(58)【調査した分野】(Int.Cl.,DB名)
第1時刻に距離センサにより得られた環境の幾何形状データと、前記第1時刻に電波センサにより得られた環境の電波データとを用いて、前記環境の形状を表す環境モデルを生成すると共に、前記電波データの計測位置・姿勢を算出する第1処理部と、
前記第1処理部で算出した各計測位置・姿勢での電波データを提示する提示部と、
前記第1処理部で生成した環境モデル上で、電波状態が悪い場所を提示する第2処理部と、
前記電波状態が悪い場所に基づいて、基地局の設置場所の候補を提示する第4処理部と、 を有する、電波計測システム。
【発明を実施するための形態】
【0013】
以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
【0014】
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
【0015】
[実施の形態の概要]
まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素および符号等を付して説明する。
【0016】
一実施の形態における電波計測システム(電波計測システム101)は、第1時刻に距離センサ(距離センサ部103)により得られた環境の幾何形状データと、前記第1時刻に電波センサ(電波センサ部104)により得られた環境の電波データとを用いて、前記環境の形状を表す環境モデルを生成すると共に、前記電波データの計測位置・姿勢を算出する第1処理部(位置姿勢推定・環境モデル生成部111)と、前記第1処理部で算出した各計測位置・姿勢での電波データを提示する提示部(操作入力・表示部105)と、を有する。
【0017】
一実施の形態における基地局(基地局701)は、前記電波計測システムから、自身の位置・姿勢と環境モデルとの少なくとも一方のデータを受信する受信部(受信部801)と、前記受信部で受信した、自身の位置・姿勢と環境モデルとの少なくとも一方のデータを保持する保持部(保持部802)と、を有する。
【0018】
以下、上述した実施の形態の概要に基づいた一実施の形態を図面に基づいて詳細に説明する。なお、一実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
【0019】
[一実施の形態]
一実施の形態における電波計測システムおよび基地局について、
図1〜
図8を用いて説明する。本実施の形態では、電波発信源からの電波を計測する電波計測システムに関し、電波発信源の一例として基地局を例に説明する。
【0020】
<電波計測システムの構成>
まず、
図1を用いて、本実施の形態における電波計測システムの構成について説明する。
図1は、電波計測システムの構成の一例を示す図である。
【0021】
電波計測システム101は、コントローラ部102、距離センサ部103、電波センサ部104、および、操作入力・表示部105を有する。コントローラ部102は、センサ制御部106、操作入力・表示制御部110、位置姿勢推定・環境モデル生成部111、電波データ補間部112、電波状態算出部113、基地局設置計画部114、設置済み基地局位置姿勢検出部115、設置済み基地局設置位置姿勢送信部116、環境モデル117、電波・計測位置姿勢データ118、および、設置済み基地局位置姿勢データ119を有する。
【0022】
コントローラ部102において、位置姿勢推定・環境モデル生成部111は、モデル生成部107である。また、電波データ補間部112、電波状態算出部113、および、基地局設置計画部114は、電波状態可視化部108である。また、設置済み基地局位置姿勢検出部115、および、設置済み基地局設置位置姿勢送信部116は、基地局設定部109である。
【0023】
距離センサ部103は、センサ制御部106より制御され、環境を撮影して障害物までの距離と色が計測可能なセンサである。電波センサ部104は、センサ制御部106より制御され、RSSI(Received Signal Strength Indicator)が計測可能なセンサである。
【0024】
操作入力・表示部105は、操作入力・表示制御部110との間で入出力が可能であり、作業者による操作入力を受け付け、また、作業者に情報を表示して提示する処理などを行う提示部である。
