特許第6557653号(P6557653)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ダンマルクス テクニスケ ウニベルシテットの特許一覧

特許6557653封止された内部容積を有する波長可変光子源
<>
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000002
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000003
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000004
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000005
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000006
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000007
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000008
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000009
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000010
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000011
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000012
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000013
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000014
  • 特許6557653-封止された内部容積を有する波長可変光子源 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6557653
(24)【登録日】2019年7月19日
(45)【発行日】2019年8月7日
(54)【発明の名称】封止された内部容積を有する波長可変光子源
(51)【国際特許分類】
   H01S 5/183 20060101AFI20190729BHJP
【FI】
   H01S5/183
【請求項の数】13
【全頁数】23
(21)【出願番号】特願2016-515662(P2016-515662)
(86)(22)【出願日】2014年5月30日
(65)【公表番号】特表2016-522576(P2016-522576A)
(43)【公表日】2016年7月28日
(86)【国際出願番号】DK2014050153
(87)【国際公開番号】WO2014191005
(87)【国際公開日】20141204
【審査請求日】2017年5月15日
(31)【優先権主張番号】13170138.5
(32)【優先日】2013年5月31日
(33)【優先権主張国】EP
(31)【優先権主張番号】PA201370779
(32)【優先日】2013年12月16日
(33)【優先権主張国】DK
【前置審査】
(73)【特許権者】
【識別番号】509272403
【氏名又は名称】ダンマルクス テクニスケ ウニベルシテット
(74)【代理人】
【識別番号】110000279
【氏名又は名称】特許業務法人ウィルフォート国際特許事務所
(72)【発明者】
【氏名】イーヴァン,クレイステン
(72)【発明者】
【氏名】アンスベック,トゥア
【審査官】 吉野 三寛
(56)【参考文献】
【文献】 特開2005−223111(JP,A)
【文献】 特表平09−512138(JP,A)
【文献】 特開2013−008872(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00−5/50
(57)【特許請求の範囲】
【請求項1】
波長可変光子源(200)を提供する方法であって、
− 中実の素子であるなどの第1の素子(101)であって、第1のミラー(106)を備える第1の素子(101)を設けることと、
− 中実の素子であるなどの第2の素子(102)であって、第2のミラー(108)を備える第2の素子(102)を設けることと、
− 中実の素子であるなどの第3の素子(103)であって、光子放出体(110)を備える第3の素子(103)を設けることと、
− 前記第1の素子(101)および前記第2の素子(102)および前記第3の素子(103)を、互いに関して、
i.前記第1のミラー(106)および前記第2のミラー(108)が、光学キャビティの少なくともの一部を画定するように、かつ、
ii.前記光子放出体(110)が、前記光学キャビティの内部に配置されるように配置することと、
− 少なくとも前記第1の素子(101)および前記第2の素子(102)および前記第3の素子(103)を、封止された容積である内部容積(214)を取り囲むコヒーレント構造でともに結合することと、
− 前記内部容積(214)に隣接した接合界面(212)であって、気密であり、第1の側で前記第1の素子(101)に当接し、かつ、第2の側で前記第3の素子(103)に当接する接合界面(212)を形成することとを含み、
前記接合界面(212)を形成することが、直接接合によって前記接合界面を形成することを含み、
前記封止された内部容積が、10年当たり10mbarに相当するよりも少ない漏れ量を有し、かつ/または前記封止された内部容積が、1大気差圧にて1×10−20ccガス/秒以下の漏れ量を有し、
前記第1のミラー(106)が、前記内部容積(214)の内部で移動できるように、前記第1のミラー(106)が前記内部容積(214)に配置され、前記内部容積の少なくとも一部分が、前記第1のミラーの、前記光学キャビティに面する側に配置され、前記内部容積の少なくとも一部分、例えば、前記内部容積の別の一部分が、前記第1のミラーの反対側、例えば、前記第1のミラーの、前記光学キャビティに面する側の反対側である、前記第1のミラーの側に配置され、前記方法が、
− 前記第1のミラー(106)を、前記内部容積(214)の内部で移動させることを可能にするための手段(418C、418D)を設けること
をさらに含む、方法。
【請求項2】
前記接合界面(212)を形成する前記ステップの前に、大気圧を上回るか、または下回る圧力を供給するステップを先行させ、これにより、前記接合界面を形成する前記ステップの後に、前記内部容積(214)内の対応する圧力が前記大気圧を上回るか、または下回るようにする、請求項に記載の方法。
【請求項3】
請求項1または2に記載の方法であって、前記内部容積の境界を定める前記第3の素子(103)の表面の少なくとも一部分に、反射防止コーティング(426)を配置することを含む、方法。
【請求項4】
− 第1のミラー(106)を備える第1の素子(101)と、
− 第2のミラー(108)を備える第2の素子(102)と、
− 光子放出体(110)を備える第3の素子(103)と
を備える波長可変光子源(200)であって、
前記第1の素子(101)および前記第2の素子(102)および前記第3の素子(103)が互いに関して、
i.前記第1のミラー(106)および前記第2のミラー(108)が、光学キャビティの少なくともの一部を画定するように、かつ、
ii.前記光子放出体(110)が、前記光学キャビティの内部に配置されるように配置され、
少なくとも前記第1の素子(101)および前記第2の素子(102)および前記第3の素子(103)が、封止された容積である内部容積(214)を取り囲むコヒーレント構造でともに結合され、
前記コヒーレント構造が、前記内部容積(214)に隣接した接合界面(212)であって、気密であり、第1の側で前記第1の素子(101)に当接し、かつ、第2の側で前記第3の素子(103)に当接する接合界面(212)を備え、
前記接合界面(212)が、直接接合されており、
前記封止された内部容積が、10年当たり10mbarに相当するよりも少ない漏れ量を有し、かつ/または前記封止された内部容積が、1大気差圧にて1×10−20ccガス/秒以下の漏れ量を有し、
前記第1のミラー(106)が、前記内部容積(214)の内部で移動できるように、前記第1のミラー(106)が前記内部容積(214)に配置され、前記内部容積の少なくとも一部分が、前記第1のミラーの、前記光学キャビティに面する側に配置され、前記内部容積の少なくとも一部分、例えば、前記内部容積の別の一部分が、前記第1のミラーの反対側、例えば、前記第1のミラーの、前記光学キャビティに面する側の反対側である、前記第1のミラーの側に配置され、前記波長可変光子源(200)が、前記第1のミラーを、前記内部容積の内部で移動させることを可能にするための手段(418C、418D)をさらに備える、波長可変光子源(200)。
