特許第6556983号(P6556983)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

特許6556983永久磁石の製造方法及び回転電機の製造方法
<>
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000003
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000004
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000005
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000006
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000007
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000008
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000009
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000010
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000011
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000012
  • 特許6556983-永久磁石の製造方法及び回転電機の製造方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6556983
(24)【登録日】2019年7月19日
(45)【発行日】2019年8月7日
(54)【発明の名称】永久磁石の製造方法及び回転電機の製造方法
(51)【国際特許分類】
   H01F 1/057 20060101AFI20190729BHJP
   H01F 41/02 20060101ALI20190729BHJP
   B22F 1/00 20060101ALI20190729BHJP
   B22F 3/00 20060101ALI20190729BHJP
   C22C 33/02 20060101ALI20190729BHJP
   B22F 9/04 20060101ALI20190729BHJP
   B22F 3/14 20060101ALI20190729BHJP
   H02K 1/27 20060101ALI20190729BHJP
   C22C 38/00 20060101ALN20190729BHJP
【FI】
   H01F1/057 170
   H01F41/02 G
   B22F1/00 Y
   B22F3/00 F
   C22C33/02 K
   B22F9/04 C
   B22F3/14 A
   H02K1/27 501Z
   H02K1/27 501A
   !C22C38/00 303D
【請求項の数】6
【全頁数】20
(21)【出願番号】特願2014-153865(P2014-153865)
(22)【出願日】2014年7月29日
(65)【公開番号】特開2016-32026(P2016-32026A)
(43)【公開日】2016年3月7日
【審査請求日】2017年5月24日
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】110000992
【氏名又は名称】特許業務法人ネクスト
(72)【発明者】
【氏名】藤川 憲一
(72)【発明者】
【氏名】久米 克也
(72)【発明者】
【氏名】星野 利信
(72)【発明者】
【氏名】山口 美穂
(72)【発明者】
【氏名】森本 政和
(72)【発明者】
【氏名】藤原 誠
(72)【発明者】
【氏名】奥野 利昭
(72)【発明者】
【氏名】井本 栄一
(72)【発明者】
【氏名】江部 宏史
(72)【発明者】
【氏名】大牟礼 智弘
(72)【発明者】
【氏名】尾関 出光
(72)【発明者】
【氏名】加藤 有樹
(72)【発明者】
【氏名】山本 貴士
(72)【発明者】
【氏名】齊藤 正一朗
【審査官】 右田 勝則
(56)【参考文献】
【文献】 特開2013−243886(JP,A)
【文献】 特開2003−319621(JP,A)
【文献】 特開2001−355006(JP,A)
【文献】 特開2005−304193(JP,A)
【文献】 特開2003−092860(JP,A)
【文献】 特開昭60−125149(JP,A)
【文献】 特開2006−014563(JP,A)
【文献】 特開2003−009476(JP,A)
【文献】 特開2009−273356(JP,A)
【文献】 特開2009−044795(JP,A)
【文献】 特開2015−104243(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01F 1/057
B22F 1/00
B22F 3/00
B22F 3/14
B22F 9/04
C22C 33/02
H01F 41/02
(57)【特許請求の範囲】
【請求項1】
開口部を有する所定形状の収容部内に設置される永久磁石の製造方法であって、
磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末とバインダーとが、磁石粉末とバインダーの合計量に対するバインダーの比率が1wt%〜40wt%で混合された混合物を生成する工程と、
前記混合物を前記所定形状に対応する形状を有する成形体に成形する工程と、
前記成形体を前記収容部に収容する工程と、
前記収容部に収容されるとともに事前に非酸化性雰囲気下で加熱することにより脱バインダー処理された前記成形体を、前記開口部から一軸方向に加圧した状態で焼結する工程と、を有することを特徴とする永久磁石の製造方法。
【請求項2】
前記収容部への収容前又は収容後に前記成形体に対する磁場配向を行うことを特徴とする請求項に記載の永久磁石の製造方法。
【請求項3】
前記混合物に対して磁場を印加するとともに、磁場の印加された前記混合物を前記成形体へと変形することによって磁化容易軸の方向を操作して前記成形体の磁場配向を行い、
磁場配向が行われた前記成形体を前記収容部に収容することを特徴とする請求項に記載の永久磁石の製造方法。
【請求項4】
前記成形体を前記収容部に収容する工程では、前記成形体を前記収容部に収容する前に冷却し、冷却された状態の前記成形体を前記収容部に収容することを特徴とする請求項乃至請求項のいずれかに記載の永久磁石の製造方法。
【請求項5】
前記収容部は、回転電機の固定子又は可動子に形成された収容部であることを特徴とする請求項乃至請求項のいずれかに記載の永久磁石の製造方法。
【請求項6】
請求項に記載の製造方法で製造された永久磁石を、前記固定子又は前記可動子に形成された前記収容部に収容することにより製造することを特徴とする回転電機の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、永久磁石の製造方法及び回転電機の製造方法に関する。
