特許第6557683号(P6557683)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ティーエックス メディック エービーの特許一覧

特許6557683被験体において血管新生を誘導するための10000DA未満の平均分子量を有するデキストラン硫酸の使用
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6557683
(24)【登録日】2019年7月19日
(45)【発行日】2019年8月7日
(54)【発明の名称】被験体において血管新生を誘導するための10000DA未満の平均分子量を有するデキストラン硫酸の使用
(51)【国際特許分類】
   A61K 31/737 20060101AFI20190729BHJP
   A61K 9/08 20060101ALI20190729BHJP
   A61P 9/00 20060101ALI20190729BHJP
   A61P 9/10 20060101ALI20190729BHJP
   A61P 17/02 20060101ALI20190729BHJP
   A61P 21/04 20060101ALI20190729BHJP
【FI】
   A61K31/737
   A61K9/08
   A61P9/00
   A61P9/10
   A61P17/02
   A61P21/04
【請求項の数】19
【全頁数】39
(21)【出願番号】特願2016-572597(P2016-572597)
(86)(22)【出願日】2015年6月11日
(65)【公表番号】特表2017-518322(P2017-518322A)
(43)【公表日】2017年7月6日
(86)【国際出願番号】SE2015050677
(87)【国際公開番号】WO2015190989
(87)【国際公開日】20151217
【審査請求日】2018年3月22日
(31)【優先権主張番号】1450729-7
(32)【優先日】2014年6月12日
(33)【優先権主張国】SE
(31)【優先権主張番号】1451120-8
(32)【優先日】2014年9月22日
(33)【優先権主張国】SE
(31)【優先権主張番号】1451540-7
(32)【優先日】2014年12月15日
(33)【優先権主張国】SE
(73)【特許権者】
【識別番号】515312807
【氏名又は名称】ティーエックス メディック エービー
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【弁理士】
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ワーズ,アンダーズ
(72)【発明者】
【氏名】ブリュス,ラーズ
(72)【発明者】
【氏名】ブリュス,アダム
【審査官】 鶴見 秀紀
(56)【参考文献】
【文献】 特開昭63−096128(JP,A)
【文献】 特開2012−025759(JP,A)
【文献】 再公表特許第2006/134692(JP,A1)
【文献】 特開2005−104910(JP,A)
【文献】 特開平06−157322(JP,A)
【文献】 特開平02−223525(JP,A)
【文献】 European Heart Journal,2005年,Vol.26,No.21,pp.2334-2343
【文献】 血液と脈管,1981年,Vol.12,No.1,pp.127-129
【文献】 血液と脈管,1982年,Vol.13,No.4,pp.585-588
(58)【調査した分野】(Int.Cl.,DB名)
A61K 31/00−31/80
A61K 9/00−9/72
A61P 9/00
A61P 9/10
A61P 17/02
A61P 21/04
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
10000Da以下の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容される塩を含む、被験体の虚血組織または虚血臓器において血管新生を誘導するのに使用するための医薬組成物であって、前記被験体への静脈内投与または皮下投与のために製剤化されている医薬組成物。
【請求項2】
10000Da以下の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容される塩を含む、虚血を患う被験体において血流を増加させるのに使用するための医薬組成物であって、前記被験体への静脈内投与または皮下投与のために製剤化されている医薬組成物。
【請求項3】
前記被験体の虚血組織または虚血臓器において血流を増加させるのに使用するための、請求項2に記載の医薬組成物。
【請求項4】
10000Da以下の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容される塩を含む、被験体における虚血組織血管新生に使用するための医薬組成物であって、前記被験体への静脈内投与または皮下投与のために製剤化されている医薬組成物。
【請求項5】
前記平均分子量は2000と10000Daの範囲内である、請求項1〜のいずれかに記載の医薬組成物。
【請求項6】
前記平均分子量は3000と10000Daの範囲内である、請求項に記載の医薬組成物。
【請求項7】
前記平均分子量は3500と9500Daの範囲内である、請求項に記載の医薬組成物。
【請求項8】
前記平均分子量は4500と7500Daの範囲内である、請求項に記載の医薬組成物。
【請求項9】
前記平均分子量は4500と5500Daの範囲内である、請求項に記載の医薬組成物。
【請求項10】
前記平均硫黄含量は約17%である、請求項1〜9のいずれかに記載の医薬組成物。
【請求項11】
前記デキストラン硫酸またはその薬学的に許容されるは、1850と2000Daの区間内の、核磁気共鳴(NMR)分光法により測定される数平均分子量(M)を有する、請求項1〜のいずれかに記載の医薬組成物。
【請求項12】
前記デキストラン硫酸またはその薬学的に許容されるは、平均5.1グルコース単位、および2.6〜2.7という1グルコース単位あたりの平均硫酸数を有する、請求項11に記載の医薬組成物。
【請求項13】
前記デキストラン硫酸またはその薬学的に許容される注射水溶液として製剤化されている、請求項1〜12のいずれかに記載の医薬組成物。
【請求項14】
前記デキストラン硫酸またはその薬学的に許容されるは、前記被験体の体重1kgあたり0.05〜50mgの範囲の投与量で投与されるように製剤化されている、請求項1〜13のいずれかに記載の医薬組成物。
【請求項15】
前記被験体は、ヒト被験体の体内で虚血を引き起こす医学的状態を患うヒト被験体であ
前記医学的状態は、創傷治癒;末梢性虚血;冠動脈虚血;子供における虚血性疾患;仮死脳症;脳性麻痺;中枢神経系における虚血;筋ジストロフィー症;血栓性、出血性または外傷性の損傷により引き起こされる虚血、からなる群より選択される、
請求項1〜14のいずれかに記載の医薬組成物。
【請求項16】
前記の薬学的に許容される、デキストラン硫酸のナトリウム塩である、請求項1〜15のいずれかに記載の医薬組成物。
【請求項17】
被験体の虚血組織または虚血臓器において血管新生を誘導するための被験体への静脈内投与または皮下投与のために製剤化された医薬の製造のための10000Da未満の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容されるの使用。
【請求項18】
虚血を患う被験体において血流を増加させるための被験体への静脈内投与または皮下投与のために製剤化された医薬の製造のための、10000Da未満の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容されるの使用。
【請求項19】
被験体における虚血組織の血管新生のための被験体への静脈内投与または皮下投与のために製剤化された医薬の製造のための、10000Da未満の平均分子量および15〜20%の範囲の平均硫黄含量を有するデキストラン硫酸またはその薬学的に許容されるの使用。
【発明の詳細な説明】
【技術分野】
【0001】
本実施形態は一般に、血管新生、特に被験体において血管新生を誘導するためのデキストラン硫酸の使用に関する。
【背景技術】
【0002】
血管新生は新しい血管が先在血管から形成される生理的プロセスである。これは、中胚葉細胞前駆体からの内皮細胞のデノボ形成である脈管形成とは異なる。発生中の胚の最初の血管は脈管形成により形成され、その後、血管新生が発生中の、および疾患におけるほとんどの(全てではないが)血管増殖に関与している。
【0003】
血管新生は成長および発生、ならびに創傷治癒および肉芽組織の形成における正常な生命維持プロセスである。
【0004】
血管新生は伝統的に、発芽血管新生または挿入成長、または分割血管新生のいずれかとして分類される。発芽血管新生は完全に新しい血管を形成し、一方、分割血管新生は1つの既存の血管を2つに分割する。
【0005】
血管新生は、不十分な血管新生または異常な脈管構造のいずれかにより特徴付けられる疾患と闘うための標的となり得る。修復または別の代謝活性組織に血管が存在しないと、修復または他の必須機能が阻害され得る。虚血性慢性創傷などのいくつかの疾患は、失敗した、または不十分な血管形成の結果であり、血管の局所拡張により治療され得、そのため、新しい栄養分がその部位に与えられ、修復が促進される。
【0006】
血管新生の原理の現代の臨床適用は2つの主な領域に分割される:抗血管新生療法および血管新生促進療法。抗血管新生療法は、増殖するのに豊富な酸素および栄養分を必要とする、癌および悪性腫瘍を治療または防止するために使用されており、血管新生促進療法は、例えば、心血管疾患、冠動脈疾患、動脈硬化性疾患、冠動脈心疾患、末梢動脈疾患、創傷治癒障害、などを治療するための選択肢として探究されている。
【0007】
血管新生促進治療における伝統的なアプローチは、とりわけ、増幅または阻害のために対象となる遺伝子を標的にする遺伝子治療;主として血管新生増殖因子を操作するタンパク質療法;ならびに特定の細胞型の埋め込みを含む細胞療法を含む。
【0008】
遺伝子治療に関する依然として重大な未解決問題が存在する。困難としては、治療遺伝子の標的細胞のゲノム中への有効な組込み、遺伝子を埋入するのに使用されるウイルスベクターに関連する望ましくない免疫応答、潜在的な毒性、免疫原性、炎症反応、および発癌のリスクの低減ならびに血管新生の遺伝学的基礎の莫大な複雑さが挙げられる。
【0009】
血管新生促進タンパク質療法は様々な増殖因子、例えば線維芽細胞増殖因子(FGF)および血管内皮増殖因子(VEGF)を使用して、血管新生を促進する。タンパク質療法の障害は、送達方法である。タンパク質投与の経口、静脈内、動脈内、または筋肉内経路は必ずしも有効ではなく、というのも、治療タンパク質は、標的組織に入ることができる前に、代謝または排除される可能性があるからである。細胞ベースの血管新生促進療法は依然として、研究の初期段階にあり、最良の細胞型および使用する投与量に関して多くの未解決の問題が存在する。
【0010】
虚血は組織への血液供給の制限であり、細胞代謝のために必要とされる酸素およびグルコースの不足を引き起こす。虚血は、一般に血管に関連する問題により引き起こされ、組織へのダメージまたはその機能障害が起こる。これはまた、時としてうっ血、例えば血管収縮、血栓症または塞栓症に起因する身体のある部分での局所貧血および低酸素を意味する。
【0011】
長期虚血の期間後の冠動脈血流の回復はしばしば、内皮ダメージおよび凝血促進および炎症促進表現型をとる罹患内皮を引き起こす、いわゆる再灌流傷害を伴う。再灌流は、虚血により誘導される補体活性化および堆積を著しく促進する。
【0012】
デキストラン硫酸はよく知られた補体阻害剤であり、そのため、虚血後再灌流傷害に対して内皮の細胞保護を達成するために提案されてきた。
【0013】
