特許第6559888号(P6559888)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドの特許一覧

特許6559888端末用充電システム、充電方法及び電源アダプタ
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6559888
(24)【登録日】2019年7月26日
(45)【発行日】2019年8月14日
(54)【発明の名称】端末用充電システム、充電方法及び電源アダプタ
(51)【国際特許分類】
   H02J 7/02 20160101AFI20190805BHJP
   H02M 3/28 20060101ALI20190805BHJP
【FI】
   H02J7/02 B
   H02M3/28 P
【請求項の数】13
【全頁数】45
(21)【出願番号】特願2018-513611(P2018-513611)
(86)(22)【出願日】2017年1月10日
(65)【公表番号】特表2018-527877(P2018-527877A)
(43)【公表日】2018年9月20日
(86)【国際出願番号】CN2017070728
(87)【国際公開番号】WO2017133410
(87)【国際公開日】20170810
【審査請求日】2018年3月14日
(31)【優先権主張番号】PCT/CN2016/073679
(32)【優先日】2016年2月5日
(33)【優先権主張国】CN
(31)【優先権主張番号】201610600612.3
(32)【優先日】2016年7月26日
(33)【優先権主張国】CN
【早期審査対象出願】
【前置審査】
(73)【特許権者】
【識別番号】516227559
【氏名又は名称】グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッド
【氏名又は名称原語表記】GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100120385
【弁理士】
【氏名又は名称】鈴木 健之
(72)【発明者】
【氏名】張 加亮
(72)【発明者】
【氏名】万 世銘
(72)【発明者】
【氏名】張 俊
(72)【発明者】
【氏名】田 晨
(72)【発明者】
【氏名】陳 社彪
(72)【発明者】
【氏名】李 家達
【審査官】 高野 誠治
(56)【参考文献】
【文献】 特開2016−063622(JP,A)
【文献】 中国特許出願公開第104917271(CN,A)
【文献】 特開平04−138506(JP,A)
【文献】 特開平06−165407(JP,A)
【文献】 特開2002−262565(JP,A)
【文献】 特開2010−011563(JP,A)
【文献】 特開2002−027758(JP,A)
【文献】 中国実用新案第203747451(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/00 − 7/12
H02J 7/34 − 7/36
H02M 3/28
(57)【特許請求の範囲】
【請求項1】
充電の過程において、入力された交流電流を整流し第一の脈動波形の電圧を出力する第一の整流手段と、
制御信号に基づいて前記第一の脈動波形の電圧を変調するためのスイッチング手段と、
変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのトランスと、
1次が2次に結合される電圧を整流し第三の脈動波形の電圧を出力する第二の整流手段と、
前記第二の整流手段に接続され、端末の第二の充電インタフェースに接続される時に、電池に接続される前記第二の充電インタフェースを介して前記第三の脈動波形の電圧を前記端末の電池に印加するための第一の充電インタフェースと、
前記第二の整流手段が出力した電圧をサンプリングし、電圧サンプリング値を取得するためのサンプリング手段と、
前記サンプリング手段と前記スイッチング手段にそれぞれ接続され、前記制御信号を前記スイッチング手段に出力し、前記電圧サンプリング値に基づいて前記制御信号のデューティ比を調節し、前記第三の脈動波形の電圧に前記端末の充電の要求を満たさせるための制御手段と、を含み、
前記第一の脈動波形の電圧は負でない脈動波形であり、前記第二の脈動波形の電圧は正負が交代する脈動波形であり、
前記第二の整流手段が整流して出力した第三の脈動波形の電圧の波形と前記第一の脈動波形とは、周期が同一であり、或いは、前記第二の整流手段が整流して出力した第三の脈動波形の電圧の波形の包絡は、前記第一の脈動波形の周期と同一である
ことを特徴とする電源アダプタ。
【請求項2】
前記スイッチング手段と前記制御手段との間に接続され、前記制御信号に基づいて、前記スイッチング手段のオン・オフを駆動するための駆動手段をさらに含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項3】
変調された第一の脈動波形の電圧に基づいて、第四の脈動波形の電圧を生成する補助巻線と
前記補助巻線に接続され、前記第四の脈動波形の電圧を変換し直流電流を出力し、前記駆動手段及び/又は前記制御手段にそれぞれ電力を供給するための電力供給手段と、をさらに含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項4】
前記第二の整流手段の出力電流をサンプリングし、前記電流サンプリング値を取得するための第一の電流サンプリング回路と、
前記第二の整流手段の出力電圧をサンプリングし、以前記電圧サンプリング値を取得するための第一の電圧サンプリング回路と、を含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項5】
前記第一の電圧サンプリング回路は、
前記第三の脈動波形の電圧のピーク電圧をサンプリングし保持するためのピーク電圧サンプリング保持手段と、
前記第三の脈動波形の電圧のゼロクロス点をサンプリングするためのゼロクロスサンプリング手段と、
前記ゼロクロス点時に前記ピーク電圧サンプリング保持手段をリリースアウトするためリリースアウト手段と、
前記ピーク電圧サンプリング保持手段のピーク電圧をサンプリングし、前記電圧サンプリング値を取得するためのADサンプリング手段を含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項6】
前記第一の脈動波形の電圧をサンプリングするための第二の電圧サンプリング回路をさらに含み、
前記第二の電圧サンプリング回路は、前記制御手段に接続され、
前記第二の電圧サンプリング回路がサンプリングした電圧値が、第一の所定電圧値よりも大きい時に、前記制御手段は、前記スイッチング手段をオンに制御し、第一の所定時間の放電動作を行う
ことを特徴とする請求項乃至のいずれか一つに記載の電源アダプタ。
【請求項7】
前記第一の充電インタフェースは、
前記電池を充電するための電源線と、
前記端末と通信するためのデータ線とを含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項8】
前記制御手段は、前記第一の充電インタフェースを介して前記端末と通信し充電モードを特定し、
前記充電モードは、急速充電モードと普通充電モードを含む
ことを特徴とする請求項に記載の電源アダプタ。
【請求項9】
前記制御手段は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し前記急速充電モードで前記端末を充電すると特定した時に、
前記制御手段は、前記端末が前記急速充電モードを開始するかどうか問い合わせるための第一のコマンドを前記端末に送信し、
前記制御手段は、前記端末が前記急速充電モードの開始を許可する前記第一のコマンドの応答コマンドを前記端末から受信する
ことを特徴とする請求項に記載の電源アダプタ。
【請求項10】
前記制御手段は、さらに、前記スイッチング手段を制御することにより、前記電源アダプタに充電電流を前記急速充電モードに対応する充電電流に調整させるように制御するためのものであり、
前記電源アダプタが前記急速充電モードに対応する充電電流により前記端末を充電する前に、前記制御手段が前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電圧を特定し、前記電源アダプタに充電電圧を前記急速充電モードに対応する充電電圧に調整させるように制御する
ことを特徴とする請求項に記載の電源アダプタ。
【請求項11】
前記制御手段は、前記電源アダプタに充電電流を前記急速充電モードに対応する充電電流に調整させるように制御する前に、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定する
ことを特徴とする請求項10に記載の電源アダプタ。
【請求項12】
前記制御手段は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定する時に、
前記制御手段は、前記端末が現在許容する最大充電電流を問い合わせるための第三のコマンドを前記端末に送信し、
前記制御手段は、前記端末が送信した、前記端末が現在許容する最大充電電流を示すための前記第三のコマンドの応答コマンドを受信し、
前記制御手段は、前記第三のコマンドの応答コマンドに基づいて、前記急速充電モードの充電電流を特定する
ことを特徴とする請求項11に記載の電源アダプタ。
【請求項13】
充電の過程において、入力された交流電流を一次整流し第一の脈動波形の電圧を出力すること、
制御信号に基づいて1次側で前記第一の脈動波形の電圧を変調し、且つ変調された前記第一の脈動波形の電圧に基づいて2次側で第二の脈動波形の電圧を出力すること、
1次が2次に結合される第二の脈動波形の電圧を二次整流し第三の脈動波形の電圧を出力すること
端末の第二の充電インタフェースに接続される時に、電池に接続される前記第二の充電インタフェースを介して前記第三の脈動波形の電圧を前記端末の電池に印加すること、
出力された前記第三の脈動波形の電圧をサンプリングし、電圧サンプリング値を取得すること、
前記電圧サンプリング値に基づいて前記制御信号のデューティ比を調節し、前記第三の脈動波形の電圧に前記端末の充電の要求を満たさせること、を含み、
前記第一の脈動波形の電圧は負でない脈動波形であり、前記第二の脈動波形の電圧は正負が交代する脈動波形であり、
前記二次整流して出力した第三の脈動波形の電圧の波形と前記第一の脈動波形とは、周期が同一であり、或いは、前記二次整流して出力した第三の脈動波形の電圧の波形の包絡は、前記第一の脈動波形の周期と同一である
ことを特徴とする端末用充電方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、端末機器の技術分野に関し、特に、端末用充電システム、端末用充電方法及び電源アダプタに関する。
【背景技術】
【0002】
現在、モバイル端末(例えば、スマートフォン)は、ますます消費者に好まれているが、その消費電力量が大きいため、頻繁に充電する必要がある。
【0003】
通常、モバイル端末は、電源アダプタによって充電が行われる。電源アダプタには、一般的に、一次整流回路、一次フィルタ回路、変圧器、二次整流回路、二次フィルタ回路及び制御回路等が含まれているため、電源アダプタは、入力された220Vの交流電力をモバイル端末の要求に適した安定化低電圧直流電力(例えば5V)に変換することで、モバイル端末の電源管理装置及び電池に供給し、モバイル端末の充電を実現するようにしている。
【0004】
しかし、電源アダプタの大電力化につれ、例えば5Wから10W、15W、25W等のより大きい電力へアップグレードした時、それに合わせて、高電力に耐え得るとともにより高い精度の制御を実現可能な電子部品も多く要求され、これは、電源アダプタの体積の増加だけではなく、アダプタの生産コスト及び製造難易度の増加にも繋がる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本願は、以下の課題に対する本発明者の認識及び検討に基づいてなされたものである。
【0006】
本発明者が検討したところ、電源アダプタの大電力化につれ、電源アダプタがモバイル端末の電池を充電する際、電池の分極抵抗の増大を引き起こしやすく、電池の温度が大きく上昇することで、電池の寿命が低下し、電池の信頼性及び安全性に影響することを見出した。
【0007】
そして、通常は、交流電源により給電する際、大多数の機器がそのまま交流電力を用いて動作することができず、これは、交流電力、例えば50Hzの220Vの商用電力は、断続的に電気エネルギーを出力するものであり、「断続」しないようにするためには、電解コンデンサーでのエネルギー蓄積が必要となる。給電における波の谷において、電解コンデンサーのエネルギー蓄積に依存して、給電を継続させ、安定した電気エネルギー供給を維持させるからである。そのため、交流電源は、電源アダプタを介してモバイル端末を充電する際、いずれも、交流電源により供給された交流電力、例えば、220Vの交流電力を安定化された直流電力に変換してからモバイル端末に供給するようにしている。しがしながら、電源アダプタは、モバイル端末の電池を充電することで、間接的にモバイル端末に給電するものであり、給電の継続性は、電池により保証されるので、電源アダプタは、電池を充電する際、安定化された直流電力を連続して出力する必要がなくなる。
【課題を解決するための手段】
【0008】
故に、本発明は、電源アダプタに小型化及びコストの削減を実現できる端末用充電システムを提供することを第一の目的とする。
【0009】
本発明は、電源アダプタを提供することを第二の目的とする。本発明は、端末用充電方法を提供することを第三の目的とする。
【0010】
上記目的の少なくとも一つを解決するために、本発明の第一の側面の実施例は、電源アダプタと端末を含み、前記電源アダプタは、充電の過程において、入力された交流電流を整流し第一の脈動波形の電圧を出力する第一の整流手段と、1次が2次に結合される電圧を整流する第二の整流手段と、を含み、前記第二の整流手段が整流して出力した電流の波形と前記第一の脈動波形とは、周期が同一であり、或いは、前記第二の整流手段が整流して出力した電流の波形の包絡(envelope)は、前記第一の脈動波形の周期と同一であり、前記端末は、前記電源アダプタの出力電圧に基づいて前記端末内の電池を充電する端末用充電システムが提供される。
