特許第6559700号(P6559700)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イネオス ユーロープ アクチェンゲゼルシャフトの特許一覧

特許6559700酸化又はアンモ酸化反応器用の改良されたエアグリッド設計
<>
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000002
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000003
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000004
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000005
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000006
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000007
  • 特許6559700-酸化又はアンモ酸化反応器用の改良されたエアグリッド設計 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6559700
(24)【登録日】2019年7月26日
(45)【発行日】2019年8月14日
(54)【発明の名称】酸化又はアンモ酸化反応器用の改良されたエアグリッド設計
(51)【国際特許分類】
   B01J 8/44 20060101AFI20190805BHJP
   B01J 33/00 20060101ALI20190805BHJP
   B01J 23/28 20060101ALI20190805BHJP
   C07C 253/26 20060101ALI20190805BHJP
   C07C 255/08 20060101ALI20190805BHJP
   C07B 61/00 20060101ALI20190805BHJP
【FI】
   B01J8/44
   B01J33/00 Z
   B01J23/28 Z
   C07C253/26
   C07C255/08
   C07B61/00 C
【請求項の数】4
【全頁数】12
(21)【出願番号】特願2016-560005(P2016-560005)
(86)(22)【出願日】2015年3月26日
(65)【公表番号】特表2017-512643(P2017-512643A)
(43)【公表日】2017年5月25日
(86)【国際出願番号】US2015022685
(87)【国際公開番号】WO2015153269
(87)【国際公開日】20151008
【審査請求日】2018年3月23日
(31)【優先権主張番号】201410124818.4
(32)【優先日】2014年3月31日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】513099153
【氏名又は名称】イネオス ユーロープ アクチェンゲゼルシャフト
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100168871
【弁理士】
【氏名又は名称】岩上 健
(72)【発明者】
【氏名】マクドネル ティモシー ロバート
(72)【発明者】
【氏名】カウチ ジェイ ロバート
(72)【発明者】
【氏名】ワーグナー ディヴィッド ルドルフ
(72)【発明者】
【氏名】ヴェヒテンドルフ ポール トリッグ
(72)【発明者】
【氏名】トラヴァーズ トーマス ジョージ
【審査官】 松井 一泰
(56)【参考文献】
【文献】 特開2010−168331(JP,A)
【文献】 実開昭58−086239(JP,U)
【文献】 米国特許第05256810(US,A)
【文献】 米国特許第04801731(US,A)
【文献】 米国特許第04300458(US,A)
【文献】 米国特許第04301748(US,A)
【文献】 米国特許第04332218(US,A)
【文献】 国際公開第2013/125639(WO,A1)
【文献】 特開平06−345403(JP,A)
【文献】 特開平09−173821(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 8/00− 8/46
B01J 21/00− 38/74