Experimental Cell Research 215, 294−302 (1994)は、硫酸化多糖、例えばヘパリンおよびデキストラン硫酸は、インビトロで、コラーゲンにより誘導される血管形成のために使用することができることを開示する。しかしながら、インビボ実験データは、低分子量硫酸化多糖ヘパリン(2.4kDa)は血管新生を阻害したことを示した、Glycobiology 3, 567−573 (1993), Pathophysiology of Haemostasis and Thrombosis 23, 141−149 (1993)。
【0014】
米国特許第5,135,920号は、500000Daの平均分子量を有するデキストラン硫酸は血管新生抑制性であり、すなわち血管新生を阻害することを開示する。
【0015】
当技術分野における血管新生の分野内には、依然として改善の余地がある。
【発明の概要】
【0016】
一般的目的は、被験体において血管新生を誘導することである。
【0017】
別の目的は、虚血を患う被験体において血流を増加させることである。
【0018】
これらのおよび他の目的は本明細書で開示される実施形態により満たされる。
【0019】
実施形態の1つの態様は、被験体において血管新生を誘導するための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0020】
実施形態の別の態様は、被験体において血管新生を誘導するための方法に関する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を被験体に投与することを含む。
【0021】
実施形態のさらなる態様は、被験体において血管新生を誘導するための薬の製造のための10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用に関する。
【0022】
実施形態のさらに別の態様は、虚血を患う被験体において血流を増加させるための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0023】
実施形態のさらなる態様は、虚血を患う被験体において血流を増加させるための方法に関する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を前記被験体に投与することを含む。
【0024】
実施形態のさらにもう一つの態様は、虚血を患う被験体において血流を増加させるための薬の製造のための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用に関する。
【0025】
実施形態のさらに別の態様は、被験体における虚血組織の血管新生のための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0026】
実施形態のさらなる態様は、被験体における虚血組織の血管新生のための方法に関する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を前記被験体に投与することを含む。
【0027】
実施形態のさらにもう一つの態様は、被験体における虚血組織の血管新生のための薬の製造のための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用に関する。
【0028】
実施形態のさらなる態様は、ある臓器および/または血管柄付組織において血管新生を誘導するためにインビトロまたはエクスビボで使用するための、血管柄付組織および/または臓器において血流を増加させるためにインビトロまたはエクスビボで使用するための、および/または血管柄付組織および/または臓器をインビトロまたはエクスビボで血管新生するための、10000Da以下の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体およびそのための関連する方法に関する。
【0029】
実施形態は、そのさらなる目的および利点と一緒に、添付の図面と一緒にまとめられた下記説明を参照することにより最もよく理解され得る。
【図面の簡単な説明】
【0030】
図1】マウス重症四肢虚血モデル全体の平均の体重を示す図である。二元配置ANOVA、続いてボンフェローニ事後比較より、群間で統計的に有意な差はないことが明らかになった。
図2】マウス重症四肢虚血モデル全体の研究群による平均血流を示す図である。反復測定のための二元配置ANOVA、続いてボンフェローニ事後検定が実施された。デキストラン硫酸処置群2M、3Mおよび4Mと対照群1Mの比較により、第14日および第21日から第35日まで統計的に有意な差が明らかになった(p<0.001)。
図3】重症四肢虚血研究後にFITC標識デキストラン(DA)による二重染色した群のCD34毛細血管密度を示す図である。DAバーは機能的毛細血管を表す。統計解析を二元配置ANOVA、続いてボンフェローニ多重比較を用いて実施した。
図4】重症四肢虚血研究後にFITC標識デキストラン(DA)による二重染色した群における、虚血性と非虚血性肢のCD34毛細血管密度を比較した図である。DAバーは機能的毛細血管を表す。統計解析を二元配置ANOVA、続いてボンフェローニ多重比較を用いて実施した。
図5A】重症四肢虚血研究における群のCD34毛細血管密度を示す(図5A−1Mビヒクル対照群からのマウス;図5B−3Mデキストラン硫酸30mg/kg反復群からのマウス;図5C−4Mデキストラン硫酸30mg/kg単回群からのマウス)。左図はCD34染色を示し、右図はFITC標識デキストラン染色を示す。
図5B】重症四肢虚血研究における群のCD34毛細血管密度を示す(図5A−1Mビヒクル対照群からのマウス;図5B−3Mデキストラン硫酸30mg/kg反復群からのマウス;図5C−4Mデキストラン硫酸30mg/kg単回群からのマウス)。左図はCD34染色を示し、右図はFITC標識デキストラン染色を示す。
図5C】重症四肢虚血研究における群のCD34毛細血管密度を示す(図5A−1Mビヒクル対照群からのマウス;図5B−3Mデキストラン硫酸30mg/kg反復群からのマウス;図5C−4Mデキストラン硫酸30mg/kg単回群からのマウス)。左図はCD34染色を示し、右図はFITC標識デキストラン染色を示す。
図6】デキストラン硫酸で処置したHLI損傷動物における四肢機能スコアを示す図である。第0日に、HLIを大腿動脈の結紮および切除により誘導した。処置を、第8日に、週1回(1×/w)または週3回(3×/w)のビヒクルまたは10もしくは30mg/kgのデキストラン硫酸を用いて開始した。四肢スコアを、0〜3で段階分けし、ここで、3は最も悪い(足の引きずり)。デキストラン硫酸は、二元配置ANOVAにより計算される、第21日以降(第7、14、21、28および35日に分析)著しい改善を誘導した。
図7】内皮マーカー平滑筋アクチン(SMA)の重症四肢虚血研究における群の毛細血管密度を示す図である。二元配置ANOVA、続いてボンフェローニ多重比較による統計学的有意性。
図8】左後肢の大腿動脈結紮後35日に、2匹のマウスにおいて測定した血流を、非接触レーザードップラー画像を用いて比較する。下パネルはビヒクル処置され(1M群)、上パネルは、デキストラン硫酸による処置を受けた(3M群)。
図9】tMCAO脳卒中率研究のために使用される群における体重の分布を示す。
図10】tMCAO脳卒中率研究を通した、処置群によるNeuroscoreを示す。
図11】tMCAO脳卒中率研究を通した、処置群によるステッピングテストを示す。
図12】tMCAO脳卒中率研究を通した、処置群による前肢置き直し試験を示す。
図13】tMCAO脳卒中率研究を通した、処置群による身体スイングテストデルタ(左旋回−右旋回)を示す。
図14】第29日にビヒクル対照と比べた、両方のデキストラン硫酸群における脳血流比および血管平均直径のパーセント変化を示す。
図15】第30日に、ビヒクル対照と比べて、毎日デキストラン硫酸15mg/kgにより処置したラットにおけるSMA毛細血管密度を示す。
図16】第30日での、デキストラン硫酸処置群対対照ビヒクル群における、GFAP面積(平方ミクロン/×10視野(square microns per ×10 field)で表される陽性細胞の面積)を示す。
図17A】ビヒクル対照群(図17A)およびデキストラン硫酸(15mg/kg、毎日)群(図17B)からのラットでの、毛細血管密度に対する処置効果を示す。
図17B】ビヒクル対照群(図17A)およびデキストラン硫酸(15mg/kg、毎日)群(図17B)からのラットでの、毛細血管密度に対する処置効果を示す。
図18】MI誘導後35日での梗塞サイズを示す。
図19】MI誘導後35日での、デキストラン硫酸処置(15mg/kg 3回/週を3週間)およびビヒクル対照群に対する、SMA染色を比較する。
図20A】2匹のデキストラン硫酸処置(15mg/kg 3回/週を3週間)ラット(図20A、20B)および1匹のビヒクル対照ラット(図20C)での血管密度に対するSMA染色を示す。
図20B】2匹のデキストラン硫酸処置(15mg/kg 3回/週を3週間)ラット(図20A、20B)および1匹のビヒクル対照ラット(図20C)での血管密度に対するSMA染色を示す。
図20C】2匹のデキストラン硫酸処置(15mg/kg 3回/週を3週間)ラット(図20A、20B)および1匹のビヒクル対照ラット(図20C)での血管密度に対するSMA染色を示す。
図21】ラットHLIモデルにおける平均血流を示す。
図22】ラットHLIモデルにおける四肢スコアを示す。
図23】HLI損傷脚における、SMAおよび第8因子毛細血管密度示す。
図24】HLI損傷脚における血管造影毛細血管スコアを示す。
図25A】ビヒクル対照動物(図25A)および処置群2M、3Mおよび4Mにおける動物(図25B〜25D)の血管造影毛細血管画像を示す。
図25B】ビヒクル対照動物(図25A)および処置群2M、3Mおよび4Mにおける動物(図25B〜25D)の血管造影毛細血管画像を示す。
図25C】ビヒクル対照動物(図25A)および処置群2M、3Mおよび4Mにおける動物(図25B〜25D)の血管造影毛細血管画像を示す。
図25D】ビヒクル対照動物(図25A)および処置群2M、3Mおよび4Mにおける動物(図25B〜25D)の血管造影毛細血管画像を示す。
【0031】
全ての数値は平均+平均値の標準誤差を示す。
【発明を実施するための形態】
【0032】
本実施形態は一般に、血管新生、特に被験体において血管新生を誘導するためのデキストラン硫酸の使用に関する。
【0033】
本実施形態は、特定の平均分子量の範囲内のデキストラン硫酸は、被験体、好ましくは哺乳類被験体、より好ましくはヒト被験体に投与されると、血管新生誘導効果および血流増加効果を有するという発見に基づく。
【0034】
実施形態のデキストラン硫酸のこの効果は、硫酸化多糖は血管新生をインビボで阻害したこと、および500000Daの平均分子量を有するデキストラン硫酸は血管新生抑制性であり、すなわち血管新生を阻害することを開示する先行技術を考慮すると、非常に驚くべきであった。
【0035】
明確な対比で本明細書で提示される実験データは、実施形態のデキストラン硫酸は、虚血モデルおよび脳卒中モデルにおける著しく増加した平均血流、減少した虚血重症度、増加した毛細血管密度ならびに心筋梗塞(MI)モデルにおける低減した梗塞サイズにより見られるように、血管新生を誘導するのにインビボで効果を有することを示す。実施形態のデキストラン硫酸は、さらに虚血組織で血管を選択的に形成することができ、一方、非虚血組織では有意の血管形成を引き起こさない。
【0036】
したがって、実施形態の1つの態様は、被験体において血管新生を誘導するのに使用するための、10000未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0037】
下記では、デキストラン硫酸の(平均)分子量および硫黄含量への言及は、デキストラン硫酸の任意の薬学的に許容される誘導体にもあてはまる。よって、デキストラン硫酸の薬学的に許容される誘導体は、好ましくは下記実施形態で記載される平均分子量および硫黄含量を有する。