【0011】
本発明の実施例では、電源アダプタは、1次側の整流用の液体アルミニウム電解コンデンサーを省略し、第一の整流手段に脈動波形の電圧を直接に出力させ、アダプタの体積を小さくすることができる。また、1次側の液体アルミニウム電解コンデンサーは、使用の寿命が比較的に短く、かつ、電池に液漏れが発生しやすいことから、1次側の液体アルミニウム電解コンデンサーを省略することは、アダプタの使用寿命と安全性を大幅に上げるために有効である。
【0012】
上記目的の少なくとも一つを解決するために、本発明の第二の側面の実施例は、充電の過程において、入力された交流電流を整流し第一の脈動波形の電圧を出力する第一の整流手段と、1次が2次に結合される電圧を整流する第二の整流手段と、を含み、前記第二の整流手段が整流して出力した電流の波形と前記第一の脈動波形とは、周期が同一であり、或いは、前記第二の整流手段が整流して出力した電流の波形の包絡は、前記第一の脈動波形の周期と同一である電源アダプタが提供される。
【0013】
本発明の実施例では、電源アダプタは、1次側の整流用の液体アルミニウム電解コンデンサーを省略し、第一の整流手段に脈動波形の電圧を直接に出力させ、アダプタの体積を小さくすることができる。また、1次側の液体アルミニウム電解コンデンサーは、使用の寿命が比較的に短く、かつ、電池に液漏れが発生しやすいことから、1次側の液体アルミニウム電解コンデンサーを省略することは、アダプタの使用寿命と安全性を大幅に上げるために有効である。
【0014】
上記の目的の少なくとも一つを解決するために、本発明の第三の側面実施例は、充電の過程において、入力された交流電流を一次整流し第一の脈動波形の電圧を出力すること、1次が2次に結合される電圧を二次整流することを含み、前記二次整流して出力した電流の波形と前記第一の脈動波形とは、周期が同一であり、或いは、前記二次整流して出力した電流の波形の包絡は、前記第一の脈動波形の周期と同一である端末用充電方法が提供される。
【発明の効果】
【0015】
本発明の実施例では、電源アダプタは、1次側の整流用の液体アルミニウム電解コンデンサーを省略し、第一の整流手段に脈動波形の電圧を直接に出力させ、アダプタの体積を小さくすることができる。また、1次側の液体アルミニウム電解コンデンサーは、使用の寿命が比較的に短く、かつ、電池に液漏れが発生しやすいことから、1次側の液体アルミニウム電解コンデンサーを省略することは、アダプタの使用寿命と安全性を大幅に上げるために有効である。
【図面の簡単な説明】
【0016】
図1A】本発明の一実施例による端末用充電システムがフライバック型スイッチング電源を用いる構成の模式図。
図1B】本発明の一実施例による端末用充電システムがフォワード型スイッチング電源を用いる構成の模式図。
図1C】本発明の一実施例による端末用充電システムがプッシュプル型スイッチング電源を用いる構成の模式図。
図1D】本発明の一実施例による端末用充電システムがハーフブリッジ型スイッチング電源の構成の模式図。
図1E】本発明の一実施例による端末用充電システムがフルブリッジ型スイッチング電源を用いる構成の模式図。
図2A】本発明の実施例による端末用充電システムの構成の模式図。
図2B】本発明の実施例による端末用充電システムの構成の模式図。
図3】本発明の一実施例による電源アダプタが電池に出力した充電電圧の波形の模式図。
図4】本発明の一実施例による電源アダプタが電池に出力した充電電流の波形の模式図。
図5】本発明の一実施例によるスイッチング手段に出力された制御信号の模式図。
図6】本発明の一実施例による急速充電過程の模式図。
図7A】本発明の一実施例による端末用充電システムの構成の模式図。
図7B】本発明の一実施例による電源アダプタにLCフィルタ回路を有する構成の模式図。
図8】本発明の他の一実施例による端末用充電システムの構成の模式図。
図9】本発明のもう一実施例による端末用充電システムの構成の模式図。
図10】本発明のもう一実施例による端末用充電システムの構成の模式図。
図11】本発明の一実施例によるサンプリング手段の構成の模式図。
図12】本発明のもう一実施例による端末用充電システムの構成の模式図。
図13】本発明の一実施例による端末の構成の模式図。
図14】本発明の他の一実施例による端末の構成の模式図。
図15】本発明の実施例による端末用充電方法のフローチャート。
図16A-16B】本発明の実施例の脈動波形の模式図。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態を詳しく説明する。図面は、前記実施形態を例示するものであり、終始同一又は類似の符号は、同一又は類似の素子、もしくは、同一又は類似の機能を持つ素子を示す。以下に図面を参照して説明される実施形態は、例示的なもので、本発明を解釈するためであり、本発明に対する制限になると理解すべきではない。
【0018】
本発明の実施形態に係る端末用充電システム、端末、電源アダプタ及び端末用充電方法を説明する前に、関連技術における充電機器から端末への充電のための電源アダプタを説明する。以下、「関連アダプタ」と称することができる。
【0019】
関連アダプタは、定電圧モードで動作する際、その出力電圧が基本的に一定に維持され、例えば5V、9V、12Vや20V等に一定に維持される。
【0020】
関連アダプタにより出力された電圧は、電池の両端へそのまま印加するのには適しておらず、被充電機器(例えば端末)内の変換回路によって変換しておくことで、被充電機器(例えば端末)内の電池の所望の充電電圧及び/又は充電電流を得る必要がある。前記充電電流は、直流電流が可能である。
【0021】
変換回路は、電池の所望の充電電圧及び/又は充電電流の要求を満たすように、関連アダプタにより出力された電圧を変換するためのものである。
【0022】
一例として、該変換回路は、電池の充電中に、電池の充電電圧及び/又は充電電流を管理するための充電管理モジュール、例えば端末内の充電ICであってもよい。該変換回路は、電池の充電電圧及び/又は充電電流に対する管理を実現するために、電圧フィードバックモジュールの機能、及び/又は、電流フィードバックモジュールの機能を持つ。
【0023】
例えば、電池の充電過程は、トリクル充電段階、定電流充電段階及び定電圧充電段階のいずれか1つ又は複数の段階を含んでもよい。トリクル充電段階において、変換回路は、電流フィードバック回路を利用して、トリクル充電段階で電池に入力される電流が電池の所望の充電電流の大きさ(例えば第一充電電流)を満たすようにしてもよい。定電流充電段階において、変換回路は、電流フィードバック回路を利用して、定電流充電段階で電池に入力される電流が電池の所望の充電電流の大きさ(例えば第二充電電流、該第二充電電流は、第一充電電流よりも大きくてもよい)を満たすようにしてもよい。定電圧充電段階において、変換回路は、電圧フィードバック回路を利用して、定電圧充電段階で電池の両端に印加される電圧が電池の所望の充電電圧の大きさを満たすようにしてもよい。
【0024】
一例として、関連アダプタにより出力された電圧が電池の所望の充電電圧よりも大きい場合、変換回路は、関連アダプタにより出力された電圧に対して降圧変換処理を行うことで、降圧変換して得られた充電電圧が電池の所望の充電電圧の要求を満たすようにするために用いられても良い。更なる一例として、関連アダプタにより出力された電圧が電池の所望の充電電圧よりも小さい場合、変換回路は、関連アダプタにより出力された電圧に対して昇圧変換処理を行うことで、昇圧変換して得られた充電電圧が電池の所望の充電電圧の要求を満たすようにするために用いられても良い。
【0025】
別の一例として、関連アダプタが5Vの定電圧を出力する場合を例にして、電池が単セル(リチウム電池セルを例として、単セルの充電終止電圧は4.2V)を含む場合、変換回路(例えばBuck降圧回路)は、関連アダプタにより出力された電圧に対して降圧変換処理を行うことで、降圧して得られた充電電圧が電池の所望の充電電圧の要求を満たすようにしてもよい。
【0026】
更に別の一例として、関連アダプタが5Vの定電圧を出力する場合を例にして、関連アダプタによって、2つ又はそれ以上の単セルが直列接続されてなる電池(リチウム電池セルを例として、単セルの充電終止電圧は4.2V)を充電する際、変換回路(例えばBoost昇圧回路)は、関連アダプタにより出力された電圧に対して昇圧変換処理を行うことで、昇圧して得られた充電電圧が電池の所望の充電電圧の要求を満たすようにしてもよい。
【0027】
変換回路が回路変換効率の低下により制限を受けることで、変換されなかった分の電気エネルギーが熱量の形で散逸するようになり、この分の熱量は、被充電機器(例えば端末)の内部に溜まってしまう。その一方、被充電機器(例えば端末)は、その設計空間及び放熱空間が、いずれも小さく(例えば、利用者が用いるモバイル端末の物理サイズがますます薄型軽量化していくと同時に、モバイル端末の性能を向上させるために、モバイル端末内に大量の電子部品を密集させて配置している)、これは、変換回路の設計難易度が増加するだけではなく、被充電機器(例えば端末)内に溜まった熱量がタイムリーに放出し難くなり、更には、被充電機器(例えば端末)の異常に繋がる。
【0028】
例えば、変換回路に溜まった熱量は、変換回路付近の電子部品に熱干渉して、電子部品の動作異常を引き起こしてしまう可能性があり、及び/又は、変換回路に溜まった熱量は、変換回路及びその付近の電子素子の寿命を短縮させる可能性があり、及び/又は、変換回路に溜まった熱量は、電池に熱干渉して、更には、電池の充放電異常を引き起こしてしまう可能性があり、及び/又は、変換回路に溜まった熱量は、被充電機器(例えば端末)の温度を上昇させて、使用者の充電時での使用体験に影響してしまう可能性があり、及び/又は、変換回路に溜まった熱量は、変換回路自体を短絡させて、関連アダプタにより出力された電圧を電池の両端にそのまま印加して充電異常を引き起こしてしまう可能性があり、電池が長時間に亘って過電圧充電にある場合に、引いては、電池の爆発を引き起こしてしまう恐れがあり、ある安全リスクがある。
【0029】
これに対して、本発明の実施形態に係る電源アダプタは、電池の現在の電力量情報及び/又は電圧情報を少なくとも含む電池の状態情報を取得可能であり、該電源アダプタは、取得された電池の状態情報に基づいて、電源アダプタ自体の出力電圧を調節することで、電池の所望の充電電圧及び/又は充電電流の要求を満たすようにし、電源アダプタによる調節後に出力された電圧は、電池の両端に直接印加されて電池を充電する(以下に、「直接充電」と称し)ことが可能になる。幾つかの実施例では、該電源アダプタは、脈動波形の電圧を出力することができる。
【0030】
該電源アダプタは、電池の充電電圧及び/又は充電電流に対する管理を実現するために、電圧フィードバックモジュールの機能及び電流フィードバックモジュールの機能を持つ。
【0031】
該電源アダプタは、取得された電池の状態情報に基づいて、それ自体の出力電圧を調節することは、該電源アダプタは、リアルタイムに電池の状態情報を取得可能であり、毎回取得された電池のリアルタイムな状態情報に基づいて、電源アダプタ自体の出力電圧を調節することで、電池の所望の充電電圧及び/又は充電電流を満たすようにすることであってもよい。
【0032】
該電源アダプタは、リアルタイムに取得された電池の状態情報に基づいて、それ自体の出力電圧を調節することは、充電中に電池の充電電圧が上昇していくことにつれ、電源アダプタは、充電中の異なる時刻における電池の現在の状態情報を取得可能であり、電池の現在の状態情報に基づいて、電源アダプタ自体の出力電圧をリアルタイムに調節することで、電池の所望の充電電圧及び/又は充電電流の要求を満たすようにし、電源アダプタによる調節後に出力された電圧は、電池の両端にそのまま印加されて電池を充電することが可能になることであってもよい。
【0033】
例えば、電池の充電過程は、トリクル充電段階、定電流充電段階及び定電圧充電段階のいずれか1つ又は複数の段階を含んでもよい。トリクル充電段階において、電源アダプタは、第一充電電流を出力して電池を充電することで、電池の所望の充電電流の要求を満たすようにしてもよい(幾つかの実施例では、第一充電電流は、脈動波形の電流であってもよい)。定電流充電段階において、電源アダプタは、電流フィードバック回路を利用して、定電流充電段階で電源アダプタにより出力されて電池に入力される電流が電池の所望の充電電流の要求を満たすようにしてもよい(例えば、第二充電電流は、同様に脈動波形の電流であり、該第二充電電流は、第一充電電流よりも大きくても良く、定電流充電段階の脈動波形の電流ピーク値は、トリクル充電段階の脈動波形の電流ピーク値よりも大きくてもよく、定電流充電段階の定電流とは、脈動波形の電流ピーク値又は平均値が基本的に変わらないようなものであってもよい)。定電圧充電段階において、電源アダプタは、電圧フィードバック回路を利用して、定電圧充電段階で電源アダプタにより被充電機器(例えば端末)へ出力される電圧(脈動波形の電圧)を一定に維持させるようにしてもよい。
【0034】
例えば、本発明の実施形態に言及される電源アダプタは、主に、被充電機器(例えば端末)内の電池の定電流充電段階を制御するために用いられても良い。他の実施形態において、被充電機器(例えば端末)内の電池のトリクル充電段階及び定電圧充電段階の制御機能は、本発明の実施形態に言及される電源アダプタと、被充電機器(例えば端末)内の別途の充電チップとによって協同で実現されてもよい。定電流充電段階に比べて、電池がトリクル充電段階及び定電圧充電段階で受ける充電電力は小さいため、被充電機器(例えば端末)内部の充電チップの変換効率損失及び熱量累積は、許容できるものである。説明すべきなのは、本発明の実施形態に言及される定電流充電段階又は定電流段階とは、電源アダプタの出力電流を制御する充電モードであってもよく、必ずしも電源アダプタの出力電流を完全に変わらないように維持させる必要がなく、例えば、電源アダプタにより出力された脈動波形の電流ピーク値又は平均値が、基本的に変わらないように維持されるか、若しくは、ある期間で基本的に変わらないように維持されることを指しても良い。例えば、実際に、電源アダプタは、定電流充電段階において、通常、多段階定電流という方式で充電する。
【0035】