【背景技術】
【0002】
近年、工作機械やハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。このような永久磁石モータとしては、永久磁石をロータ(回転子)に設置する回転界磁型のモータや、永久磁石をステータ(固定子)に設置する回転電機子型のモータ等がある。特に、永久磁石をロータ内部に埋め込んでなる埋込磁石型モータ(IPMモータ)は、コイルと永久磁石の吸引力/反発力に起因するマグネットトルクに加えてリラクタンストルクを得ることができるので、高出力性能が要求されるモータに使用されている。
【0003】
ここで、IPMモータに対して埋め込む永久磁石は、基本的に直方体形状の永久磁石が用いられる。更に、近年ではIPMモータのトルクをより上昇させる為に、より複雑な形状の永久磁石を用いることについても提案されている。例えば、弓型形状や蒲鉾型形状等について提案されている。
【0004】
また、永久磁石モータに用いられる永久磁石の製造方法としては、従来より粉末焼結法が一般的に用いられる。ここで、粉末焼結法は、先ず原材料をジェットミル(乾式粉砕)等により粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では1100℃)で焼結することにより製造する(例えば、特開平2−266503号公報)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平2−266503号公報(第5頁)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の粉末焼結法による成形方法では、焼結時の収縮等が原因により、焼結後の永久磁石の形状を予め設計された設計形状と厳密に同一形状とすることは非常に困難であった。従って、焼結後の永久磁石をモータに配置する場合に、永久磁石がモータに形成された収容部に挿入できない事態を防止する為、永久磁石は収容部の形状に対して小さめの形状に設計する必要がある。その結果、図11に示すようにモータに形成された収容部101に永久磁石102を収容した場合には、収容部101と永久磁石102との間に一定間隔の隙間103が生じることとなる。この収容部101と永久磁石102との間に生じる隙間103は、モータの性能に寄与しない不要なスペースであり、できる限り小さくすることが望まれる。
【0007】
一方、焼結後の永久磁石を収容部よりもあえて大きいサイズとなるように設計し、焼結後の永久磁石の外形を切削加工して収容部の形状へと近づけることも可能であるが、その方法では製造工程が増加するとともに、歩留まりが大きく低下することとなっていた。特に永久磁石が弓型形状や蒲鉾型形状等の複雑な形状を有する場合には、その問題が大きくなる。
【0008】
本発明は前記従来における問題点を解消するためになされたものであり、高いニアネットシェイプ性について実現し、収容部内に永久磁石を設置した際に収容部と永久磁石との間に生じる隙間を減少させた永久磁石の製造方法及び回転電機の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
前記目的を達成する為に本願の請求項1に係る永久磁石の製造方法は、開口部を有する所定形状の収容部内に設置される永久磁石の製造方法であって、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとが、磁石粉末とバインダーの合計量に対するバインダーの比率が1wt%〜40wt%で混合された混合物を生成する工程と、前記混合物を前記所定形状に対応する形状を有する成形体に成形する工程と、前記成形体を前記収容部に収容する工程と、前記収容部に収容されるとともに事前に非酸化性雰囲気下で加熱することにより脱バインダー処理された前記成形体を、前記開口部から一軸方向に加圧した状態で焼結する工程と、を有することを特徴とする。
【0016】
また、請求項に係る永久磁石の製造方法は、請求項に記載の永久磁石の製造方法であって、前記収容部への収容前又は収容後に前記成形体に対する磁場配向を行うことを特徴とする。
【0017】
また、請求項に係る永久磁石の製造方法は、請求項に記載の永久磁石の製造方法であって、前記混合物に対して磁場を印加するとともに、磁場の印加された前記混合物を前記成形体へと変形することによって磁化容易軸の方向を操作して前記成形体の磁場配向を行い、磁場配向が行われた前記成形体を前記収容部に収容することを特徴とする。
【0018】
また、請求項に係る永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の永久磁石の製造方法であって、前記成形体を前記収容部に収容する工程では、前記成形体を前記収容部に収容する前に冷却し、冷却された状態の前記成形体を前記収容部に収容することを特徴とする。
【0019】
また、請求項に係る永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の永久磁石の製造方法であって、前記収容部は、回転電機の固定子又は可動子に形成された収容部であることを特徴とする。
【0020】
更に、請求項に係る回転電機の製造方法は、請求項に記載の製造方法で製造された永久磁石を、前記固定子又は前記可動子に形成された前記収容部に収容することにより製造することを特徴とする。
【発明の効果】
【0027】
前記構成を有する請求項1に記載の永久磁石の製造方法によれば、磁石粉末とバインダーとの混合物を成形した成形体を、収容部に収容した状態で加圧して焼結するので、従来の圧粉成形等を用いる場合と比較して、焼結後の磁石形状を収容部の形状により正確に対応させた形状とすることができる。即ち、高いニアネットシェイプ性を実現することが可能となる。また、焼結後の外形加工に対する負担が軽減され、生産性が大きく向上する事が期待できる。また、収容部内に永久磁石を設置した際に収容部と永久磁石との間に生じる隙間を減少させる。
【0028】
また、請求項に記載の永久磁石の製造方法によれば、磁石粉末とバインダーとを混合した混合物に対して磁場配向を行うので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。
また、混合物に対して磁場配向を行う場合には、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。
【0029】
また、請求項に記載の永久磁石の製造方法によれば、一旦磁場配向された混合物を変形することによって、配向方向を補正することが可能となる。その結果、複雑な形状へと配向させる場合においても高配向かつバラつきの少ない配向を行うことが可能となる。また、混合物を成形体へと成形する際に、成形体への変形を行うと同時に配向方向を補正することが可能となる。その結果、永久磁石の成形工程と配向工程とを一の工程で行うことが可能となり、生産性を向上させることが可能となる。
【0030】
また、請求項に記載の永久磁石の製造方法によれば、成形体を収容部に収容する工程では、成形体を収容部に収容する前に冷却し、冷却された状態の成形体を収容部に収容するので、成形体を開口部から収容部に対して容易に収容することが可能となる。