C07B 31/00− 61/00
C07B 63/00− 63/04
C07C 1/00−409/44
F16L 3/00− 3/26
E04B 1/00− 1/36
E04B 1/62− 1/99
E04B 5/00− 5/48
(57)【特許請求の範囲】
【請求項1】
工業用流動床酸化又はアンモ酸化反応器用の改良されたエアグリッドシステムであって、
前記エアグリッドシステムは、上面、下面及びその間に延びる外縁を定める連続金属プレートを備え、前記連続金属プレートは、プロセス空気を前記連続金属プレートの下方からその上方に向けるための一連のエアホールをさらに定め、前記エアグリッドシステムは、前記連続金属プレート及びその上に置かれる場合がある酸化又はアンモ酸化触媒の重量を支持するための支持システムをさらに備え、
前記支持システムは、各々が前記連続金属プレートの裏面と係合する上側支持面を有する一連の支持梁と、前記連続金属プレートの裏面に固定して取り付けられる一連の支持固定具とを備え、前記支持固定具の各々は、前記連続金属プレートが前記一連の支持梁から持ち上げられるのを防止する方法で、前記支持梁のそれぞれにおいて当該支持梁の上面よりも下方に形成された合わせ面と係合するように配置される、改良されたエアグリッドシステム。
【請求項2】
前記支持梁は、それぞれの上部横方向部分を有するI形梁であり、前記上部横方向部分の各々の裏面は、合わせ面を定め、前記エアグリッドシステムの前記連続金属プレートは、下面を定め、さらに、前記支持固定具は、前記連続金属プレートの前記下面に取り付けられた支持バーを備え、前記支持バーは、前記I形梁の前記上部横方向部分によって定められた前記合わせ面と係合するように配置される突出部を定める端部を有する、請求項1に記載の改良されたエアグリッドシステム。
【請求項3】
工業用流動床酸化及びアンモ酸化反応器におけるエアグリッドシステムの動きを低減するための方法あって、上面、下面、及びその間に延びる外縁を定める連続金属プレートを含むエアグリッドシステムを準備する段階を含み、前記連続金属プレートは、プロセス空気を前記連続金属プレートの下方からその上方に向けるための一連のエアホールをさらに定め、前記方法は、前記連続金属プレートと、前記連続金属プレートの上に置かれる場合がある酸化又はアンモ酸化触媒の重量を支えるための支持システムを準備する段階をさらに含み、
前記支持システムは、各々が前記連続金属プレートの裏面と係合する上側支持面を有する一連の支持梁と、前記連続金属プレートの裏面に固定して取り付けられる一連の支持固定具とを備え、前記支持固定具の各々は、前記連続金属プレートが前記一連の支持梁から持ち上げられるのを防止する方法で前記支持梁のそれぞれにおいて当該支持梁の上面よりも下方に形成された合わせ面と係合するように配置される、工業用酸化及びアンモ酸化反応器におけるエアグリッドシステムの動きを低減するための方法。
【請求項4】
前記支持梁は、それぞれの上部横方向部分を有するI形梁であり、前記上部横方向部分の各々の裏面は、合わせ面を定め、前記エアグリッドシステムの前記連続金属プレートは、下面を定め、さらに、前記支持固定具は、前記連続金属プレートの前記下面に取り付けられた支持バーを備え、前記支持バーは、前記I形梁の前記上部横方向部分によって定められた前記合わせ面と係合するように配置される突出部を定める端部を有する、請求項3に記載の工業用酸化及びアンモ酸化反応器におけるエアグリッドシステムの動きを低減するための方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸化又はアンモ酸化反応器用のエアグリッド設計に関する。
【背景技術】
【0002】
アクリロニトリルの工業的製造では、プロピレン、アンモニア及び酸素を以下の反応スキームに従って一緒に反応させる。
CH2=CH−CH3+NH3+3/2O2→CH2=CH−CN+3H2
一般にアンモ酸化と呼ばれるこのプロセスは、適切な流動床アンモ酸化触媒の存在下で、高温で気相において実行される。
【0003】
図1は、このプロセスを実行するために使用される典型的なアクリロニトリル反応器を示す。図示のように、反応器10は、反応器壁12、エアグリッド14、フィードスパージャ16、冷却コイル及びサイクロン20を備える。通常運転中、給気口22を通して反応器10にプロセス空気を充填するが、プロピレンとアンモニアの混合物は、フィードスパージャ16を通して反応器10に充填される。両方の流量は反応器内部でアンモ酸化触媒の床24を流動化するように十分の高く、プロピレン及びアンモニアのアクリロニトリルへの触媒によるアンモ酸化が生じる。