多段階定電流充電(Multi−stage constant current charging)は、N個の定電流段階(Nは2以上の整数)を有してもよく、多段階定電流充電は、所定の充電電流で1番目の段階充電を開始し、前記多段階定電流充電のN個の定電流段階は、1番目の段階から(N−1)番目の段階まで順次に実行され、定電流段階におけるある定電流段階からその次の定電流段階に移行すると、脈動波形の電流ピーク値又は平均値が小さくなってもよく、電池の電圧が充電終止電圧のしきい値に達すると、定電流段階における現在の定電流段階は、その次の定電流段階に移行する。隣接する2つの定電流段階の間の電流変換過程は、漸進的な変化であってもよく、又は、段階状の跳躍的な変化であってもよい。
【0036】
更に、説明すべきなのは、本発明の実施形態に用いられる「端末」は、有線回線接続(例えば、公衆交換電話網(PSTN)、デジタル加入者線(DSL)、デジタルケーブル、直接ケーブル接続、及び/又は別のデータ接続/ネットワーク)、及び/又は、(例えば、セルラーネットワーク、無線LAN(WLAN)、DVB−Hネットワークのようなデジタルテレビネットワーク、衛星ネットワーク、AM−FM放送送信機、及び/又は別の通信端末に対する)無線インターフェースを介して、通信信号を受信/送信するように構成された装置を含んでもよいが、これらに限定されない。無線インターフェースを介して通信するように構成された端末は、「無線通信端末」、「無線端末」及び/又は「モバイル端末」と称しても良い。モバイル端末の例としては、衛星又はセルラー電話があるが、これらに限定されず、セルラー無線電話と、データ処理、ファクス及びデータ通信機能を持つパーソナル通信システム(PCS)の端末とを組み合せてもよく、無線電話、ポケットベル、インターネット/イントラネットアクセス、Webブラウザ、メモ帳、カレンダー及び/又は全地球測位システム(GPS)の受信機を含むPDAであってもよく、更に、通常のラップトップ型及び/又はパームトップ型受信機、若しくは、無線電話トランシーバを含むその他の電子装置であってもよい。
【0037】
また、本発明の実施形態において、電源アダプタにより出力された脈動波形の電圧が端末の電池にそのまま印加されて電池を充電する際、充電電流は、饅頭のような山型の波(饅頭状波)の脈動波の形で表現され、理解できるように、充電電流は、間欠的な形で電池を充電し、該充電電流の周期は、入力交流電力、例えば交流電力網の周波数によって変化するものであり、例えば、充電電流の周期に対応する周波数は、電力網周波数の整数倍又は逆数倍となる。そして、充電電流が間欠的な形で電池を充電する場合、該充電電流に対応する電流波形は、電力網と同期した1つ又は複数のパルスで構成されてもよい。
【0038】
一例示として、本発明の実施例では、電池が充電される過程(例えばトリクル充電段階、定電流充電段階及び定電圧充電段階の少なくとも一つ)では、アダプタが出力した脈動直流電流(向きが変化しないが、電流値が時間と共に変化するもの)、交流電流(向き及び電流値の何れも時間と共に変化するもの)或いは直流電流(即ち、電流値及び向きの何れも時間と共に変化しない一定の直流電流である)を受け取ることができる。
【0039】
関連アダプタは、1次側に以下の欠点を有する複数の液体アルミニウム電解コンデンサーを含む。第一に、液体アルミニウム電解コンデンサーは、体積が比較的に大きいため、アダプタの体積が大きくなる。第二に、液体アルミニウム電解コンデンサーは、形状が一般的に円柱体であり、円柱体が回路板に占める面積が大きいため、アダプタ内部の回路基板全体に配線が難しくなる。第三に、液体アルミニウム電解コンデンサーは、使用の寿命が短いため、アダプタの使用寿命も短くなる。第四に、液体アルミニウム電解コンデンサーには、液漏れの現象があり、液漏れが発生すると、漏れた電解液が電気伝導体となるため、アダプタに危険が与えられてしまう。
【0040】
本発明の実施例は、上記問題の少なくとも一つを解決するために、図2Aに示すように、電源アダプタ1と端末2を含む端末用充電システムを提供する。
【0041】
電源アダプタ1は、第一の整流手段101と第二の整流手段104を含む。
【0042】
第一の整流手段101は、充電の過程に入力された交流電流を整流し第一の脈動波形の電圧を出力するためのものである。
【0043】
第二の整流手段104は、1次が2次に結合される電圧を整流する図1A乃至1Dに示したように、1次側に入力された電圧を転換して2次側から出力された電圧を整流する)ためのものである。第二の整流手段104が整流して出力した電流の波形と第一の脈動波形と、周期が同一であり、或いは、第二の整流手段104が整流して出力した電流の波形の包絡は、第一の脈動波形の周期と同一である。
【0044】
端末2は、電源アダプタの出力電圧に基づいて端末2内の電池202を充電する。
【0045】
本発明の実施例では、電源アダプタは、1次側における整流用の液体アルミニウム電解コンデンサーが省略されたため、第一の整流手段が脈動波形の電圧を直接に出力して、アダプタの体積を小さくすることができる。また、1次側の液体アルミニウム電解コンデンサーの使用寿命が短く、かつ、液漏れが発生しやすいため、1次側の液体アルミニウム電解コンデンサーを省略することは、アダプタの使用寿命と安全性を大幅に向上させることができる。
【0046】
第二の整流手段104が整流して出力した電流の波形と第一の脈動波形とは、周期が同一であることは、第二の整流手段104が整流して出力した電流の波形と第一の脈動波形とが同期していることを指してもよい。
【0047】
第二の整流手段104が整流して出力した電流の波形の包絡は、第一の脈動波形の周期と同一であることは、第二の整流手段104が出力した電流の波形の包絡が第一の脈動波形と同期していることを指してもよい。
【0048】
理解すべきことは、第二の整流手段104が整流して出力した電流の波形又は波形の包絡は、完全な脈動波形であってもよいし、ピークカット処理された脈動波形(具体的に、図16Bを参照し、T形と類似するもの)であってもよい。
【0049】
幾つかの実施例では、第二の整流手段104が出力した電流を、直接に電源アダプタ1が出力した電流として、出力することができる。他の幾つかの実施例では、第二の整流手段104が出力した電流波形又は電流波形の包絡について各種類の波形変換を行い、波形変換された電流を電源アダプタ1の出力電流としてもよい。例えば、第二の整流手段104が出力した電圧波形/電流波形を矩形波、三角波などの波形に変換し、矩形波の波形の電流又は三角波の波形の電流を出力してもよい。電流波形を変化させる形態は、複数ある。例えば、第二の整流手段104が出力した電流波形の形状を変更するように、第二の整流手段104の後ろにスイッチ、コンデンサーなどの素子を設置することができる。
【0050】
同様に、第二の整流手段104が出力した電圧を、直接に電源アダプタ1の出力電圧としてもよいし、第二の整流手段104が出力した電圧波形又は電圧波形の包絡について各種類の変換を行い、波形変換された電圧を電源アダプタ1の出力電圧としてもよい。以下には、主に、電源アダプタ1が第三の脈動波形の電圧を出力することを例として説明するが、本発明の実施例は、これに限定されていない。
【0051】
理解すべきことは、本発明の実施例が説明する一つ又は複数の脈動波形の電圧は、負でない脈動波形(例えば、第一の脈動波形)であってもよいし、正負が交代する脈動波形(例えば、第二の脈動波形)であってもよい。さらに、本発明の実施例が説明する一つ又は複数の脈動波形は、具体的に、マクロや全体の傾向から見れば、脈動の形式を呈している一方、ミクロから見れば、継続して変化してもよいし、継続しなくてもよい。例えば、第二の脈動波形の電圧と第三の脈動波形の電圧は、スイッチング手段102によりチョッパ処理されたものである。2次フィルタ処理を行わなかった場合には、ミクロから見れば、この第二の脈動波形又は第三の脈動波形は、複数の小さい間欠パルスからなるが、全体から見れば、この電圧の波形は、依然として脈動形式の波形である。従って、本発明の実施例は、全体又はマクロからみれば脈動となる波形を脈動波形と称する。言い換えれば、本発明の実施例が説明した一つ又は複数の脈動波形の電圧は、電圧の包絡が脈動波形を呈している。さらに、本発明の実施例では、一つ又は複数の脈動波形が完全な脈動波形であってもよく、ピークカット処理された脈動波形であってもよい。例えば、第三の脈動波形の電圧のピークは、図16Aに示すような完全な脈動波形であってもよく、図16Bに示すようなピークカット処理された脈動波形であってもよい。さらに、充電の過程では、電池の両端の電圧は、脈動波形の電圧をクランプする役割を有する。本発明の実施例では、一つ又は複数の脈動波形は、クランプされて形成された脈動波形(具体的波形は、図3に示すものである)であってもよく、第三の脈動波形の電圧は、充電過程において、例えばクランプされた脈動波形であってもよい。
【0052】
以下には、図面を参照して本発明の実施例に記載される端末用充電システム、電源アダプタ及び端末用充電方法を説明する。
【0053】
図1A乃至図14に示すように、本発明の実施例に記載される端末用充電システムは、電源アダプタ1と端末2を含む。
【0054】
図2Bに示すように、電源アダプタ1は、第一の整流手段101、スイッチング手段102、トランス103、第二の整流手段104、第一の充電インタフェース105、サンプリング手段106と制御手段107を含む。第一の整流手段101は、入力された交流電流(商用電力、例えばAC220V)を整流し、例えば饅頭のような山型の波(饅頭状波)電圧である第一の脈動波形の電圧を出力するためのものである。なお、図1Aに示すように、第一の整流手段101は、四つのダイオードからなるフルブリッジ整流回路であってもよい。スイッチング手段102は、制御信号に基づいて第一の脈動波形の電圧を変調するためのものである。なお、スイッチング手段102がMOS電界効果トランジスタからなり、MOS電界効果トランジスタをPWM(PulseWidthModulation、パルス幅変調)制御し饅頭状波電圧をチョッパ変調するためのものである。トランス103は、変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものであり、第二の整流手段104は、前記第二の脈動波形の電圧を整流し第三の脈動波形の電圧を出力するためのものである。なお、第二の整流手段104は、ダイオード又はMOS電界効果トランジスタからなり、2次側への同期整流を実現でき、第三の脈動波形と変調された第一の脈動波形とを同期に維持することができる。説明すべきことは、第三の脈動波形と変調された第一の脈動波形を同期に維持することは、具体的に、第三の脈動波形の位相を、変調された第一の脈動波形の位相を一致するように維持し、第三の脈動波形の幅と変調された第一の脈動波形の幅とを、変化の傾向が一致するように維持することを意味する。第一の充電インタフェース105は、第二の整流手段104に接続される。サンプリング手段106は、第二の整流手段104が出力した電圧及び/又は電流をサンプリングし、電圧サンプリング値及び/又は電流サンプリング値を取得するためのものである。制御手段107は、サンプリング手段106とスイッチング手段102とにそれぞれ接続され、制御手段107は、制御信号をスイッチング手段102に出力し、電圧サンプリング値及び/又は電流サンプリング値に基づいて制御信号のデューティ比を調節し、この第二の整流手段104が出力した第三の脈動波形の電圧に充電の要求を満たさせるためのものである。
【0055】
図2Bに示すように、端末2は、第二の充電インタフェース201と電池202を含み、第二の充電インタフェース201が電池202に接続され、第二の充電インタフェース201が第一の充電インタフェース105に接続される時に、第二の充電インタフェース201は、第三の脈動波形の電圧を電池202に印加し、電池202を充電する。
【0056】
本発明の一実施例において、図1Aに示すように、電源アダプタ1は、フライバック型スイッチング電源を用いてもよい。具体的に、トランス103は、1次巻線と2次巻線を含み、1次巻線の一側が第一の整流手段101の第一の出力端に接続され、第一の整流手段101の第二の出力端が接地され、1次巻線の他側がスイッチング手段102に接続され(例えば、このスイッチング手段102は、MOS電界効果トランジスタである場合に、1次巻線の他側がMOS電界効果トランジスタのドレイン電極に接続され)、トランス103は、変調された第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものである。
【0057】
なお、トランス103は、高周波トランスであり、その動作の周波数が50KHz−2MHzであり、高周波トランスは、変調された第一の脈動波形の電圧を2次に結合し、2次巻線により出力するためのものである。本発明による実施例では、高周波トランスを採用し、高周波トランスの体積が低周波トランス(低周波トランスは、低周波変成器と称し、低周波は、主に商用電力の周波数を意味し、例えば、50Hzや60Hzの交流電流の周波数を意味する)よりも小さい特徴により、電源アダプタ1の小型化を実現することができる。
【0058】
本発明による一実施例は、図1Bに示すように、上記電源アダプタ1は、フォワード型スイッチング電源を採用してもよい。具体的に、トランス103は、第一巻線、第二巻線と第三巻線を含み、第一巻線の同極性側が逆ダイオードにより第一の整流手段101の第二の出力端に接続され、第一巻線の逆極性側が第二巻線の同極性側に接続された後に第一の整流手段101の第一の出力端に接続され、第二巻線の逆極性側がスイッチング手段102に接続され、第三巻線が第二の整流手段104に接続される。なお、逆ダイオードは、逆方向ピークカットの役割を担い、第一巻線による誘導起電力は、逆ダイオードにより逆起電力をリミッタし、リミッタされたエネルギーを第一の整流手段の出力に戻り、第一の整流手段の出力を充電し、且つ、第一巻線を流す電流による電磁界は、トランスの鉄心を消磁させ、トランスの鉄心における電磁界の強度を初期状態に戻すことができる。トランス103は、変調された第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものである。
【0059】