【0031】
また、請求項に記載の永久磁石の製造方法によれば、製造された永久磁石を、IPMモータ等の永久磁石を内部に埋め込む構造を有する回転電機に設置する場合において、収容部と永久磁石との間に生じる不要な隙間を減少させる。従って、同じ形状の収容部に対して収容する永久磁石の体積をより大きくすることができ、従来に比べてモータの高トルク化、発電機の発電力の向上、小型軽量化を実現することが可能となる。
【0032】
更に、請求項に記載の回転電機の製造方法によれば、収容部と永久磁石との間に生じる不要な隙間を減少させる。従って、同じ形状の収容部に対して収容する永久磁石の体積をより大きくすることができ、従来に比べてモータの高トルク化、発電機の発電力の向上、小型軽量化を実現することが可能となる。
【図面の簡単な説明】
【0033】
図1】本発明に係る永久磁石を示した全体図である。
図2】永久磁石が配置されたIPMモータを示した図である。
図3】永久磁石の磁化容易軸方向を示した図である。
図4】永久磁石の磁化容易軸方向を示した図である。
図5】永久磁石の磁化容易軸方向を示した図である。
図6】ロータの特にスロット周辺を拡大して示した拡大図である。
図7】本発明に係る永久磁石及び永久磁石を用いた回転電機の製造工程を示した説明図である。
図8】本発明に係る永久磁石及び永久磁石を用いた回転電機の製造工程を示した説明図である。
図9】本発明に係る永久磁石の製造工程の内、特にグリーンシートの成形工程及び磁場配向工程を示した説明図である。
図10】本発明に係る永久磁石の製造工程の内、特に仮焼工程の昇温態様について説明した図である。
図11】従来技術の問題点について説明した図である。
【発明を実施するための形態】
【0034】
以下、本発明に係る永久磁石の製造方法及び回転電機の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
【0035】
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。図1に示すように本発明に係る永久磁石1は断面弓型形状を有する永久磁石である。そして、図2に示すように埋込磁石型のモータ(又は発電機)2のロータ3に形成された収容部(スロット)4に収容され、埋込磁石型のモータ(又は発電機)を構成する。図2は、永久磁石1が配置された埋込磁石型のモータ(以下、IPMモータという)2を示した図である。尚、以下の実施例では永久磁石1の形状を断面弓型形状とした例について説明するが、永久磁石1の形状は配置対象となる回転電機の種別や形状等によって適宜変更可能である。例えば、扇型形状、蒲鉾型形状、直方体形状としても良い。
【0036】
また、本発明に係る永久磁石1はNd−Fe−B系磁石からなる。尚、各成分の含有量はNd:27〜40wt%、B:0.8〜2wt%、Fe(電解鉄):60〜70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。
【0037】
また、後述のように本発明に係る永久磁石1は、永久磁石1の配置対象となるスロット4に対応する形状(例えば図1図2に示す例では断面弓型形状)に成形された後に、焼結を行う前にスロット4に収容される。そして、スロット4に収容された状態で焼結することにより製造される。それによって、従来と比較してスロット4と永久磁石1との間に生じる不要な隙間を減少させることが可能となる。尚、永久磁石1の製法の詳細については後述する。
【0038】
更に、永久磁石1は、後述のように磁石粉末とバインダーを混合した混合物を成形した成形体(グリーン成形体)によって形成される。尚、混合物を直接に図1に示す断面弓型形状に成形するのではなく、一旦断面弓型形状以外(例えば、シート形状、ブロック形状等)に成形し、その後に打ち抜き加工、切削加工、変形加工等を行うことによって断面弓型形状とする構成としても良い。また、特に混合物を一旦シート形状とした後に断面弓型形状に加工する構成とすれば連続工程で生産することによって生産性を向上でき、また、成形の精度についても向上させることができる。混合物をシート形状とする場合には、例えば0.05mm〜10mm(例えば1mm)の厚さを備えた薄膜状のシート部材とする。尚、シート形状とした場合であっても、複数枚積層することとすれば、大型の永久磁石1を製造することも可能である。
【0039】
また、本発明に係る永久磁石1は異方性磁石であり、図3に示すように磁化容易軸(C軸)が径方向に配向されている。即ち、永久磁石1の配向は、面に対して法線方向に配向されることとなる。尚、永久磁石1の配向は、図4に示すように磁化容易軸(C軸)を一の径方向に平行となるように配向させても良い。その場合には、永久磁石1の配向は、パラレル配向を有することとなる。
【0040】
更に、図5に示すように、磁石表面を通過する集束軸Pに沿った一方向(図5ではロータ外側方向)へと磁化容易軸(C軸)が集束するように配向しても良い。また、図5に示す例では集束軸Pは、永久磁石1の中央付近を通過するように設定しているが、中央付近ではなく右側寄り又は左側寄りに設定しても良い。また、減磁し易い箇所に集束するように配向しても良い。そして、特に図5に示すように永久磁石1を配向した場合には、永久磁石1がロータ3のスロット4に収容された場合において、ロータ3の周方向に沿って両端側から中心側へと、外側方向(即ちエアギャップ側)に磁化容易軸(C軸)が傾斜するように配向されることとなる。より具体的には、磁化容易軸が指数曲線に沿って形成されることとなる。その結果、永久磁石1がロータ3のスロット4に収容され且つ着磁された場合に、ロータ3の中心方向から外側方向(即ちエアギャップ側)へと磁石内部の磁束が集中する(即ち、磁石表面の磁束密度が高くなる)こととなる。
【0041】
また、本発明に係る永久磁石1では、後述のように磁石粉末とバインダーを混合した混合物に対して磁場を印加して配向するので、圧粉成形のように配向後に付加された圧力によって磁石粒子が回動することがなく、配向度を向上させることが可能である。また、PLP法のように磁石粉末の密度分布にばらつきが生じることがないので、ニアネットシェイプ性が向上する。更に、製品形状(例えば図1に示す断面弓型形状)への成形前の混合物に対して磁場を印加して一旦配向を行った後に、混合物の磁化容易軸の方向を考慮して混合物を成形(例えば変形加工)し、製品形状へと成形することとすれば、製品形状への成形過程において磁化容易軸の方向を操作することができる。即ち、製造者の意図する方向へ磁化容易軸を適切に配向させることが可能となる。その結果、複雑な方向へと磁化容易軸を配向した永久磁石(例えば図3に示す面に対して法線方向に配向された異方性磁石や、図5に示すような磁化容易軸を特定方向に集束させるように配向した異方性磁石)を容易且つ精度良く実現することが可能となる。
【0042】
また、本発明では特に永久磁石1を製造する場合において、磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸エステルやそれらの混合物等が用いられる。