【0004】
反応により生成された生成ガスは、反応器排出口26を通って反応器10から出る。反応器を出る前に、生成ガスはサイクロン20を通過し、これによって、これらのガスが巻き込んだアンモ酸化触媒は除去されてディップレグ25により触媒床24に戻される。アンモ酸化は発熱性が高いので、冷却コイル18を用いて過剰な熱を除去して反応温度を適切なレベルに保つ。
【0005】
プロピレン及びアンモニアは、酸素と爆発性混合物を形成する可能性がある。しかしながら、通常の動作温度では、爆発が起こる前に優先的にアンモ酸化反応を引き起こす流動アンモニア化触媒によって、爆発は反応器10の内部で阻止される。従って、反応器10は、プロセス空気が通常運転中にプロピレン及びアンモニアと触れることが可能な唯一の場所がアンモ酸化触媒の流動床24の内部であるように設計され、そして触媒温度がアンモ酸化反応を引き起こすのに十分に高い温度である場合にのみ作動する。
【0006】
このために、プロピレン及びアンモニアを反応器10に供給する従来の方法では、米国特許第5,256,810号に示されるようなフィードスパージャシステム16を使用しており、その開示内容は本明細書に参照により組み込まれている。本明細書の図2及び3に複製された米国特許第5,256,810号の図1及び2に示されるように、フィードスパージャ16は、主ヘッダ30と、ヘッダ30に取り付けられかつそれから分岐する側部(lateral)32とを含む一連の供給パイプ又は導管の形態をとる。下方に向く供給ノズル34のシステムは、通常の反応器運転中にプロピレン及びアンモニアの混合物が充填されるヘッダ30と側部32とで規定される。側部32及び供給ノズル34の個数と間隔は、概して、1平方メートルにつき約10から30の供給ノズルが反応器10断面積全体に亘ってほぼ均一に位置するようになっている。
【0007】
通常、各供給ノズル34はフィードシュラウド36によって囲まれ、シュラウド36は、ノズル34の直径より数倍大きい内径を有する導管の短い部分の形態をとる。フィードシュラウド36は、ノズル34から出るガスの速度を触媒床24に流出する前に著しく減速するのを可能にし、そうでなければ生じる場合のある触媒の崩壊を防止する。
【0008】
プロセス空気は一般的に、フィードスパージャ16の下方に位置するエアグリッド14を通過した後で触媒床24(図1)に入る。公知のように、エアグリッド14は一般的に、内部に一連のエアホール又はノズルを定める連続金属シートの形態をとる。エアノズルの直径、エアグリッド14を通過するプロセス空気の質量流量、及びフィードスパージャ16を通過するプロピレン/アンモニア混合物の質量流量は、通常運転中に触媒床24中のアンモ酸化触媒がこれらのガスによって十分に流動化されるように選択される。
【0009】
エアホール76(図5)は一般的にそれ自身の保護エアシュラウド(図示せず)を備え、それは通常、エアグリッド14の下方に位置する。加えて、多くの場合、供給ノズル34はエアグリッド14のエアノズルと1対1の対応関係で設けられ、各フィードシュラウド36は直接その対応するエアノズルに向けられて、これら2つの異なるノズルから出るガスの急速かつ完全な混合を促進する。この用途のために、当該エアノズルはキャップ無し(uncapped)と呼ばれる。米国特許第4,801,731号を参照されたい。別の場合、エアノズルはその上方に直接キャップが組み込まれており、直接フィードシュラウドに向けて垂直方向にではなくてエアグリッドに沿って水平方向に(方向性のある又は均一な方法で)選択的に空気を分散させることができる。これらのキャップは、当該エアノズルの上方に溶着された小型属カバーである。キャップをエアグリッドに取り付ける脚部(leg)のデザインは、水平方向のガス分配パターンを最適化するように選択することができる。また、エアホール上方のこれらのキャップは、流動化状態にある触媒が、(i)エアホールを通って落下すること及び/又は(ii)キャップ上に沈下することがないようにデザインすることができる(例えば、傾斜面をもつこと又は山形鋼で作製すること)。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許第5,256,810号明細書
【特許文献2】米国特許第4,801,731号明細書
【発明の概要】
【発明が解決しようとする課題】
【0011】