本発明による一実施例は、図1Cに示すように、上記電源アダプタ1は、プッシュプル型スイッチング電源を採用してもよい。具体的に、前記トランスは、第一巻線、第二巻線、第三巻線及び第四巻線を含み、前記第一巻線の同極性側が前記スイッチング手段に接続され、前記第一巻線の逆極性側が前記第二巻線の同極性側に接続され後に前記第一の整流手段の第一の出力端に接続され、前記第二巻線の逆極性側が前記スイッチング手段に接続され、前記第三巻線の逆極性側が前記第四巻線の同極性側に接続され、前記トランスは、変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものである。
【0060】
図1Cに示すように、スイッチング手段102は、第一のMOS電界効果トランジスタQ1と第二のMOS電界効果トランジスタQ2を含み、トランス103は、第一巻線、第二巻線、第三巻線と第四巻線を含み、第一巻線の同極性側がスイッチング手段102における第一のMOS電界効果トランジスタQ1のドレイン電極に接続され、第一巻線の逆極性側が第二巻線の同極性側に接続され、かつ、第一巻線の逆極性側と第二巻線の同極性側との間のノードが第一の整流手段101の第一の出力端に接続され、第二巻線の逆極性側がスイッチング手段102における第二のMOS電界効果トランジスタQ2のドレイン電極に接続され、第一のMOS電界効果トランジスタQ1のソース電極は、第二のMOS電界効果トランジスタQ2のソース電極に接続され後に第一の整流手段101の第二の出力端に接続され、第三巻線の同極性側が第二の整流手段104の第一の入力端に接続され、第三巻線の逆極性側が第四巻線の同極性側に接続され、かつ、第三巻線の逆極性側と第四巻線の同極性側との間のノードに接地、第四巻線の逆極性側が第二の整流手段104の第二の入力端に接続される。
【0061】
図1Cに示すように、第二の整流手段104の第一の入力端は、第三巻線の同極性側に接続され、第二の整流手段104の第二の入力端は、第四巻線の逆極性側に接続され、第二の整流手段104は、前記第二の脈動波形の電圧を整流し第三の脈動波形の電圧を出力するためのものである。第二の整流手段104は、二つのダイオードを含み、一つのダイオードのアノードは、第三巻線の同極性側に接続され、もう一つのダイオードのアノードは、第四巻線の逆極性側に接続され、二つダイオードは、カソードが接続される。
【0062】
本発明による一実施例は、図1Dに示すように、上記電源アダプタ1は、ハーフブリッジ型スイッチング電源を採用してもよい。具体的に、スイッチング手段102は、第一のMOS電界効果トランジスタQ1、第二のMOS電界効果トランジスタQ2と第一のコンデンサーC1、第二のコンデンサーC2を含み、第一のコンデンサーC1と第二のコンデンサーC2は、直列接続された後に第一の整流手段101の出力端に並列接続され、第一のMOS電界効果トランジスタQ1と第二のMOS電界効果トランジスタQ2は、直列接続された後に第一の整流手段101の出力端に並列接続され、トランス103は、第一巻線、第二巻線、第三巻線を含み、第一巻線の同極性側は、直列接続される第一のコンデンサーC1と第二のコンデンサーC2との間のノードに接続され、第一巻線の逆極性側は、直列接続される第一のMOS電界効果トランジスタQ1と第二のMOS電界効果トランジスタQ2との間のノードに接続され、第二巻線の同極性側は、第二の整流手段104の第一の入力端に接続され、第二巻線の逆極性側は、第三巻線の同極性側に接続された後に接地され、第三巻線の逆極性側は、第二の整流手段104の第二の入力端に接続される。トランス103は、変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものである。
【0063】
本発明による一実施例は、図1Eに示すように、上記電源アダプタ1は、フルブリッジ型スイッチング電源をさらに採用してもよい。具体的に、スイッチング手段102は、第一のMOS電界効果トランジスタQ1、第二のMOS電界効果トランジスタQ2、第三のMOS電界効果トランジスタQ3、第四のMOS電界効果トランジスタQ4を含み、第三のMOS電界効果トランジスタQ3は、第四のMOS電界効果トランジスタQ4に直列接続された後に第一の整流手段101の出力端に並列接続され、第一のMOS電界効果トランジスタQ1は、第二のMOS電界効果トランジスタQ2に直列接続された後に第一の整流手段101の出力端に並列接続され、トランス103は、第一巻線、第二巻線及び第三巻線を含み、第一巻線の同極性側は、直列接続される第三のMOS電界効果トランジスタQ3と第四のMOS電界効果トランジスタQ4との間のノードに接続され、第一巻線の逆極性側は、直列接続される第一のMOS電界効果トランジスタQ1と第二のMOS電界効果トランジスタQ2との間のノードに接続され、第二巻線の同極性側は、第二の整流手段104の第一の入力端に接続され、第二巻線の逆極性側は、第三巻線の同極性側に接続された後に接地され、第三巻線の逆極性側は、第二の整流手段104の第二の入力端に接続される。トランス103は、変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのものである。
【0064】
従って、本発明の実施例では、上記電源アダプタ1は、フライバック型スイッチング電源、フォワード型スイッチング電源、プッシュプル型スイッチング電源、ハーフブリッジ型スイッチング電源とフルブリッジ型スイッチング電源のいずれか一つを採用して脈動波形の電圧を出力してもよい。
【0065】
さらに、図1Aに示すように、第二の整流手段104は、トランス103の2次巻線に接続され、第二の整流手段104は、第二の脈動波形の電圧を整流し第三の脈動波形の電圧を出力するためのものである。なお、第二の整流手段104は、ダイオードからなり、第三の脈動波形と、変調された第一の脈動波形とを同期に維持するように、2次同期整流を実現する。説明すべきことは、第三の脈動波形と変調された第一の脈動波形とを同期に維持することは、具体的に、第三の脈動波形と変調された第一の脈動波形とを、位相が一致するように維持し、第三の脈動波形と変調された第一の脈動波形とを幅の変化傾向が一致するように維持することを意味する。第一の充電インタフェース105は、第二の整流手段104に接続され、サンプリング手段106は、第二の整流手段104が出力した電圧及び/又は電流をサンプリングし、電圧サンプリング値及び/又は電流サンプリング値を取得するためのものである。制御手段107は、サンプリング手段106とスイッチング手段102にそれぞれ接続され、制御手段107は、制御信号をスイッチング手段102に出力し、電圧のサンプリング値及び/又は電流のサンプリング値に基づいて制御信号のデューティ比を調節し、この第二の整流手段104が出力した第三の脈動波形の電圧に充電の要求を満たさせるためのものである。
【0066】
図1Aに示すように、端末2は、第二の充電インタフェース201と電池202を含み、第二の充電インタフェース201が電池202に接続され、なお、第二の充電インタフェース201は、第一の充電インタフェース105に接続される時に、第三の脈動波形の電圧を電池202に印加し、電池202を充電する。
【0067】
なお、説明すべきことは、第三の脈動波形の電圧に充電の要求を満たさせることは、第三の脈動波形の電圧と電流が、電池を充電する際の充電電圧と充電電流を満たすことを意味する。つまり、制御手段107は、サンプリングされた、電源アダプタが出力した、電圧及び/又は電流に基づいて例えばPWM信号のデューティ比の制御信号を調節し、リアルタイムに第二の整流手段104の出力を調整し、閉回路を調節するように制御し、第三の脈動波形の電圧に端末2の充電の要求を満たさせ、電池202を安全かつ確実に充電させる。具体的に、図3に示すように、PWM信号のデューティ比により電池202に出力された充電電圧波形を調節し、図4に示すように、PWM信号のデューティ比により、電池202に出力された充電電流波形を調節する。
【0068】
理解可能なことは、PWM信号のデューティ比を調節するときに、電圧サンプリング値、電流サンプリング値、或いは、電圧サンプリング値と電流サンプリング値に基づいて調節用のコマンドを生成することができる。
【0069】
従って、本発明による実施例では、制御スイッチング手段102により、整流された第一の脈動波形の電圧である饅頭状波電圧についてPWMチョッパ変調を直接に行い、高周波トランスに出力し、高周波トランスにより1次が2次に結合され、そして同期して整流した後に、饅頭状波電圧/電流に戻り、直接に電池へ出力し、電池に対する急速充電を実現することができる。なお、饅頭状波の電圧値は、PWM信号のデューティ比に基づいて調節され、電源アダプタの出力に電池の充電の要求を満たさせることを実現する。故に、本発明の実施例の電源アダプタは、1次と2次の電解コンデンサーを省略し、饅頭状波電圧により電池を直接充電することにより、電源アダプタの体積を小さくすることができると共に、電源アダプタを小型化させ、コストを大幅に削減させることができる。
【0070】
なお、本発明の一つ具体的な例示では、制御手段107は、スイッチ駆動制御機能、同期整流機能、電圧電流調節制御機能が集積されるマイクロプロセッサであるMCU(MicroControllerUnit)であってもよい。
【0071】
本発明による一実施例では、制御手段107は、電圧サンプリング値及び/又は電流サンプリング値に基づいて制御信号の周波数を調節するためのものである。即ち、スイッチング手段102に出力されるPWM信号を、継続的にある時間出力させた後に、出力を所定時間停止させた後に、PWM信号の出力を再度開始するように制御し、電池に印加された電圧を間欠的なものにして、電池を間欠的充電することにより、電池が継続に充電される場合に発熱が深刻問題になり安全に影響が与えられてしまうことを避け、電池を充電する信頼性と安全性を向上させることができる。
【0072】
リチウム電池は、低温を条件とすると、リチウム電池自体のイオンと電子に電気伝導の能力が降下することにより、充電過程に分極程度が深刻となり、継続充電する形態にこの分極の現象がより明らかに現れ、同時にリチウム析出の可能性が高くなり、電池の安全性能に影響を与えてしまう。しかも、継続充電は、充電による熱量が次第に蓄積され、電池内部の温度が次第に上がり、温度があるしきい値を超えた時に、電池性能の発揮に制限を掛け、それと共に、安全性のリスクが高くなる。
【0073】
本発明の実施例では、制御信号の周波数を調節することにより、電源アダプタを間欠に出力させ、即ち、電池充電の過程に電池休眠過程を導入し、継続充電時に分極によるリチウム析出現象を緩和させ、かつ、熱量の継続蓄積による影響を抑制し、降温の効果を実現し、電池充電の確実性と安全性を確保することができる。
【0074】
なお、スイッチング手段102に出力された制御信号は、図5に示すように、まず、PWM信号を継続してある時間に出力させ、そして、出力をある時間に停止させ、PWM信号を継続してある時間に出力させ、スイッチング手段102に出力された制御信号を間欠に、かつ、周波数を調整できるようにすることができる。
【0075】
図1Aに示すように、制御手段107が第一の充電インタフェース105に接続され、制御手段107は、さらに、第一の充電インタフェース105を介して端末2と通信し端末2の状態情報を取得するためのものである。そして、制御手段107は、さらに、端末の状態情報、電圧サンプリング値及び/又は電流サンプリング値に基づいて例えばPWM信号のデューティ比の制御信号を調節するためのものである。
【0076】
なお、端末の状態情報は、前記電池の電力量、前記電池の温度、前記電池の電圧、前記端末のインタフェース情報、前記端末の回路インピーダンスの情報などを含む。
【0077】
具体的に、第一の充電インタフェース105は、電池を充電するための電源線、及び、端末と通信するためのデータ線を含む。第二の充電インタフェース201が第一の充電インタフェース105に接続される時に、電源アダプタ1と端末2との間に通信問い合わせコマンドを互いに送信し、対応する応答コマンドを受信した後に、電源アダプタ1と端末2との間に通信の接続を形成することができる。制御手段107は、端末2の状態情報を取得し、端末2との充電モード及び充電パラメータ(例えば、充電電流や充電電圧)を特定し、充電の過程を制御する。
【0078】
なお、電源アダプタ及び/又は端末が許容する充電モードは、普通充電モードと急速充電モードを含む。急速充電モードは、充電速度が普通充電モードよりも大きい(例えば、急速充電モードは、充電電流が普通充電モードよりも大きい)。一般的に、普通充電モードは、定格出力電圧が5Vであり、定格出力電流が2.5A以下の充電モードである。また、普通充電モードでは、電源アダプタに出力ポートにおけるデータ線のD+とD−を短絡する可能性がある。しかしながら、本発明の実施例に、急速充電モードでは、短絡の可能性が無くなる。本発明の実施例に、急速充電モードでは、電源アダプタがデータ線のD+とD−により、端末と通信しデータを受送信し、つまり、電源アダプタと端末との間に急速充電コマンドを互いに送信することができる。電源アダプタは、急速充電問い合わせコマンドを端末に送信し、端末の急速充電応答コマンドを受信したら、端末の応答コマンドに基づいて、端末の状態情報を取得し、急速充電モードを開始する。急速充電モードでは、充電電流が2.5Aよりも大きくてもよい、例えば、4.5A或いは更なる大きい値に達してもよい。しかし、本発明の実施例は、普通充電モードが具体的に限定されておらず、電源アダプタに二つの充電モードを有し、一つの充電モードは、充電速度(又は電流)がもう一つの充電モードより大きければ、充電速度が遅い充電モードを普通充電モードとして理解してもよい。
【0079】
言い換えれば、制御手段107は、第一の充電インタフェース105を介して端末2と通信して急速充電モードと普通充電モードを含む充電モードを特定する。
【0080】
具体的に、前記電源アダプタと端末がユニバーサルシリアルバス(UniversalSerialBus、USB)インタフェースを介して接続され、このUSBインタフェースは普通のUSBインタフェースであってもよく、microUSBインタフェースであってもよい。USBインタフェースのデータ線である第一の充電インタフェースのデータ線は、前記電源アダプタと前記端末との双方向通信に用いられ、このデータ線は、USBインタフェースにおけるD+線及び/又はD−線であり、双方向通信とは、電源アダプタと端末が両者に情報のやり取りを行うことを意味する。
【0081】