【0025】
センサ制御部106は、距離センサ部103と電波センサ部104を制御して、距離センサ部103により得られた環境の幾何形状データと、電波センサ部104により得られた環境の電波データを得る処理などを行う制御部である。
【0026】
操作入力・表示制御部110は、操作入力・表示部105、モデル生成部107、電波状態可視化部108、および、基地局設定部109との間で入出力が可能であり、操作入力と情報表示を制御する処理などを行う制御部である。
【0027】
位置姿勢推定・環境モデル生成部111は、センサ制御部106からの入力が可能で、環境モデル117の入力が可能であり、環境の幾何形状データと環境の電波データとを用いて、環境モデルを生成すると共に、電波データの計測位置・姿勢を算出する処理などを行う第1処理部である。この生成された環境モデルは環境モデル117として記録され、また、算出された電波データの計測位置・姿勢は電波・計測位置姿勢データ118として記録される。
【0028】
電波データ補間部112は、電波・計測位置姿勢データ118の入力が可能であり、環境モデル117の生成時に、各ボクセルに記録されている、障害物の有無を表す占有・非占有・未知のデータに基づいて、電波データの補間処理などを行う第3処理部である。
【0029】
電波状態算出部113は、電波データ補間部112からの入力が可能であり、位置姿勢推定・環境モデル生成部111で生成した環境モデル117上で、電波状態が悪い場所を提示する処理などを行う第2処理部である。
【0030】
基地局設置計画部114は、電波状態算出部113からの入力が可能であり、電波状態が悪い場所に基づいて、基地局の設置場所の候補を提示する処理などを行う第4処理部である。
【0031】
設置済み基地局位置姿勢検出部115は、センサ制御部106からの入力が可能で、環境モデル117の入力が可能であり、距離センサ部103で計測したマーカに基づいて、環境モデル上での基地局の位置・姿勢を算出する処理などを行う第5処理部である。この算出された環境モデル上での基地局の位置・姿勢は、設置済み基地局位置姿勢データ119として記録される。
【0032】
設置済み基地局設置位置姿勢送信部116は、設置済み基地局位置姿勢検出部115からの入力が可能であり、基地局の位置・姿勢とその基準となる環境モデルとの少なくとも一方を基地局に送信する処理などを行う第6処理部である。
【0033】
また、ここでは図示していないが、例えば、電源・配線等のハードウェア、あるいはOS(Operating System)や各種ファームウェア等の基本的なソフトウェアなど、各部が動作し連携するために必要なものは備わっているものとする。
【0034】
また、ここでは、コントローラ部102内の各部についてはソフトウェア、他はハードウェアとしての実装を想定しているが、コントローラ部102内の各部についてもハードウェアとして実装してもよい。また、距離センサ部103と電波センサ部104、操作入力・表示部105とこれらの駆動に必要な電源等を除く各部については、通信が可能ならば部分的に遠隔地にあってもよい。また、以上の各部をなすハードウェアやソフトウェアは、実施形態に応じた取捨選択を行ってもよい。
【0035】
<電波計測システムの各部の処理>
図1に示した電波計測システム101を載せた台車を作業者が部屋内を移動させながら、環境の幾何形状と電波状態を計測し、電波状態が悪い場所に、これを補う基地局を設置する作業を例として想定し、このときのシステム各部の処理について説明する。
【0036】
今、システムの動作に必要なOS等の読み込み等、初期化に関する基本的な処理は完了し、計測が開始されたものとする。
【0037】
このとき、まず、距離センサ部103と電波センサ部104のそれぞれによる計測が行われる。距離センサ部103としては、ここでは、環境を撮影して得られた画像の画素毎に、障害物までの距離と色が計測可能なセンサを想定する。例えば、投射したレーザ等が障害物から反射して往復する時間から、画素毎に障害物までの距離が色と共に得られるデプスカメラ、あるいはステレオカメラなどが考えられるが、ここではデプスカメラによる計測を想定する。