【0038】
実施形態の範囲外のデキストラン硫酸は、劣った血管新生効果を有する、または実に全く血管新生効果を有さないと考えられる。例えば、別の硫酸化多糖であるヘパリンは、平均2.4kDaの分子量を有するが、実際、より大きなデキストラン硫酸分子のように血管新生を阻害した(Pathophysiology of Haemostasis and Thrombosis 23, 141−149 (1993);米国特許第5,135,920号)。
【0039】
さらに、10000Daを超える分子量のデキストラン硫酸は一般に、より低い平均分子量を有するデキストラン硫酸と比べて、副作用プロファイルに対する効果がより低い。これは、被験体に安全に投与することができるデキストラン硫酸の最高用量は、本範囲内の平均分子量を有するデキストラン硫酸分子と比べて、より大きなデキストラン硫酸分子(>10000Da)ではより低くなることを意味する。結果として、そのようなより大きなデキストラン硫酸分子はデキストラン硫酸が被験体にインビボで投与される臨床使用ではより適切でなくなる。加えて、大きなデキストラン硫酸分子は、事実、米国特許第5,135,920号から明らかなように、実施形態のデキストラン硫酸と比べて逆効果を有する。
【0040】
このように、デキストラン硫酸が被験体に投与されると、血管新生効果を有するデキストラン硫酸の平均分子量に関しては、その範囲は非常に狭く、実施形態の範囲外のデキストラン硫酸分子は血管新生効果を有さない、または実に、血管新生阻害効果を有すると考えられる。
【0041】
デキストラン硫酸は硫酸化多糖、特に硫酸化グルカン、すなわち多くのグルコース分子からなる多糖である。平均分子量は、本明細書で規定されるように、個々の硫酸化多糖はこの平均分子量とは異なる分子量を有し得るが、平均分子量は硫酸化多糖の平均の分子量を表す。これはさらに、デキストラン硫酸試料に対してこの平均分子量近くの分子量の自然分布が存在することを意味する。
【0042】
デキストラン硫酸の平均分子量(M)は、典型的には、ゲル排除/浸透クロマトグラフィー、光散乱または粘度などの間接的方法を使用して決定される。そのような間接的方法を使用する平均分子量の決定は、カラムおよび溶離液の選択、流速、較正手順、などを含む多くの因子に依存するであろう。
【0043】
平均分子量(M):
【数1】
数値よりもむしろ分子サイズに感応する方法、例えば光散乱およびサイズ排除クロマトグラフィー(SEC)法では典型的。正規分布が仮定される場合、そうすると、Mの両側に同じ重量が存在し、すなわちM未満の分子量を有する試料中のデキストラン硫酸分子の総重量がMを超える分子量を有する試料中のデキストラン硫酸分子の総重量に等しい。
【0044】
一実施形態では、デキストラン硫酸またはその薬学的に許容される誘導体は2000と10000Daの範囲内の平均分子量を有する。別の実施形態では、平均分子量は2500と10000Daの範囲内である。特定の好ましい実施形態では、平均分子量は3000〜10000Daの範囲内である。
【0045】
任意的であるが、好ましい実施形態では、デキストラン硫酸分子の40%未満が3000Da未満の分子量を有し、好ましくは、デキストラン硫酸分子の35%未満、例として30%未満または25%未満が3000Da未満の分子量を有する。加えて、またはその代わりに、デキストラン硫酸分子の20%未満は、10000Da超の分子量を有し、好ましくは、デキストラン硫酸分子の15%未満、例として10%未満または5%未満が10000Da超の分子量を有する。よって、特定の実施形態では、デキストラン硫酸は平均分子量近くの実質的に狭い分子量分布を有する。
【0046】
特定の実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体の平均分子量は3500と9500Daの範囲内、例えば3500と8000Daの範囲内である。
【0047】
別の特定の実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体の平均分子量は4500と7500Daの範囲内である。
【0048】
さらなる特定の実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体の平均分子量は4500と5500Daの範囲内である。
【0049】
よって、現在のところ好ましい実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体の平均分子量は、好ましくはおよそ5000Daであり、または少なくとも実質的に5000Daに近く、例えば5000±500Da、例えば5000±400Da、好ましくは5000±300Daまたは5000±200Da、例として5000±100Daである。よって、一実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体の平均分子量は4.5kDa、4.6kDa、4.7kDa、4.8kDa、4.9kDa、5.0kDa、5.1kDa、5.2kDa、5.3kDa、5.4kDaまたは5.5kDaである。
【0050】
特定の実施形態では、以上で提示されるデキストラン硫酸、またはその薬学的誘導体の平均分子量は平均Mであり、好ましくはゲル排除/浸透クロマトグラフィー、サイズ排除クロマトグラフィー、光散乱または粘度に基づく方法により決定される。
【0051】
特定の実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体は、平均して、約5の、またはわずかにこれを超えるグルコース単位から構成され、少なくとも2.0、例えば少なくとも2.5の1グルコース単位あたりの平均硫酸数を有する。
【0052】
デキストラン硫酸はデキストランのポリアニオン性誘導体であり、硫黄を含む。実施形態のデキストラン硫酸の平均硫黄含量は、好ましくは15〜20%、より好ましくはおよそ17%であり、一般に1つのグルコシル残基あたり約2つの硫酸基に対応する。特定の実施形態では、デキストラン硫酸の硫黄含量は好ましくは、デキストラン分子の可能な最大程度の硫黄含量に等しい、または少なくともこれに近い。
【0053】
特定の実施形態では、実施形態のデキストラン硫酸は、1850と2000Daの区間内の、核磁気共鳴(NMR)分光法により測定される数平均分子量(M)を有する。
【0054】
別の特定の実施形態では、実施形態のデキストラン硫酸は、平均して5.1のグルコース単位および2.6〜2.7の1グルコース単位あたりの平均硫酸数を有し、典型的には、1850と2000Daの区間内の核磁気共鳴(NMR)分光法により測定される数平均分子量(M)が得られる。
【0055】
数平均分子量(M):
【数2】
典型的には、末端基アッセイ、例えばNMR分光法またはクロマトグラフィーにより誘導される。正規分布が仮定される場合、そうすると、同じ数のデキストラン硫酸分子がMの同じ側に見出すことができ、すなわち、M未満の分子量を有する試料中のデキストラン硫酸分子の数がMを超える分子量を有する試料中のデキストラン硫酸分子の数に等しい。
【0056】
実施形態によるデキストラン硫酸はデキストラン硫酸の薬学的に許容される誘導体として提供することができる。そのような薬学的に許容される誘導体としては、デキストラン硫酸の塩および溶媒和物、例えばナトリウムまたはカリウム塩が挙げられる。
【0057】
実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体は、好ましくは、被験体への注射により、特に静脈内(i.v.)注射、皮下(s.c.)注射または(i.p.)腹腔内注射、好ましくはi.v.またはs.c.注射により投与される。使用することができる他の非経口投与経路としては、筋肉内および関節内注射が挙げられる。デキストラン硫酸、またはその薬学的に許容される誘導体の注射は、その代わりに、または加えて、直接、例えば、虚血組織または臓器または被験体内の他の部位(そこでは、血管新生および増加した血流が起こるべきである)において起こる。
【0058】
実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体は好ましくは、選択された溶媒または賦形剤と共に注射水溶液として製剤化される。溶媒は便宜的に水性溶媒、特に緩衝溶液である。そのような緩衝溶液の非限定的な例はクエン酸緩衝液、例えばクエン酸一水和物(CAM)緩衝液、またはリン酸緩衝液である。例えば、実施形態のデキストラン硫酸は、生理食塩水、例えば0.9%NaCl生理食塩水に溶解させることができ、その後任意で75mM CAMで緩衝させ、水酸化ナトリウムを使用してpHを約5.9に調整することができる。また、注射水溶液、例えば生理食塩水、すなわちNaCl(aq)を含む非緩衝液が可能である。さらに、緩衝溶液が所望される場合、CAM以外の他の緩衝液系を使用することができる。
【0059】
実施形態は注射に限定されず、他の投与経路をその代わりに使用することができ、経口的、経鼻的、口腔、直腸、経皮的、気管、気管支、または局所が挙げられる。活性化合物、デキストラン硫酸はその後、特定の投与経路に基づき選択された好適な賦形剤または担体と共に製剤化される。
【0060】
実施形態のデキストラン硫酸のための好適な用量範囲は、被験体のサイズおよび体重、被験体が治療される状態、および他の懸案事項により変動し得る。特にヒト被験体では、可能な投与量範囲は1μg/kg〜150mg/kg体重、好ましくは10μg/kg〜100mg/kg体重とすることができる。
【0061】
好ましい実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体は、0.05〜50mg/kg被験体体重、好ましくは0.05または0.1〜40mg/kg被験体体重、より好ましくは0.05または0.1〜30mg/kg、または0.1〜25mg/kgまたは0.1〜15mg/kgまたは0.1〜10mg/kg被験体体重の範囲の投与量で投与されるように製剤化される。
【0062】
実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与は、好ましくは、被験体において虚血、脳卒中または心血管疾患を引き起こす、または、デキストラン硫酸、またはその薬学的に許容される誘導体の投与により引き起こされる血管新生誘導により治療され得る、または少なくとも軽減され得る医学的状態を引き起こす損傷または他の状態後、できるだけ早くに開始される。
【0063】
デキストラン硫酸、またはその薬学的に許容される誘導体の投与は、必ずしも現在の医学的状態の治療に限定しなくてもよく、その代わりに、または加えて、予防のために使用することができる。言い換えれば、実施形態のデキストラン硫酸は、局所で虚血または他の医学的な効果(血管新生の誘導および/または血流の増加により治療され得る、阻害され得る、または軽減され得る)を引き起こし得る医療処置、例えば外科手術を受ける被験体に投与することができる。
【0064】
実施形態のデキストラン硫酸は、単回投与で、例えば単回ボーラス注射の形態で投与することができる。この急速投与量は、かなり迅速に患者に注射することができるが、便宜的に時間をかけて注入され、そのため、デキストラン硫酸溶液は、数分にわたり、例えば5〜10分の間、患者に注入される。
【0065】
あるいは、実施形態のデキストラン硫酸は治療期間中、複数回、すなわち少なくとも2回で投与することができる。そのような治療期間の持続期間は、典型的には異なる型における創傷治癒の内因的期間および損傷の原因の型に関連する。好適な治療期間のより多くの情報については、Chapter 1 Overview of Wound Healing in Different Tissue Types, pages 3−40 of Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, ed. William M. Reichert, 2008 by Taylor & Francis Group, LLC (ISBN: 978−0−8493−9362−4)を参照することができる。