この一般型のプロピレン/アンモニア供給システムはうまく機能するが、特定のデメリットを被る場合がある。例えば、フィードスパージャ16から出るプロピレン/アンモニア供給混合物と、エアグリッド14から出る空気との混合が不十分な場合がある。これは反応器の性能を損なう可能性があり、反応物質の生産物への所望の転化が得られないことにつながる。
【0012】
加えて、アンモ酸化触媒により放出されたモリブデンスケールは、取り込まれた触媒の付加量を加えたこのモリブデンスケールの小さな堆積を、小さな触媒堆積の形態でエアグリッド14の上面に蓄積させる場合がある。これらの堆積物は、アンモ酸化が発生し続ける、小型の静止した又は「固定された」触媒床のように作用する。固定された触媒床内部での熱伝達は流動床よりはるかに低いので、これらの触媒堆積物は、偶発的に接近した流動触媒に損傷を与えるのに十分な高い温度を有する局部的なホットスポットを生じる。例えば、これらの温度は、接近する流動触媒の表面をか焼するほど十分に高く、結果として表面積ひいては触媒活性を減少させる。さらに、流動触媒床を形成する個々の粒子は自由にその全体積を循環することができるので、経時的にこれらのホットスポットは反応器内の流動床触媒の充填量全体に損傷を与える可能性がある。
【0013】
付加的なデメリットは、アクリロニトリル反応器の構造に関する機械的な問題が含まれる。典型的な工業用アクリロニトリル反応器は、変動はあるが、約400℃から550℃の比較的に一定の温度で作動する。さらに、アンモ酸化反応器は、定期的に通常の保守、触媒交換などのために、並びに、例えば停電などの予期せぬ混乱のために運転停止する必要がある。通常の運転温度は非常に高いので、反応器が外気温度と運転温度との間を移行する際に、反応器の内部温度の変化は、500℃程度又はそれ以上になる場合がある。この低温と高温との間の繰返しは、反応器を形成する構造部材に、特に相互に連結される箇所に相当の応力を及ぼす場合があり、これは、温度変化による構造部材の固有の伸縮に起因する。経時的に、これらの応力は、特に溶接によって形成された接合部での機械的故障につながる場合がある。
【0014】
例えば、エアグリッド14が反応器10の壁面12に取り付けられる通常の方法を図4に示す。図示のように、内部に一連のホールを備える基本的に平らな金属プレート40の形態のエアグリッド14は、ナックル44によって反応器の壁面12に取り付けられる。図示のように、ナックル44の断面は、凹形金属部の形態であり、上端46は基本的に側壁12と同一平面にあり溶接部48で溶接され、下端50は基本的にエアグリッドプレート40と同一平面上にあり、対向する端部で溶接部52によって溶接される。
【0015】
直径31フィート(およそ9.4m)の大規模な工業用アクリロニトリル反応器では、例えば、エアグリッドプレート40は、反応器の始動及び運転停止の間に経験する温度変化に応じて1/2インチ(1.27cm)だけ水平方向に伸縮する場合がある。これは、ナックル44に、特にナックル44をエアグリッドプレート40及び反応器側壁12に取り付けるために使用される溶接部48及び52に大きな応力を付与する。残念ながら、この応力は経時的に機械的故障につながり、結果的に修理及び/又は交換のための長い停止時間を必要とする。
【0016】
上記の従来型デザインに関連するさらに別のデメリットは、エアグリッドの屈曲に関する。エアグリッド14は、運転停止すると反応器16内部の触媒充填量の重量全体を支持する必要があるので、この重量に対応するためにエアグリッドプレ―ト40を下方から支持する必要がある。通常、これはエアグリッドプレート40が置かれるI型梁システムによって行われる。一部の反応器デザインでは、エアグリッドプレート40はこのI形梁の上に単純に載せられている。残念ながら、このデザインでは、エアグリッドプレート40は通常運転時にばたつく傾向があり、これは、エアグリッドプレートを通過して上方へ移動する空気の力に起因するだけでなく、エアグリッドプレートの温度が通常動作温度まで上昇する場合の固有の膨張にも起因する。別のデザインでは、エアグリッドプレート40は、このI形梁の最上部に溶接される。残念ながら、このデザインでは、上方へ移動する空気の力に加えてエアグリッドプレートの固有の膨張は、これらの溶接部の機械的故障を引き起こす可能性がある。
【課題を解決するための手段】
【0017】