【0038】
なお、ここでは、デプスカメラからは、画素毎の障害物までの距離が記録された距離画像データと、色が記録された通常の画像データとが得られるが、このうち、距離データについては、3次元座標系での点群データに変換されており、これを以下では幾何形状データと呼ぶものとする。なお、同様の計測が可能であれば、計測原理が異なる他のセンサを用いてもよい。
【0039】
また、ここでは3次元の計測を想定しているが、2次元平面での電波状態の可視化であれば、2次元の計測を行うような距離センサであってもよい。例えば、レーザの発信部を回転させることで、放射状にレーザを発して、センサ周辺の環境の幾何形状を計測するような距離センサであってもよい。なお、この場合は、レーザの走査面が前述の2次元平面と平行となるように距離センサを移動させるものとする。
【0040】
また、電波センサ部104については、ここでは、RSSI(Received Signal Strength Indicator)により電波状態の良し悪しを判断するものとして、RSSIが計測可能なセンサを想定する。また、これにより得られるデータを電波データと呼ぶものとする。
【0041】
なお、電波状態の判断にRSSI以外のデータとして、例えば、場所毎のスループット、あるいは特定の無線LANネットワークの受信可否等をもって電波状態の良し悪しを判断するのであれば、それらが計測可能なセンサを用い、これより得られるデータをもって電波データとしてもよい。
【0042】
続いて、距離センサ部103と電波センサ部104は、センサ制御部106より制御されており、幾何形状データ等と電波データが得られるが、これらはセンサ部間の同期、あるいは時刻のずれを考慮した補間処理により、同時刻のデータが得られているものとする。これらの得られた幾何形状データ等と電波データは、位置姿勢推定・環境モデル生成部111と設置済み基地局位置姿勢検出部115で用いられる。
【0043】
なお、センサデータの取得時刻において、同時刻の幾何形状データと電波データの取得が困難な場合は、時刻が近い幾何形状データと電波データを組み合わせて用いてもよい。また、取得すみの幾何形状データや電波データをもとに、同じ時刻のデータを補間や推定によって求めて用いてもよい。
【0044】
<<位置姿勢推定・環境モデル生成部の処理>>
続いて、位置姿勢推定・環境モデル生成部111の処理について述べる。ここでは、まず、最初に得られた幾何形状データを部分的な環境のモデルと見なし、これに対して次に得られる幾何形状データのマッチングを行う。ここでのマッチングとは、移動しながら環境を計測した際に得られる幾何形状データ同士が最もずれなく重なり合う相対位置・姿勢を求める処理を指す。ここでは、ICP(Iterative Closest Point)に基づいて、ずれが小さくなる時の相対位置・姿勢を算出することを想定するが、同様の効果が得られるならば他の手法で求めてもよい。
【0045】
得られた相対位置・姿勢を積算することで、最初の幾何形状データを基準としたときの各幾何形状データの位置・姿勢、つまりは計測位置・姿勢を逐次算出する。また、この計測位置・姿勢を算出するとともに、その計測位置・姿勢に対応する幾何形状データを、最初の幾何形状データを基準とする座標系に記録することで、環境の3次元モデル(以下、環境モデル117と呼ぶ)を生成する。
【0046】
ここでの環境モデル117は、3次元のボクセル上で表現されており、各ボクセルには、幾何形状データをなす点群、それらの重心、状態フラグが記録されているものとする。なお、この3次元モデルをなすボクセルをモデルボクセルと呼ぶものとする。
【0047】
ここでの状態フラグとは、計測に基づいて判明した障害物の有無を表すデータで、占有、非占有、未知のいずれかの状態を保持する。
【0048】
ここで、幾何形状データをなす点群が記録されていれば、そのモデルボクセルには障害物で占有されていると見なせるため、“占有”と状態フラグに記録する。なお、これに該当するモデルボクセルを占有ボクセルと呼ぶものとする。
【0049】