【0066】
よって、実施形態のデキストラン硫酸は、例示的な例として、1日に1回または複数回、1週間に1回または複数回、1ヶ月に1回または複数回投与することができる。
【0067】
一般に、例えば、脳卒中、心筋梗塞(MI)、細胞および臓器移植における急性虚血を引き起こすものなどの急性疾患では、治療期間の持続期間は単回投与とすることができるが、好ましくは、例えば、1週間、数週間、または1ヶ月の治療期間中、数回投与の形態である。3ヶ月、さらには1年までのより長い治療期間は、さらに治癒および回復を改善することができる。
【0068】
間欠的な型の虚血状態では、予防(防止)としての治療または疾患の増悪のすぐ後の治療を使用する選択肢があり得る。この型の投与プロトコルは多発性硬化症(MS)、筋萎縮性側索硬化症(ALS)および鎌状赤血球症などの疾患に好適となり得る。治療期間は、増悪後の治療に対しては1〜3ヶ月までとすることができる。疾患の予防では、任意でより長い治療期間を使用することができる。
【0069】
被験体における実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与による血管新生の誘導は、好ましくはヒト被験体の体内で虚血を引き起こす疾患、障害または医学的状態を患うヒト被験体において起こる。
【0070】
虚血は組織への血液供給の制限であり、細胞代謝に必要とされる酸素およびグルコースの不足を引き起こす。虚血は一般に血管の問題により引き起こされ、結果として、組織または臓器へのダメージまたはその機能障害が起こる。それはまた、時として、うっ血、例えば血管収縮、血栓症または塞栓症に起因する身体のある部分での局所貧血および低酸素を意味する。
【0071】
虚血の有効な治療、または虚血を患うリスク防止する、または少なくとも低減させるのに有効なアプローチは、血管新生を誘導するものである。血管新生は関連組織において血流の増加を引き起こし、よって、疾患、障害または医学的状態により引き起こされた、組織への血液供給のいずれの制限にも対抗することができる。
【0072】
虚血を引き起こし得る疾患、障害または医学的状態の非限定的であるが例示的な例としては、下記が挙げられる:創傷治癒;末梢性虚血、例えば臓器、組織または細胞の移植後の虚血、末梢動脈疾患、四肢虚血、下肢静止不能、レイノー症候群、鎌状赤血球症、または閉塞性血栓血管炎;冠動脈虚血、例えばうっ血性心不全、心筋梗塞または冠動脈疾患により引き起こされるもの;子供における虚血性疾患、例えば周産期または新生児疾患、小児疾患、例えば新生児低酸素または虚血性脳損傷、仮死脳症、脳性麻痺;中枢神経系における虚血、例えば外傷性脳損傷、側頭動脈炎により引き起こされるもの、多発性硬化症により引き起こされる低酸素、脳卒中、筋萎縮性側索硬化症;または筋ジストロフィー症;血栓性、出血性または外傷性障害により引き起こされる虚血。
【0073】
創傷治癒は一般に、典型的には初期相、炎症相、増殖相ならびに成熟および再構築相で示される4つの相を含む。血管新生は増殖相中に起こるプロセスの1つである。デキストラン硫酸、またはその薬学的に許容される誘導体の投与は、創傷治癒のサブプロセスの1つとして起こる血管新生効果を促進する。血管新生のプロセスは、内皮細胞が創傷の領域に遊走した時に、創傷治癒中線維芽細胞増殖と同時に起こる。線維芽細胞および上皮細胞の活性には酸素および栄養分が必要とされるので、血管新生は、上皮および線維芽細胞遊走のような、創傷治癒における他の段階のために避けられない。
【0074】
末梢性虚血は、一般に心臓(冠動脈虚血)および中枢神経系(CNS虚血)とは異なる組織および臓器において起こる虚血状態を示す。末梢性虚血の様々な原因が存在し得る。典型的な例は臓器または組織の被験体への移植である。移植された臓器または組織はその後、典型的には、移植の時点から新しい血管が移植された臓器または組織の周囲に形成されるまで起こる初期生着プロセス中に、虚血にさらされる。十分な血液供給が移植後間もなく確立されないと、虚血および低酸素が原因の、臓器または組織へのダメージまたはその機能障害の高いリスクが存在する。よって、移植と関連して、実施形態によるデキストラン硫酸、またはその薬学的に許容される誘導体による血管新生の誘導は、虚血および/または低酸素による、移植された臓器または組織へのダメージまたはその機能障害のリスクを著しく低減させる。実施形態による、デキストラン硫酸、またはその薬学的に許容される誘導体の投与は、実際の移植イベント前に、移植部位で血管新生を誘導し、血流増加を提供するために、移植前に起こり得る。そのような場合、実施形態のデキストラン硫酸により誘導される血流の増加は、移植された臓器または組織への虚血性ダメージを防止する、または少なくとも低減させるのに十分なものとなり得る。
【0075】
末梢血管疾患(PVD)は、一般に、末梢動脈疾患(PAD)または末梢動脈閉塞性疾患(PAOD)または末梢閉塞性動脈症と呼ばれ、冠動脈、大動脈弓脈管構造、または脳内にない大きな動脈の閉塞を示す。PVDは、アテローム性動脈硬化、狭窄に至る炎症プロセス、塞栓症、または血栓形成に起因し得る。これは、急性または慢性虚血のいずれかを引き起こす。PVDの効率的な治療は、実施形態による、デキストラン硫酸、またはその薬学的に許容される誘導体の投与により血流を回復させるものである。
【0076】
四肢虚血は、しばしば急性四肢虚血と呼ばれ、四肢への血流の突然の欠如が存在すると起こる。急性四肢虚血は典型的には、塞栓症または血栓症のいずれかに起因する。血栓症は通常末梢血管疾患(血管封鎖に至る動脈硬化性疾患)により引き起こされるが、塞栓症は空気、外傷、脂肪、羊水、または腫瘍に起因し得る。四肢虚血を患う被験体は、実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与から恩恵を受けるであろう。
【0077】
医学では、レイノー現象は低温または情動ストレスに応じて過度に低減された血流であり、手指、つま先、および時折他の領域の変色を引き起こす。レイノー現象はそれ自体、症状を伴う一徴候(低灌流)にすぎない。病原性と関連されると、それは、レイノー病(一次性レイノー現象としても知られている)の一部となり得、原因がわからない場合、レイノー症候群(二次性レイノー現象)の一部となり得、それは、公知の原因疾患、最も一般的には結合組織障害、例えば全身性エリテマトーデスにより引き起こされる症候群である。交感神経系の過剰活性化は、末梢血管の極度の血管収縮を引き起こし、組織低酸素に至らしめる。レイノー現象の慢性、再発症例は皮膚、皮下組織、および筋肉の萎縮を引き起こす可能性があり、おそらく、潰瘍形成および虚血性壊疽を引き起こす。実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与は、レイノー症候群または病の症状を患うリスクを低減させる、これを治療する、または少なくとも軽減させる効率的な手段となり得る。
【0078】
鎌状赤血球症(SCD)、または鎌状赤血球貧血(SCA)または鎌状血球症は、異常な、剛性の、鎌状形状の赤血球により特徴付けられる遺伝性血液障害である。鎌状化は赤血球の柔軟性を減少させ、身体の一部への血液の不十分な流れのリスクを引き起こす。実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体を使用した血管新生の誘導を使用して、SCDを患う被験体において末梢性虚血を発症するリスクを低減させることができる。
【0079】
閉塞性血栓血管炎は、バージャー病または初老性壊疽としても知られており、手および足の小および中動脈および静脈の再発する進行性炎症および血栓症(凝血)である。閉塞性血栓血管炎はそのため、これらの四肢の血流の制限のために、手および足において虚血を引き起こし得る。実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与は手および足への血流を増加させるための効率的な手段となり得る。
【0080】
冠動脈虚血は冠動脈を通る十分な血液を有さないことに対する医学用語である。冠動脈虚血は心疾患ならびに心臓発作と関連する。心虚血としても知られている。冠動脈疾患(CAD)は、脂肪分が冠動脈の壁に付着した時に起こり、これにより、動脈が狭くなり、血流が制限される。これにより、心臓への酸素および血液の欠如が引き起こされ、心筋梗塞(心臓発作)が起こり得る。CADは動脈の狭窄を引き起こし、これは動脈を通って流れる血液ならびに酸素の欠如、アテローム性動脈硬化と呼ばれるプロセスにつながる。アテローム性動脈硬化は冠動脈虚血の最も一般的な原因である。実施形態のデキストラン硫酸、または薬学的に許容される誘導体の投与により引き起こされる血管新生の誘導により心筋における血流を増加させることは、冠動脈虚血のリスクを低減させるまたはこれにより引き起こされるダメージを低減させるのに重要なものとなり得る。また、血栓症は冠動脈虚血の原因となり得る。
【0081】
心筋梗塞(MI)または急性心筋梗塞(AMI)は、一般に、心臓発作として知られており、心臓の一部への血流が止まり、心筋へのダメージを引き起こした時に起こる。ほとんどのMIは冠動脈疾患が原因で起こる。MIのメカニズムはしばしば、動脈硬化プラークの破裂を伴い、冠動脈の完全封鎖に至らしめる。実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与は梗塞サイズを低減させる。したがって、MIにより引き起こされる心筋への永久的ダメージは、実施形態により、著しく低減させることができる。
【0082】
CNSにおける虚血は様々な原因によるものであり得る。例えば、外傷性脳損傷は脳の一部への血流において封鎖または制限を引き起こし得る。血流におけるそのような制限は、低酸素が脳で起きた場合に重大な結果を有し得る。よって、実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与により引き起こされる血流の増加を使用して、外傷性脳損傷後の虚血により引き起こされる脳への永久的ダメージのリスクを低減させることができる。
【0083】
側頭動脈炎は、巨細胞性動脈炎(GCA)、頭部動脈炎またはホートン病とも呼ばれ、最も一般的に頭の大および中動脈、主に外頸動脈の分枝が関与する血管の炎症疾患である。これは血管炎の形態である。実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与により引き起こされる血管新生の誘導および血流の増加は側頭動脈炎を患う被験体に有益なものとなり得る。
【0084】
脳卒中は、時として脳血管障害(CVA)、脳血管発作(CVI)または口語的に脳発作と呼ばれ、これは脳への血液供給における妨害による脳機能の損失である。この妨害は虚血または出血のいずれかが原因である。虚血は血栓症または動脈塞栓症による血管の封鎖、または全身低灌流により引き起こされる。出血性卒中は、脳実質中、または脳組織を取り囲むくも膜下腔中への直接的な脳の血管の放血により引き起こされる。脳卒中を患う被験体は、不十分な血液供給により引き起こされるダメージのリスクを低減させるために脳への血流を増加させる治療から恩恵を受けるであろう。結果として、実施形態のデキストラン硫酸、またはその薬学的に許容される誘導体の投与は脳卒中を患う被験体に行うのが好適である。
【0085】
様々な神経障害が、脳の一部などのCNSへの血液供給において制限を引き起こし得る。例えば、Multiple Sclerosis International 2013, 1−6 (2013)は、初期多発性硬化症(MS)病変は、低酸素と関連することを開示する。よって、MSを患う被験体は、MSと関連する低酸素を治療する、または少なくとも低減または阻害するための増加した血流から恩恵を受けることができる。
【0086】