本開示の技術によれば、スパージャシステム16とエアグリッド14との間の距離が6から24インチ(およそ15からおよそ61cm)に、好ましくは8から12インチ(およそ20からおよそ30.5cm)に規制すると、上記の不十分な反応物質の混合並びに局所的ホットスポットの問題がかなり低減されることが分かった。加えて、エアグリッドを反応器の壁面並びにその内部支持梁に取り付けるための修正システムによって、上記のエアグリッドのばたつき及びエアグリッドの機械的故障という問題が本質的に完全に除去可能であることも分かった。
【0018】
従って、1つの特徴による本開示は、アクリロニトリル反応器などの工業用酸化又はアンモ酸化反応器用の改良された供給システムを提供し、C3からC4の不飽和及び/又は飽和炭化水素及びアンモニアを反応器内部に供給するためのフィードスパージャと、反応器内部に空気を供給するためのエアグリッドシステムとを含み、フィードスパージャは、主ヘッダ導管と、主ヘッダ導管に流体的に取り付けられてそこから分岐する側部導管とを備え、主ヘッダ導管と側部導管の両方とも下方を向く供給ノズルを定め、フィードスパージャシステムは、それぞれの供給ノズルと関連するフィードシュラウドをさらに備え、各フィードシュラウドは、それぞれの側部導管又はヘッダ導管に連結される近位端を備えて、その各供給ノズルから出るC3からC4の炭化水素及びアンモニアを反応器内部へ下方に向けるように配置され、エアグリッドシステムは、フィードスパージャシステムの下方に配置される連続金属プレートを備え、連続金属プレートは、プロセス空気を連続金属プレートの下方からその上方へスパージャシステムの方に向けるために内部の一連のエアホールを定め、連続金属プレートの上面とフィードシュラウドの遠位端との間の距離は、約6から24インチ(およそ15cmからおよそ61cm)の間であるように選択される。本明細書で使用される場合、C3からC4の不飽和及び/又は飽和炭化水素は、プロパン、プロピレン、ブタン、ブチレン、及びそれらの混合物を含むC3からC4の炭化水素を指す。
【0019】
別の態様では、酸化又はアンモ酸化反応器を提供するために、C3からC4の飽和及び/又は不飽和炭化水素及びアンモニアを、フィードスパージャを通して反応器内部に供給する段階を含む方法が提供される。フィードスパージャは主ヘッダ導管と主ヘッダ導管に流体的に取り付けられてそこから分岐する側部導管とを含み、主ヘッダ導管と側部導管の両方は下方に向く供給ノズルを定める。フィードスパージャシステムは、それぞれの供給ノズルと関連するフィードシュラウドをさらに備え、各フィードシュラウドは、それぞれの側部導管又はヘッダ導管に連結される近位端を備え、その各供給ノズルから出るC3からC4の炭化水素及びアンモニアをアクリロニトリル反応器の内部へ下方に向けるように配置される。本方法は、エアグリッドシステムを通して反応器内部に空気を供給する段階をさらに含む。エアグリッドシステムは、フィードスパージャシステムの下方に配置される連続金属プレートを備え、連続金属プレートは、プロセス空気を連続金属プレートの下方からその上方へスパージャシステムの方に向けるために内部に一連のエアホールを定める。1つの態様において、連続金属プレートの上面とフィードシュラウドの遠位端との間の距離は、約6から約24インチ(約15から約61cm)の間である。
【0020】
さらに、別の特徴による本開示は、アクリロニトリル反応器などの工業用酸化又はアンモ酸化反応器用の改良されたエアグリッドシステムを提供し、エアグリッドシステムは、上面、下面及びその間に延びる外縁を定める連続金属プレートを備え、連続金属プレートは、プロセス空気を前記連続金属プレートの下方からその上方に向けるための一連のエアホールをさらに定め、エアグリッドシステムは、連続金属プレート及びその上に置かれる場合がある酸化又はアンモ酸化触媒の重量を支持するための支持システムをさらに備え、支持システムは、各々が連続金属プレートの裏面と係合する上側支持面を有する一連の支持梁と、連続金属プレートの裏面に固定して取り付けられる一連の支持固定具とを備え、支持固定具の各々は、連続金属プレートが前記一連の支持梁から持ち上げられるのを防止する方法で支持梁のそれぞれに形成されるに上面の下方の合わせ面と係合するように配置される。
【0021】