【請求項5】
前記第1のミラー(106)を前記内部容積(214)の内部で移動させることを可能にするための前記手段(418C、418D)が電極(418C、418D)を備え、前記第1のミラー(106)と前記電極との間の電界を維持し、これにより、前記第1のミラーを移動させる、請求項に記載の波長可変光子源(200)。
【請求項6】
前記光子放出体が、レーザー利得媒質であり、前記波長可変光子源が、レーザー光を放出できるようになっている、請求項4〜5のいずれか一項に記載の波長可変光子源(200)。
【請求項7】
基準波長ラムダで光子を放出するようになっている請求項4〜6のいずれか一項に記載の波長可変光子源(200)であって、前記第1のミラー(106)と前記第2のミラー(108)との間の光路長(OPL)が、ラムダの5倍(5×λ)未満であり、かつ/または前記第1のミラー(106)と、対向する中実の素子との間の前記内部容積(214)内の前記光学キャビティの光路に沿った距離が、ラムダの1.0倍(1.0×λ)未満である、波長可変光子源(200)。
【請求項8】
基準波長ラムダで光子を放出するようになっている請求項4〜7のいずれか一項に記載の波長可変光子源(200)であって、前記接合界面によって境界が定められた領域が、前記基準波長の二乗(ラムダ)の5000倍未満である、波長可変光子源(200)。
【請求項9】
基準波長に対する可変範囲が5%を上回る、請求項4〜8のいずれか一項に記載の波長可変光子源(200)。
【請求項10】
前記第1のミラー(106)を、前記内部容積(214)の内部で移動させることを可能にするための前記手段(418B、418C、418D)が、
i.電極(418C、418D)であって、前記第1のミラー(106)と前記電極との間の電界を維持し、これにより、前記第1のミラーを移動させ、前記電界が、前記第2のミラー(108)から遠ざかる方向に前記第1のミラー(106)を移動させるようになっている、電極(418C、418D)と、
ii.電極(418B、418C)であって、前記第1のミラー(106)と前記電極との間の電界を維持し、これにより、前記第1のミラーを移動させ、前記電界が、前記第2のミラー(108)に向かう方向に前記第1のミラー(106)を移動させるようになっている、電極(418B、418C)と
を備える、請求項5〜のいずれか一項に記載の波長可変光子源(200)。
【請求項11】
前記内部容積内の圧力が、大気圧を上回るか、または下回る、請求項4〜10のいずれか一項に記載の波長可変光子源(200)。
【請求項12】
光子を生成するために使用される、請求項4〜11のいずれか一項に記載の波長可変光子源(200)。
【請求項13】
光コヒーレンス断層撮影法(OCT)のために使用される、請求項12に記載の波長可変光子源(200)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光子源に関し、より具体的には、本発明は、波長可変光子源に関する。
【背景技術】
【0002】
波長可変光子源は、放出された波長が調節可能であることが有利であり得る多くの用途に適用することができる。
【0003】
参考文献“High speed micromechanically tunable Surface Emitting Laser with Si−MEMS technology”,KANBARA Nobuhiko et. al.,Yokogawa Technical Report English Edition No.47(2009)は、可変面発光レーザーについて記述している。このレーザーは、一方の側の誘電体ミラーがない半VCSEL(垂直共振器面発光レーザー)チップと、凹面形状のミラーを有する、マイクロマシン技術を用いて作製したSOI(絶縁体上シリコン)基板とから構成されている。これらの2つのチップは、高精度な金属熱圧着法を用いて、ともに接合されている。ミラーを有するシリコンメンブレンと、シリコン基板との間に可変電圧を印加することにより、高速に、広い波長範囲のチューニングが達成される。プロトタイプでは、500kHz超の高性能の波長変調、55nmの広い可変波長範囲がモードホップなしで得られ、また、60dB超のサイドモード抑圧比が得られている。
【0004】
可変光子源が改良されれば有利であろう。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的は、改良された波長可変光子源を提供する方法を提供することであると考えられ得る。本発明のさらなる目的は、従来技術に代わる技術を提供することである。
【課題を解決するための手段】
【0006】
したがって、上述の目的および他のいくつかの目的は、波長可変光子源を提供する方法であって、
− 中実の素子であるなどの第1の素子であって、第1のミラーを備える第1の素子を設けるステップと、
− 中実の素子であるなどの第2の素子であって、第2のミラーを備える第2の素子を設けるステップと、
− 中実の素子であるなどの第3の素子であって、光子放出体を備える第3の素子を設けるステップと、
− 第1の素子および第2の素子および第3の素子を、互いに関して、
i.第1のミラーおよび第2のミラーが、光学キャビティの少なくとも一部を画定するように、かつ、
ii.光子放出体が、光学キャビティの内部に配置されるように配置するステップと、
− 例えば、物理的接合および/または化学的接合などによる接合および/または堆積によって、少なくとも第1の素子および第2の素子および第3の素子を、例えば、物理力および/または化学力によって一体に保持されたコヒーレント構造、例えば、空気および/または液体が出入りできないように封止されるなどの内部容積、例えば、非中実の内部容積などの密閉して封止された内部容積を取り囲む、剛性を有しかつコヒーレントな構造でともに結合するステップと、
− 内部容積に隣接した接合界面であって、気密であり、第1の側で第1の素子に当接し、かつ、第2の側で第3の素子に当接する接合界面を形成するステップと
を含み、
第1のミラーが、例えば、第2のミラーに対して移動するように、内部容積の内部で移動できるように、第1のミラーが内部容積に配置され、方法が、
− 第1のミラーを、内部容積の内部で移動させることを可能にするための手段、例えば、第1のミラーに電気的にアクセスするための手段、第1のミラーを静電気によって移動させるための手段、光学キャビティのキャビティ長を変えることが可能であるように第1のミラーを移動させるための手段を設けるステップ
をさらに含む、方法を提供することにより、本発明の第1の態様において達成することができる。
【0007】
この方法は、内部容積が封止された波長可変光子源を得る比較的単純な方法を提供するため、本発明は、そのような波長可変光子源を得るのに特に有利であるが、これに限定されるものではない。内部容積が封止されていることは、有利であると見なすことができる。なぜなら、大気の調整(圧力および流体組成など)が可能になることで、さらには、(移動の振幅を大きくするためにQ値を増大させたり、またはリンギングを回避するためにQ値を減少させたりなど)第1のミラーのQ値を向上させることが可能になるからである。さらに、内部容積が封止されることにより、汚染物質が内部容積の中に入れないため、光子源の安定性、および/または汚染に対する耐性を強化することが可能である。この方法は、第1の素子、第2の素子および第3の素子を、第1の素子が第1のミラーおよび内部容積に対する境界壁としての2重の機能を果たすとともに、第2の素子および/または第3の素子が同様に、それぞれ第2のミラー/光子放出体および内部容積に対する境界壁としての2重の機能を果たすように組み合わせる単純であるが有効な方法を提供する。
【0008】
本発明は、記述されるように素子をともに接合することで、第1のミラーが移動可能な封止された内部容積を十分実現し得る、という見識に基づくと考えられる。「第1のミラーが移動可能な」および/または「第1のミラーが内部容積の内部で移動できるように」と言う場合、それは一般に、例えば、第1のミラーが第1の容積の内部で移動可能に吊り下げられたり、第1の容積の外部の構造的特徴部を動かす必要なしに、第1のミラーが第1の容積の内部で移動可能であったり、第1のミラーが内部容積と境界を接する外壁と一緒に移動するという制限がないなど、第1のミラーが、第1の容積の内部で移動できると理解されるべきであることに留意されたい。第1のミラーが第1の容積の内部で移動できるように、第1のミラーを設けることの利点は、第1のミラーの機械的性質が、例えば、第1の容積内の気体の圧力などの流体組成を制御することにより直接制御されるなど、制御可能であることであると考えられる。第1のミラーが第1の容積の内部で移動できるように、第1のミラーを設けることの利点は、第1のミラーの機械的性質が、大気条件などの内部容積の外部の流体の圧力によって影響を受けないことであると考えられる。
【0009】
「波長可変光子源」とは、光子の波長が制御可能に調節され得る光子の源であると理解される。
【0010】