なお、前記電源アダプタは、前記USBインタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードを特定して前記端末を充電する。
【0082】
説明すべきことは、電源アダプタと端末が急速充電モードで前記端末を充電するかどうかを特定する過程では、電源アダプタは、充電せずに端末との接続を維持している状態を意味してもよく、普通充電モードで端末を充電したり、小電流により端末を充電したりすることもよい。本発明の実施例は、それに具体的に限定されていない。
【0083】
前記電源アダプタは、充電電流を前記急速充電モードに対応する充電電流に調整し、前記端末を充電する。電源アダプタは、急速充電モードで端末を充電すると特定した後に、直接に充電電流を急速充電モードに対応する充電電流に調整してもよく、端末と協議して急速充電モードの充電電流を特定してもよい。例えば、端末における電池の現在電力量に基づいて急速充電モードに対応する充電電流を特定することができる。
【0084】
本発明の実施例では、電源アダプタがむやみに出力電流を増加させて急速充電を行うことなく、端末と双方向通信し、急速充電モードを採用するかどうかを特定する必要がある。故に、従来技術に比べると急速充電過程の安全性を向上させることができる。
【0085】
選択的に、一実施例として、制御手段107は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し前記急速充電モードを特定して前記端末を充電する時に、前記制御手段は、前記端末が前記急速充電モードを開始するかどうかを問い合わせるための第一のコマンドを前記端末に送信し、前記制御手段は、前記端末が前記急速充電モードの開始を許可する旨を示すための前記第一のコマンドの応答コマンドを前記端末から受信する。
【0086】
選択的に、一実施例として、前記制御手段が前記端末に前記第一のコマンドを送信する前に、前記電源アダプタと前記端末との間に前記普通充電モードで充電され、前記制御手段は、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きいと特定した後に、前記端末に前記第一のコマンドを送信する。
【0087】
理解すべきことは、電源アダプタは、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きいと特定した後に、電源アダプタは、端末が自体を電源アダプタとして識別し、急速充電問い合わせ通信を開始することが可能であると判断することができる。
【0088】
選択的に、一実施例として、前記電源アダプタは、予め設定された電流しきい値以上の充電電流で所定時間充電されたと特定した後に、前記端末に前記第一のコマンドを送信する。
【0089】
選択的に、一実施例として、前記制御手段は、さらに、前記スイッチング手段を制御することにより前記電源アダプタに充電電流を前記急速充電モードに対応する充電電流に調整させるように制御し、前記電源アダプタが前記急速充電モードに対応する充電電流で前記端末を充電する前に、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電圧を特定し、前記電源アダプタに充電電圧を前記急速充電モードに対応する充電電圧に調整させるように制御するためのものである。
【0090】
選択的に、一実施例として、前記制御手段は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電圧を特定する時に、前記制御手段は、前記電源アダプタの現在出力電圧を前記急速充電モードの充電電圧として適当であるかどうかを問い合わせるための第二のコマンドを前記端末に送信し、前記制御手段は、前記端末が送信した、前記電源アダプタの現在出力電圧が適当であるか、高いか又は低いかを示すための前記第二のコマンドの応答コマンドを受信し、前記制御手段は、前記第二のコマンドの応答コマンドに基づいて、前記急速充電モードの充電電圧を特定する。
【0091】
選択的に、一実施例として、前記制御手段は、前記電源アダプタを制御し充電電流を前記急速充電モードに対応する充電電流に調整する前に、さらに、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定する。
【0092】
選択的に、一実施例として、前記制御手段は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定する時に、前記制御手段は、前記端末が現在許容する最大充電電流を問い合わせるための第三のコマンドを前記端末に送信し、前記制御手段は、前記端末が送信した、前記端末が現在許容する最大充電電流を示すための前記第三のコマンドの応答コマンドを受信し、前記制御手段は、前記第三のコマンドの応答コマンドに基づいて、前記急速充電モードの充電電流を特定する。
【0093】
電源アダプタは、上記最大充電電流を直接に、急速充電モードの充電電流として特定し、或いは、充電電流をこの最大充電電流のある電流値よりも小さい電流に設定してもよい。
【0094】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードで前記端末を充電する過程において、前記制御手段は、さらに、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記スイッチング手段を制御して、前記電源アダプタが電池に出力した充電電流を継続して調整する。
【0095】
電源アダプタは、端末の電池電圧、電池電力量などの端末の現在状態情報を継続して問い合わせ、電源アダプタが電池に出力した充電電流を継続して調整する。
【0096】
選択的に、一実施例として、前記制御手段は、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記スイッチング手段を継続に制御し、前記電源アダプタが電池に出力した充電電流を継続して調整する時に、前記制御手段は、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを前記端末に送信し、前記制御手段は、前記端末が送信した、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを受信し、前記制御手段は、前記電池の現在電圧に基づいて、前記スイッチング手段を制御し、前記電源アダプタが電池に出力した充電電流を調整する。
【0097】
選択的に、一実施例として、前記制御手段は、前記電池の現在電圧、及び、予め設定された電池電圧値と充電電流値との対応関係に基づいて、前記スイッチング手段を制御し、前記電源アダプタが電池に出力した充電電流を電池の現在電圧に対応する充電電流値に調整する。
【0098】
具体的に、電源アダプタは、電池電圧値と充電電流値との対応関係を予め保存する。電源アダプタは、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、端末側から、端末内に記憶された電池電圧値と充電電流値との対応関係を取得する。
【0099】
選択的に、一実施例として、前記電源アダプタが前記急速充電モードで前記端末を充電する過程において、前記制御手段は、さらに、前記第一の充電インタフェースのデータ線を介して前記端末と双方向通信し、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定し、なお、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があると特定した時に、前記制御手段は、前記電源アダプタに前記急速充電モードを停止させるように制御する。
【0100】
選択的に、一実施例として、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定する前に、前記制御手段は、さらに、前記端末から前記端末の回路インピーダンスを示すための情報を受信し、前記制御手段は、前記端末内の電池の電圧を問い合わせるための第四のコマンドを前記端末に送信し、前記制御手段は、前記端末が送信した、前記端末内の電池の電圧を示すための前記第四のコマンドの応答コマンドを受信し、前記制御手段は、前記電源アダプタの出力電圧と前記電池の電圧に基づいて、前記電源アダプタから前記電池までの回路インピーダンスを特定し、前記制御手段は、前記電源アダプタから前記電池までの回路インピーダンス、前記端末の回路インピーダンス、及び前記電源アダプタと前記端末との間の充電線線路の回路インピーダンスに基づいて、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定する。
【0101】
端末は、予めその回路インピーダンスを記録しておく。例えば、同じ規格の端末は、構造が同じであるため、出荷が設定される時、この端末の回路インピーダンスが同一値に設定される。同様に、電源アダプタは、予め充電線路の回路インピーダンスを記録しておくことが可能である。電源アダプタは、端末の電池の両端の電圧を取得した時に、電源アダプタから電池の両端までの電圧降下及び回路電流に基づいて、回路全体の回路インピーダンスを特定し、回路全体の回路インピーダンス>端末の回路インピーダンス+充電線路の回路インピーダンス、又は、回路全体の回路インピーダンス−(端末の回路インピーダンス+充電線路の回路インピーダンス)>インピーダンスしきい値となる場合に、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があると特定できる。
【0102】
選択的に、一実施例として、前記電源アダプタが前記急速充電モードを停止する前に、前記制御手段は、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかの旨を示すための第五のコマンドを前記端末に送信する。
【0103】
電源アダプタは、第五のコマンドを送信した後に、急速充電モードを終わらせ、又は、リセットすることができる。
【0104】
以上、電源アダプタの視点から、本発明の実施例による急速充電過程を詳しく説明した。以下に、端末の視点から、本発明の実施例による急速充電過程を説明する。
【0105】
理解すべきことは、端末側に記載される電源アダプタは、端末とのやり取りや関連の特徴、機能などが電源アダプタ側の記載と互いに対応し、表現を簡潔にするように、重複されている記載が適切に省略される。
【0106】
本発明による一実施例は、図13に示すように、端末2が充電制御スイッチ203とコントローラー204をさらに含み、充電制御スイッチ203は、例えば電子スイッチ機器からなるスイッチ回路であり、第二の充電インタフェース201と電池202との間に接続され、充電制御スイッチ203は、コントローラー204の制御で電池202の充電過程をオフ・オンに制御する。従って、端末側から電池202の充電過程を制御し、電池202への充電を安全かつ確実に保証することができる。
【0107】
かつ、図14に示すように、端末2は、第二の充電インタフェース201と第一の充電インタフェース105を介してコントローラー204と制御手段107との間の双方向通信を形成するための通信手段205をさらに含む。即ち、端末2と電源アダプタ1とは、USBインタフェースのデータ線を介して双方向通信することができる。前記端末2は、普通充電モードと急速充電モードを有し、前記急速充電モードの充電電流は、前記普通充電モードの充電電流よりも大きい。前記通信手段205は、前記制御手段107と双方向通信し前記電源アダプタ1に前記急速充電モードで前記端末2を充電させ、前記制御手段107は、前記電源アダプタ1に前記急速充電モードに対応する充電電流を出力させ、前記端末2内の電池202を充電させるように制御する。
【0108】
本発明の実施例では、電源アダプタ1がむやみに出力電流を増加させて急速充電することなく、端末2と双方向通信し、急速充電モードを採用するかどうかを特定する必要がある。故に、従来技術に比べると、急速充電過程の安全性を向上させることができる。
【0109】
選択的に、一実施例として、前記コントローラーは、通信手段により前記制御手段が送信した、前記端末が前記急速充電モードを開始するかどうかを問い合わせための第一のコマンドを受信し、前記コントローラーは、通信手段により、前記端末が前記急速充電モードの開始を許可する旨を示すための前記第一のコマンドの応答コマンドを前記制御手段に送信する。
【0110】
選択的に、一実施例として、前記コントローラーは、通信手段により前記制御手段が送信した、第一のコマンドを受信する前に、前記電源アダプタが前記普通充電モードで前記端末内の電池を充電し、前記制御手段は、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きいと特定した後に、前記制御手段は、端末内の通信手段に前記第一のコマンドを送信し、前記コントローラーは、通信手段により前記制御手段が送信した、前記第一のコマンドを受信する。
【0111】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードに対応する充電電流を出力し、前記端末内の電池を充電する前に、前記コントローラーは、通信手段を介して前記制御手段と双方向通信し、前記電源アダプタが前記急速充電モードに対応する充電電圧を特定する。
【0112】
選択的に、一実施例として、前記コントローラーは、前記制御手段が送信した、前記電源アダプタの現在出力電圧を前記急速充電モードの充電電圧として適当であるかどうかを問い合わせるための第二のコマンドを受信し、前記コントローラーは、前記電源アダプタの現在出力電圧が適当であるか、高いか又は低いかを示すための前記第二のコマンドの応答コマンドを前記制御手段に送信する。
【0113】
選択的に、一実施例として、前記コントローラーは、前記制御手段と双方向通信し、前記電源アダプタに前記急速充電モードに対応する充電電流を特定させる。
【0114】
なお、前記コントローラーは、前記制御手段が送信した、前記端末が現在許容する最大充電電流を問い合わせるための第三のコマンドを受信し、前記コントローラーは、前記端末内の電池現在許容の最大充電電流を示すための前記第三のコマンドの応答コマンドを前記制御手段に送信し、前記電源アダプタに前記最大充電電流に基づいて前記急速充電モードに対応する充電電流を特定させる。
【0115】