別の態様では、工業用酸化及びアンモ酸化反応器におけるエアグリッドシステムの動きを低減するための方法が提供される。本方法は、上面、下面、及びその間に延びる外縁を定める連続金属プレートを含むエアグリッドシステムを準備する段階を含み、連続金属プレートは、プロセス空気を連続金属プレートの下方からその上方に向けるための一連のエアホールをさらに定め、本方法は、連続金属プレートと、連続金属プレートの上に置かれる場合がある酸化又はアンモ酸化触媒の重量を支えるための支持システムを準備する段階をさらに含み、支持システムは、各々が連続金属プレートの裏面と係合する上側支持面を有する一連の支持梁と、連続金属プレートの裏面に固定して取り付けられる一連の支持固定具と、を備え、支持固定具の各々は、連続金属プレートが一連の支持梁から持ち上げられるのを防止する方法で支持梁のそれぞれに形成されるに前記上面の下方の合わせ面と係合するように配置される。
【0022】
加えて、さらに別の特徴による本開示は、アクリロニトリル反応器などの工業用酸化又はアンモ酸化反応器用の改良されたエアグリッドシステムを提供し、改良されたエアグリッドシステムは、上面、下面及びその間に延びる外縁を定める連続金属プレートであって、連続金属プレートは、プロセス空気を連続金属プレートの下方からその上方に位置するスパージャシステムの方に向けるための一連のエアホールをさらに定める連続金属プレートと、連続金属プレートの外周を酸化及びアンモ酸化反応器の側壁に取り付けるための連結組立体と、を備え、連結組立体は、各々が最上部と底部を定める環状金属シートを備える屈曲プレート及び合わせ離隔プレートを備えて、屈曲プレート及び離隔プレートは共に酸化及びアンモ酸化反応器の側壁と本質的に合致して配置されており、離隔プレートは酸化及びアンモ酸化反応器の側壁に取り付けられ、屈曲プレートの底部は連続金属プレートの外周に取り付けられ、さらに屈曲プレートは、離隔プレートの底部の下方に延びる下側部分を定める方法で離隔プレートに取り付けられ、反応器内部の温度変化による連続金属プレートの直径の変動は、屈曲プレートの下側部分の屈曲によって対応できるようになっている。
【0023】
別の態様では、エアグリッドシステムの屈曲に対応する方法が提供され、本方法は、上面、下面及びその間に延びる外縁を定める連続金属プレートであって、連続金属プレートがプロセス空気を連続金属プレートの下方からその上方に向けるために一連のエアホールをさらに定める連続金属プレートと、連続金属プレートの外周を反応器の側壁に取り付けるための連結組立体とを準備する段階を含む。連結組立体は、各々が最上部と底部を定める環状金属シートを備える屈曲プレート及び合わせ離隔プレートを備える。屈曲プレート及び離隔プレートは共に酸化及びアンモ酸化反応器の側壁と本質的に合致して配置され、離隔プレートは酸化及びアンモ酸化反応器の側壁に取り付けられ、屈曲プレートの底部は連続金属プレートの外周に取り付けられ、さらに屈曲プレートは、それが離隔プレートの底部の下方に延びる下側部分を定める方法で離隔プレートに取り付けられて、アクリロニトリル反応器内部の温度変化による連続金属プレートの直径の変動が屈曲プレートの下側部分の屈曲によって対応できるようになっている。
【図面の簡単な説明】
【0024】
図1】アクリロニトリルを製造するために使用される従来型アンモ酸化反応器の反応器部分を示す概略図である。
図2図1のアンモ酸化反応器の従来型スパージャシステムの裏面を示す平面図である。
図3図2の従来型スパージャシステムの供給ノズル及び関連のフィードシュラウドを示す、図2の線3−3に沿う断面図である。
図4】アクリロニトリル反応器のエアグリッドを反応器の壁面に取り付ける従来の方法を説明する図である。
図5】エアグリッド及びフィードスパージャを互いに適切な距離だけ離間させることによって、従来型アクリロニトリル反応器の性能が改善され、並びにアクリロニトリル反応器の特定部分への損傷が低減される、本開示の第1の特徴を説明するアクリロニトリル反応器の部分断面図である。
図6】アクリロニトリル反応器のエアグリッドを支持するために新規の支持システムを備えた本開示の第2の特徴を説明する。
図7】アクリロニトリル反応器のエアグリッド14を反応器の側壁に固定するために特有の連結組立体を備えた本開示の第3の特徴を説明する。
【発明を実施するための形態】
【0025】