「第1の素子」とは、第1のミラーを備える構造的素子であると理解してもよい。
【0011】
「第1のミラー」とは、光学キャビティにおけるミラー表面を画定することが可能なミラーであると理解してもよい。第1のミラーは、例えば、光学キャビティの光路長を変えるように移動するなど、第2のミラーに対して移動できると理解される。例えば、第1のミラーが微小電子機械システム(MEMS)構造であるなど、第1のミラーは、MEMS構造の少なくとも一部であり、前記MEMS構造が、例えば第2のミラーに対して移動するなど、内部容積の内部で移動できるように、前記MEMS構造が内部容積に配置されてもよいことが理解され得る。前記MEMS構造は、内部容積内に配置され、内部容積の少なくとも一部分が、前記MEMS構造の、光学キャビティに面する側に配置され、内部容積の少なくとも一部分、例えば、内部容積の別の一部分が、MEMS構造の反対側、例えば、前記MEMS構造の、光学キャビティに面する側の反対の位置にある、前記MEMS構造の側に配置されることが理解され得る。
【0012】
特定の実施形態では、第1の素子が、高屈折率差サブ波長格子(HCG)型の予めパターニングされた絶縁体上シリコン(S0I)基板によって形成され、例えば、参照によりその内容全体が本明細書に組み込まれる国際公開第2012/0149497A2号パンフレットに記述されるような、下部ミラー反射器としてスペーサ層間に設けられたHCGなどの、埋め込まれたHCGを備えてもよい。
【0013】
「第2の素子」とは、第2のミラーを備える構造的素子であると理解してもよい。
【0014】
「第2のミラー」とは、光学キャビティにおけるミラー表面を画定することが可能なミラーであると理解してもよい。いくつかの実施形態では、例えば、第2のミラーから構成されるなどした、第2の素子が実質的に具体化されてもよい。この第2の素子は、例えば、第3の素子の上に置かれるなどした、別の素子の上に置かれた、第2のミラーであるなどの2番目の第2の素子である。
【0015】
例示的な実施形態では、第1のミラーおよび/または第2のミラーのいずれか1つが、分布ブラッグ反射器またはHCGを備えてもよい。他の実施形態では、ミラーおよび/または第2のミラーが、金属ミラーおよび/または、参照により内容全体が本明細書に含まれる、“First demonstration of highly reflective and highly polarization selective diffraction gratings(GIRO−gratings)for long−wavelength VCSELs”,Goeman S.,et. al.,Photonics Technology Letters,IEEE(Volume:10,Issue:9),Sept.1998,Page(s):1205−1207に記述されるような、高い反射率と高い偏向選択性を有する回析格子(GIRO−gratings)のいずれか1つを備えてもよい。種々のタイプのミラーの組み合わせが、本発明に包含され得る。
【0016】
特定の実施形態では、第2の素子が、参照により内容全体が本明細書に組み入まれる国際公開第2012/0149497A2号パンフレットに記述されるような、上部ミラー(すなわち第2のミラー)反射器と、前記上部ミラー反射器の真下の活性領域(すなわち光子放出体)とを有する半VCSELレーザーヘテロ構造で第3の素子と一体化されてもよい。
【0017】
「第3の素子」とは、光子放出体を備える構造的素子であると理解してもよい。「光子放出体」とは、例えば、光子または電子を受けて光子を放出することが可能であるなど、光子を放出することが可能な要素であると理解してもよい。例示的な光子放出体は、一般に、(レーザー利得媒質など)光利得媒質を含んでもよい。いくつかの実施形態では、光子放出体が、1つまたは複数の量子井戸、量子細線または量子ドットを含んでもよい。特定の実施形態では、光子放出体が、半導体材料、例えば、バルク状の半導体、または1つもしくは複数の量子井戸、量子細線もしくは量子ドット形態の半導体を備える。「第3の素子」は、例えば、エピタキシャルウェーハ工場から調達可能なIII−V族半導体エピタキシャルウェーハを、商業的供給業者から購入してもよい。
【0018】
「光学キャビティ」は、当技術分野において公知であり、光波用の定常波キャビティ共振器を形成するミラーの配置を表すと理解されたい。
【0019】
「光子放出体が、光学キャビティの内部に配置される」とは(例えば、光子放出体が光学キャビティの内部に配置されるステップを含む方法などという場合)、例えば、直接キャビティモードへと放出されるなど、光子が直接キャビティに放出され得るように、光子放出体が配置されることであると理解される。キャビティの内部に光子放出体が配置されることによって、キャビティに入る光子の損失が生じる可能性が排除される。さらに、光子放出体が活性レーザー媒質である場合には、レーザー(LASER)が設けられてもよい。
【0020】
「接合」とは、2つの表面を、例えば、化学的接合および/または物理的接合などの、化学力および/または物理力によって恒久的かつ/または不可逆的に結合するなどの結合方法であると理解される。接合、例えば、恒久的な接合は、融着、接着、熱圧着、または共晶接合などの任意の1つの方法を用いて達成することができる。
【0021】
「融着」は、当技術分野において公知であり、第1の素子および第2の素子の、(平面性および平滑性にすぐれた)2つの表面をプレス処理することにより達成されるが、一般的には、任意の2つの素子をともに接合させて化学的接触を形成することであると理解されたい。接合強度は、高温でアニール処理されることにより増大させることができる。
【0022】
「接着」は、当技術分野において公知であり、スプレーを使用するか、またはポリマー、例えば、ベンゾシクロブテン(BCB)を、第1の素子と第2の素子との間の中間層としてスピンコーティングすることにより達成され得るが、一般的には、任意の2つの素子を接合させることであると理解されたい。第1の素子および第2の素子を、または一般的には接合されるべき任意の2つの素子を、ともにプレス処理した後に、ポリマーを硬化させる。
【0023】
「熱圧着」は、当技術分野において公知であり、第1の素子および第2の素子上で、または一般的には、接合されるべき任意の2つの素子上で、金属薄膜(例えば、AuまたはAuSn)をパターニングして、高温下でそれらを一体化させることにより達成され得ると理解されたい。
【0024】
「共晶接合」は、当技術分野において公知であり、第1の素子もしくは第2の素子上で、または一般的には、接合されるべき任意の2つの素子上で、例えば、Auなどの金属薄膜をパターニングして、高温でそれらをともに結合させることにより達成され得ると理解されたい。
【0025】
(素子をともに)「結合させる」とは、それらを互いに付着させることであると理解してもよい。一実施形態では、結合させるステップが、1つまたは複数の接合するステップを含む。一実施形態では、結合させるステップが、例えば、第2のミラー(この場合には、第2のミラーは第2の素子であってもよい)を、第3の素子の上に堆積させるなどの1つまたは複数の堆積させるステップを含む。
【0026】
「コヒーレント構造」とは、例えば、結合された素子からなる剛性構造など、結合された素子からなる構造を形成するように、互いに結合されている1つまたは複数の素子を備える構造であると理解される。一実施形態では、コヒーレント構造が、物理的接合および/または化学的接合によって一体に保持されている。
【0027】
「封止された容積」とは、例えば、空気などの気体および/または液体が、封止された容積に進入することができないように、例えば、実際の状況で封止された容積に進入することができないように封止されるなど、実用目的で周囲の容積に対して封止されているなどの封止された容積であると理解される。しかしながら、「封止された容積」は、必ずしも封止が無限に良好であることを示唆するものではないこともまた理解されたい。ゼロではない何らかの漏れがあり得る。一実施形態では、封止された内部容積の漏れ量が、(標準大気条件で配置されている場合に)10年当たり10mbarに相当する漏れ量よりも低く、例えば10年当たり1mbar未満、10年当たり0.1mbar未満などである。別の実施形態では、封止された内部容積の漏れ量が、1大気差圧にて1×10−20ccガス/秒以下であり(ここではccは、立方センチメートルを指す)、例えば1大気差圧にて5×10−21ccガス/秒以下、1大気差圧にて1×10−21ccガス/秒以下、1大気差圧にて5×10−22ccガス/秒以下、1大気差圧にて1×10−22ccガス/秒以下などである。
【0028】
「内部容積」は、「封止された内部容積」であり、「封止された容積」および「内部容積」を、互換的に使用してもよいと理解される。波長可変光子源(例えば第1の素子および/または第3の素子、例えば第1の素子、第2の素子および/または第3の素子など)は、構造的に安定しており、例えば、周囲圧力の変化に対して剛性を有することにより、例えば大気圧の変化など、周囲圧力の変化などの実際の状況の著しい変化において、封止された容積の数量的な容積が変化しないようになっていると理解してもよい。