筋萎縮性側索硬化症(ALS)は、運動ニューロン疾患(MND)およびルー・ゲーリック病とも呼ばれ、様々な原因を有する神経変性疾患である。それは筋萎縮および筋痙縮による急速な進行性脱力、話すこと(構音障害)、嚥下(嚥下障害)、および呼吸(呼吸困難)における困難により特徴付けられる。実験により、ALSは、例えば、運動前野前頭葉領域における血流の低減と関連することが示されている、Acta Neurologica Scandinavia 116, 340−344 (2007)。血管新生の誘導による血流の増加はALSを患う被験体にとって有益となり得ることが推測される。
【0087】
実施形態による血管新生の誘導はさらに、様々な医療装置、センサ、などの埋め込みと合わせて使用することができ、この場合、インプラントに向かう、またはこれと関連する微小循環を誘導することが有利となり得る。
【0088】
よって、実施形態のデキストラン硫酸は様々な虚血性疾患、障害および状態、ならびに様々な疾患、障害および状態における虚血要素を治療、阻害または防止するために使用することができる。
【0089】
本実施形態の著しい利点は、実施形態のデキストラン硫酸は被験体において選択的に血管新生を誘導する、すなわち、血管新生が必要とされる組織または臓器などの部位で血管新生を誘導することができることである。例えば、血管新生は、図4に例示されるように、虚血組織で誘導されて起こるが、非虚血組織は起こらず、図では、小毛細血管形成の存在が示され(CD−34により示される)、機能する、活性な毛細血管(DAにより示される)が虚血右肢で確認されたが、非虚血左肢では確認されない。
【0090】
実施形態の別の態様は、被験体において血管新生を誘導するための方法に関する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を被験体に投与することを含む。
【0091】
実施形態のさらなる態様は、被験体において血管新生を誘導するための薬の製造のための10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用に関する。
【0092】
実施形態のさらに別の態様は、虚血を患う被験体において血流を増加させるのに使用するための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0093】
実施形態の関連する態様は、虚血を患う被験体において血流を増加させるための方法を規定する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を被験体に投与することを含む。実施形態の別の関連する態様は、虚血を患う被験体において血流を増加させるための薬の製造のための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用を規定する。
【0094】
特定の実施形態では、デキストラン硫酸、またはその薬学的に許容される誘導体は被験体の虚血組織または臓器において血流を増加させることができる。
【0095】
組織または臓器は、前記で記載されるように、末梢臓器、心臓またはCNS組織、例えば脳とすることができる。
【0096】
実施形態のさらにもう一つの態様は、被験体において虚血組織を血管新生するための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体に関する。
【0097】
実施形態の関連する態様は、被験体において虚血組織を血管新生するための方法を規定する。方法は、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体を被験体に投与することを含む。実施形態の別の関連する態様は、被験体において虚血組織を血管新生するための薬の製造のための、10000Da未満の平均分子量を有する、デキストラン硫酸、またはその薬学的に許容される誘導体の使用を規定する。
【0098】
虚血組織は、前記で記載されるように、末梢臓器、心臓またはCNS組織、例えば脳とすることができる。
【0099】
実施形態のデキストラン硫酸により誘導される、または引き起こされる血管新生、すなわち小毛細血管の形成は、被験体における虚血組織では起こるが、被験体の非虚血、すなわち健康な組織では起こらないという観点から選択的である。よって、実施形態により誘導される血管新生は必要とされる部位(複数可)で起こり、健康な組織は影響されないままである(著しい血管新生はない)。
【0100】
被験体は好ましくは哺乳類被験体、より好ましくは霊長類、特にヒト被験体である。しかしながら、本実施形態は、獣医用途においても使用することができる。動物被験体の非限定的な例としては、霊長類、ネコ、イヌ、ブタ、ウマ、マウス、ラットが挙げられる。
【0101】
実施形態はまた、血管柄付組織および/または臓器において血管新生を誘導する、血管柄付組織および/または臓器において血流を増加させる、および/または血管柄付組織および/または臓器の血管新生のために、血管柄付組織および/または臓器のインビトロおよび/またはエクスビボ治療に適用することができる。
【0102】
そのような場合、デキストラン硫酸、またはその薬学的に許容される誘導体は、血管柄付組織および/または臓器に様々なインビトロまたはエクスビボ適用で添加することができる。例えば、デキストラン硫酸、またはその薬学的に許容される誘導体は、血管柄付組織および/または臓器がインビトロで浸漬され、または接触される培地に添加することができる。その代わりに、または加えて、血管柄付組織および/または臓器に、デキストラン硫酸、またはその薬学的に許容される誘導体を含む溶液を噴霧することができる。さらに、血管柄付組織および/または臓器は、体外循環ポンプまたは体外式膜型人工肺(ECMO)装置に接続され、その後、デキストラン硫酸、またはその薬学的に許容される誘導体は、血管柄付組織および/または臓器を通ってポンピングされる血液に添加することができる。
【0103】
実験
実施例1
重症後肢虚血マウスモデルにおける血管新生の評価
末梢動脈疾患(PAD)は末梢血管疾患(PVD)の一形態であり、この場合、四肢、通常下肢への血液供給の部分または完全封鎖があり、組織において血流障害および低酸素が引き起こされる。PADが進行すると、皮膚潰瘍、壊疽および避けられない肢切断を伴う重症四肢虚血(CLI)の段階に至る。治療的血管新生が、虚血組織において新血管新生を促進する非侵襲性手段として出現した。本研究において開示されるように、デキストラン硫酸の全身皮下投与は、微小血管の形成および内皮細胞の増殖を引き起こす血管新生を促進する。現在の研究では、安定な重症虚血モデル(Journal of Experimental and Clinical Medicine 31, 128−132 (2006))が適用され、デキストラン硫酸の血管新生および機能的帰結に対する安全性および効力が評価された。
【0104】
材料
5〜7kDaの範囲内の平均分子量を有するデキストラン硫酸を、pK Chemicals A/S、デンマークから入手した。図1〜4、6、7では、デキストラン硫酸は、TM−700と示される。
【0105】
デキストラン硫酸の注射溶液を研究開始の前の日に調製した。ビヒクルとして、0.9%NaCl(生理食塩水)(Teva Pharmaceutical Industries Ltd)を使用した。注射溶液を適切な体積のNaClを秤量した化合物に添加し、投与のための標的濃度を得ることにより調製した(10もしくは30mg/kg体重)。デキストラン硫酸をボルテックスする、または単純に管を数回、回転させることにより溶解させた。溶液を、凝集物を安定化させるために2〜8℃で夜通し貯蔵した。次の日、管をボルテックスし、溶液を、0.2μmフィルタに通して濾過し、滅菌溶液を得た。溶液を第7日に調製し、第8〜21日に使用し、第2の調製物を第21日に調製し、第22〜35日に使用した。溶液を、使用日の間2〜8℃で貯蔵した。
【0106】
研究開始時(第0日)に24.7gの平均体重を有する、合計60匹の雄Balb/cマウス、9週齢を、Harlan Laboratories、イスラエルから入手した。各群で記録された最低および最高体重は群平均値の±20%の範囲内であった。動物の取扱は国立保健研究所(NIH)および実験動物ケア評価認証協会(AAALAC)に従った。動物を42.5×265.6×18.5cmの大きさのポリスルホン(polysufone)(PSU)ケージ(5/ケージ)において飼育し、ケージはガラス透明ポリカーボネート瓶に入ったペレット食物および飲料水のための設備を有するステンレス鋼上面グリルを備える;寝床:蒸気滅菌した清浄な籾殻(Harlan, Sani−chip, Cat#: 106S8216)を使用し、寝床材料をケージと共に少なくとも週2回交換した。動物には自由に市販の齧歯類食事を与えた(Teklad Certified Global18% Protein Diet cat #: 106S8216)。動物は、地方自治体供給源から得られたオートクレーブ処理され、酸性化された飲料水(2.5〜3.5のpH)を自由に利用することができた。動物を、空調管理され、フィルタ処理された標準研究室条件下で(HEPA F6/6)十分な新鮮空気の供給を用い(最低15回の空気交換/時間)飼育した。動物を温度と湿度が調節された環境において維持した。温度範囲を20〜24℃とし、RH範囲を30〜70%とし、12時間の明および12時間の暗サイクルを用いた。
【0107】
外科的処置
外科手術の日に麻酔を、1.5〜3.0%イソフルラン、1.5%NOおよび0.5%Oにより誘導した。麻酔下で、マウスを腹側を上にして置いた。鼠径部の皮膚を0.5〜1.0cm切開した。大腿動脈を腸骨動脈の遠位部分の直後近位で、深在性大腿動脈とのその分岐の後遠位で6−0絹糸を用いて結紮し、2つの結紮術間で切断し、切除した。創傷を4−0絹糸で閉じ、マウスを回復させた。
【0108】
デキストラン硫酸処置
第8日に、外科手術後第2週に、2Mおよび3M群内の各動物にデキストラン硫酸溶液をs.c.で週3回注射した。4M群内の動物にs.c.で週1回注射し、1M群はビヒクル処置を受けた(NaCl)。表1を参照されたい。
【表1】
【0109】
体重測定
体重を外科手術前の研究第−1日に、およびその後、週1回測定した。第0日と第7日の間で、全ての動物群1M、2M、3Mおよび4Mにおいて、1.1g〜1.6gの範囲の平均体重のわずかな低減が観察された。図1を参照されたい。第14日以降、体重の漸次増加が観察された。したがって、第0日〜第35日で、体重の平均増加は0.4g〜1.7gの範囲であった。表2を参照されたい。
【表2】
【0110】
血流測定
両側からの下肢における血流を、非接触レーザードップラーと用いて、外科手術前の第−1日におよび手術後第1、7、14、21、28および35日に測定した。血流測定値を、虚血肢における流れの正常肢における流れに対する比として表した。
【0111】
全ての動物群1M、2M、3Mおよび4Mは、第1日〜第35日に手術された四肢において平均血流の増加を示した。図2を参照されたい。平均血流は、外科手術後ベースラインから、ビヒクル対照群1Mでは19.5単位の増加に比べ、デキストラン硫酸処置群2M(10mg/kg 3回/週)において46.7単位だけ;デキストラン硫酸処置群3M(30mg/kg 3回/週)において59.3単位だけ、デキストラン硫酸処置群4M(30mg/kg 1回/週)において51.1単位だけ増加した。これは、デキストラン硫酸処置による、それぞれ、平均血流の2.2、3.0および2.8倍の増加を表す。表3および図2を参照されたい。
【表3】
【0112】
図8は対照マウス(1M群)および3M群によるデキストラン硫酸で処置したマウスにおいて測定した血流を比較する。図は、左後肢の大腿動脈結紮後35日の、非接触レーザードップラー画像を示す。
【0113】
虚血重症度の肉眼的評価
虚血肢の肉眼的評価を、第7日に、およびその後週1回、壊死性領域に対する形態学的グレードを用いることにより実施した。表4を参照されたい。
【表4】
【0114】