選択的に、一実施例として、前記電源アダプタが前記急速充電モードで前記端末を充電する過程には、前記コントローラーが前記制御手段と双方向通信し、前記電源アダプタに前記電源アダプタが電池に出力した充電電流を継続して調整させる。
【0116】
なお、前記コントローラーは、前記制御手段が送信した、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを受信し、前記コントローラーは、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを、前記制御手段に送信し、前記電源アダプタに前記電池の現在電圧に基づいて前記電源アダプタが電池に出力した充電電流を継続して調整させる。
【0117】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードで前記端末を充電する過程には、前記コントローラーは、通信手段により前記制御手段と双方向通信し、前記電源アダプタに前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定させる。
【0118】
なお、前記コントローラーは、前記制御手段が送信した、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを受信し、前記コントローラーは、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを前記制御手段に送信し、前記制御手段に前記電源アダプタの出力電圧と前記電池の現在電圧に基づいて、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定させる。
【0119】
選択的に、一実施例として、前記コントローラーは、前記制御手段が送信した、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかの旨を示すための第五のコマンドを受信する。
【0120】
電源アダプタは、急速充電モードを開始するために、端末との急速充電通信処理を開始し、一回又は複数回のハンドシェイクを行い、電池への急速充電を実現することができる。以下に図6に基づいて、本発明の実施例の急速充電通信の流れ、及び、急速充電過程に含まれる各段階を詳しく説明する。理解すべきことは、図6に示す通信過程又は操作が例示に過ぎず、本発明の実施例について他の操作や図6の各種類の操作を変更可能である。また、図6の各段階は、図6に示されるものと異なる順番に従って行ってもよく、必ず図6の操作全体を行うわけではない。なお、説明すべきことは、図6の曲線は、実際の充電電流の曲線ではなく、充電電流のピーク又は平均値の変化傾向を示すものである。
【0121】
図6に示すように、急速充電過程は、五つの段階を含む。
【0122】
段階1
端末は、電源供給装置に接続された後に、データ線D+、D−により電源供給装置の種類を検出し、電源供給装置が電源アダプタであると検出した時に、端末に受け取られる電流が予め設定された電流しきい値I2(例えば1Aである)よりも大きくすることができる。電源アダプタは、所定時間(例えば、継続するT1時間)内に電源アダプタの出力電流がI2以上であると検出した場合に、電源供給装置の種類に対する端末の識別を電源アダプタが完了したと判断でき、電源アダプタがアダプタと端末との間のハンドシェイクを開始し、電源アダプタがコマンド1(上記第一のコマンドに対応する)を送信し、端末が急速充電モード(瞬間充電とも称する)開始するかどうかを問い合わせる。
【0123】
電源アダプタは、端末が急速充電モードの開始を許可しない旨を示す端末の応答コマンドを受信した時に、電源アダプタの出力電流を再度検出し、電源アダプタの出力電流が予め設定された継続時間内(例えば、継続するT1時間)に依然としてI2以上である時に、端末が急速充電モードを開始するかどうかを再度問い合わせ、端末が応答して急速充電モードの開始を許可するか、又は、電源アダプタの出力電流がI2以上の条件を満たさなくなるまで、段階1の上記ステップを繰り返す。
【0124】
端末は、急速充電モードの開始を許可した後に、急速充電過程を開始し、急速充電通信の流れを第2の段階に移行する。
【0125】
段階2
電源アダプタが出力した饅頭状波電圧は、複数のレベルを含むことができる。電源アダプタは、端末にコマンド2(上記第二のコマンドに対応する)を送信し、電源アダプタの出力電圧が電池現在電圧(又は、適当であるかどうか、即ち、急速充電モードでの充電電圧として適当であるかどうか)とマッチングしているかどうか、即ち、充電の要求を満たすかどうかを端末に問い合わせる。
【0126】
端末は、電源アダプタの出力電圧が高いか又は低いか又はマッチングしているかを応答し、電源アダプタが、端末からアダプタの出力電圧が高いか又は低いか旨のフィードバックを受信した場合に、制御手段は、PWM信号のデューティ比を調節することにより、電源アダプタの出力電圧を他のレベルに調整し、端末にコマンド2を再度送信し、電源アダプタの出力電圧がマッチングしているかどうかを端末に再度問い合わせる。
【0127】
電源アダプタの出力電圧が適当なレベルに位置することを端末が応答するまで、段階2における上記のステップを繰り返し、その後、第3段階に移行する。
【0128】
段階3
電源アダプタは、端末より、電源アダプタの出力電圧がマッチングしている旨を応答したフィードバックを受信した後に、電源アダプタは、端末にコマンド3(上記第三のコマンドに対応する)を送信し、端末が現在許容する最大充電電流を問い合わせ、端末が現在許容の最大充電電流値を電源アダプタに応答したら、第4の段階に移行する。
【0129】
段階4
電源アダプタは、端末が応答した、現在許容の最大充電電流値のフィードバックを受信すると、その出力電流基準値を設置し、制御手段107は、この電流基準値に基づいてPWM信号のデューティ比を調節し、電源アダプタの出力電流に端末充電電流の要求を満たさせ、定電流段階に移行することができる。ここで、定電流段階とは、電源アダプタの出力電流ピーク又は平均値が基本に変化せずに維持し(つまり、出力電流ピーク又は平均値の変化度合は、極めて小さい、例えば、出力電流ピーク又は平均値の5%の範囲で変化する)、つまり、第三の脈動波形の電流ピークが周期ごとに一定に維持されることを意味する。
【0130】
段階5
電源アダプタは、電流が一定に変化する段階に移行された時に、ある時間帯毎に、コマンド4(上記第四のコマンドに対応する)を送信し、電池の現在電圧を端末に問い合わせ、端末は電源アダプタに電池の現在電圧をフィードバックし、電源アダプタは、端末による端末電池の現在電圧についてのフィードバックに基づいて、USB接触、即ち、第一の充電インタフェースと第二の充電インタフェースとの間に接触不良があるかどうか、及び、端末の現在の充電電流値を下げる必要があるかどうかを判断する。電源アダプタは、USBに接触不良があると判断し、コマンド5(上記第五のコマンドに対応する)を送信した後に、リセットして段階1に再度移行する。
【0131】
選択的に、幾つかの実施例では、段階1において、端末がコマンド1を応答する時に、コマンド1に対応するデータにこの端末の回路インピーダンスのデータ(又は情報)を追加することができる。端末回路インピーダンスデータは、段階5にUSBに接触不良があるかどうかを判断するためのものである。
【0132】
選択的に、幾つかの実施例では、段階2において、端末が急速充電モードの開始を許可してから、電源アダプタが電圧を適当値に調整するまでの時間を、ある範囲に制御し、この時間が予め設定された範囲を超えたら、端末は、問い合わせに異常があったと判断でき、急速充電のリセットを行うことができる。
【0133】
選択的に、幾つかの実施例では、段階2において、電源アダプタの出力電圧を電池現在電圧よりもΔV(ΔVは約200〜500mVであり)高い電圧に調整した時に、端末は、電源アダプタに、電源アダプタの出力電圧が適当/マッチングしている旨をフィードバックする。なお、端末は、電源アダプタに、電源アダプタの出力電圧が適当ではない(即ち、高いか又は低いか)旨をフィードバックした時に、制御手段107は、電圧サンプリング値に基づいてPWM信号のデューティ比を調節し、電源アダプタの出力電圧を調整する。
【0134】
選択的に、幾つかの実施例では、段階4において、電源アダプタの出力電流値の大きさを調整する速度を、ある範囲に制御することで、調整速度が速すぎることによる急速充電の異常中断を避けることができる。
【0135】
選択的に、幾つかの実施例では、段階5において、電源アダプタの出力電流値の大きさの変化度合が5%以内に制御されたら、定電流段階にあると判断され得る。
【0136】
選択的に、幾つかの実施例では、段階5において、電源アダプタがリアルタイムに充電回路インピーダンスを測定し、電源アダプタの出力電圧、現在充電電流及び取得された端末電池電圧を測定することにより、充電回路全体のインピーダンスを測定する。充電回路インピーダンス>端末回路インピーダンス+急速充電データ線インピーダンス、ということが測定されたら、USBに接触不良があると判断でき、急速充電をリセットする。
【0137】
選択的に、幾つかの実施例では、急速充電モードが始まった後に、電源アダプタと端末との間の通信時間の間隔を、ある範囲に制御することにより、急速充電のリセットの発生を避けることができる。
【0138】
選択的に、幾つかの実施例では、急速充電モード(又は、急速充電過程)の停止は、回復可能停止、及び、回復不可能停止に分けられている。
【0139】
例えば、端末は、電池が100%充電されたこと、又は、USBに接触不良があるのを検出した時に、急速充電が停止してリセットし、段階1に移行する。端末は、急速充電モードの開始を許可しない。急速充電通信は、段階2に移行しない。この場合、急速充電過程の停止は、回復不可能停止として見なされてもよい。
【0140】
なお、端末と電源アダプタとの間に通信異常が発生した時に、急速充電を停止して、リセットして段階1に移行し、段階1の要求を満たした後に、端末が急速充電モードの開始を許可し、急速充電過程に戻る。この場合に、急速充電過程の停止は、回復可能停止として見なされてもよい。
【0141】
また、例えば、端末は、電池に異常が発生したと検出した時に、急速充電を停止して、段階1に移行するようにリセットし、段階1に移行した後に、端末は急速充電モードの開始を許可しない。電池が正常に戻り、かつ、段階1の要求が満たされた後に、端末は、急速充電の開始を許可し、急速充電過程に戻る。この場合には、急速充電過程の停止は、回復可能停止として見なされてもよい。
【0142】
特に説明すべきことは、図6に示す通信過程又は操作は、例示に過ぎない。例示すると、段階1において、端末がアダプタに接続された後に、端末により、端末とアダプタとの間のハンドシェイクの通信を行ってもよい。即ち、コマンド1を送信しアダプタが急速充電モード(瞬間充電とも称する)を開始するかどうかを問い合わせ、端末は、電源アダプタが急速充電モードの開始を許可する旨を示す電源アダプタの応答コマンドを受信した時に、急速充電過程が始まる。
【0143】
特に説明すべきことは、以上の図6に示す通信過程又は操作は、例示に過ぎない。例示すると、段階5の後に、定電圧充電段階を含んでもよい。即ち、段階5で、端末は、電源アダプタに端末電池の現在電圧をフィードバックし、端末電池の電圧が次第に上がり、前記端末電池の現在電圧が定電圧充電電圧のしきい値に達した時に、充電が定電圧充電段階に移行し、制御手段107は、この電圧基準値(即ち、定電圧充電電圧のしきい値)に基づいてPWM信号のデューティ比を調節して、電源アダプタの出力電圧に端末充電電圧の要求を満たさせ、基本に電圧を一定に変化するように維持する。定電圧充電段階において、充電電流が次第に下がり、電流があるしきい値まで下がった時に、充電が終わり、この場合に、電池が100%充電されることを表す。なお、ここで、定電圧充電とは、第三の脈動波形のピーク電圧が一定に維持されることを意味する。
【0144】
理解可能なことは、本発明による実施例では、電源アダプタの出力電圧を取得することにおいて、取得されるのは第三の脈動波形のピーク電圧又は電圧平均値であり、電源アダプタの出力電流を取得することにおいて取得されるのは第三の脈動波形のピーク電流又は電流平均値である。
【0145】
本発明の一実施例において、図7Aに示すように、電源アダプタ1は、第二の整流手段104の第一の出力端に接続され、直列接続される制御可能スイッチ108とフィルタ手段109をさらに含み、なお、制御手段107は、充電モードが普通充電モードとして特定された時に、制御可能スイッチ108をオンに制御する一方、充電モードが急速充電モードとして特定された時に、制御可能スイッチ108をオフに制御するためのものである。しかも、第二の整流手段104の出力端に一つのグループ又は複数のグループの小型コンデンサーをさらに並列接続することができる。そうすれば、ノイズを削減すると共に、サージ現象を抑制することができる。或いは、第二の整流手段104の出力端に、LCフィルタ回路又はπ型フィルタ回路を接続して、リップルノイズをフィルタリングする。なお、図7Bに示すように、第二の整流手段104の出力端にLCフィルタ回路を接続する。説明すべきことは、LCフィルタ回路又はπ型フィルタ回路におけるコンデンサーは、いずれも小型コンデンサーであり、占められる空間が極めて少ない。
【0146】
なお、フィルタ手段109は、フィルタコンデンサーを含み、このフィルタコンデンサーは、5Vの標準充電を許容でき、即ち、普通充電モードに対応できる。制御可能スイッチ108は、例えば、MOS電界効果トランジスタの半導体スイッチ機器により構成される。電源アダプタは、普通充電モード(標準充電とも称する)で端末の電池を充電する時に、制御手段107により、制御可能スイッチ108をオンに制御してフィルタ手段109を回路に接続することにより、第二の整流手段の出力をフィルタし、直流電流を端末の電池に印加し、電池への直流充電を実現する直流充電技術と良く互換することができる。例えば、一般的に、フィルタ手段は、並列接続される電解コンデンサーと、5Vの標準充電を許容できる小型コンデンサー(固体コンデンサー)である普通コンデンサーを含む。電解コンデンサーが占める体積は比較的大きいため、電源アダプタの寸法を小さくするために、電源アダプタにおける電解コンデンサーを省略するが、容量が比較的小さい一つのコンデンサーは残すことができる。普通充電モードを採用する時に、この小型コンデンサーが位置する分岐回路をオンに制御し、電流をフィルタリングし、小電力を安定的に出力して、電池への直流充電を実現することができる。急速充電モードを採用する時に、小型コンデンサーが位置する分岐回路をオフに制御し、第二の整流手段104の出力をフィルタリングすることなく、脈動波形の電圧/電流を直接に出力し、電池に印加し、電池への急速充電を実現することができる。