【0029】
「内部容積」は、第1の素子および/または第3の素子の中に非貫通孔、例えば、最終構造において内部容積の少なくとも一部に相当する非貫通孔を有することにより設けられてもよい。内部容積は、基準波長の三乗(ラムダ)の5000倍未満、すなわち、5000×λ未満に定量的に相当し、例えば、基準波長の三乗の2500倍未満、基準波長の三乗の1000倍未満、基準波長の三乗の500倍未満、基準波長の三乗の250倍未満、基準波長の三乗の110倍未満、基準波長の三乗の100倍未満、基準波長の三乗の50倍未満、基準波長の三乗の10倍未満などに相当してもよい。容積がこのように相対的に小さいことの利点は、全体の、例えば、外形寸法の小型化が可能になるということであり得る。
【0030】
「密閉して封止された」は、当技術分野において公知であり、例えば、流体に対して不浸透性であり、気体または液体などの流体が密閉して封止された容積に出入りできないなど、実質的に不浸透性の封止として理解してもよい。
【0031】
「非中実の内部容積」とは、例えば、内部容積が気体、液体などの流体を含んでいるなどして、内部容積が中実ではないことであると理解してもよい。
【0032】
「接合界面を形成する」とは、接合によって2つの素子をともに結合することにより、それらの接合された面が界面を形成することであると理解してもよい。「接合界面」とは、ともに接合される2つの素子間の界面であると理解される。本発明は、接合界面が、2つの素子の材料に加えて、2つの素子を接続する材料などの追加の材料を備えることを包含し、また、接合界面が材料を備えず、例えば2つの素子がともに直接接合されていることを包含する。「内部容積に隣接した」とは、接合界面が、内部容積の隣りに、かつ/または、例えば内部容積を包囲するなど、物理的に接触して配置されていると理解される。
【0033】
「気密」とは、気体が、通り抜けることができないことであると理解してもよい。例えば、気密界面が、封止された容積を包囲してもよい。上述の「封止された容積」との類似において、「気密」は、例えば、気密接合界面が、無限に気密であることを必ずしも示唆するものではないと理解される。本明細書に関連する「気密」によって、上述したような「封止された容積」の形成が可能になり、例えば、上述したような封止された容積が、「気密」界面によって包囲され得ると理解してもよい。
【0034】
「当接する」とは、例えば、物理的接触をしているなど、隣接していることであると理解してもよい。
【0035】
「第1のミラーを内部容積の内部で移動させることを可能にするための手段」とは、静電駆動用に設けられた電極への電気的接続、(第1のミラーを機械的に作動させるために圧電性素子を設けてもよい場合には)圧電素子への電気的接続、または抵抗加熱によって第1のミラーを加熱することが可能な抵抗性バイモルフ素子への電気的接続などの、熱応動を可能にする電気的接続であると理解してもよい。
【0036】
別の実施形態では、接合界面を形成するステップが、直接接合によって接合界面を形成するステップを含む、方法が提供される。「直接接合」とは、シリコン系の基板および/または化合物半導体系の基板が、例えば溶融などの直接接合によって、互いにその表面がともに接合されることであると理解してもよい。「直接接合」とは、融着、シリコンと酸化物の接合、酸化物と酸化物の接合のいずれか1つであると理解してもまたよい。この実施形態の利点は、素子間の距離に影響を及ぼしたり距離を増加させたりする中間層がないため、素子間の距離にわたって良好に制御された接合界面を形成し得ることであり、さらに、素子間の距離を最小限にとどめられることであり得る。その結果、光学キャビティ長を明確に画定し、かつ/または相対的に短くすることができる。直接接合のための試料を準備するために、化学−機械的研磨法(CMP)などの方法を用いて、下に直接接合される表面の表面粗さを低減することが可能であり、例えば1nm未満、0.5nm未満まで表面粗さを低減することが可能であると理解してもよい。例えば、溶融などの直接接合によって、互いにその表面がとも接合されるシリコン系の基板および/または化合物半導体系の基板が、かなりの圧力、電界、および/または中間層の補助を一切必要とせずに、接触可能であることは、有利であると考えられる。なお、直接接合は、参考文献“3D Integration for VLSI Systems”,Edited by Chuan Seng Tan,Kuan−Neng Chen and Steven J.Koester,by Pan Stanford Publishing Pte.Ltd(2012)に記述されていることに留意されたい。
【0037】
別の実施形態では、接合界面を形成するステップの前に、標準大気圧などの大気圧を上回るか、または下回る圧力を供給するステップ、あるいは大気とは異なる流体組成を供給するステップを先行させ、これにより、接合界面を形成するステップの後に、内部容積内の対応する圧力が大気圧を上回るか、または下回るようにし、かつ/あるいは内部容積内の流体組成が、標準大気圧における大気とは実質的に異なる流体組成、例えば、圧力が標準大気圧を上回るか、または下回る気体であるようにする方法が提供される。この実施形態の利点は、低圧により第1のミラーが、例えば、高いQ値を有する第2のミラーなど、減衰を小さくして移動しやすくするということであり得る。この実施形態の利点は、高圧により第1のミラーが、例えば、臨界減衰された第2のミラーなど、減衰を大きくして移動しやすくして、これにより、セッティング時間が速くなり、すなわち、リンギングが減少するということであり得る。別の実施形態では、方法が、大気ガスの組成とは異なるように気体組成を調節するステップを含んでもよい。これは、例えば、内部容積内の気体組成の熱的性能を向上させるのに有利であり得る。
【0038】
別の実施形態では、内部容積の境界を定める第3の素子の表面の少なくとも一部分に反射防止(AR)コーティングを配置するステップを含む、方法が提供される。反射防止コーティングは、当技術分野において公知であり、例えば、TiO/SiO、Al、SiON、BCBのいずれか1つを含んでもよい。一実施形態では、ARコーティングは、酸窒化ケイ素などの誘電体コーティングである。一実施形態では、ARコーティングは、屈折率が、ARコーティングが配置される素子の屈折率の平方根と実質的に等しい。
【0039】
一実施形態では、表面の少なくとも一部分の上に、例えば、第1のミラーによって画定された光学キャビティなど、内部容積の境界を定める第3の素子の表面の上に反射防止コーティングがなく、第2のミラーが前記光学キャビティ内に追加のミラーを備えている。
【0040】
別の実施形態では、接合界面を形成するステップが、第2の素子および/または第3の素子が当接するように、素子を配置するステップを含む方法が提供される。これにより、小型の光子源を比較的単純なやり方で提供することが可能となり得る。さらに、実施形態は、実施形態に関連した利点を有する部分の一体化を伴ってもよい。
【0041】
本発明の第2の態様によれば、
− 第1のミラーを備える第1の素子と、
− 第2のミラーを備える第2の素子と、
− 光子放出体を備える第3の素子と
を備える波長可変光子源であって、
第1の素子および第2の素子および第3の素子が互いに関して、
i.第1のミラーおよび第2のミラーが、光学キャビティの少なくとも一部を画定するように、かつ、
ii.光子放出体が、光学キャビティの内部に配置されるように配置され、
少なくとも第1の素子および第2の素子および第3の素子が、例えば物理的接合および/または化学的接合により結合されてともに接合され、かつ/または、堆積により結合されるなどして、例えば、空気および/または液体が、内部容積を出入りできないように封止されるなど、封止された容積である内部容積、例えば、密閉して封止されるといったような非中実の内部容積などの封止された内部容積を取り囲むコヒーレント構造でともに結合され、
コヒーレント構造が、内部容積に隣接した接合界面であって、接合素子が気密であり、第1の側で第1の素子に当接し、かつ、第2の側で第3の素子に当接する接合界面を備え、
第1のミラーが、例えば、内部容積の内部で第2のミラーに対して動くなど、移動できるように、第1のミラーが内部容積に配置され、波長可変光子源が、第1のミラーを内部容積の内部で移動させることを可能にするための手段、例えば、第1のミラーを静電気によって移動させる手段、光学キャビティのキャビティ長を変えることを可能にするように第1のミラーを移動させるための手段など、第1のミラーに電気的にアクセスするための手段をさらに備える、波長可変光子源が提供される。
【0042】
本発明のこの態様は、本態様による光子源を、第1の態様による方法に従って実施することができるという点で特に有利であるが、これに限定されるものではない。
【0043】