更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のように磁石粉末とバインダーとの混合物を所望形状(例えば断面弓型形状)に成形する際に生じた混合物の残余物を再利用する為、及び混合物を加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
【化1】
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
【0043】
上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3−ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン−イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン−ブタジエンブロック共重合体(SBS)、2−メチル−1−ペンテンの重合体である2−メチル−1−ペンテン重合樹脂、2−メチル−1−ブテンの重合体である2−メチル−1−ブテン重合樹脂、α−メチルスチレンの重合体であるα−メチルスチレン重合樹脂等がある。尚、α−メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、酸素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本願発明の目的を達成することが可能である。
尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は流動開始温度が250℃以下の熱可塑性樹脂を用いることが望ましい。
【0044】
一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、後述のように磁石粉末とバインダーとの混合物を磁場配向する際には、混合物を長鎖炭化水素のガラス転移点又は流動開始温度以上で加熱して軟化した状態で磁場配向を行う。
【0045】
また、バインダーに脂肪酸エステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、後述のように磁石粉末とバインダーとの混合物を磁場配向する際には、混合物を脂肪酸エステルの流動開始温度以上で加熱して軟化した状態で磁場配向を行う。
【0046】
磁石粉末に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、磁石内に含有する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石に残存する炭素量を2000ppm以下、より好ましくは1000ppm以下とする。また、焼結後に磁石に残存する酸素量を5000ppm以下、より好ましくは2000ppm以下とする。
【0047】
また、バインダーの添加量は、スラリーや加熱溶融したコンパウンドを成形する際に成形体の厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%とする。
【0048】
[回転電機の構成]
また、上記永久磁石1がロータ3のスロット4に収容される埋込磁石型のIPMモータ2は、図2に示すようにステータ6と、ステータ6の内側で回転自在に配置されたロータ3とから基本的に構成される。
【0049】
また、ステータ6は、電磁鋼板等の磁性材料からなるステータコア7と、ステータコア7に巻装された複数の巻線8とから基本的に構成される。更に、ステータコア7は、円環状のヨークと、ヨークから径方向外側に突出する複数のティースからなり、巻線8はティースに巻き付けられている。尚、巻線8の巻装形態には、集中巻き方式と分布巻き方式がある。集中巻き方式とは、ティース毎に巻線8が巻装される形態であり、分布巻き方式とは、複数のティースに跨って巻線8が巻装される形態である。
【0050】
一方、ロータ3には、永久磁石1が収容されるスロット4が形成される。スロット4は、ロータ3の軸方向に沿って永久磁石1と対応する形状(例えば断面弓型形状)に複数(図2では4個)形成され、ロータ3の軸方向の一面に対して永久磁石1を挿入する為の開口部9を備える。尚、スロット4の端部にはフラックスバリアとして空隙を形成しても良い。そして、スロット4内には上述した永久磁石1が配置される。ここで、図6はロータ3の特にスロット4周辺を拡大して示した拡大図である。
【0051】
本発明に係る永久磁石1は、スロット4に対応する形状(例えば図1図2に示す例では断面弓型形状)に成形された後に、焼結を行う前にスロット4に収容される。そして、スロット4に収容した成形体を、開口部9から一軸方向に加圧した状態で焼結することにより製造される。従って、従来と比較して焼結後の永久磁石1とスロット4との間には、ほとんど隙間が生じることがない。また、焼結後の永久磁石1は、スロット4に対して固定する為の部材を別途用いることなくスロット4に対してある程度の強度で固定することができる。尚、スロット4に充填された充填剤を介して永久磁石1をスロット4に固定しても良い。充填剤としては、例えば、エポキシ樹脂やシリコーン樹脂を用いることができる。
【0052】
また、本発明に係る永久磁石1は異方性磁石であり、例えば図3図5に示す方向に磁化容易軸(C軸)が揃うように配向される。その結果、永久磁石1がロータ3のスロット4に収容され、永久磁石1のC軸方向に平行に磁場を印加し着磁を行った場合には、IPMモータ2を実現する為の磁場を形成することが可能となる。
【0053】
一方、ロータ3の中央には、ロータ3に一端が固定された回転軸10を備える。そして、回転軸10はロータ3が回転するとロータ3の回転に伴って回転するように構成される。
【0054】
そして、上記構成を有するIPMモータ2において、ステータ6の巻線8に電流を印加すると、ロータ3とステータ6との間に磁気による吸引力と反発力が生じ、回転軸10を中心にロータ3が回転する。
【0055】
[永久磁石及び永久磁石を用いた回転電機の製造方法]
次に、本発明に係る永久磁石1及び永久磁石1を用いた回転電機の製造方法について図7及び図8を用いて説明する。図7及び図8は本実施形態に係る永久磁石1及び永久磁石1を用いた回転電機の製造工程を示した説明図である。
【0056】
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末15を得る。
【0057】
次いで、粗粉砕磁石粉末15をビーズミル16による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル16による湿式法を用いた微粉砕では溶媒中で粗粉砕磁石粉末15を所定範囲の粒径(例えば0.1μm〜5.0μm)に微粉砕するとともに溶媒中に磁石粉末を分散させる。その後、湿式粉砕後の溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、粉砕に用いる溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。尚、好ましくは、溶媒中に酸素原子を含まない溶媒が用いられる。
【0058】
一方、ジェットミルによる乾式法を用いた微粉砕では、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、所定範囲の粒径(例えば0.7μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