【0147】
本発明による一実施例では、制御手段107は、さらに、充電モードを急速充電モードとして特定した時に、端末の状態情報に基づいて急速充電モードに対応する充電電流及び/又は充電電圧を取得し、急速充電モードに対応する充電電流及び/又は充電電圧に基づいて制御信号、例えばPWM信号のデューティ比を調節するためのものである。つまり、現在充電モードを急速充電モードとして特定した時に、制御手段107は、取得された端末の状態情報、例えば、電池の電圧、電力量、温度、端末の動作パラメータ、及び端末で実行しているアプリケーションの電力量消費情報などに基づいて急速充電モードに対応する充電電流及び/又は充電電圧を取得し、取得された充電電流及び/又は充電電圧に基づいて制御信号のデューティ比を調節し、電源アダプタの出力に充電の要求を満たさせ、電池への急速充電を実現することができる。
【0148】
なお、端末の状態情報は、電池の温度を含む。しかも、電池の温度が第一の予め設定された温度しきい値よりも大きい、又は、電池の温度が第二の予め設定された温度しきい値よりも大きい場合に、現在充電モードが急速充電モードであれば、急速充電モードを普通充電モードに切り替え、なお、第一の予め設定された温度しきい値は第二の予め設定された温度しきい値よりも大きい。言い換えれば、電池の温度が低すぎ(例えば、第二の予め設定された温度しきい値未満に対応する)又は高すぎ(例えば、第一の予め設定された温度しきい値を超えた値に対応する)である時に、何れも急速充電は適切ではない。従って、急速充電モードを普通充電モードに切り替えることが必要となる。本発明による実施例では、第一の予め設定された温度しきい値と第二の予め設定された温度しきい値は、実際の状況に応じて設定され制御手段(例えば、電源アダプタのMCU)のメモリに書き込まれる。
【0149】
本発明の一実施例において、制御手段107は、さらに、電池の温度が予め設定された高温保護しきい値よりも大きい時に、制御スイッチング手段102をオフに制御し、つまり、電池の温度が高温保護しきい値を超えた時に、制御手段107が高温保護措置を取り、制御スイッチング手段102をオフの状態に制御する必要があり、電源アダプタに電池への充電を終わらせ、電池に対する高温の保護を実現し、充電の安全性を向上させることができる。前記高温保護しきい値は、前記第一の温度しきい値と同じであってもよいし、同じではなくてもよい。好ましく、前記高温保護しきい値が前記第一の温度しきい値よりも大きい。
【0150】
本発明のもう一実施例において、前記コントローラーは、さらに、前記電池の温度を取得し、前記電池の温度が予め設定された高温保護しきい値よりも大きい時に、前記充電制御スイッチをオフに制御し、即ち、端末側から充電制御スイッチをオフにし、電池の充電過程を終わらせ、充電の安全を保証することができる。
【0151】
しかも、本発明の一実施例において、前記制御手段は、さらに、前記第一の充電インタフェースの温度を取得し、前記第一の充電インタフェースの温度が予め設定された保護温度よりも大きい時に、前記スイッチング手段をオフに制御するためのものである。即ち、充電インタフェースの温度が一定温度を超えた時に、制御手段107も、高温保護措置を実行し、制御スイッチング手段102をオフに制御し、電源アダプタに電池への充電を終わらせる必要があり、充電インタフェースの高温保護を実行し、充電の安全性を向上させることができる。
【0152】
もちろん、本発明のもう一実施例において、前記コントローラーは、前記制御手段と双方向通信し前記第一の充電インタフェースの温度を取得し、前記第一の充電インタフェースの温度が予め設定された保護温度よりも大きい時に、前記充電制御スイッチ(図13図14を参照)をオフに制御し、即ち、端末側から充電制御スイッチをオフにし、電池の充電過程を終わらせ、充電の安全を保証することができる。
【0153】
具体的に、本発明の一実施例において、図8に示すように、電源アダプタ1は、例えばMOSFET駆動器の駆動手段110をさらに含み、駆動手段110は、スイッチング手段102と制御手段107との間に接続され、駆動手段110は、制御信号に基づいてスイッチング手段102をオン・オフに駆動するためのものである。もちろん、説明すべきことは、本発明の他の実施例では、駆動手段110は、制御手段107に集積され得る。
【0154】
しかも、図8に示すように、電源アダプタ1は、遮断手段111をさらに含み、遮断手段111は、駆動手段110と制御手段107との間に接続され、電源アダプタ1の1次と2次との間の信号を遮断(又はトランス103の1次巻線と2次巻線との間の信号を遮断)することができる。なお、遮断手段111は、フォトカプラ遮断の形態を採用してもよいし、他の遮断の形態を採用してもよい。遮断手段111を設置することにより、制御手段107を電源アダプタ1の2次側(又はトランス103の2次巻線側)に設置することが可能であり、端末2との通信を便宜にし、電源アダプタ1の空間設計をより簡単かつ容易にすることができる。
【0155】
もちろん、理解可能なことは、本発明の他の実施例では、制御手段107と駆動手段110は、共に1次側に設置され得る。この場合に、制御手段107とサンプリング手段106との間に遮断手段111を設置して電源アダプタ1の1次と2次との間の信号を遮断することができる。
【0156】
しかも、説明すべきことは、本発明による実施例では、制御手段107は、2次側に設置される時に、遮断手段111を設置することが必要となるが、遮断手段111は、制御手段107に集積され得る。つまり、1次から2次へ信号を送信する場合、又は、2次から1次へ信号を送信する場合は、通常、遮断手段を設置することにより信号を遮断する必要がある。
【0157】
本発明の一実施例において、図9に示すように、電源アダプタ1は、補助巻線と電力供給手段112をさらに含み、補助巻線は、変調された第一の脈動波形の電圧に基づいて第四の脈動波形の電圧を形成し、電力供給手段112が補助巻線に接続され、電力供給手段112(例えばフィルタ安定モジュール、電圧変換モジュールなどを含み)は、第四の脈動波形の電圧を変換し直流電流を出力し、それぞれ駆動手段110及び/又は制御手段107に電力を供給するためのものである。電力供給手段112は、フィルタ小型コンデンサーや安定チップなどの機器により構成され、第四の脈動波形の電圧を変換処理し、3.3V又は5Vなどの低電圧直流電流を出力するためのものである。
【0158】
つまり、駆動手段110の電力供給は、電力供給手段112により第四の脈動波形の電圧を変換してなされており、制御手段107が1次側に設置される時に、その電力供給も、電力供給手段112により第四の脈動波形の電圧を変換してなされる。なお、図9に示すように、制御手段107が1次側に設置される時に、電力供給手段112が二つの直流電流を出力し、それぞれ、駆動手段110と制御手段107に電力を供給し、制御手段107とサンプリング手段106との間にフォトカプラ遮断手段111を設置し電源アダプタ1の1次と2次との間の信号を遮断する。
【0159】
制御手段107が1次側に設置され、かつ、駆動手段110が集積される場合、電力供給手段112は、単独で制御手段107に電力を供給する。制御手段107が2次側に設置され、駆動手段110が1次側に設置される場合、電力供給手段112は、単独で駆動手段110に電力を供給し、制御手段107の電力供給は、2次から行い、例えば、電力供給手段により、第二の整流手段104が出力した第三の脈動波形の電圧を直流電源に変換し制御手段107に供給する。
【0160】
そして、本発明による実施例では、第一の整流手段101の出力端は、複数の小型コンデンサーが並列接続され、フィルタの役割を有する。或いは、第一の整流手段101の出力端には、LCフィルタ回路が接続される。
【0161】
本発明のもう一実施例において、図10に示すように、電源アダプタ1は、補助巻線と制御手段107にそれぞれ接続され、第四の脈動波形の電圧を検出して電圧検出値を生成するための第一の電圧検出手段113をさらに含み、制御手段107は、さらに、電圧検出値に基づいて制御信号のデューティ比を調節するために用いられる。
【0162】
つまり、制御手段107は、第一の電圧検出手段113が検出した補助巻線の出力電圧に基づいて第二の整流手段104が出力した電圧を反映し、そして電圧検出値に基づいて制御信号のデューティ比を調節し、第二の整流手段104の出力に電池の充電の要求を満たさせる。
【0163】
具体的に、本発明の一実施例において、図11に示すように、サンプリング手段106は、第一の電流サンプリング回路1061と第一の電圧サンプリング回路1062を含む。なお、第一の電流サンプリング回路1061は、第二の整流手段104が出力した電流をサンプリングし、電流サンプリング値を取得し、第一の電圧サンプリング回路1062は、第二の整流手段104が出力した電圧をサンプリングし、電圧サンプリング値を取得する。
【0164】
選択的に、第一の電流サンプリング回路1061は、第二の整流手段104の第一の出力端に接続される電気抵抗(電流検出電気抵抗)の電圧をサンプリングすることにより、第二の整流手段104出力の電流をサンプリングすることができる。第一の電圧サンプリング回路1062は、第二の整流手段104の第一の出力端と第二の出力端との間の電圧をサンプリングすることにより、第二の整流手段104出力の電圧をサンプリングすることができる。
【0165】
そして、本発明の一実施例において、図11に示すように、第一の電圧サンプリング回路1062は、ピーク電圧サンプリング保持手段、ゼロクロスサンプリング手段、リリースアウト手段とADサンプリング手段を含む。ピーク電圧サンプリング保持手段は、第三の脈動波形の電圧のピーク電圧をサンプリングして保持するためのものである。ゼロクロスサンプリング手段は、第三の脈動波形の電圧のゼロクロス点をサンプリングするためのものである。リリースアウト手段は、ゼロクロス点時にピーク電圧サンプリング保持手段をリリースアウトするためのものである。ADサンプリング手段は、ピーク電圧サンプリング保持手段のピーク電圧をサンプリングし、電圧サンプリング値を取得するためのものである。
【0166】
第一の電圧サンプリング回路1062に、ピーク電圧サンプリング保持手段、ゼロクロスサンプリング手段、リリースアウト手段とADサンプリング手段を設置することにより、第二の整流手段104が出力した電圧を正確にサンプリングすると共に、電圧サンプリング値を第一の脈動波形の電圧と同期に維持し、即ち、位相を同期にし、幅の変化傾向を一致するように維持することができる。
【0167】
本発明による実施は、例えば図12に示すように、電源アダプタ1は、第二の電圧サンプリング回路114をさらに含み、第二の電圧サンプリング回路114は、第一の脈動波形の電圧をサンプリングし、第二の電圧サンプリング回路114は、制御手段107に接続され、なお、第二の電圧サンプリング回路114がサンプリングした電圧値が第一の所定電圧値よりも大きい時に、制御手段107は、スイッチング手段102を第一の所定時間オンに制御し、第一の脈動波形のサージ電圧、ピーク電圧などに対して放電動作を行う。
【0168】
図12に示すように、第二の電圧サンプリング回路114は、第一の整流手段101の第一の出力端と第二の出力端に接続され、第一の脈動波形の電圧をサンプリングし、制御手段107が第二の電圧サンプリング回路114のサンプリングした電圧値を判断し、第二の電圧サンプリング回路114がサンプリングした電圧値が、第一の所定電圧値よりも大きい場合に、電源アダプタ1が雷干渉を受けてサージ電圧が発生していることを示し、この場合にサージ電圧をリリースアウトし、充電を安全かつ確実にすることが必要となり、制御手段107は、制御スイッチング手段102を一定時間オンに制御し、リリースアウト回路を形成し、雷によるサージ電圧をリリースアウトし、電源アダプタが端末を充電する時に雷による干渉をを避け、端末が充電する時に安全と安定を効果に向上させることができる。なお、第一の所定電圧値は、実際の状況に応じて設定され得る。
【0169】
本発明の一実施例において、電源アダプタ1が端末2の電池202を充電する過程には、制御手段107は、さらに、サンプリング手段106がサンプリングした電圧値が、第二の所定電圧値よりも大きい時に、制御スイッチング手段102をオフにするものであり、言い換えれば、制御手段107は、さらに、サンプリング手段106がサンプリングした電圧値の大きさを判断し、サンプリング手段106がサンプリングした電圧値が、第二の所定電圧値よりも大きい場合に、電源アダプタ1が出力した電圧が高すぎると判断し、この場合に制御手段107は、制御スイッチング手段102をオフに制御することにより、電源アダプタ1に端末2の電池202への充電を終わらせ、即ち、制御手段107は、制御スイッチング手段102をオフに制御することにより、電源アダプタ1の過電圧保護を実現し、充電の安全を保証することができる。
【0170】
もちろん、本発明の一実施例において、前記コントローラー204は、前記制御手段107と双方向通信し、前記サンプリング手段106がサンプリングした電圧値(図13図14)を取得し、前記サンプリング手段106がサンプリングした電圧値が、第二の所定電圧値よりも大きい時に、前記充電制御スイッチ203をオフに制御し、即ち、端末2側から充電制御スイッチ203をオフに制御し、電池202の充電過程を終わらせ、充電の安全を保証することができる。
【0171】
しかも、制御手段107は、さらに、サンプリング手段106がサンプリングした電流値が、予め設定された電流値よりも大きい時に、スイッチング手段102をオフに制御するためのものである。言い換えれば、制御手段107は、さらに、サンプリング手段106がサンプリングした電流値の大きさを判断し、サンプリング手段106がサンプリングした電流値が予め設定された電流値よりも大きい場合に、電源アダプタ1が出力した電流が大きすぎると判断し、この場合に、制御手段107は、制御スイッチング手段102をオフに制御することにより、電源アダプタ1に端末への充電を終わらせ、即ち、制御手段107は、制御スイッチング手段102をオフに制御することにより、電源アダプタ1の過電流保護を実現し、充電の安全を保証することができる。