一実施形態では、例えば、電極などの、電気的ポンピングのための手段を備え、電気的にポンピングされた波長可変光子源が提供される。電気的ポンピングの利点は、pn接合に接続された電極などの電気的にポンピングさせる構造を設けると、電流を供給するだけでポンピングを行うことが可能になることであり得る。これは、例えば、光学的ポンピングの場合に光子を供給することに比べてかなり単純であると考えられる。
【0044】
一実施形態では、例えば、ポンプレーザーなどのポンプ光源を備えるなど、光学的ポンピングのための手段を備え、光学的にポンピングされた波長可変光子源が提供される。ポンプ光源は、基準波長よりも小さい波長を有する光を放出することができる。光学的ポンピングの利点は、例えば、電気的ポンピングの場合における電極なしで済ませることができるため、波長可変光子源の構造を比較的簡単に保つことができる点であり得る。
【0045】
別の実施形態では、第1のミラーを内部容積の内部で移動させることを可能にするための手段が、電極、例えば、一式の電極を備え、第1のミラーと電極との間の電界を維持し、これにより、例えば、第2のミラーに向かう方向に、または第2のミラーから遠ざかる方向に第1のミラーを移動させるなど、第1のミラーを移動させる波長可変光子源が提供される。電極は、波長可変光子源の外部から電気的にアクセス可能であり、電界が、静電駆動によって第1のミラーを移動させることが可能になるように設けることができる。この実施形態の利点は、単純であるが有効な方法で第1のミラーを移動させることが可能になることであり得る。一実施形態では、電極が、例えば、第1のミラーを第2のミラーから遠ざかるように移動させるなど、静的に移動させるようになっている。
【0046】
別の実施形態では、電界が、第1のミラーを第2のミラーから遠ざかる方向に移動させるようになっている波長可変光子源が提供される。その利点は、いわゆる引き込みの影響を軽減し得ることであり得る。このことは特に、第1のミラーが、その共振周波数を大幅に下回る周波数で、例えば静的に、駆動される用途に関連することがある。
【0047】
別の実施形態では、第1のミラー(106)を内部容積(214)の内部で移動させることを可能にするための手段が、電極(418B、418C)を備え、第1のミラー(106)と電極との間の電界を維持し、これにより、第1のミラーを移動させ、電界が、第2のミラー(108)に向かう方向に第1のミラー(106)を移動させるようになっている、波長可変光子源が提供される。
【0048】
別の実施形態では、第1のミラー(106)を内部容積(214)の内部で移動させることを可能にするための手段(418B、418C、418D)が、
i.電極(418C、418D)であって、第1のミラー(106)と、電極との間の電界を維持し、これにより、第1のミラーを移動させ、電界が、第2のミラー(108)から遠ざかる方向に第1のミラー(106)を移動させるようになっている、電極(418C、418D)と、
ii.電極(418B、418C)であって、第1のミラー(106)と電極との間の電界を維持し、これにより、第1のミラーを移動させ、電界が、第2のミラー(108)に向かう方向に第1のミラー(106)を移動させるようになっている、電極(418B、418C)と
を備える、波長可変光子源が提供される。
【0049】
ミラーを能動的に、例えば静的に、両方向に移動可能であることの利点は、ミラーの移動に対して、より優れた制御が可能になることであり得る。なぜなら、第1のミラーを能動的に、例えば静的に、両方向に、すなわち第2のミラーから遠ざかる方向および第2のミラーに向かう方向のいずれにも、摂動させ、かつ/または、移動させることが可能になるからである。
【0050】
別の実施形態では、光子放出体が、レーザー利得媒質であり、波長可変光子源が、レーザー光を放出できるようになっている、波長可変光子源が提供される。一実施形態では、波長可変光子源が、波長可変レーザーである。レーザーは、当技術分野において公知である。
【0051】
別の実施形態では、第1のミラーが、高コントラスト解析格子(HCG)を備える波長可変光子源が提供される。別の実施形態では、光学キャビティが、少なくとも1つの反射防止コーティングを備える波長可変光子源が提供される。
【0052】
別の実施形態では、基準波長ラムダで光子を放出するようになっている波長可変光子源であって、第1のミラーと第2のミラーとの間の光路長(OPL)が、ラムダの5倍(5×λ)未満である、波長可変光子源、例えば、ラムダの2.5倍(2.5×λ)未満、ラムダの1.5倍(1.5×λ)未満などの波長可変光子源が提供される。OPLが小さいことの利点は、自由スペクトル域を相対的に大きくし、かつ/または、波長調整効率をさらに高めることが可能になることであり得る。一実施形態では、ラムダの4倍(4×λ)未満の電気的にポンピングされたキャビティ長、例えば、ラムダの2倍(2×λ)未満などのキャビティ長が提供される。一実施形態では、ラムダの3.5倍(3.5×λ)未満の光学的にポンピングされたキャビティ長、例えば、ラムダの2.5倍(2.5×λ)未満、ラムダの1.5倍(1.5×λ)未満などのキャビティ長が提供される。
【0053】
「キャビティ長」と言う場合、それは光学キャビティ長と互換的に使用されるが、キャビティを1回通過する場合の光路長(OPL)、例えば、2つのミラー(すなわち第1のミラーおよび第2のミラー)間の光路長であると理解される。往復の光路長は、これらの線状のキャビティでは2倍であってもよい。また、2つのミラーで構成されるキャビティでは2倍となる。
【0054】
「基準波長」(ラムダ(λ))とは、波長に対するレーザー出力をグラフ化すれば、最も強度の強い波長として示されるなどの光子源の中央動作波長であり、例えば、第1のミラーが非動作位置にある場合などの通常使用時における最も強度の強い波長であると理解してもよい。基準波長は、例示的な実施形態では、1マイクロメートル程度、例えば、100nm〜10マイクロメートルの範囲内、350nm〜5.5マイクロメートルの範囲内、800nm〜3マイクロメートルの範囲内、350nm、800nm、1マイクロメートル、1.3マイクロメートル、1.5マイクロメートル、2マイクロメートル、3マイクロメートル、5.5マイクロメートル、10マイクロメートルなどであってもよい。
【0055】
別の実施形態では、基準波長ラムダで光子を放出するようになっている波長可変光子源であって、第1のミラーと、対向する中実の素子との間の内部容積内の光学キャビティの光路に沿った距離が、ラムダの1.0倍(1.0×λ)未満である波長可変光子源、例えば、ラムダの0.75倍(0.75×λ)未満、ラムダの0.5倍(0.5×λ)未満、ラムダの0.25倍(0.25×λ)未満などである、波長可変光子源が提供される。所与の距離を有する一実施形態を、第1のミラーを動的に作動させるように構成すること、および/または使用することは、有利であり得る。距離が相対的に小さいことの利点は、それに相応してOPLの小型化が可能になることであり得る。「対向する中実の素子」とは、光子が、内部容積内の非中実である気体または流体を通って、光路上を第1のミラーから第2のミラーに向かって移動するときに、接触する第1の中実の媒体である素子と理解してもよい。実施形態では、対向する素子が、(反射防止コーティングを任意に含む)第3の素子によって具体化されてもよい。
【0056】
別の実施形態では、基準波長ラムダで光子を放出するようになっている波長可変光子源であって、第1のミラーと、対向する中実の素子との間の内部容積内の光学キャビティの光路に沿った距離が、λの1/10未満、すなわちラムダの0.1倍(0.1×λ)未満である、波長可変光子源、例えば、ラムダの0.075倍(0.075×λ)未満、ラムダの0.05倍(0.05×λ)未満、ラムダの0.025倍(0.025×λ)未満、ラムダの0.01倍(0.01×λ)未満などである、波長可変光子源が提供される。所与の距離を有する一実施形態を、第1のミラーを静的に作動させるように構成すること、および/または使用することは、有利であり得る。距離が相対的に小さいことの利点は、それに相応してOPLの小型化が可能になることであり得る。特定の実施形態では、距離が、ラムダの1.0倍(1.0×λ)未満、例えば、ラムダの0.75倍(0.75×λ)未満、ラムダの0.5倍(0.5×λ)未満、ラムダの0.25倍(0.25×λ)未満などであってもよい。
【0057】
別の実施形態では、基準波長ラムダで光子を放出するようになっている波長可変光子源であって、接合界面によって境界が定められた領域が、基準波長の二乗(ラムダ)の5000倍未満すなわち5000×λ未満である、波長可変光子源、例えば、基準波長の二乗の2500倍未満、基準波長の二乗の1000倍未満、基準波長の二乗の500倍未満、基準波長の二乗の250倍未満、基準波長の二乗の100倍未満などである、波長可変光子源が提供される。一実施形態では、その領域が、10000マイクロメータ未満、例えば、5000マイクロメータ未満、2500マイクロメータ未満、1000マイクロメータ未満、500マイクロメータ未満、400マイクロメータ未満、200マイクロメータ未満などである。このように領域が相対的に小さいことの利点は、波長可変光子源が、内部容積と周囲環境との間の、さらに大きな圧力差にも耐え得るようになることであり得る。一実施形態では、接合界面によって境界が定められた領域が、内部容積と、通常使用時の、例えば1気圧の、大気などの外部容積との間の圧力差が、ラムダの1/1000を超える内部容積の壁の偏位、例えばラムダの1/100を超える偏位を生じないように設けられる。