また、今、計測位置・姿勢が算出されている際、その計測位置・姿勢と幾何形状データをなす点が記録されるモデルボクセルとを結ぶ線分が通るモデルボクセルには、障害物がないことがわかる。これらのモデルボクセルには“非占有”と状態フラグに記録する。なお、これに該当するモデルボクセルを占有ボクセルと呼ぶものとする。
【0050】
また、一方で、前述の線分を計測位置・姿勢から幾何形状データが含まれるモデルボクセルの方向に延長した線分が通るモデルボクセルについては、障害物の有無が不明のため、障害物の有無が不明となる。これらのモデルボクセルには“未知”と状態フラグに記録する。なお、これに該当するモデルボクセルを未知ボクセルと呼ぶものとする。
【0051】
以上のような環境モデル117を用い、次の位置姿勢推定ではこの環境モデル117、より詳しくは環境モデル117をなすモデルボクセル毎の点群の重心からなるデータと幾何形状データとのマッチングを行うことで、環境モデル117の座標系における計測位置・姿勢を算出し、環境モデル117を生成する一連の処理を繰り返していく。
【0052】
位置姿勢推定・環境モデル生成部111での処理を、
図3と
図4を用いて説明する。
図3は、環境の計測の一例を説明するための図である。
図4は、環境モデルと計測位置・姿勢の表示の一例を説明するための図である。なお、距離センサは3次元計測を想定しているが、
図3では簡単のため、環境内を上方より見下ろした2次元で表記している。ここで、301で示される幅広のハッチング部分は、環境中の障害物の存在領域を示す。また、302は座標系(位置(x、y)・姿勢(θ))、303は幾何形状データ(破線部が幾何形状データ、破線部同士をつなぐ線はスキャンした範囲を示すための補助線)、304は距離センサのスキャン領域(幅狭のハッチング部分)を示す。さらに、305は台車、306は電波計測システム(
図1の電波計測システム101に相当)、307は距離センサ(
図1の距離センサ部103に相当)、308は経路を示す。
【0053】
また、台車305に載せられた電波計測システム306を、経路308に沿って人が移動させながら、環境の幾何形状データと電波データを収集したものとする。例えば、
図3に示す電波計測システム306の位置・姿勢で計測した場合は、幾何形状データ303が得られるが、これらを前述のICP等で統合することで、
図4に示されるような環境モデルが得られる。
【0054】
この
図4においては、簡単のため、1つ1つのモデルボクセルを表記していないが、401は占有ボクセルに対応する領域、403は非占有ボクセルに対応する領域、402は未知ボクセルに対応する領域を表すものとする。
【0055】
求められた計測位置・姿勢とこれに対応する電波データに基づいて、各計測位置・姿勢での電波の状態を表示可能となる。今、電波データと計測位置・姿勢データを記録するボクセル(以下、電波ボクセルと呼ぶ)が別途設けられ、RSSIの強弱に応じた色が付けられたとする。ここでは、黒い電波ボクセルは、電波状態が良好な電波ボクセルで、白くなるほど電波状態が悪い電波ボクセルとするとき、
図4の例えば404のように表示される。
図4では、電波ボクセル404を四角形で示し、電波状態が良い方から順に、黒表示、ハッチング表示、白表示の3種類を示している。また、電波データを計測した際の位置・姿勢は、矢印405で表される。なお、これらは、操作入力・表示制御部110を介して、操作入力・表示部105により、作業者に提示されるものとする。なお、簡単のため、
図4において、電波データが記録されている電波ボクセル以外は表記していないが、環境モデルをなすモデルボクセルを包含するように電波ボクセルが生成されているものとする。
【0056】
また、得られた計測位置・姿勢データとこれに対応する電波データ等は、電波・計測位置姿勢データ118として記録される。このときのデータを、
図2に示す。
図2は、電波・計測位置姿勢データ118の一例を説明するための図である。電波・計測位置姿勢データ118は、計測時刻データ201、幾何形状データ202、画像データ203、電波データ204、前述の処理で求めた計測位置データ205と計測姿勢データ206からなり、距離センサと電波センサの相対位置・姿勢が同じと見なせるとすると、計測時の位置・姿勢とその場所での電波状態が、環境モデルの座標系で記録されていることとなる。なお、ここでは、簡単のため、距離センサと電波センサが十分近く、同じ姿勢にある場合を想定して相対位置・姿勢が同じとして扱っているが、そうでない場合は、単に距離センサの位置・姿勢に、距離センサを基準としたときの電波センサの相対位置・姿勢を加えるような座標変換を行えば、電波データの位置・姿勢は求められる。