【0059】
次に、ビーズミル16等で微粉砕された磁石粉末を所望形状に成型する。尚、磁石粉末の成形には、磁石粉末とバインダーとを混合した混合物を成形することにより行う。以下の実施例では、混合物を一旦製品形状以外に成形した状態で磁場を印加して磁場配向を行い、その後に打ち抜き加工、切削加工、変形加工等を行うことによって製品形状(例えば図1に示す断面弓型形状)とする。特に、以下の実施例では混合物をシート形状のグリーン成形体(以下、グリーンシートという)に一旦成形した後に製品形状とする。また、混合物を特にシート形状に成形する場合には、例えば磁石粉末とバインダーとが混合したコンパウンドを加熱した後にシート形状に成形するホットメルト塗工や、磁石粉末とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形が有る。
【0060】
以下では、特にホットメルト塗工を用いたグリーンシート成形について説明する。
先ず、ビーズミル16等で微粉砕された磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粘土状の混合物(コンパウンド)17を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸エステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸エステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド17における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%となる量とする。
【0061】
また、上記コンパウンド17には、後に行われる磁場配向工程での配向度を向上させる為に配向を助長する添加剤を添加しても良い。配向を助長する添加剤としては例えば炭化水素系の添加剤が用いられ、特に極性を有する(具体的には酸解離定数pKaが41未満の)添加剤を用いるのが望ましい。また、添加剤の添加量は磁石粉末の粒子径に依存し、磁石粉末の粒子径が小さい程、添加量を多くする必要がある。具体的な添加量としては、磁石粉末に対して0.1部〜10部、より好ましくは1部〜8部とする。そして、磁石粉末に添加された添加剤は、磁石粒子の表面に付着し、後述の磁場配向処理において、磁石粒子の回動を補助する役目を有する。その結果、磁場を印加した際に配向が容易に行われ、磁石粒子の磁化容易軸方向を同一方向に揃えること(即ち、配向度を高くすること)が可能となる。特に、磁石粉末にバインダーを添加する場合には、粒子表面にバインダーが存在するため、配向時の摩擦力が上がり、粒子の配向性が低下する為、添加剤を添加する効果がより大きくなる。
【0062】
尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーの混合は、例えば磁石粉末とバインダーをそれぞれ攪拌機に投入し、攪拌機で攪拌することにより行う。また、混練性を促進する為に加熱攪拌を行っても良い。また、磁石粉末とバインダーの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた溶媒から磁石粉末を取り出すことなくバインダーを溶媒中に添加して混練し、その後に溶媒を揮発させ、後述のコンパウンド17を得る構成としても良い。
【0063】
続いて、コンパウンド17をシート状に成形することによりグリーンシートを作成する。特に、ホットメルト塗工では、コンパウンド17を加熱することによりコンパウンド17を溶融し、流体状にしてからセパレータ等の支持基材18上に塗工する。その後、放熱して凝固させることにより、支持基材18上に長尺シート状のグリーンシート19を形成する。尚、コンパウンド17を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50〜300℃とする。但し、用いるバインダーの流動開始温度よりも高い温度とする必要がある。尚、スラリー塗工を用いる場合には、多量の溶媒中に磁石粉末とバインダー(更に配向を助長する添加剤を含めても良い)を分散させ、スラリーをセパレータ等の支持基材18上に塗工する。その後、乾燥して溶媒を揮発させることにより、支持基材18上に長尺シート状のグリーンシート19を形成する。
【0064】
ここで、溶融したコンパウンド17の塗工方式は、スロットダイ方式やカレンダーロール方式等の層厚制御性に優れる方式を用いることが好ましい。特に、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材の表面に高精度の厚さの層を塗工できる方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、スロットダイ方式では、加熱して流体状にしたコンパウンド17をギアポンプにより押し出してダイに挿入することにより塗工を行う。また、カレンダーロール方式では、加熱した2本ロールのギャップにコンパウンド17を一定量仕込み、ロールを回転させつつ支持基材18上にロールの熱で溶融したコンパウンド17を塗工する。また、支持基材18としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を用いたり、加熱真空脱泡を行うこと等によって展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。また、支持基材18上に塗工するのではなく、押出成型や射出成形によって溶融したコンパウンド17をシート状に成型するとともに支持基材18上に押し出すことによって、支持基材18上にグリーンシート19を成形する構成としても良い。
【0065】
また、スロットダイ方式によるグリーンシート19の形成工程では、塗工後のグリーンシート19のシート厚みを実測し、実測値に基づいてダイ20と支持基材18間のギャップをフィードバック制御することが望ましい。また、ダイ20に供給する流体状のコンパウンド17の量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート19の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート19の厚み精度は、設計値(例えば1mm)に対して±10%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。尚、他方のカレンダーロール方式では、カレンダー条件を同様に実測値に基づいて制御することで、支持基材18へのコンパウンド17の転写膜厚を制御することが可能である。
【0066】
尚、グリーンシート19の設定厚みは、0.05mm〜20mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。
【0067】
次に、上述したホットメルト塗工によって支持基材18上に形成されたグリーンシート19の磁場配向を行う。具体的には、先ず支持基材18とともに連続搬送されるグリーンシート19を加熱することによりグリーンシート19を軟化させる。具体的には、グリーンシート19の粘度が1〜1500Pa・s、より好ましくは1〜500Pa・sとなるまで軟化させる。それによって、磁場配向を適切に行わせることが可能となる。