【0058】
別の実施形態では、第1のミラーの共振周波数が、0.5MHzよりも高い波長可変光子源、例えば、1MHzよりも高い、5MHzよりも高い、10MHzよりも高い、50MHzよりも高い、100MHzよりも高いなどの波長可変光子源が提供される。このように共振周波数が相対的に高いことの利点は、この相対的に高い周波数で、相対的に大きな振幅を有して、相対的に少ない電力消費量で、第1のミラーが駆動可能、すなわち移動可能になることであり得る。
【0059】
別の実施形態では、基準波長に対する可変範囲が5%を上回る、波長可変光子源、例えば、7.5%を上回る、10%を上回る、12.5%を上回る、15%を上回るなどの波長可変光子源が提供される。このような相対的に大きな可変波長範囲が可能であることは、光子源が、より広範囲にわたる波長に適用可能であるということであり得る。一実施形態では、可変波長範囲が10%を上回る、光学的にポンピングされた光子源、例えば、12.5%を上回る、15%を上回るなどの光子源が提供される。一実施形態では、可変波長範囲が5%を上回る、電気的にポンピングされた光子源、例えば、6.5%を上回る、7.5%を上回る、10%を上回るなどの光子源が提供される。
【0060】
別の実施形態では、内部容積内の圧力が、標準大気圧などの大気圧を上回るか、または下回る波長可変光子源が提供される。
【0061】
別の実施形態では、第1のミラーが、内部容積に配置され、内部容積の少なくとも一部分が、第1のミラーの、光学キャビティに面する側に配置され、内部容積の少なくとも一部分、例えば、内部容積の別の一部分が、第1のミラーの反対側、例えば、第1のミラーの、光学キャビティに面する側の反対側である、第1のミラーの側に配置される、波長可変光子源が提供される。
【0062】
したがって、第1のミラーの、光学キャビティに面する側は、例えば、内部容積の外壁と接触して配置されるのではなく、内部容積の外壁から離れて配置され、第1のミラーの反対側は、例えば、内部容積の外壁と接触して配置されるのではなく、内部容積の外壁から離れて配置されると理解してもよい。「内部容積の一部分」とは、例えば、内部容積の副部など、内部容積の一部と理解してもよい。「内部容積の別の一部分」とは、例えば、内部容積の別の副部など、内部容積の別の一部と理解してもよい。
【0063】
− 第1のミラーの、光学キャビティに面する側にある内部容積の一部分、および
− 第1のミラーの、反対側に配置されている内部容積の一部分
を、例えば、第1のミラー内の貫通孔を介して接続するなど、流体的に接続することができると理解してもよい。これら2つの部分を流体的に接続させることの利点は、例えば、第1のミラーの各側の内部容積の部分など、内部容積の2つの部分でそれぞれ、同じ圧力を確保することが可能になるという点であり得る。
【0064】
一実施形態では、封止された内部容積が、例えば、10年当たり1mbar未満、10年当たり0.1mbar未満など、10年当たり10mbarに相当するよりも少ない漏れ量を有する。漏れ量は、標準大気条件で配置される場合に、波長可変光子源に対して与えられ得ると理解してもよい。
【0065】
別の実施形態では、封止された内部容積が、例えば、1大気差圧にて5×10−21ccガス/秒以下、1大気差圧にて1×10−21ccガス/秒以下、1大気差圧にて5×10−22ccガス/秒以下、1大気差圧にて1×10−22ccガス/秒以下など、1大気差圧にて1×10−20ccガス/秒以下の漏れ量を有する(ここではccは、立方センチメートルを指す)。
【0066】
一実施形態では、内部容積内の圧力が、例えば、標準大気圧を上回るか、または下回るなど、大気圧を上回るか、または下回る。
【0067】
一実施形態では、封止された内部容積が、例えば、10年当たり1mbar未満、10年当たり0.1mbar未満など、10年当たり10mbarに相当するよりも少ない漏れ量を有する。漏れ量は、標準大気条件で配置され、かつ、内部容積内の圧力が、例えば、標準大気圧を上回るか、または下回るなど、大気圧を上回るか、または下回る場合に、波長可変光子源に対して与えられ得ると理解してもよい。
【0068】
別の実施形態では、封止された内部容積が、例えば、1大気差圧にて5×10−21ccガス/秒以下、1大気差圧にて1×10−21ccガス/秒以下、1大気差圧にて5×10−22ccガス/秒以下、1大気差圧にて1×10−22ccガス/秒以下など、1大気差圧にて1×10−20ccガス/秒以下の漏れ量を有し(ここではccは、立方センチメートルを指す)、かつ、内部容積内の圧力が、例えば、標準大気圧を上回るか、または下回るなど、大気圧を上回るか、または下回る。
【0069】
本発明の第3の態様によれば、例えば、互いに関して波長が異なる複数の光子を生成するためなど、光子を生成するための、第1の態様に従って提供されるような光子源、または第2の態様に従って提供されるような光子源の使用が提供される。
【0070】
本発明は、第1の態様に従って、または第2の態様に従って提供されるような光子源の光子放出体から光子を放出して、第1のミラーを移動させることによって、例えば、互いに関して波長が異なる複数の光子を生成するためなど、光子を生成するための方法にさらに関する。
【0071】
別の実施形態では、光子源の、光コヒーレンス断層撮影法(OCT)のための使用が提供され、例えば、1atm未満、1bar未満、100mbar未満、10mbar未満、1mbar未満、0.1mbar未満など、標準大気圧を下回る圧力で動的に作動させるなど、第2のミラーを動的に作動させる光コヒーレンス撮影法のための前記光子源の使用が提供される。相対的に低い圧力を有することの実現可能な利点は、第1のミラーの移動のQ値が増大することであり、さらには、少ない電力使用で移動が達成可能になるということであり得る。
【0072】
別の実施形態では、特許請求の範囲に記載の光子源の、光通信のための使用が提供され、例えば、少なくとも1bar、少なくとも1atm、少なくとも標準大気圧、標準大気圧よりも高い圧力、少なくとも1.5bar、少なくとも2barなどの少なくとも0.9barの圧力で静的に作動させるなど、第2のミラーを静的に作動させる光通信のための前記光子源の使用が提供される。相対的に高い圧力を有することの実現可能な利点は、例えば、臨界減衰されるなど、移動が減衰され、第1のミラーの移動のQ値が減少するということであり得る。これにより、さらには、リンギングが低減されるため、さらに迅速なミラーの位置の変化が実施可能になる。第4の態様では、本発明は、第1の態様および/または第2の態様による波長可変光子源などの波長可変光子検出器であって、光子放出体が、光子吸収体に置き換えられ、かつ/または、光子放出体が、光子吸収体としてもまた機能することができる波長可変光子検出器に関する。この態様の利点は、光子の波長の選択的な検出が可能になるということであり得る。いくつかの実施形態では、波長可変光子検出器であって、例えば、光子放出体が、光子吸収体としてもまた機能することができるなど、同時に波長可変光子源であり得る波長可変光子検出器が提供されると理解してもよい。例えば、光子放出体および光子吸収体は、同一の素子であってもよい。例えば、その場合には、電流が供給されると、光子が放出され、光子が吸収されると、測定可能な電流が生成される。一実施形態では、波長可変光子検出器が、1つまたは複数の吸収された光子を示す光電流などの電流を定量化する電流計を備える。さらなる実施形態では、光子放出体の電気的なポンピングのための電流源、および/または光学的なポンピングのための光源もまた提供される。
【0073】
一実施形態では、第1の態様および/または第2の態様による波長可変光子源が、電気的なポンピングのための電流源、および/または、光学的なポンピングのための光源を備える。
【0074】
本明細書の第1の態様、第2の態様および第3の態様を、それぞれ他の任意の態様と組み合わせることができる。本発明のこれらの態様および他の態様が、本明細書において以下で説明する実施形態を参照することにより明白かつ明瞭となる。
【0075】
次に、本発明による波長可変光子源を、添付の図面を参照してより詳細に説明する。図面は、本発明を実施する1つの方法を示しており、添付の特許請求の範囲の範囲内にある他の可能な実施形態を限定するものとして解釈されるべきではない。
【図面の簡単な説明】
【0076】
図1図1は、第1の素子、第2の素子および第3の素子を示す。
図2図2は、可変光子源の実施形態を示す。
図3図3は、可変光子源の実施形態を示す。
図4図4は、可変光子源の詳細概略図(側面図)を示す。