虚血肢を肉眼的に毎週、第7日から第35日まで、壊死性領域に対する段階的形態学的スケールを使用することにより評価した。表4を参照されたい。ビヒクルおよびデキストラン硫酸で処置した全ての動物群において、つま先壊死または足切断が見られた(1〜2のグレード、表6を参照されたい)。各処置群における足切断のパーセント率を表5および表6に示す。足切断はビヒクル処置対照群1M(15.4%)およびデキストラン硫酸処置群4M(30mg/kg 1回/週)(7.1%)において見られた。ビヒクル処置対照群1Mにおけるつま先壊死率は23.1%動物であることが見出された。デキストラン硫酸により処置された動物群2Mおよび3Mでは、HLI誘導後35日で、つま先壊死率はそれぞれ21.4%および14.3%であった。デキストラン硫酸により処置した動物群4Mでは、つま先壊死の発生率はなかった(表6)。
【表5】
【表6】
【0115】
四肢機能および虚血性ダメージのインビボ評価
虚血肢の障害された使用の半定量的評価を外科手術後週1回、下記スケールを使用して実施した。表7を参照されたい。
【表7】
【0116】
四肢機能を、一部または完全四肢切断の場合、「不適用」として段階分けした。そのような場合、血流測定値は、統計解析に含めなかった。
【0117】
血流測定と並行して、ビヒクル対照群1Mと比較して、全てのデキストラン硫酸処置群2M、3Mおよび4Mは四肢機能改善においてより良好な結果を示した。下記表8および表9ならびに図6を参照されたい。
【表8】
【表9】
【0118】
免疫組織化学および毛細血管密度の分析
マウスを第36日の研究終了時に屠殺した。フルオレセインイソチオシアネート(FITC)−デキストラン500000Daコンジュゲート10mg/mlをi.v.で200μl/マウスの用量にて屠殺前5分に、全ての動物に注射した。四頭筋を冠動脈部分まで解剖した。筋肉を2.5%新鮮パラホルムアルデヒド(pH7.4)中で24時間固定し、その後、パラフィン中に、平滑筋アクチン(SMA)に対しマウスモノクローナル抗体(抗SMA Ab−1、クローン1A4、1:800、Thermo scientific)を用いて、およびCD34に対し抗CD34(1:200、Cedralene)免疫染色を用いて包埋した。パラフィン包埋を標準包埋手順に従い実施した。
【0119】
染色した切片を、CCDカメラ(DMX1200F;Nikon)に接続されたplan fluor対物レンズを備えた蛍光顕微鏡(E600;Nikon、東京、日本)により評価し、撮影した。これらの条件下では、Cy3は鮮赤色蛍光を示し:Ex(max):543nm;Em(max)570nm、一方フルオレセインデキストランは強い緑色蛍光を示す(Ex(max):488nm;Em(max):530nm)。デジタル画像を集めて、Image Pro+ソフトウェアを用いて解析した。4つの切片の筋肉試料を群1M、3Mおよび4M由来の8匹の動物の同じ領域から取得した。血管の面積を測定した。密度は一視野あたりの毛細血管の平均数として表した。総血管は測定した領域内の全ての血管を表す。
【0120】
CD34陽性毛細血管の数は、研究の第35日に、対照群1Mに比べ、デキストラン硫酸処置群3Mおよび4Mでは大きかった。図3、4および5A〜5Cを参照されたい。CD34陽性染色は小毛細血管形成に対する指標として考えられ、よって、得られた結果はデキストラン硫酸で処置した動物群において観察される血流改善を支持する。デキストラン染色により、これらの毛細血管は、機能しており、活性であることが確認された。SMA染色はCD34染色と同じ毛細血管形成の増加を明らかにした。図7を参照されたい。
【0121】
図4は明らかに、実施形態のデキストラン硫酸のみが、虚血組織、すなわち右肢において血管新生を誘導し、非虚血組織、すなわち左肢では誘導しないことを示す。よって、実施形態のデキストラン硫酸は必要とされるところでのみ血管新生の選択的誘導を引き起こす。
【0122】
血管新生障害は虚血性疾患の特徴の1つである。治療的血管新生のためのほとんどの確立された標的はVEGFおよびその受容体であった。しかしながら、虚血を軽減させるための臨床試験は期待外れであり、虚血性疾患を治療するための新しい治療標的の必要性が示された。
【0123】
この研究では、デキストラン硫酸の効力を評価するために、マウス後肢虚血モデルにおける血流改善を検査した。30mg/kgの用量のs.c.での反復(週3回)または(週1回)デキストラン硫酸投与は、ビヒクル処置対照に比べ、血液灌流を著しく回復させた。第35日に、対照群に比べ、2.5から最大3倍まで高い血流灌流値が、デキストラン硫酸処置群において観察され、統計的に有意な効果は処置後14日から開始した。
【0124】
研究の集約的なデータにより、Balb/cマウス動物モデルにおいて閉塞性末梢動脈疾患の治療のためにs.c.で与えられたデキストラン硫酸の治療的効力が確認された。自発的肢切断またはつま先壊死率もまた、対照群に比べ、デキストラン硫酸処置動物において減少した。デキストラン硫酸処置は薬物処置動物群全てにおいて、ビヒクル処置対照に比べ、四肢機能回復を改善した。デキストラン硫酸処置は、処置動物において有害作用を引き起こさなかった。
【0125】
免疫組織化学所見により、インビボ結果が確認された。集約的に、この研究のデータはマウスモデルにおける閉塞性末梢動脈疾患の治療のためのデキストラン硫酸の治療的効力を確認した。
【0126】
後肢虚血を有するマウスにおけるデキストラン硫酸処置により、レーザードップラーにより測定され、四肢虚血重症度の減少およびより迅速な四肢機能改善によっても証明される、血流の著しく、迅速な回復が得られた。
【0127】
全体的な健康に対する有害作用は、群のいずれにおいても記録されなかった。これらのデータは、免疫組織化学評価により確認された。所見は血管形態の変化、すなわち毛細血管密度増加、および血管新生を反映する。
【0128】
実施例2
ラット脳卒中モデルにおける血管新生効率の評価
脳卒中tMCAOラット−モデルを使用して、デキストラン硫酸処置の効力を評価した。ラットを、外科的処置後2時間に開始して28日日間皮下注射により、30mg/kg週3回または15mg/kgの1日用量のいずれかでデキストラン硫酸で処置した。研究中、神経、運動および体性感覚機能を、一連の行動試験においてモニターした。
【0129】
デキストラン硫酸で処置した群とビヒクル処置対照群との間で明確な差が証明された。Neuroscore、ステッピングテストおよび身体スイングテストにより評価される運動機能の改善が両方の薬物処置群において証明された。感覚運動機能もまた、デキストラン硫酸処置後に回復した。デキストラン硫酸処置の効果はそれらの血管新生活性に起因する可能性がある。この結果は、影響を受けた半球における脳血液灌流および平滑筋アクチン(SMA)陽性毛細血管密度の増加により支持された。デキストラン硫酸処置はまた、ビヒクル処置対照に比べ、炎症反応を低減させた。
【0130】
これらの所見を考慮すると、デキストラン硫酸処置はラット脳卒中モデルにおいて、運動および体性感覚欠損ならびに脳血液灌流および血管新生活性を明確に改善したと結論付けられ得る。
【0131】
脳卒中は、米国では、重篤な、長期身体障害の顕著な原因であり、第3の死亡の主因である。脳卒中による身体障害に対する総健康コストは毎年536億と推定される。虚血性脳卒中は全脳卒中の88%超を占め、そのため、最も一般的な型の脳血管損傷となっている。脳における虚血状態は神経細胞死を引き起こし、永久的感覚運動欠損に至らしめる。今や、脳卒中患者に対する緊急治療は、しばしば、臨床設定では不可能であることが明らかである。医師は脳卒中治療に対する新しい治療戦略を緊急に必要とする。
【0132】
いくつかの動物モデルが、その病態生理を理解し、虚血性ダメージの重症度を最小に抑えるための治療戦略を同定するために、脳虚血を研究するために使用されている。局所虚血は限局性脳梗塞を引き起こし、これは、ラットにおいて中大脳動脈閉塞(MCAO)により誘導される。これは、ヒトにおける半球梗塞に対するモデルとしてますます承認を得ている。MCAO後、一時的、および空間的進行を有する皮質および線条体梗塞が、中大脳動脈により供給される血管領域内で起こる。
【0133】
この10年で、脳卒中動物試験における行動評価に対する証拠が相次いで集められている。機能改善は、治療的効力に対する尺度として非常に信頼できることが見出された。脳卒中における血管合併症に対する最も有望な革新的治療の1つは治療的血管新生であり、これは虚血組織において新血管新生を促進するための非侵襲性手段として現れた。
【0134】
この研究では、デキストラン硫酸の神経保護およびリハビリテーションの可能性を一過性MCAOラット脳卒中モデルにおいて研究した。
【0135】
材料
5〜7kDaの範囲内の平均分子量を有するデキストラン硫酸を、pK Chemicals A/S、デンマークから入手した。図9〜16では、デキストラン硫酸は、TM−700と示される。
【0136】
デキストラン硫酸を、0.9%NaCl(生理食塩水)(Teva Pharmaceutical Industries Ltd)に、週3回注射のために60mg/mlおよび毎日注射のために30mg/mlの濃度まで溶解した。製剤は1週間の間安定である。動物は30および15mg/kg体重に等しい0.5ml/kgを受けた。
【0137】
研究開始時(第0日)に342gの平均体重を有する合計46匹の雄SDラットを、Harlan Laboratories、イスラエルから入手した。各群で記録された最低および最高体重は群平均体重の±20%の範囲内であった。動物の取扱は、国立保健研究所(NIH)および実験動物ケア評価認証協会(AAALAC)のガイドラインに従った。動物を35×30×15cmの大きさのポリエチレンケージ(5/ケージ)において飼育し、ケージは、プラスチック瓶内のペレット食物および飲料水を促進するステンレス鋼上面グリルを備える;寝床:蒸気滅菌した清浄な籾殻(Harlan, Sani−chip, Cat#:2018SC+F)を使用し、寝床材料をケージと共に少なくとも週2回交換した。動物には自由に市販の齧歯類食事を与えた(Teklad Certified Global18% Protein Diet cat #:106S8216)。動物は、地方自治体供給源から得られた、オートクレーブ処理され、酸性化された飲料水(2.5〜3.5のpH)を自由に利用することができた。動物を、空調管理され、フィルタ処理された標準研究室条件下で(HEPA F6/6)十分な新鮮空気の供給を用い(最低15回の空気交換/時間)飼育した。動物を温度と湿度が調節された環境において維持した。温度範囲を20〜24℃とし、RH範囲を30〜70%とし、12時間の明および12時間の暗サイクルを用いた。
【0138】
外科的処置
外科手術の日に、麻酔を、4%イソフルランを含む、70%NOおよび30%Oの混合物により誘導し、1.5〜2%イソフルランにより維持した。
【0139】
一過性中大脳動脈閉塞を、Stroke 29, 2162−2170 (1998)において前に記載される方法に従い実施した。右総頸動脈(CCA)を正中線頸部切開により露出させ、注意深く周囲の神経および筋膜から−その分岐から頭蓋底まで切断した。外頸動脈(ECA)の後頭動脈分枝をその後隔離し、これらの分枝を切断し、凝固した。ECAをさらに遠位で切断し、末端舌および顎動脈分枝と共に凝固させ、これをその後分割した。内頸動脈(ICA)を隔離し、隣接する迷走神から注意深く分離し、翼口蓋動脈を、5−0ナイロン縫合糸(SMI、ベルギー)を用いてその開始点近くで結紮した。次に、4−0絹縫合糸を、動態化させたECA断端の周りに緩く縛り、4cm長さの4−0モノフィラメントナイロン縫合糸(挿入前に、縫合糸の先端を炎を用いることにより丸くし、縫合糸をポリリジンでコートした)を近位ECAからICA中に、そこからウィリス動脈輪中に挿入し、効果的にMCAを閉塞させた。手術創を閉じ、動物をそれらのケージに戻し、麻酔から回復させた。閉塞後2時間で、ラットを再び麻酔し、モノフィラメントを取り除き、再灌流させ、手術創を閉じ、ラットをそれらのケージに戻した。
【0140】
閉塞後1時間で、動物を、「除外基準のためのNeuroscore」を使用する神経評価に供した。≧10の総合スコアを有する動物のみを研究に含めた。
【0141】
デキストラン硫酸処置