図5は、エアグリッド14がフィードスパージャ16から適切な距離だけ、特に6から24インチ(およそ15からおよそ61cm)だけ離間される、本開示の技術の第1の特徴を示す。具体的には、図示のように、フィードスパージャ16は複数のフィードシュラウド60を含み、各々はスパージャシステムのヘッド30又は側部32に定められたそれぞれの供給ノズルと関連する。各フィードシュラウドは、それぞれのヘッダ30又は側部32に連結される近位端62と、そこから遠く離れた遠位端64とを定め、フィードシュラウド60は、プロピレン及びアンモニアをそれぞれの供給ノズルからアクリロニトリル反応器の内部に向かって下方へ、エアグリッド14の方に供給するように配置される。その一方で、エアグリッド14は、フィードスパージャ16の下方に配置される連続金属プレート70の形態であり、上面72、下面74、及びアンモ酸化反応器へ入るプロセス空気を連続金属プレートの下方から上方にフィードスパージャ16の方へ向けるためにそれらの間に延びる一連のエアホール76を定める。
【0026】
本発明のこの特徴によれば、フィードシュラウド60の遠位端64は、連続金属プレート70の上面72から、6から24インチ(およそ15からおよそ61cm)の距離に配置される。好ましくは、フィードシュラウド60の遠位端64は、連続金属プレート70の上面72から、8から12インチ(およそ20からおよそ30.5cm)の距離に配置される。本開示のこの特徴によれば、この手法を採用することによって不十分な反応物質の混合に起因する不十分な反応器性能がほぼ解消できるだけでなく、やはりこの手法を採用することによってアンモ酸化触媒の損傷並びに反応器の局部的ホットスポットから生じる他の問題を解消できるか又は少なくとも実質的に解消できることが分かっている。
【0027】
理論的/概念的な観点から、エアグリッド14とフィードスパージャ16との間の距離を最小にすることが、スパージャ16から出る供給ガスとエアグリッド16から出るプロセス空気との混合を最大限に高めることができるように思われるので、好都合のように思われる。見えるからである。しかしながら、実際には、エアグリッド14とフィードスパージャ16とが接近し過ぎると、前述の反応器ホットスポットの形成を助長する。エアグリッド14とフィードスパージャ16との間の距離が小さすぎる場合、連続金属プレート70のエアホール76の一部又はフィードシュラウド60の遠位端64の一部、又は両方が、本質的に連続金属プレート0の上面に蓄積する触媒/モリブデンスケールの堆積の中に位置することになる。これは、プロピレン、アンモニア及び空気の反応物質が互いにこれらの触媒堆積物の内部で接触するという結果をもたらし、これは固定された触媒床のように作用し、熱伝達が不十分で温度が急速に上昇する。従って、この問題を解決するために、フィードシュラウド60の遠位端64と連続金属プレートの上面72との間で計測されるエアグリッド14とフィードスパージャ16との間の距離は、少なくとも6インチ(およそ15cm)、好ましくは少なくとも約8インチ(およそ20cm)とする必要がある。
【0028】
エアグリッド14とフィードスパージャ16との間の最大距離に関して、約24インチ(およそ61cm)を超える距離では、反応器中の触媒の一部分、特にエアグリッド14とフィードスパージャ16の間に位置する部分が反応のために有効に使用されないことが分かっている。これによりプロピレン及びアンモニアの反応物質の生産物アクリロニトリルへの転換が減少し、明らかに不都合である。従って、これが生じないように、フィードシュラウド60の遠位端64と連続金属プレート70の上面72との間で計測されるエアグリッド14とフィードスパージャ16との間の最大距離は、約24インチ(およそ61cm)を超えない、好ましくは18インチ(およそ45.7cm)を超えない、別の態様では14インチ(およそ35.5cm)を超えない、また別の態様では12インチ(およそ30.5cm)を超えないように維持される。
【0029】
図6は、本開示の技術の第2の特徴を説明しており、エアグリッド14の連続金属プレート70と、該連続金属プレート上に置かれる何らかのアンモ酸化触媒との重量を支持するために、全体として80で示す新規の支持システムを備えている。図示のように、支持システム80は、一連の支持梁82の形態であり、図示の特定実施形態では、従来のI形梁である。各I形梁82は、連続金属プレート70が置かれる上面86を定める上部横方向部分84を含む。加えて、各上部横方向部分86の裏面は、以下で詳細に説明するように、プレート70が保持する支持固定具と係合するための合わせ面88を定める。
【0030】
図6にさらに示すように、連続金属プレート70の裏面には、一連の支持バー90が溶接されており、その各端部は突出部92を定める。図6にさらに示すように、各突出部92は、それぞれのI形梁82の上部横方向部分84の真下に延びて合わせ面88と係合する。この構造により、各支持バー90は、連続金属プレート70をI形梁82の上面86と接触状態に維持する固定具として機能し、結果的に、連続金属プレートが、エアホール76を通って上方へ流れるプロセス空気の力によってI形梁から持ち上がるのを防止する。