【0068】
尚、グリーンシート19を加熱する際の温度及び時間は、用いるバインダーの種類や量によって異なるが、例えば100〜250℃で0.1〜60分とする。但し、グリーンシート19を軟化させる為に、用いるバインダーのガラス転移点又は流動開始温度以上の温度とする必要がある。また、グリーンシート19を加熱する加熱方式としては、例えばホットプレートによる加熱方式や熱媒体(シリコーンオイル)を熱源に用いた加熱方式が有る。次に、加熱により軟化したグリーンシート19の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]〜150000[Oe]、好ましくは、10000[Oe]〜120000[Oe]とする。その結果、グリーンシート19に含まれる磁石結晶のC軸(磁化容易軸)が一方向に配向される。尚、磁場を印加する方向としてはグリーンシート19の面内方向且つ幅方向に対して磁場を印加することとしても良い。また、複数枚のグリーンシート19に対して同時に磁場を印加する構成としても良い。
【0069】
更に、グリーンシート19に磁場を印加する際には、加熱工程と同時に磁場を印加する工程を行う構成としても良いし、加熱工程を行った後であってグリーンシートが凝固する前に磁場を印加する工程を行うこととしても良い。また、ホットメルト塗工により塗工されたグリーンシート19が凝固する前に磁場配向する構成としても良い。その場合には、加熱工程は不要となる。
【0070】
次に、図9を用いてグリーンシート19の加熱工程及び磁場配向工程についてより詳細に説明する。図9はグリーンシート19の加熱工程及び磁場配向工程を示した模式図である。尚、図9に示す例では、加熱工程と同時に磁場配向工程を行う例について説明する。
【0071】
図9に示すように、上述したスロットダイ方式により塗工されたグリーンシート19に対する加熱及び磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート19に対して行う。即ち、加熱及び磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
【0072】
具体的には、ダイ20やコーティングロール22の下流側において、搬送される支持基材18及びグリーンシート19がソレノイド25内を通過するようにソレノイド25を配置する。更に、ホットプレート26をソレノイド25内においてグリーンシート19に対して上下一対に配置する。そして、上下一対に配置されたホットプレート26によりグリーンシート19を加熱するとともに、ソレノイド25に電流を流すことによって、長尺シート状のグリーンシート19の面内方向(即ち、グリーンシート19のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート19を加熱により軟化させるとともに、軟化したグリーンシート19の面内方向且つ長さ方向(図9の矢印27方向)に対して磁場を印加し、グリーンシート19の適切且つ均一な磁場配向を実現することが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート19の表面が逆立つことを防止できる。
また、磁場配向した後に行うグリーンシート19の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
【0073】
尚、磁場配向をグリーンシート19の面内方向且つ幅方向に対して行う場合には、ソレノイド25の代わりに搬送されるグリーンシート19の左右に一対の磁場コイルを配置するように構成する。そして、各磁場コイルに電流を流すことによって、長尺シート状のグリーンシート19の面内方向で且つ幅方向に磁場を生じさせることが可能となる。
【0074】
また、磁場配向をグリーンシート19の面に対して垂直方向とすることも可能である。磁場配向をグリーンシート19の面に対して垂直方向に行う場合には、例えばポールピース等を用いた磁場印加装置により行う。尚、磁場配向方向をグリーンシート19の面に対して垂直方向とする場合には、グリーンシート19に対して支持基材18が積層された反対側の面にもフィルムを積層することが好ましい。それによって、グリーンシート19の表面の逆立ちを防止することが可能となる。
【0075】
また、上述したホットプレート26による加熱方式の代わりに熱媒体(シリコーンオイル)を熱源とした加熱方式を用いても良い。
【0076】
ここで、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等によりスラリー等の流動性の高い液状物によってグリーンシート19を成形した場合には、磁場の勾配が生じているところにグリーンシート19が搬入されると、磁場が強い方にグリーンシート19に含まれる磁石粉末が引き寄せられることとなり、グリーンシート19を形成するスラリーの液寄り、即ち、グリーンシート19の厚みの偏りが生じる虞がある。それに対して、本発明のようにコンパウンド17をホットメルト成形によりグリーンシート19に成形する場合には、室温付近での粘度は数万〜数十万Pa・sに達し、磁場勾配通過時の磁性粉末の寄りが生じることが無い。更に、均一磁場中に搬送され、加熱されることでバインダーの粘度低下が生じ、均一磁場中の回転トルクのみで、一様なC軸配向が可能となる。
【0077】
また、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等により有機溶媒を含むスラリー等の流動性の高い液状物によってグリーンシート19を成形した場合には、厚さ1mmを越えるシートを作成しようとすると乾燥時においてスラリー等に含まれる有機溶媒が気化することによる発泡が課題となる。更に、発泡を抑制する為に乾燥時間を長時間化すれば、磁石粉末の沈降が生じ、それに伴って重力方向に対する磁石粉末の密度分布の偏りが生じ、焼成後の反りの原因となる。従って、スラリーからの成形では、厚みの上限値が実質上規制される為、1mm以下の厚みでグリーンシートを成形し、その後に積層する必要がある。しかし、その場合にはバインダー同士の絡まり合いが乏しくなり、その後の脱バインダー工程(仮焼処理)で層間剥離を生じ、それがC軸(磁化容易軸)配向性の低下、即ち残留磁束密度(Br)の低下原因となる。それに対して、本発明のようにコンパウンド17をホットメルト成形によりグリーンシート19に成形する場合には、有機溶媒を含まないので、厚さ1mmを越えるシートを作成した場合でも上述したような発泡の懸念が解消する。そして、バインダーが十分に絡まり合った状態にあるので、脱バインダー工程での層間剥離が生じる虞が無い。
【0078】
また、複数枚のグリーンシート19に対して同時に磁場を印加させる場合には、例えばグリーンシート19を複数枚(例えば6枚)積層した状態で連続搬送し、積層したグリーンシート19がソレノイド25内を通過するように構成する。それによって生産性を向上させることが可能となる。
【0079】