閉塞(再灌流の直後)後2時間に開始して、2Mおよび3M群における動物(30mg/kg週3回または15mg/kg毎日の用量でのデキストラン硫酸)および1M群における動物(ビヒクル対照)に皮下注射した。表10を参照されたい。
【表10】
【0142】
データ分析
別途規定されない限り、全ての統計分析を、反復測定のための二元配置ANOVA、続いてボンフェローニ事後比較検定を使用して実施した。
【0143】
体重
研究を通して、様々な処置群間で体重の統計的に有意な差は観察されなかった。図9を参照されたい。
【0144】
神経学的試験スコア(Neuroscore)
評価:手術前、閉塞後1時間、ならびに第7、14、21および28日
修正神経学的評価尺度(mNRS)を実施した。行動評価を受けた個体は与えた薬物/用量を知らなかった(盲検試験)。総スコア18のNeuroscoreを、Stroke32,1005−1011(2001)に従い実施した。
【0145】
Neuroscoreは、試験される処置の効果を評価するために使用された、1組の臨床−神経学的試験(運動、感覚性、反射および平衡試験を合わせたもの)を含んだ。Neuroscoreを、0〜18のスケールで段階分けした(この場合、正常スコアは0であり、最大欠損スコアは、18により表される)。予想通りに、ラットの全ての群において、tMCAO誘導後2時間に神経機能の急激な低下が観察され、その後、時間と共に、自然に回復した。統計的に有意な差が30mg/kgデキストラン硫酸で週3回処置された2M群および15mg/kgデキストラン硫酸で毎日処置された3M群において、ビヒクル処置対照と比べて、第7日の最初の試験から研究を通して第28日まで示された。図10を参照されたい。2つの投与スケジュール2Mと3M間で、統計的な差は見られなかった。
【0146】
ステッピングテスト
評価:手術前ならびに第7、14、21および28日
動物を、前肢無動に対してステッピングテストを使用して試験した。動物をその後肢で持ち、1つの前肢を一つの手で固定し、無拘束の前肢をテーブルに沿って引いた。両方の前肢に対しフォアハンドおよびバックハンドの方向で動物を横向きにテーブル表面に沿って移動させながら(およそ5秒で85cm)、調整したステップの数をカウントした。
【0147】
動物を、動物の運動機能に対する指標として、神経筋機能の測定のために一般的に使用されるステッピングテストにおいて、前肢無動に対して試験した。運動機能のいくらかの改善が時間をかけて、大部分は自然機能回復の結果として、tMCAOに供した全ての動物において観察された。しかしながら、デキストラン硫酸で処置したラットの機能改善は、ビヒクル処置対照に比べより顕著であった。動物の両方の処置群、2Mおよび3M群では、この改善は、対照に比べ、統計学的有意性に到達し、これは第7日の最初の試験で始まり、第28日の研究終了まで改善し続けた。図11を参照されたい。2つの投与スケジュール2Mと3M間で、統計的な差は見られなかった。
【0148】
前肢置き直し
評価:手術前ならびに第7、14、21および28日
前肢置き直し試験では、試験者はラットをテーブル表面近くで持ち、ラットの、頬髭、視覚、触覚、または固有受容性刺激に応じて前肢をテーブル表面で置き直す能力をスコア化する。別のサブスコアを各感覚入力モードに対して得て、加算し、総スコアを与えた(0=正常、12=最大障害)。
前肢置き直し試験(0〜12):
頬髭置き直し(0〜2);
視覚性置き直し(前方(0〜2)、横向き(0〜2))
触覚性置き直し(背側(0〜2)、外側(0〜2))
固有受容性置き直し(0〜2)。
各サブテストに対し、動物を、下記の通りスコア化した:
0.0=即応
0.5=2秒以内の応答
1.0=2〜3秒の応答
1.5=>3の応答秒
2.0=応答なし
【0149】
前肢置き直し試験を使用して、体性感覚および感覚運動欠損を評価した。他の試験と同様に、感覚運動欠損のいくらかの自然回復が、tMCAOに供した全ての動物において、時間と共に観察された。しかしながら、デキストラン硫酸で処置した全てのラットは、ビヒクル対照処置に比べ、統計的に有意な改善を示し、これは第14日に始まり、第28日の研究終了まで続いた。図12を参照されたい。3M群では、感覚運動欠損の改善は、統計学的有意性に、すでに第7日の最初の試験で到達した。
【0150】
身体スイングテスト
評価:手術前ならびに第7、14、21および28日
ラットをその尾の付け根からおよそ1インチで持った。これをその後、テーブルの表面より1インチ上まで上昇させた。ラットを、左または右側のいずれかに対して10°以下として規定される垂直軸内で持った。スイングを、ラットがその頭を垂直軸からはずれてどちらかの側に動すたびに、記録した。別のスイングをしようとする前に、次のスイングをカウントするために、ラットを垂直位に戻した。20回の総スイングをカウントした。正常ラットは典型的には両側に等しい数のスイングを有する。局所虚血後、ラットは、反対側にスイングする傾向がある(この場合左側)。身体スイングスコアを、総スイングに対する右方向のパーセンテージとして表した。脳卒中後、最初の1ヶ月中、身体スイングスコアの自然部分回復が存在した(50%に向かって)。
【0151】
動物を、神経筋機能の測定のために一般的に使用される身体スイングテストにおいて、前肢無動について試験した。運動機能のいくらかの自然回復が、tMCAOに供した全ての動物において、時間と共に観察された。しかしながら、デキストラン硫酸で処置した全てのラットはビヒクル対照処置に比べ、統計的に有意な改善を示し、これは第7日の最初の試験で始まり、第28日の研究終了まで続いた。図13を参照されたい。2つの投与群2Mと3Mの間で統計的な差は見られなかった。
【0152】
脳血流評価
評価:第29日
大脳皮質および血管狭窄に対する血流の評価をFlow−Rレーザードップラーシステムを用いて実施した。この場合、頭蓋内血流および血管直径(狭窄/拡張)をモニターした。これは、脳卒中開始後第29日に実施した。動物がイソフルラン麻酔下にある間に、ドップラー手順を実施した。
【0153】
動物はまた、第29日にダメージを受けた半球での脳血流回復について検査した。脳血液灌流速度の統計的に有意な改善が、対照ビヒクル処置群1Mと対比して、tMCAOに供し、デキストラン硫酸で処置した全ての動物において(2Mおよび3M群)観察された。血管直径比もまた、対照と対比して、デキストラン硫酸処置動物で増加した。図14および15を参照されたい。
【0154】
試料採取および屠殺
MCAO後第30日に、ラットを、ケタミン/キシラジンにより麻酔し、緩衝パラホルムアルデヒド(PFA)4%により経心的に灌流させた。免疫染色および組織学的評価のために、脳を採取し、4%緩衝PFA中で固定した。
【0155】
脳試料の2つの切片を、1Mおよび3M群由来の6匹の動物の同じ領域から入手した。毛細血管を顕微鏡下で、各切片由来の合計3つのランダム視野でカウントした。密度を、毛細血管の平均数/視野として表した。デキストラン硫酸15mg/kgによる毎日の処置により、脳卒中後30日に、ビヒクル処置対照群と比べて毛細血管の数が増加した。
【0156】
血管新生効果の結果として、ビヒクル処置対照群と比べて、tMCAOに供し、デキストラン硫酸15mg/kgで毎日処置した動物において、30μm未満の直径を有するSMA毛細血管の数の改善が観察された。図16を参照されたい。
【0157】
図17Aおよび17Bは、ビヒクル対照群(図17A)およびデキストラン硫酸(15mg/kg、毎日)群(図17B)からのラットに対する、毛細血管密度に対する治療効果を示す。
【0158】
死亡率および臨床徴候
18匹のラットが研究中に死亡した。1匹のラットが再灌流直後、投与前に死亡し、17匹のラットが投与後10時間以内に死亡した(1M群で6匹、2M群で6匹および3M群で5匹)。モデルに無関係の有害臨床徴候は、全ての動物群において、観察されなかった。
【0159】
脳卒中tMCAOラットモデルは、薬物治療の神経保護およびリハビリテーション効力を評価するための、伝統的に受け入れられているモデルである。このモデルを、この研究では、デキストラン硫酸処置の2つの投与スケジュールでの効力を評価するために使用した。ラットを28日間、皮下注射により、外科的処置後2時間に開始し、30mg/kg週3回または15mg/kgの1日用量のいずれかでデキストラン硫酸で処置した。研究中、神経、運動および体性感覚機能を、一連の行動試験においてモニターした。
【0160】
予想通りに、脳卒中誘導後28日の追跡中、神経機能のいくらかの自然回復が観察された。しかしながら、デキストラン硫酸で処置した群とビヒクル処置対照群との間で明確な差が証明された。しかしながら、2つの投与スケジュール間で統計的に有意な差は指摘されなかった。Neuroscore、ステッピングテストおよおび身体スイングテストにより評価される運動機能の改善が両方の薬物処置群において証明された(図10、11および13)。感覚運動機能もまた、デキストラン硫酸処置後に回復した(図12)。有益な効果が観察され、これは処置の第7日の最初の試験で始まり、第28日の研究終了まで改善し続けた。観察された効果はラットの全体的健康の差に起因するとすることができない。というのも、全ての群は、同じ速度で、体重が増加し、それらの間に有意の差はないからである(図9)。加えて、一般的な臨床徴候における差も観察されなかった。デキストラン硫酸処置の効果は、それらの血管新生活性に起因する可能性がある。この結果は、影響を受けた半球における脳血液灌流およびSMA陽性毛細血管密度の増加により支持された。デキストラン硫酸処置はまた、ビヒクル処置対照に比べ、炎症反応を低減させた。
【0161】
これらの所見を考慮すると、デキストラン硫酸処置は明らかに、ラット脳卒中モデルにおける運動および体性感覚欠損ならびに脳血液灌流および血管新生活性を改善したと結論付けられ得る
【0162】
よって、実施形態のデキストラン硫酸は、CLI(実施例1)および脳卒中(実施例2)モデルにおいて、血管新生を選択的に誘導することが示された。実験結果により、遅延処置(結紮後第15日に開始)であっても有効であることが示される。3〜30mg/kg(s.c.)の区間内の用量が有効であり、単回投与、週1回および週3回の投与プロトコルは全て有効である。組織学は新たに形成された機能血管形成を実証する。よって、実施形態のデキストラン硫酸は虚血領域において選択的効果を提供する。
【0163】
実施例3
心筋梗塞モデルにおけるデキストラン硫酸の評価
本研究は、心筋梗塞のラットモデルにおいてデキストラン硫酸処置の血管新生効力を評価した。
【0164】
心臓は制限された再生能を有し、そのため、急性心筋梗塞(MI)となった筋肉は典型的には、血管新生が制限されている非収縮性瘢痕組織に置き換えられる。血管新生および組織灌流の増加を促進することは、MI後の心臓修復に対する有望な戦略となる。
【0165】
材料および方法
ラットにおける心筋梗塞モデルは、壁内縫合糸による左冠動脈の永久的結紮を伴った。外科手術は血流の閉塞を引き起こし、その後に、重篤な虚血性ダメージおよび心臓壁梗塞に至った。
【0166】
研究開始時(第0日)に178gの平均体重を有する合計150匹の雌SDラットを、Harlan Laboratories、イスラエルから入手した。動物には自由に市販の齧歯類食事を与えた(Teklad Certified Global 18% Protein Diet)。動物は、地方自治体供給源から得られた酸性化飲料水(2.5〜3.5のpH)を自由に利用することができた。動物を標準研究室条件下で飼育した。温度範囲を20〜24℃とし、RH範囲を30〜70%とし、12時間の明および12時間の暗サイクルを用いた。
【0167】
5〜7kDaの範囲内の平均分子量を有するデキストラン硫酸を、pK Chemicals A/S、デンマークから入手した。デキストラン硫酸を、15mg/kgまたは3mg/kgの用量で皮下注射するために、0.9%NaCl(生理食塩水)(Teva Pharmaceutical Industries Ltd)に溶解した。
【0168】