図5図5は、図4の概略図に対応する概略図(上面図)を示す。
図6図6は、製造方法を図示する。
図7図7は、製造方法を図示する。
図8図8は、製造方法を図示する。
図9図9は、製造方法を図示する。
図10図10は、製造方法を図示する。
図11図11は、製造方法を図示する。
図12図12は、製造方法を図示する。
図13図13は、製造方法を図示する。
図14図14は、製造方法を図示する。
【発明を実施するための形態】
【0077】
図1は、第1のミラー106を備える第1の素子101と、第2のミラー108を備える第2の素子102と、光子放出体110を備える第3の素子103とを示す。各素子は、間隔をあけて示されている。図は、側面断面図であり、また、素子は任意の形状、例えば、上から見たときに円形または正方形であってもよいことが理解され得る。特に、図は、第1の素子を通る断面図を図示し、また、第1の素子101の凹部は、第1のミラー106を備える非貫通孔であってもよいことが理解され得る。
【0078】
図2は、
− 第1のミラー106を備える第1の素子101と、
− 第2のミラー108を備える第2の素子102と、
− 光子放出体110を備える第3の素子103と
を備える波長可変光子源200を示し、第1の素子101および第2の素子102および第3の素子103が、互いに関して、
iii.第1のミラー106および第2のミラー108が、光学キャビティの少なくとも一部を画定するように、かつ、
iv.光子放出体110が、光学キャビティの内部に配置されることで、光子放出体110から放出された光子216が、直接キャビティモードに入ることができるように配置される。少なくとも第1の素子101および第2の素子102および第3の素子103が、封止された容積である内部容積214を取り囲むコヒーレント構造でともに結合されている(ここでは、第1の素子101および第3の素子103がともに接合され、第2のミラーを備える第2の素子が、第3の素子に接合された支持構造の上に置かれている)。また、コヒーレント構造は、内部容積214に隣接した、(第1の素子と第3の素子との間のグレーの領域によって図示される)接合界面212を備え、接合界面212は、気密であり、第1の側で第1の素子101に当接し、第2の側で第3の素子103に当接し、第1のミラー106が内部容積214の内部で移動できるように、第1のミラー106が内部容積214に配置され、波長可変光子源200は、第1のミラーを内部容積の内部で移動させることを可能にするための手段をさらに備えている。図は、光子放出体が、第1のミラーと第2のミラーとの間の光学キャビティの内部に配置されていることを示す。これにより、放出された光子216を、キャビティ内部から、直接キャビティモードへと放出することができる。別の実施形態では、第2の素子を、実質的に第2のミラーから構成することも可能であることができる。その場合には、第2の素子を、直接第3の素子の上に置くことによって、第3の素子に結合させることも可能であることができる。
【0079】
図3は、反射防止体326が第3の素子303の表面に配置されている点以外は、図2の光子源200に類似した光子源300である。反射防止体326は、内部容積314に面しており、そのコーティングにより、光子、例えば、ある一定の波長の光子はほとんど、またはまったく反射せずに、確実にこの表面を通過する。図3に示される実施形態では、放出された光子316は、直接キャビティモードへと放出される。さらに、この実施形態では、第2の素子302が、直接第3の素子303上に置かれた第2のミラー308と一体化している。
【0080】
図4は、可変光子源の詳細概略図(側面図)を示す。本実施形態では、波長可変光子源は電気的にポンピングされた波長可変レーザーであり、第1の素子401を備える。第1の素子401は、
− ドープされたSiなどのキャリアウェーハ420と、
− 容積414の下部を取り囲んでいる、非貫通孔を有するスペーサ層422であって、HFによってエッチングされたSiOであってもよいスペーサ層422と、
− シリコンに作製されたHCGミラーなど、微小電子機械システム(MEMS)のミラーである第1のミラー406と、
− 熱成長SiOまたはLPCVD Siなどのスペーサ424と
を備える。シリコン基板に向かってSiOの残りの厚さが、基準波長の4分の1の奇整数倍と実質的に等しいように、スペーサ層422をエッチングすることにより、基板に対して部分的なARコーティングをほどこしてもよい。
【0081】
第1のミラーを、例えば、第1のミラーに配置された電極418Cおよびキャリアウェーハ420に配置された電極418Dに電圧を印加することにより作動させ、それにより、第1のミラー406とキャリアウェーハ420との間に電界を生成して、第1のミラー406をキャリアウェーハ420に引きつけるようにしてもよい。このように静電位を印加することによって、ミラーを、単方向矢印434によって表示されるように静的に偏位、すなわち第2のミラーから遠ざけてもよい。第1のミラーを、例えば、第1のミラーに配置された電極418Cおよびn型にドープされた半導体428に配置された電極418Bに電圧を印加することにより作動させ(半導体それ自体は、(例えば、TiO2/SiO2、Al2O3、SiONなどの)反射防止(AR)コーティング426上に配置される)、それにより、第1のミラー406とn型にドープされた半導体428との間に電界を生成して、第1のミラー406をn型にドープされた半導体428に引きつけるようにしてもよい。このように静電位を印加することによって、ミラーを第2のミラーに向かって、すなわち単方向矢印434によって表示される方向と反対の方向に静的に偏位させてもよい。第1のミラー406の機械的共振周波数の半分(またはその整数倍)に一致する周波数を有する時間的正弦波の電位などの動的に変動する電位を、電極418Bと電極418Cとの間か、または電極418Cと電極418Dとの間に印加することによって、第1のミラーを動的に作動させ、双方向矢印436によって表示されるように、その平衡位置を中心に動的に振動させるようにしてもよい。第1の素子401は、気密接合界面412で、第3の素子403に接合される。第3の素子は、活性電気光学材料(例えば、量子井戸(QW))である光子放出体410を備える。本実施形態では、光子放出体410が、活性領域429内に含まれる。より一般的な実施形態では、活性領域が、量子構造(例えば、量子井戸、量子細線、量子ドットなど)を備えてもよい。本実施形態における第3の素子は、
− 反射防止(AR)コーティング426(例えば、TiO/SiO、Al、SiON)と、
− n型にドープされた半導体428と、
− 光子放出体410の上方に配置された、電流を閉じ込める構造430と、
− p型にドープされた半導体432と
をまた備える。
【0082】
光子放出体410は、電極418Aおよび電極418Bを介して電気的にポンピングされてもよい(電極418A、418Bを、第3の素子403の一部と見なしてもまたよい)。代替の実施形態では、光子放出体410が、例えば、光子源の基準波長よりも小さい波長の光を放出する外部の光源を介して、光学的にポンピングされるとともに、外部の光源からの光が、例えば、第2のミラー408を通して、光学キャビティへと導かれてもよい。
【0083】
電流を閉じ込める構造は、材料系によって決まる。この構造は、レーザー発光が起こるなど、構造の中央だけを電流が確実に流れるようにするための手段である。それは、数々の方法で、(例えば、AlOxを生成する酸化されたAlGaAs、または深いトラップ、例えば、水素または鉄を注入することによる半絶縁性半導体などの)、絶縁材料によって実現することができる。あるいは、p−n遷移のうちの1つがトンネル接合であるn−p−n構造によって、電流を制御してもよい。このトンネル接合は、注入によってパターニングまたは相互に混合されて、電流障壁を形成してもよい。あるいは、電流をエアポスト構造によって制御してもよい。電流を閉じ込める構造は、当業者には公知であり、例えば、参考文献、米国特許出願公開第2012/10008658A1号明細書において(「誘電体開口部」または「電流開口部」として)記述されている。なお本参考文献は、参照によりその内容全体が本明細書に組み込まれる。光子源400は、第2のミラー408をさらに備える。第2のミラー408は、本実施形態ではDBRミラー(例えば、Si/SiO)であってもよい。
【0084】
図はキャビティ414、すなわち内部容積をさらに示し、内部容積内で、第1のミラー406が移動することができる。キャビティ414は、大気圧を下回る圧力、例えば真空下に保たれることで、Q値を増大させるのに有利となり得る(それは、動的モードで動作される場合に有利となり得る)。あるいは、キャビティ内の圧力が大気圧を上回ることで、減衰を増大させるのに有利となり得る(それは、静的モードで動作される場合に有利となり得る)。
【0085】
