包含することが意図される。
【0189】
用語「含む/備える(comprises、comprising、includes、including)」、「有する(having)」、およびそれらの同根語は、「含むが、それらに限定されない(including but not limited to)」ことを意味する。
【0190】
用語「からなる(consisting of)」は、「含み、それらに限定される(including and limited to)」ことを意味する。
【0191】
本明細書中で使用される場合、単数形態(「a」、「an」および「the」)は、文脈がそうでないことを明確に示さない限り、複数の参照物を包含する。
【0192】
明確にするため別個の実施形態の文脈で説明されている本発明の特定の特徴が、単一の実施形態に組み合わせて提供されることもでき、上述の記述は、あたかもこの組み合わせが明示的に記載されているかのように解釈されるべきであることは分かるであろう。逆に、簡潔にするため単一の実施形態で説明されている本発明の各種の特徴は別個にまたは適切なサブコンビネーションで、あるいは本発明の他の記載される実施形態において好適なように提供することもでき、上述の記述は、あたかもこれらの別個の実施形態が明示的に記載されているかのように解釈されるべきである。種々の実施形態の文脈において記載される特定の特徴は、その実施形態がそれらの要素なしに動作不能である場合を除いては、それらの実施形態の不可欠な特徴であると見なされるべきではない。
【0193】
本発明はその特定の実施態様によって説明してきたが、多くの別法、変更および変形があることは当業者には明らかであることは明白である。従って、本発明は、本願の請求項の精神と広い範囲の中に入るこのような別法、変更および変形すべてを包含するものである。
【0194】
本明細書で挙げた刊行物、特許および特許出願はすべて、個々の刊行物、特許および特許出願が各々あたかも具体的にかつ個々に引用提示されているのと同程度に、全体を本明細書に援用するものである。さらに、本願で引用または確認したことは本発明の先行技術として利用できるという自白とみなすべきではない。節の見出しが使用されている程度まで、それらは必ずしも限定であると解釈されるべきではない。