【0057】
<<電波データ補間部の処理>>
続いて、電波データ補間部112により行われる電波データの補間処理を、
図5を用いて説明する。
図5は、電波データの補間処理の一例を説明するための図である。なお、簡単のため、
図5でも2次元での表記とする。この
図5においては、計測位置をわかり易く記載するため、
図4で示した電波データに応じた色ではなく、横線によるハッチングで503と504のように計測位置を示している。計測位置503は
図4の白表示の電波ボクセルに対応し、計測位置504は
図4の黒表示の電波ボクセルに対応する。
【0058】
電波ボクセルのうち、計測位置データが記録されている電波ボクセル(計測位置503の電波ボクセル、計測位置504の電波ボクセル)の周辺にある電波ボクセルに、電波データをコピーする。
【0059】
例えば、
図5の計測位置503の電波ボクセルに対しては、これを中心とする3次元のウインドウ501を設け、この内側になる電波ボクセルに対して電波データをコピーする。なお、すでに電波データが記録されていた場合は平均値を記録する。
図5のウインドウ501では、2次元での表記で9(x)×9(y)=81個の電波ボクセルの例を示している。
【0060】
これにより、
図5のように計測位置503と504を中心に一定の範囲の電波データが補間される。ここでは、電波発信源である基地局の位置が不明であり、基地局から遠い場合は、計測位置が多少変動しても受信する電波の変動も比較的小さいと考えられることから上記のような簡易な補間を行っているが、線形補間やカーネル密度推定にもとづく補間、あるいは他の補間手法であってもよい。
【0061】
なお、ここで、502にあるように、未知ボクセルが含まれるボクセルについては、環境の状態が不明なことから、電波状態もより予測し難いため、電波データのコピーを行わない(後述する
図6、
図7では、これに該当する電波ボクセルの表記を省略している)。これにより、補間処理を削減するとともに、未知な環境の電波状態を補間することで生じる、現実の電波状態との齟齬の低減を図る。
【0062】
ここまでで、環境内の電波状態の可視化が行われる。この例では、センサを搭載した台車を平坦な床面上で移動させながら計測した例を示しているため、
図6などではある高さでの、2次元平面内での電波状態を表している。しかし、デプスセンサによる幾何形状データを用いた位置推定は3次元空間内での位置・姿勢を推定可能なことから、2次元平面に限らず、3次元空間内での電波状態を計測・可視化可能な点に注意されたい。
【0063】
この実施の形態では、電波状態を3次元のボクセルに記録しているため、GUI上でボクセルを3次元表示すれば、高さ方向の分布も表示可能である。
【0064】
<<電波状態算出部の処理>>
続いて、電波状態算出部113にて行われる電波状態が悪い場所を検出する処理について、
図6を用いて説明する。
図6は、電波状態が悪い場所を検出する処理の一例を説明するための図である。ここでも、別途3次元のウインドウを設け、電波ボクセルを走査していく。このとき、ウインドウ内の電波データとして記録されているRSSIの値が、予め設定した範囲内の場合は、電波状態が悪い場所として検出する。例えば、
図6では、白い電波ボクセルが多い程、電波状態が悪いとすると、601のようにこれが検出され、また強調表示されることで作業者に通知される。なお、この
図6では、簡単のため、すべての電波ボクセルを表記していないが、実際の処理では、環境モデルに対応するすべての電波ボクセルに対してウインドウによる走査が行われ、電波状態の悪い場所が操作入力・表示部105を介して作業者に通知されるものとする。
【0065】