外科手術の日に、動物を90mg/kgケタミンおよび10mg/kgキシラジンの組み合わせで麻酔した。MIを誘導するために、麻酔および鎮痛下で、ラット胸部を左開により開き、心膜を除去し、近位左冠動脈を、壁内縫合糸で永久的に閉塞させた(Circulation 117, 1388−1396 (2008))。外科手術後2時間に、全ての処置群の各動物に、表11に従い、デキストラン硫酸または生理食塩水ビヒクルを、s.c.注射した。
【表11】
【0169】
MI誘導後第36日に、ラットをCO吸入により屠殺し、心臓を回収し、4%緩衝ホルマリン溶液で固定した。ルーチンパラフィン包埋を、標準組織学的手順を使用して実施した。
【0170】
MIサイズ同定のために、マッソントリクローム染色を使用した。処置(2M)群の9つの心臓および未処置(1M)群の8つを横方向に切開し、パラフィンに包埋させた5つの切片とした。5μmの5つのパラフィン切片はLikaミクロトーム上で実施した。全ての切片を標準マッソントリクロームプロトコルに従い染色した。切片をコンピュータ−画像システムにおいて視覚化し、梗塞サイズをImageJプログラムを使用して指し示し、計算した。梗塞サイズを総左心室領域に対する梗塞領域(未染色)のパーセンテージとして表した。各動物に対し、結紮術を含むものを含む5つの連続する切片を分析し、各心臓に対する全ての切片の平均値を計算した。免疫組織化学マーカー(平滑筋アクチン−SMA)を血管密度カウントを評価するために使用した。
【0171】
影響を受けた心筋領域の梗塞病変の縁で、1mm角について、血管密度カウントを実施した。Olympus BX43顕微鏡を使用し、×40対物レンズ倍率を用いて写真を撮った。SMA陽性血管の血管密度カウントを、Media Cyberneticsによる画像解析ソフトウェア−Image Pro Plus 5.1を使用して実施した。
【0172】
結果
図18は、MI誘導後35日の梗塞サイズを示す。全ての処置群は、未処置対照群と比べて、より小さな平均梗塞サイズを有した。処置群2Mと対照群1Mの間に有意差が存在した。
【0173】
図19は、処置群2Mおよび対照群1Mに対して、MI誘導後35日でのSMA染色を比較する。デキストラン硫酸処置により、ビヒクル対照と比べて、より高いSMA毛細血管密度が得られた。
【0174】
図20A〜20Cは、2M処置群における2匹のラット(図20Aおよび20B)および1M対照群における1匹のラット(図20C)について血管密度のためのSMA染色の写真を示す。デキストラン硫酸処置により、ビヒクル対照と比べて、より高いSMA血管密度が得られた。
【0175】
デキストラン硫酸は、対照ビヒクル処置群と比べて、ラットにおける心筋梗塞後の処置群2Mにおける梗塞体積を著しく減少させた。同じデキストラン硫酸処置群は、対照ビヒクル処置群に比べ、心臓の梗塞領域における毛細血管密度の増加傾向を明らかにした。よって、デキストラン硫酸は心筋梗塞後の梗塞領域での、心筋および血管修復を促進し、血管新生を増強する。これにより、長期左心室の再構築が改善され得、左心室機能の回復が増強され得る。
【0176】
実施例4
ラット後肢虚血モデルにおける血管新生効力の評価
実施例1において以上で記載される研究では、デキストラン硫酸の血管新生効力が、マウスにおける安定な重症虚血モデルにおいて証明された。この研究では、ラットにおける安定な重症虚血モデル(Toakai J Exp Clin Med 31(3), 128−13 (2006))を適用して、異なる動物の種を用いることによる、血管新生および機能的帰結に対するデキストラン硫酸の効力を評価した。
【0177】
材料
デキストラン硫酸溶液を研究開始の前の日に調製した。ビヒクルとして、0.9%NaCl(生理食塩水)を使用した。関連体積のNaClを、秤量した化合物に添加し、6および60mg/mlの濃度を得た。これは、それぞれ、3および30mg/kgの用量を得るための0.5ml/kgの投与に対応する。デキストラン硫酸(5〜7kDaの範囲内の平均分子量を、pK Chemicals A/S、デンマークから入手した)を、ボルテックスする、または単純に管を数回、回転させることにより溶解させた。溶液を、4℃で一晩貯蔵し、凝集物を安定化させた。次の日、管をボルテックスし、0.2μmフィルタに通して濾過し、滅菌溶液を得た。調製物は、4℃で貯蔵すると、最大15日までの間信頼できると考えた。溶液を第7日に調製し、8〜21日に使用し;第2の調製物を第21日に作製し、22〜28日に使用した。
【0178】
研究開始時(第0日)に277gの平均体重を有する90匹のSDラットを、Harlan Laboratories、イスラエルから入手した。動物には自由に市販の齧歯類食事を与えた(Teklad Certified Global 18% Protein Diet)。動物は、酸性化飲料水(2.5〜3.5のpH)を自由に利用することができた。
【0179】
動物の取扱は、国立保健研究所(NIH)および実験動物ケア評価認証協会(AAALAC)のガイドラインに従った。動物を35×30×15cmの大きさのポリエチレンケージ(3/ケージ)で飼育し、ケージはプラスチック瓶内のペレット食物および飲料水を促進するステンレス鋼上面グリルを備える;寝床:蒸気滅菌した清浄な籾殻(Harlan, Sani−chip, Cat#:7090A)を使用し、寝床材料を、少なくとも週2回、ケージと共に交換した。動物には自由に市販の齧歯類食事を与えた(Teklad Certified Global18% Protein Diet cat #:106S8216)。動物は、地方自治体供給源から得られた、オートクレーブ処理され、酸性化された飲料水(2.5〜3.5のpH)を自由に利用することができた。動物を空調管理され、フィルタ処理された標準研究室条件下で(HEPA F6/6)十分な新鮮空気の供給を用い(最低15回の空気交換/時間)飼育した。動物を温度と湿度が調節された環境において維持した。温度範囲は20〜24℃とし、相対湿度(RH)範囲は30〜70%とし、12時間の明および12時間の暗サイクルを有した。
【0180】
全ての外科的処置は、麻酔および鎮痛下(1.5〜3.0%イソフルラン、1.5%NOおよび0.5%O)で実施した。鼠径部の皮膚を0.5〜1.0cm切開した。大腿動脈および静脈を2回4−0絹糸を用いて結紮し、結紮術間で切除した。創傷を3−0絹糸を用いて閉じ、ラットを回復させた。
【0181】
外科手術後第8日、第2週に、群1M、2M、および3Mにおける各動物を週3回s.c.注射した。4Mおよび5M群における動物に第8日に1回s.c.注射した。表12を参照されたい。
【表12】
【0182】
血流測定
両側からの下肢における血流を非接触レーザードップラーを用いて、外科手術前の第−1日に、ならびに手術後第1、7、14、21および28日に測定した。血流測定値を、正常肢における血流に対する虚血肢における血流の比として表した。
【0183】
全ての処置動物群は、ビヒクル処置対照に比べ、第1日と第28日の間で、手術された四肢において血流の著しい増加を示した。表13および図21を参照されたい。ビヒクル処置対照に比べ、デキストラン硫酸で処置した全ての群間で統計的に有意な差があった。
【表13】
【0184】
図21は非接触レーザードップラーにより測定された、非損傷脚と対比したHLI損傷脚の血流の比を示す。異なる群を反復測定のための二元配置ANOVA、続いてボンフェローニ事後検定を用いて比較した。デキストラン硫酸処置群2M、3M、4Mおよび5Mの対照群1Mとの比較により、第14日から第28日まで、統計的に有意な差が明らかになった(P<0.05;**P<0.01;***P<0.001)。
【0185】
虚血重症度
虚血肢を毎週、第7日から第28日まで、壊死性領域に対する段階的な形態学的スケールを用いることにより肉眼により評価した(表4を参照されたい)。デキストラン硫酸およびビヒクルで処置した全ての動物群において、つま先壊死または足切断は見られなかった。
【0186】
四肢機能および虚血性ダメージのインビボ評価
虚血肢の障害された使用の半定量的評価を、外科手術後週1回、表7で提示されたスケールを用いて実施した。スコアリングは、処置について知らされていない人員により実施された。
【0187】
デキストラン硫酸で処置した全ての動物群は、ビヒクル処置対照に比べ、第1日と第28日の間で、四肢機能改善を有した。表14および図22を参照されたい。
【表14】
【0188】
異なる群を、反復測定について二元配置ANOVA、続いてボンフェローニ事後検定を用いて比較した。デキストラン硫酸処置群2M、3M、4Mおよび5Mの対照群1Mとの比較により、第14日から第28日まで、統計的に有意な差が明らかになった(P<0.05;**P<0.01;***P<0.001)。
【0189】
免疫組織化学および毛細血管密度の分析
筋肉試料の4つの切片を群1M、2M、3M、4M、5M由来の6匹の動物の同じ領域から取得し、血管に対し、SMAおよび第8因子に対する抗体を使用して染色した。血管の面積を画像解析を用いて評価した。密度を毛細血管の平均数/視野として表した。総血管は測定した領域内の全ての血管を表した。右虚血肢におけるSMAおよび第8因子陽性毛細血管の数は、全てのデキストラン硫酸処置群2M−5Mにおいて、対照群1Mに比べ、研究の第28日に、より大きかった。図23を参照されたい。SMAおよび第8因子陽性染色はラットにおける小毛細血管形成の指標と考えられ、よって、得られた結果により、デキストラン硫酸で処置した動物群において観察された血流改善が支持された。統計解析を二元配置ANOVA、続いてボンフェローニ多重比較を用いて実施した。**はp<0.05/0.01を示す。
【0190】
血管造影解析
造影剤充填血管間の交差の数を後肢虚血の誘導後28日に、画像解析により決定した。血管造影により、ビヒクル処置対照群に比べ、デキストラン硫酸で処置したラットでは、影響を受けた四肢において有意に多い側枝が明らかになった(一元配置ANOVA、続いてボンフェローニ事後検定により、p<0.01およびp<0.001)。図24および25A〜25Dを参照されたい。
【0191】
血管新生障害は虚血性疾患の特徴の1つである。治療的血管新生のためのほとんどの確立された標的はVEGFおよび受容体であった。しかしながら、虚血を軽減させるための臨床試験は期待外れであり、虚血性疾患を治療するための新しい治療標的の必要性が示された。
【0192】
この研究では、2つの異なる用量および治療レジームでのデキストラン硫酸の効力を評価するために、ラット後肢虚血モデルにおける血流改善を検査した。30および3mg/kgの用量でs.c.にて週3回または第8日での単回投与におけるデキストラン硫酸投与は、ビヒクル処置対照に比べ、外科手術後第14日から、血液灌流を著しく回復させ、四肢機能スコアを改善した。どちらの用量および投与レジメンも有効であった。自発的肢切断またはつま先壊死は処置または対照動物群のいずれにおいても起こらなかった。デキストラン硫酸処置は、処置動物において有害作用を引き起こさなかった。血管造影スコア(側枝動脈拡張の尺度)は、ビヒクル処置群に比べ、デキストラン硫酸で処置した全ての動物群において著しく大きく、様々な処置群間では統計学的な差はなかった。SMAおよび第8因子毛細血管密度もまた、デキストラン硫酸処置後に増加した。集約的に、この研究のデータにより、ラット後肢虚血モデルにおける閉塞性末梢動脈疾患の治療に対するデキストラン硫酸の治療的効力が確認された。
【0193】
以上で記載される実施形態は、本発明の例示的な数例として理解されるべきである。当業者であれば、様々な改変、組み合わせおよび変更が本発明の範囲から逸脱せずに、実施形態に対して可能であることが理解されるであろう。特に、他の構成において、異なる実施形態における異なる部分解を、技術的に可能な場合、組み合わせることができる。しかしながら、本発明の範囲は、添付の特許請求の範囲により規定される。
図1
図2
図3
図4
図5A-5C】
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17A
図17B
図18
図19
図20A
図20B
図20C
図21
図22
図23
図24
図25A
図25B
図25C
図25D