【0031】
図6にさらに示すように、始動及び運転停止時に反応器内部で生じる温度変化の結果として本質的に発生する支持バーの長さ変動に対応するために、各支持バー90の端部とI形梁82の対向する部分との間に適切な空間94及び96が設けられている。
【0032】
この構造により、連続金属プレート70は、I形梁82のそれぞれの合わせ面88と係合する支持バー90の突出部92によってI形梁の上面86上にしっかり固定される。理解できるように、支持バー90及び関連する突出部92の代わりに、類似の取付け方法をもたらす他の構造を使用することができる。いずれの場合でも、各支持バー90の端部とI形梁82の対向部分との間に設けられる空間94及び96によって、始動及び運転停止時に反応器10の内部で発生する有意な温度変化の結果として生じる支持バー90の長さ変動は、これらの空間によって対応することが容易である。結果として、支持システム80の機械的故障が著しく解消される。
【0033】
図7は本開示技術の第3の特徴を示し、エアグリッド14の連続金属プレート70の外周部を反応器10の側壁36に固定するために特有の連結組立体を備える。図示のように、全体として100で示される連結組立体は、屈曲プレート102及び合わせ離隔プレート104を備える。屈曲プレート102は、環状形状、特に横方向断面が円筒形状となるように、両端が溶接された細長い金属シートを備える。この形状により、屈曲プレート102は、反応器10の中央部分も同様に円筒形状に形作られるので、エアグリッド14が取り付けられる反応器10の側壁36と本質的に合致する。同様に、離隔プレート104は、環状形状となるように両端が溶接された細長い金属シートを備える。
【0034】
図7にさらに示すように、屈曲プレート102が離隔プレート104の底部112の下方に延びる下側部分114を定めるように、離隔レート104は、屈曲プレート102と反応器10の側壁36との間に配置される。好ましくは、屈曲プレート102の底部110は、離隔プレート104の底部112の下方に約6から約10インチ(約15から約25cm)の距離だけ、より好ましくは約7から約9インチ(約18から約23cm)の距離だけ延びる。
【0035】
図7にさらに示すように、屈曲プレート102の底部110は、好ましくは溶接によってエアグリッド14の連続金属プレート70の外周に取り付けられる。この構造により、始動及び運転停止時に反応器10の内部で発生する有意な温度変化の結果として生じるエアグリッド14の連続金属プレート70の直径の変動は、屈曲プレート102の下側部分114、つまり離隔プレート104の底部112の下方に延びる屈曲プレート102の部分によって対応することが容易になる。結果として、エアグリッド14の連続金属プレート70の外周を反応器10の側壁12に連結する接合部の機械的故障が著しく解消される。
【0036】
本明細書に記述する様々な態様、特に図4−7に示す態様は、様々な大きさの直径を有する反応器に対して利用可能である。好ましい態様では、反応器は約5から約12mまでの、別の態様では約8から約12mまでの、また別の態様では約9から約11mまでの外径を有することができる。別の好ましい実施形態では、約8から約12mまでの、又は約9から約11mまでの反応器外径を用いる場合、エアノズルはキャップ無しであって、空気は反応器の中へ垂直方向に導入され、最も好ましくはフィードシュラウドの方向へ垂直方向に向けられる。別の実施形態では、約8から約12mまでの、又は約9から約11mまでの反応器外径を用いる場合、エアグリッドのエアノズルはキャップされ、空気はキャップにより反応器の中へ水平方向に選択的に分配される。
【0037】
本開示のいくつかの実施形態を本明細書に記述するが、本技術の精神と範囲から逸脱することなく多くの変更形態が可能であることは明らかであろう。このような変更形態のすべてが本技術の範囲内に含まれるように意図し、その範囲は以下の請求項によってのみ限定されるべきである。
【符号の説明】
【0038】
70 連続金属プレート
80 支持システム
82 支持梁(I形梁)
84 I形梁の上部横方向部分
86 I形梁の上面
88 合わせ面
90 支持バー
92 突出部
94 空間
96 空間
図1
図2
図3
図4
図5
図6
図7