なお、ここでは、RSSIが特定の範囲内となる場所を電波状態が悪いと判断し、これを探索する処理としたが、電波状態が良い場所、あるいは日々の計測によって、電波状態の変動が大きい場所等を検出し、また通知するようにしてもよい。あるいは、特定の基地局の電波が良好に受信可能な場所を探索するなどしてもよい。また、通知の手段としては、ここでは地図状に表された環境モデル上での通知を想定しているが、同様の効果が得られるならば、部屋名等であってもよい。
【0066】
<<基地局設置計画部の処理>>
前述のような電波状態の悪い場所などを作業者に通知する場合には、基地局設置計画部114にて、基地局の設置場所の候補などを含む改善案を作成する処理が行われる。この基地局設置計画部114で作成された改善案は、操作入力・表示制御部110を介して、操作入力・表示部105により、作業者に提示される。
【0067】
<<設置済み基地局位置姿勢検出部の処理>>
作業者が、改善案で提示された電波状態の悪い場所や基地局の設置場所の候補などに従って、電波を発する基地局を設置したものとして、
図7を用いて説明する。
図7は、基地局の設置位置・姿勢の表示の一例を説明するための図である。なお、電波状態の悪い場所に設置された基地局701には、マーカ702が貼られているものとする。
【0068】
続いて、基地局701が距離センサの計測範囲内に収まっていることを、
図7で示される画面703で確認し、センサ制御部106より、設置済み基地局位置姿勢検出部115は画像データと幾何形状データを取得する。
【0069】
続いて、設置済み基地局位置姿勢検出部115は、基地局701に貼られているマーカ702の形状に関するデータは予め保持しており、このデータと撮影したマーカ702の画像より、距離センサを基準としたときのマーカ702の相対位置・姿勢を算出する。また、この距離センサは、幾何形状データと環境モデルとのマッチングにより、距離センサの環境モデル内での位置・姿勢は算出されているものとし、これに前述のマーカ702の相対位置・姿勢を加算することで、環境モデル内でのマーカ702の位置・姿勢が算出されるものとする。今、マーカ702を基地局701の基準とするならば、以上により、基地局701の位置・姿勢が求められる。この基地局701の位置・姿勢は、画面704において、705のように表示される。
図7では、基地局701の位置・姿勢705を、円形とこの円形の中心からの矢印で示している。これにより、作業者は基地局701の位置・姿勢705が確認できる。なお、同様の効果が得られるならば、提示方法は他の方法であってもよい。また、設置済み基地局位置姿勢検出部115で求められた基地局701の位置・姿勢705のデータは、設置済み基地局位置姿勢データ119として記録される。
【0070】
<<設置済み基地局設置位置姿勢送信部の処理>>
続いて、設置済み基地局設置位置姿勢送信部116により、前述の設置済み基地局位置姿勢検出部115で得られた基地局701の位置・姿勢705とこれに対応する環境モデル117が基地局701に送信される。基地局701の構成を、
図8に示す。
図8は、基地局の構成の一例を説明するための図である。基地局701は、受信部801、保持部802、および、発信部803を有する。基地局701では、設置済み基地局設置位置姿勢送信部116から、基地局701自身の位置・姿勢705とこれに対応する環境モデル117を受信部801で受信し、これを内部の保持部802に保持し、必要に応じて、発信部803から電波として発信する。これにより、基地局701と通信する機器は、電波を受信した際に、基地局701の位置・姿勢705とその位置・姿勢の基準となっている環境モデル117の利用が可能となり、例えば、その機器の位置推定などが可能となる。
【0071】
なお、アプリケーションに応じて、基地局701の位置・姿勢705、環境モデル117のいずれかのみを基地局701より発信するようにしてもよい。また、基地局701は、基地局701自身の位置・姿勢705、環境モデル117のいずれかのみを受信するようにしてもよい。例えば、基地局701の保持部802に、環境モデル117のデータを予め保持している場合には、受信部801は自身の位置・姿勢705のみのデータを受信することで、基地局701の位置・姿勢705と環境モデル117のデータを発信することが可能である。
【0072】
<変形例>