そして、図9に示す方法によりグリーンシート19の磁場配向を行った後に、グリーンシート19に荷重をかけてグリーンシート19を変形させ、製品形状へと成形する。尚、上記変形によって、最終的な製品で要求される磁化容易軸の方向となるように磁化容易軸の方向を変位させる。それによって、図3図5に示すような複雑な方向に対しても磁化容易軸を配向させることが可能となる。尚、グリーンシート19は変形させる前に、最終製品形状と最終製品で要求される磁化容易軸の方向を考慮した形状(即ち、変形させることによって最終製品形状にした場合に最終製品で要求される磁化容易軸の方向が実現できる形状)に予め打ち抜き、その後に変形させる。例えば、図3に示すような面に対して法線方向に配向された断面弓型形状を製品形状とする場合には、先ず、直線状のグリーンシート19の面に対して垂直方向に磁場を印加する。その後、グリーンシート19に対して荷重をかけて湾曲させることにより弓型形状へと成形する。その結果、グリーンシート19の変形に伴ってグリーンシート19の磁化容易軸の方向も補正され、図3に示すような配向を実現することが可能となる。
【0080】
また、大きな形状の磁石を製造する場合には、同形状に変形させた複数枚のグリーンシート19を積層し、樹脂などで互いに固定することにより成形しても良い。尚、グリーンシート19を積層した後に変形させても良い。また、製品形状に対応する成形体を成形した後に、成形体に磁場を印加して磁場配向を行う構成としても良い。更に、成形体を成形した後に磁場配向を行う場合には、成形体をスロット4内に収容した後に、スロット4に収容された成形体に対して磁場を印加することにより磁場配向を行うことも可能である。
【0081】
その後、成形並びに磁場配向された成形体30を、ロータ3のスロット4に収容する。具体的には、ロータ3の軸方向の一面に形成されたスロット4の開口部9から成形体30をロータ3の軸方向に沿って平行に挿入することにより、成形体30をスロット4に収容する。尚、成形体30をスロット4に収容する工程では、成形体30をスロット4に収容する前に冷却し、冷却された状態の成形体30をスロット4に収容するのが望ましい。成形体30を冷却することによって成形体30の体積を僅かであるが収縮することができ、成形体30を開口部9からスロット4に対して容易に収容することが可能となる。尚、充填剤等をスロット4に充填することにより、収容された成形体30をスロット4に固定する構成としても良い。
【0082】
続いて、ロータ3のスロット4に収容された成形体30を、スロット4に収容された状態で焼結する焼結処理を行う。尚、成形体30の焼結方法としては、真空中での無加圧焼結、一軸方向に加圧した状態で焼結する一軸加圧焼結、2軸方向に加圧した状態で焼結する2軸加圧焼結、等方に加圧した状態で焼結する等方加圧焼結等がある。本発明では、特に成形体30を開口部9から一軸方向に加圧した状態で焼結する一軸加圧焼結を用いる。尚、加圧方向はロータ3の軸方向に対して平行な方向(即ち、スロット4に対する成形体30の挿入方向)とする。また、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、一軸方向に加圧可能であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、成形体30を加圧する際には、例えば、スロット4の開口部9の形状と同形状のパンチで、開口部9からスロット4に収容された成形体30をロータ3の軸方向に押圧することにより行う。
尚、SPS焼結で焼結を行う場合には、加圧値を例えば0.01MPa〜100MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び300℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、焼結体31が製造される。
【0083】
また、成形体30を焼結する前に、大気圧、又は大気圧より高い圧力や低い圧力(例えば、1.0Paや1.0MPa)に加圧した非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度で数時間〜数十時間(例えば5時間)保持することにより仮焼処理を行うことが望ましい。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。仮焼処理を行うことによって、バインダー等の有機化合物を解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体30中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、仮焼処理は、成形体30中の炭素量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で成形体30の全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力の低下を抑制する。また、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力で行う場合には、15MPa以下とすることが望ましい。尚、加圧条件は大気圧より高い圧力、より具体的には0.2MPa以上とすれば特に炭素量軽減の効果が期待できる。
【0084】
尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃〜900℃、より好ましくは400℃〜600℃(例えば450℃)とする。
【0085】
また、上記仮焼処理は、一般的な磁石の焼結を行う場合と比較して、昇温速度を小さくするのが好ましい。具体的には、昇温速度を2℃/min以下(例えば1.5℃/min)とする。従って、仮焼処理を行う場合には、図10に示すように2℃/min以下の所定の昇温速度で昇温し、予め設定された設定温度(バインダー分解温度)に到達した後に、該設定温度で数時間〜数十時間保持することにより仮焼処理を行う。上記のように仮焼処理において昇温速度を小さくすることによって、成形体30中の炭素が急激に除去されず、段階的に除去されるので、焼結後の永久磁石の密度を上昇させる(即ち、永久磁石中の空隙を減少させる)ことが可能となる。そして、昇温速度を2℃/min以下とすれば、焼結後の永久磁石の密度を95%以上とすることができ、高い磁石特性が期待できる。
【0086】
また、仮焼処理によって仮焼された成形体30を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、仮焼処理によって生成された成形体30中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、仮焼処理により活性化された成形体30の活性度を低下させる。それによって、仮焼処理によって仮焼された成形体30をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力の低下を抑制する。また、磁石結晶の構造をNdH等からNdFe14B構造へと戻す効果も期待できる。
【0087】
その後、ロータ3のスロット4に収容されている焼結体31に対してC軸に沿って着磁を行う。具体的には、ロータ3に収容された複数の焼結体31について、ロータ3の周方向に沿って、N極とS極とが交互に配置されるように着磁を行う。その結果、永久磁石1を製造することが可能となる。尚、焼結体31の着磁には、例えば着磁コイル、着磁ヨーク、コンデンサー式着磁電源装置等が用いられる。