特定の実施形態では、キャビティ414に、大気とは組成が異なる気体、例えば、He、HまたはNの量が相対的に多い気体を充填してもよい。不活性ガスを内部容積、すなわちキャビティ414の内部に封止することは、有利な場合がある。なぜなら熱的性能を向上させ、かつ/または、第1のミラー406の、(例えば、同じ圧力での大気に対する)減衰を増減し得るからである。一般に、熱伝導を向上させるために、かつ/または、特性を具体的な用途に適合させるように減衰を増減させるために、(例えば、熱伝導性を相対的に高く、減衰を低くなど)、当業者が圧力および気体組成を選択してもよいと理解される。ヘリウムは、粘性が相対的に低いため、例えば、熱的性能を向上させ、(例えば、同じ圧力での大気と比較して)減衰をさらに低減し得る。一実施形態では、大気に対する熱伝導性および粘性が相対的に高い、六フッ化硫黄(SF)などの気体を(例えば、0.1、0.5、0.75、0.9、1.0、1.25、2.0atmの圧力で)、キャビティ414に充填してもよい。その利点は、第1のミラーから遠ざかる熱の輸送を助長すると同時に、リンギングを回避するための高い減衰を確保することができることであり得る。
図5は、図4の概略図に対応する上面図を示す。
【実施例】
【0086】
実施例1 − 光子源の製造方法
この実施例では、例示的な製造方法を説明する。
【0087】
図6は、例えば、ウェーハ工場から調達された、所定の厚さを有する(またはデバイス層を薄くすることが可能な)、GaAs/AlAsまたはGOI/SOIウェーハ(MEMSウェーハ)を示す。図示された構造、すなわちSOIウェーハは、シリコン層620と、(厚さが約2マイクロメートルである)SiO層622である、いわゆるBOX酸化層と、(厚さが約580nmである)トップシリコン層605とを備える。
【0088】
図7は、図6の構造を示し、ここでは、トップシリコン層605の上部170nmを熱酸化させて、(厚さが約388nmである)酸化シリコン層724(この酸化シリコン層が、最終的に図4に示されるスペーサ424に相当することになる)を成長させている。
【0089】
図8は、図7の構造を示し、ここでは、遠紫外線(deep UV)リソグラフィ、ナノインプリントリソグラフィまたは電子ビームリソグラフィを用いて、(第1のミラー806に相当する)高屈折率差サブ波長格子(HCG)用の、ドライエッチングマスクがパターニングされている。第1のミラー806は、トップシリコン層605に形成される微小電子機械システム(MEMS)もまた形成する。パターンは、(当技術分野において周知の)反応性イオンエッチングにより転写される。
【0090】
レジスト938が、スピンコートされる。UVリソグラフィを用いて、レジストがパターニングされる。このパターンは、スペーサ724に転写されて、SiO層622に非貫通孔を形成する。この非貫通孔が、内部容積の少なくとも一部を形成することになる。スペーサ724は、Si構造化が行なわれている領域でのみ除去される。それはウェーハの大部分において残存し、接合に使用される。通気路を、当技術分野において公知であるような接合領域の一部として適用してもよい。
【0091】
図9は、図8の構造を示し、ここでは、液相または気相のフッ化水素(HF)酸を使用して、MEMS(すなわち第1のミラー806)の、犠牲層の剥離(BOX酸化層622のエッチング)が行われている。密着性を向上させるために、Crか、またはレジスト938の密着性を促進させる他の公知の方法を用いることができる。
【0092】
図10は、図9の構造を示し、ここでは、レジスト938が、酸素プラズマアッシング処理または溶剤により除去され、ウェットエッチングにより除去された任意選択の接着層およびウェーハが、RCA1(NHOH:H:HO)およびRCA2(HCl:H:HO)で洗浄され、臨界点乾燥を用いて乾燥されている。図8に示される構造は、図4における第1の素子401に対応する第1の素子1001に相当する。
【0093】
図11は、例えば、エピタキシャルウェーハ工場から調達された、半VCSEL構造を示す。エピタキシャル構造は、エッチストップ層1142、例えばInGaAsと、p型にドープされた層1132、例えばInP:pと、電流狭窄層1130(トンネル接合部/プロトン注入部/誘電体開口部)と、多重量子井戸などの光子放出体1110を備える活性領域1129、例えばAlInGaAsと、n型にドープされた層1128、例えば、InP:nとを備える。このような電流狭窄を使用する代わりに、メサがエッチングされた設計を用いることができる。図は、基板1140をさらに示す。誘電体コーティング1144(反射防止コーティング)を、半VCSEL上に、例えば、n型にドープされた層1128の屈折率の平方根と実質的に等しい屈折率を有する酸窒化ケイ素の上に堆積させる。
【0094】
p型にドープされた層1132、電流狭窄層1130、多重量子井戸などの光子放出体1110を備える活性領域1129、例えば、AlInGaAs、およびn型にドープされた層1128は、(図4における第3の素子403に対応する)第3の素子1103に相当し、第3の素子1103は、この図においては1.5〜4.5ラムダの厚さであることに留意されたい。本実施形態では、第3の素子1103は、誘電体コーティング1144もまた備える。
【0095】
図12は、図11の半VCSEL構造(ただし、図11と比べると上下が逆である)および図10からの第1の素子1001を示し、ここでは、半VCSELおよび第1の素子(MEMSウェーハ)が、(例えば、融着を用いて)ともに接合されることで、第1の素子1001と、第3の素子(より詳細には第3の素子1103の誘電体コーティング1144)との間に気密接合界面1212を形成するようになっている。
【0096】
図13は、図12の構造を示し、ここでは、(図11の)基板1140が、例えば、塩酸(HCl)を使用したウェットエッチングによって除去されている。エッチストップ層1142(すなわちInGaAs層)が、ウェットエッチング(例えば、硫酸と過酸化水素との混合物)によって除去されている。
【0097】
図14は、図13の構造を示し、ここでは、薄膜積層体、すなわち第2のミラーに対応する分布ブラッグ反射器1408(そしてここでは第2のミラーは第2の素子に相当する)が、リソグラフィによってパターニングされるか、またはリソグラフィと、ウェットエッチングもしくはドライエッチングとによってパターニングされた、リフトオフレジスト上に置かれている。代替の実施形態では、別個の構造の上に第2のミラーを置くことも可能であることができる。別個の構造は、第2のミラーと一緒に第2の素子を形成し、第2の素子がその後、例えば、接合されるなどして、第1の素子および第2の素子に結合される。
【0098】
図4における光子源400に類似した構造に到達するために、UVリソグラフィと、ウェットエッチングまたはドライエッチングとを用いて、n型にドープされた層にイントラキャビティコンタクトさせるための構造/メサをパターニングしてもよい。UVリソグラフィと、ウェットエッチングまたはドライエッチングとを用いて、第1のミラー、すなわちMEMSの一部に接触させるための構造/メサをパターニングしてもよい。電気的接触は、UVリソグラフィによって、例えば、リフトオフか、またはウェットエッチングもしくはドライエッチングのいずれかによってパターニングされる。任意選択で、処理中にウェーハの裏面に随時金属を堆積させることができる。オーム性接触用の金属積層体は、当技術分野において周知である。
【0099】
要約すれば、波長可変光子源(200)を提供する方法であって、第1のミラー(106)を有する第1の素子(101)、第2のミラー(108)を有する第2の素子(102)、および光子放出体を有する第3の素子(103)を、封止された容積である内部容積(214)を取り囲む構造でともに接合するステップと、気密である接合界面(212)を形成することで、第1のミラー(106)が、内部容積(214)の内部で移動できるように、第1のミラー(106)が内部容積(214)に配置されるようにするステップとを含む方法が提示されている。この方法は、内部容積が封止された波長可変光子源を得る比較的単純な方法を提供する。本発明はさらに、対応する光子源、およびそのような光子源の使用に関する。
【0100】
本発明を特定の実施形態との関連で説明してきたが、本発明は提示の例に何らかの点で限定されると解釈されるべきではない。本発明の範囲は添付の請求項で規定されている。請求項に関連して、「備えている(comprising)」または「備える(comprises)」という用語は、他の可能性のある構成要素またはステップを除外するものではない。また、「1つ(a)」または「1つ(an)」などへの言及は、複数であることを除外すると解釈されるべきではない。図面に示される要素に関して請求項内で参照符号を使用することも、本発明の範囲を限定するものとして解釈されるべきではない。さらに、別々の請求項において言及される個々の特徴は、有利に組み合わせられる可能性があり、別々の請求項でこれらの特徴を言及しても、特徴を組み合わせることの可能性および利点を除外するものではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14