以上の実施の形態では、電波計測システム101を台車305に載せて利用する例を示したが、3次元での幾何形状データの計測が可能な距離センサを利用する場合は、人が電波計測システムを手で持って環境内を計測してもよい。また、台車305の他、車両や船舶、航空機、ロボット等に電波計測システム101を搭載して計測してもよい。
【0073】
<効果>
以上説明した本実施の形態における電波計測システムおよび基地局によれば、環境内における電波状態を環境モデルと共に可視化し、またその中で電波状態の悪い場所を提示することで、例えば、建物内での基地局の設置作業に要する工数の削減につながる。この結果、環境内の電波状態の改善に関する工数の短縮を実現することができる。より詳細には、以下の通りである。
【0074】
(1)電波計測システム101は、位置姿勢推定・環境モデル生成部111と、操作入力・表示部105と、を有する。これにより、位置姿勢推定・環境モデル生成部111は、第1時刻に距離センサ部103により得られた環境の幾何形状データと、同じ第1時刻に電波センサ部104により得られた環境の電波データとを用いて、環境の形状を表す環境モデルを生成すると共に、電波データの計測位置・姿勢を算出することができる。そして、操作入力・表示部105は、位置姿勢推定・環境モデル生成部111で算出した各計測位置・姿勢での電波データを提示することができる。
【0075】
(2)電波計測システム101は、電波状態算出部113を有する。これにより、電波状態算出部113は、位置姿勢推定・環境モデル生成部111で生成した環境モデル上で、電波状態が悪い場所を提示することができる。または、電波状態算出部113は、位置姿勢推定・環境モデル生成部111で生成した環境モデル上で、電波状態が良い場所を提示することができる。
【0076】
(3)電波計測システム101は、電波データ補間部112を有する。これにより、電波データ補間部112は、環境モデルの生成時に、各ボクセルに記録されている、障害物の有無を表す占有・非占有・未知のデータに基づいて、電波データの補間処理を行うことができる。
【0077】
(4)電波データ補間部112における電波データの補間処理では、計測位置のデータが記録されているボクセルに対しては、これを中心とする3次元のウインドウを設け、このウインドウの内側になるボクセルに対して電波データをコピーする。この時にすでに電波データが記録されていた場合には、平均値を記録して、補間処理を行うことができる。
【0078】
(5)電波計測システム101は、基地局設置計画部114を有する。これにより、基地局設置計画部114は、電波状態が悪い場所に基づいて、基地局の設置場所の候補を提示することができる。
【0079】
(6)電波計測システム101は、設置済み基地局位置姿勢検出部115を有する。これにより、設置済み基地局位置姿勢検出部115は、距離センサ部103で計測した基地局に貼り付けられたマーカに基づいて、環境モデル上での基地局の位置・姿勢を算出することができる。
【0080】
(7)電波計測システム101は、設置済み基地局設置位置姿勢送信部116を有する。これにより、設置済み基地局設置位置姿勢送信部116は、基地局の位置・姿勢とその基準となる環境モデルとの少なくとも一方を基地局に送信することができる。
【0081】
(8)基地局701は、受信部801と、保持部802と、を有する。これにより、受信部801は、電波計測システム101から、自身の位置・姿勢と環境モデルとの少なくとも一方のデータを受信することができる。そして、保持部802は、受信部801で受信した、自身の位置・姿勢と環境モデルとの少なくとも一方のデータを保持することができる。
【0082】
(9)基地局701は、発信部803を有する。これにより、発信部803は、保持部802で保持した、自身の位置・姿勢と環境モデルとの少なくとも一方のデータを発信することができる。
【0083】
(10)基地局701において、保持部802が環境モデルのデータを予め保持している場合には、受信部801は、自身の位置・姿勢のみのデータを受信することで、自身の位置・姿勢と環境モデルとのデータを発信することができる。
【0084】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。