【0088】
その後、ステータ6や回転軸10等のロータ3以外の部材を組み付けることによりIPMモータ2が製造される。
【0089】
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することによりコンパウンド17を生成する。そして、生成したコンパウンド17をシート状に成形したグリーンシート19を作製する。その後、成形したグリーンシート19に対して磁場を印加することにより磁場配向を行い、磁場配向されたグリーンシート19の磁場配向方向を考慮しつつグリーンシート19を変形させることによって製品形状へと成形する。その後、成形された成形体30をスロット4に収容して一軸方向に加圧した状態で焼結することにより永久磁石1を製造する。その結果、従来の圧粉成形等を用いる場合と比較して、焼結後の磁石形状をスロット4の形状により正確に対応させた形状とすることができる。即ち、高いニアネットシェイプ性を実現することが可能となる。また、焼結後の外形加工に対する負担が軽減され、生産性が大きく向上する事が期待できる。また、スロット4内に永久磁石1を設置した際にスロット4と永久磁石1との間に生じる不要な隙間を減少させる。
また、磁石粉末とバインダーとを混合した混合物に対して磁場配向を行うので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。
また、混合物に対して磁場配向を行う場合には、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。
また、磁場配向する工程では、磁石粉末とバインダーとの混合物に対して磁場を印加するとともに、磁場の印加された混合物を成形体へと変形することによって磁化容易軸の方向を操作して、磁場配向を行うので、一旦磁場配向された混合物を変形することによって、配向方向を補正することが可能となる。その結果、複雑な形状へと配向させる場合においても高配向かつバラつきの少ない配向を行うことが可能となる。また、混合物を成形体へと成形する際に、成形体への変形を行うと同時に配向方向を補正することが可能となる。その結果、永久磁石の成形工程と配向工程とを一の工程で行うことが可能となり、生産性を向上させることが可能となる。
また、成形体30をスロット4に収容する工程では、成形体30をスロット4に収容する前に冷却し、冷却された状態の成形体30をスロット4に収容するので、成形体30を開口部9からスロット4に対して容易に収容することが可能となる。
また、IPMモータ等の永久磁石を内部に埋め込む構造を有する回転電機に設置する場合において、スロット4と永久磁石1との間に生じる不要な隙間を減少させる。従って、同じ形状のスロット4に対して収容する永久磁石1の体積をより大きくすることができ、従来に比べてモータの高トルク化、発電機の発電力の向上、小型軽量化を実現することが可能となる。
【0090】
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、磁石粉末の粉砕条件、混練条件、成形条件、磁場配向工程、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではビーズミルを用いた湿式粉砕により磁石原料を粉砕しているが、ジェットミルによる乾式粉砕により粉砕することとしても良い。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。また、仮焼処理を省略しても良い。その場合には、焼結処理の過程で脱炭素が行われることとなる。
【0091】
また、上記実施例では、磁石粉末とバインダーとの混合体を一旦シート形状のグリーン成形体に成型した後に磁場配向を行う構成としているが、シート形状以外の形状に成型した後に磁場配向を行う構成としても良い。例えば、ブロック形状のグリーン成形体に成型しても良い。そして、磁場配向されたブロック形状のグリーン成形体を更に加工することによって断面弓型形状の成形体30へと成形する。
【0092】
また、上記実施例では、磁石粉末とバインダーとの混合体に対して磁場配向を行った後に、断面弓型形状の成形体30へと成形する構成としているが、断面弓型形状の成形体30に成型した後に磁場配向を行っても良い。更に、成形体30をスロット4内に収容した後に磁場配向を行っても良い。また、磁場の配向方向は製造する永久磁石の用途や種類によって変更する。
【0093】
また、上記実施例では、永久磁石1を断面弓型形状としているが断面弓型形状以外の形状(例えば、直方体形状、蒲鉾型形状)としても良い。尚。永久磁石1の形状がより複雑な形状である程、本発明の効果は大きくなる。
【0094】
また、永久磁石1をロータ側では無くステータ側に形成された収容部に配置する回転電機に対しても適用することが可能である。また、インナーロータ型の回転電機に限らず、アウターロータ型の回転電機にも適用可能である。更に、永久磁石1はデュアルロータ型の回転電機や永久磁石を平面状に配置したリニアモータに対しても適用可能である。また、本発明に係る永久磁石1はモータ以外に、発電機や磁気減速機等の各種回転電機、更には回転電機以外の永久磁石1を収容部に収容した各種装置に対して適用可能である。尚、本発明に係る回転電機を磁気減速機に適用する場合には、ステータ6をステータコア7や巻線8に代えて磁性材料からなる所定数の磁極片により構成する。
【0095】
また、上記実施例では、ステータコア7に巻線8を巻装したステータコア7を有する回転電機としているが、ステータコア7は磁性体以外に非磁性体により構成しても良い。更に、回転電機はステータコアを有さないコアレスモータとしても良い。その場合には、巻線8を樹脂等によりカップ状に固定したものをステータ6とする。このようなコアレスモータでは、鉄損を無くすことができるので回転電機の効率を高めることが可能となる。
【0096】
また、上記実施例では、磁石粉末を成形した後に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気において仮焼を行っているが、成形前の磁石粉末に対して仮焼処理を行い、仮焼体である磁石粉末を成形体に成形し、その後に焼結を行うことによって永久磁石を製造することとしても良い。このような構成とすれば、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。但し、バインダーを仮焼処理で熱分解させる為に、成形後に仮焼処理を行うことが望ましい。
【0097】
また、本発明ではNd−Fe−B系磁石を例に挙げて説明したが、他の磁石(例えばサマリウム系コバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
【符号の説明】
【0098】
1 永久磁石
2 IPMモータ
3 ロータ
4 スロット
6 ステータ
7 ステータコア
9 開口部
10 回転軸
17 コンパウンド
30 成形体
31 焼結体
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11