【0172】
同様に、前記コントローラー204は、前記制御手段107と双方向通信しサンプリング手段106がサンプリングした電流値(図13図14)を取得し、前記サンプリング手段106がサンプリングした電流値が、予め設定された電流値よりも大きい時に、前記充電制御スイッチ203をオフに制御し、即ち、端末2側から、充電制御スイッチ203をオフに制御し、電池202の充電過程を終わらせ、充電の安全を保証することができる。
【0173】
なお、第二の所定電圧値と予め設定された電流値は、何れも実際の状況に応じて設定され又は制御手段(例えば、電源アダプタ1の制御手段107、例えば、マイクロプロセッサMCU)のメモリに書き込まれる。
【0174】
本発明による実施例では、端末は、例えば携帯電話等の携帯端末、また、例えばモバイルバッテリー等の携帯電源、マルチメディア・プレイヤー、ノートパソコン、ウェアラブルデバイスなどであってもよい。
【0175】
本発明の実施例による端末用充電システムは、電源アダプタに第三の脈動波形の電圧を出力させるように制御し、電源アダプタが出力した、第三の脈動波形の電圧を端末の電池に直接印加し、電池に対する脈動の出力電圧/電流の直接急速充電を実現することができる。なお、脈動の出力電圧/電流の大きさが周期性に変換され、従来の定電圧定電流に比べると、リチウム電池のリチウム析出現象を抑制させ、電池の使用寿命を向上させ、かつ、充電インタフェースにおける電気接点のアーク発生の確率及び強度を低減し、充電インタフェースの寿命を向上させ、また、電池の分極効果を下げ、充電速度を速くさせ、電池の発熱を減少させ、端末を充電する時の安全性と確実性を保証することができる。また、電源アダプタが出力するのは脈動波形の電圧であることから、電源アダプタに電解コンデンサーを設置する必要がなくなり、電源アダプタの簡素化と小型化を実現すると共に、大幅にコストを削減することもできる。
【0176】
しかも、本発明の実施例は、電源アダプタが提供される。該電源アダプタは、入力された交流電流を整流し第一の脈動波形の電圧を出力するための第一の整流手段と、制御信号に基づいて前記第一の脈動波形の電圧を変調するためのスイッチング手段と、変調された前記第一の脈動波形の電圧に基づいて第二の脈動波形の電圧を出力するためのトランスと、前記第二の脈動波形の電圧を整流し第三の脈動波形の電圧を出力するための第二の整流手段と、前記第二の整流手段に接続され、端末の第二の充電インタフェースに接続される時に、前記電池に接続される前記第二の充電インタフェースにより前記第三の脈動波形の電圧を前記端末の電池に印加するための第一の充電インタフェースと、前記第二の整流手段が出力した電圧及び/又は電流をサンプリングし、電圧サンプリング値及び/又は電流サンプリング値を取得するためのサンプリング手段と、それぞれ前記サンプリング手段と前記スイッチング手段に接続され、前記制御信号を前記スイッチング手段に出力し、前記電圧サンプリング値及び/又は電流サンプリング値に基づいて前記制御信号のデューティ比を調節し、前記第三の脈動波形の電圧に前記端末の充電の要求を満たさせるための制御手段と、を含む。
【0177】
本発明の実施例による電源アダプタは、第一の充電インタフェースにより第三の脈動波形の電圧を出力し、端末の第二の充電インタフェースにより第三の脈動波形の電圧を端末の電池に直接印加し、電池に対する脈動の出力電圧/電流の直接急速充電を実現することができる。なお、脈動の出力電圧/電流の大きさが周期性に変換され、従来の定電圧定電流に比べると、リチウム電池のリチウム析出現象を抑制させ、電池の使用寿命を向上させ、かつ、充電インタフェースにおける電気接点のアーク発生の確率及び強度を低減し、充電インタフェースの寿命を向上させ、また、電池の分極効果を下げ、充電速度を速くさせ、電池の発熱を減少させ、端末を充電する時の安全性と確実性を保証することができる。また、電源アダプタが出力するのは脈動波形の電圧であることから、電源アダプタに電解コンデンサーを設置する必要がなくなり、電源アダプタの簡素化と小型化を実現すると共に、大幅にコストを削減することもできる。
【0178】
図15は、本発明に係る実施例による端末用充電方法のフローチャートである。図15に示すように、この端末用充電方法は、以下のステップを含む。
【0179】
S1、電源アダプタは、第一の充電インタフェースが端末の第二の充電インタフェースに接続されると、入力された交流電流を一次整流し第一の脈動波形の電圧を出力する。
【0180】
言い換えれば、電源アダプタにおける第一の整流手段により、入力された交流電流(即ち、商用の電力、例えば220V、50Hz又は60Hz)である商用交流電力を整流し、第一の脈動波形の電圧(例えば100Hz又は120Hz)の饅頭状波電圧を出力する。
【0181】
S2、制御スイッチング手段により、第一の脈動波形の電圧を変調し、トランスの変換により、第二の脈動波形の電圧を出力する。
【0182】
なお、スイッチング手段は、MOS電界効果トランジスタにより構成され、MOS電界効果トランジスタをPWM制御することにより、饅頭状波電圧をチョッパ変調する。そして、トランスにより、変調された第一の脈動波形の電圧を2次側に結合し、2次巻線により第二の脈動波形の電圧を出力する。
【0183】
本発明による実施例では、高周波トランスにより変換してもよい。そして、トランスは、体積が極めて小さいため電源アダプタを大電力、小型化にすることができる。
【0184】
S3、第二の脈動波形の電圧を二次整流し第三の脈動波形の電圧を出力し、なお、第二の充電インタフェースを介して第三の脈動波形の電圧を端末の電池に印加し、端末電池への充電を実現する。
【0185】
本発明の一実施例において、第二の整流手段により第二の脈動波形の電圧を二次整流し、第二の整流手段は、ダイオード又はMOS電界効果トランジスタからなり、2次同期整流を実現し、変調された第一の脈動波形と第三の脈動波形を同期に維持する。
【0186】
S4、二次整流された電圧及び/又は電流をサンプリングし、電圧サンプリング値及び/又は電流サンプリング値を取得する。
【0187】
S5、電圧サンプリング値及び/又は電流サンプリング値に基づいてスイッチング手段の制御信号のデューティ比を調節して制御し、第三の脈動波形の電圧に充電の要求を満たさせる。
【0188】
説明すべきことは、第三の脈動波形の電圧が充電の要求を満たすことは、第三の脈動波形の電圧と電流に電池充電時の充電電圧と充電電流を満たさせることを必要とする。つまり、サンプリングされた、電源アダプタが出力した、電圧及び/又は電流に基づいて制御信号、例えばPWM信号のデューティ比を調節し、即ち、タイムリーに電源アダプタの出力を調整し、閉回路の調節制御を実現し、第三の脈動波形の電圧に端末の充電の要求を満たさせ、充電の安全性と確実性を保証することができる。具体的に、PWM信号のデューティ比に基づいて電池に出力された充電電圧波形を図3に示すように調節し、PWM信号のデューティ比に基づいて電池に出力された充電電流波形を図4に示すように調節する。
【0189】
従って、本発明による実施例では、制御スイッチング手段により、直接に、フルブリッジ整流された第一の脈動波形の電圧である饅頭状波電圧をPWMチョッパ変調し、高周波トランスに送信し、高周波トランスにより1次から2次に接合し、そして、同期整流がなされた後に饅頭状波電圧/電流に戻り、端末の電池に直接印加し、電池への急速充電を実現する。なお、饅頭状波の電圧の大きさは、PWM信号のデューティ比に基づいて調節され、電源アダプタの出力に電池の充電の要求を満たさせる。故に、電源アダプタにおける1次や2次の電解コンデンサーを省略し、饅頭状波電圧に基づいて電池を直接充電し、電源アダプタの簡素化と小型化を実現すると共に、大幅にコストを削減することもできる。
【0190】
本発明による一実施例は、電圧サンプリング値及び/又は電流サンプリング値に基づいて制御信号の周波数を調節し、即ち、スイッチング手段に出力されたPWM信号をある時間継続して出力した後に出力を終わらせ、所定時間停止した後にPWM信号の出力を再度開始し、そして電池に印加する電圧を間欠のものにし、電池を間欠に充電し、電池を継続して充電する時に深刻な発熱により安全に危険を与えてしまうことを避け、電池を充電する安定性と安全性を向上させることができる。なお、スイッチング手段に出力された制御信号を図5に示す。
【0191】
さらに、上記の端末用充電方法は、第一の充電インタフェースを介して端末と通信し端末の状態情報を取得し、端末の状態情報、電圧サンプリング値及び/又は電流サンプリング値に基づいて制御信号のデューティ比を調節することをさらに含み。
【0192】
つまり、第二の充電インタフェースを介して第一の充電インタフェースに接続される時に、電源アダプタと端末との間で通信問い合わせコマンドを相互送信し、対応する応答コマンドを受信した後に、電源アダプタと端末との間に通信接続を形成し、端末の状態情報を取得し、端末の充電モードと充電パラメータ(例えば、充電電流、充電電圧)を特定し、充電過程を制御することができる。
【0193】
本発明による一実施例は、トランスの変換により第四の脈動波形の電圧を生成し、第四の脈動波形の電圧を検出し電圧検出値を生成し、電圧検出値に基づいて制御信号のデューティ比を調節する。
【0194】
具体的に、トランスには、補助巻線をさらに設置し、補助巻線は、変調された第一の脈動波形の電圧に基づいて第四の脈動波形の電圧を生成し、そして、第四の脈動波形の電圧を検出し電源アダプタの出力電圧を反映し、電圧検出値に基づいて制御信号のデューティ比を調節し、電源アダプタの出力に電池の充電の要求を満たさせる。
【0195】
本発明の一実施例において、二次整流された電圧をサンプリングし、電圧サンプリング値を取得することは、前記二次整流された電圧のピーク電圧をサンプリングして保持すること、前記二次整流された電圧のゼロクロス点をサンプリングすること、前記ゼロクロス点時に前記ピーク電圧をサンプリングして保持しているピーク電圧サンプリング保持手段をリリースアウトすること、前記ピーク電圧サンプリング保持手段のピーク電圧をサンプリングし、前記電圧サンプリング値を取得することを含む。故に、電源アダプタが出力した、電圧を正確にサンプリングすると共に、電圧サンプリング値を第一の脈動波形の電圧と同期に維持し、即ち、位相を同期にし、幅の変化傾向を一致するように維持することができる。
【0196】
さらに、本発明の一実施例において、上記の端末用充電方法は、前記第一の脈動波形の電圧をサンプリングし、サンプリングされた電圧値が第一の所定電圧値よりも大きい時に前記スイッチング手段をオンに第一の所定時間制御し第一の脈動波形のサージ電圧を放電動作することをさらに含み。
【0197】
第一の脈動波形の電圧をサンプリングし、サンプリングされた電圧値を判断し、サンプリングされた電圧値が第一の所定電圧値よりも大きい場合に、電源アダプタが雷干渉を受けてサージ電圧が発生していることを示し、この場合にサージ電圧をリリースアウトし、充電を安全かつ確実にすることが必要となり、制御スイッチング手段をオンにある時間に制御し、リリースアウト回路を形成し、雷によるサージ電圧をリリースアウトすることで、電源アダプタが端末を充電する際の雷干渉を防止し、端末の充電時の安全性及び信頼性を効果的に向上させる。第一所定電圧値は、実際の状況に応じて設定可能である。
【0198】
本発明による一実施例において、さらに、第一の充電インタフェースを介して端末と通信し充電モードを特定し、充電モードを急速充電モード特定した時に端末の状態情報に基づいて急速充電モードに対応する充電電流及び/又は充電電圧を取得し、急速充電モードに対応する充電電流及び/又は充電電圧に基づいて制御信号のデューティ比を調節し、なお、充電モードは、急速充電モードと普通充電モードを含む。
【0199】
つまり、現在充電モードを急速充電モードとして特定した時に、取得された端末の状態情報、例えば、電池の電圧、電力量、温度、端末の動作パラメータ、及び端末に実行しているアプリケーションの電力量消費情報などに基づいて急速充電モードに対応する充電電流及び/又は充電電圧を取得し、取得された充電電流及び/又は充電電圧に基づいて制御信号のデューティ比を調節し、電源アダプタの出力に充電の要求を満たさせ、電池への急速充電を実現することができる。
【0200】
なお、端末の状態情報は、電池の温度を含む。しかも、電池の温度が第一の予め設定された温度しきい値よりも大きい、又は、電池の温度が第二の予め設定された温度しきい値よりも大きい場合に、現在充電モードが急速充電モードであれば、急速充電モードを普通充電モードに切り替え、なお、第一の予め設定された温度しきい値は第二の予め設定された温度しきい値よりも大きい。言い換えれば、電池の温度が低すぎ(例えば、第二の予め設定された温度しきい値未満に対応する)又は高すぎ(例えば、第一の予め設定された温度しきい値を超えた値に対応する)である時に、何れも急速充電が適切ではない。従って、急速充電モードを普通充電モードに切り替えることが必要となる。本発明による実施例では、第一の予め設定された温度しきい値と第二の予め設定された温度しきい値は、実際状況に応じて設定され得る。
【0201】
本発明の一実施例において、前記電池の温度が予め設定された高温保護しきい値よりも大きい時に、前記スイッチング手段をオフに制御し、電池の温度が高温保護しきい値を超えた時に、高温保護措置を取ることが必要となり、スイッチング手段をオフに制御し、電源アダプタに電池への充電を終わらせ、電池の高温保護を実現し、充電の安全性を向上させることができる。前記高温保護しきい値は、前記第一の温度しきい値と同じであってよいし、同じではなくてもよい。好ましくは、前記高温保護しきい値は、前記第一の温度しきい値よりも大きい。
【0202】
本発明のもう一実施例において、前記端末は、さらに、前記電池の温度を取得し、前記電池の温度が予め設定された高温保護しきい値よりも大きい時に、前記電池に充電を終わらせ、即ち、端末側から、充電制御スイッチをオフに制御し、電池の充電過程を終わらせ、充電の安全を保証することができる。
【0203】
しかも、本発明の一実施例において、この端末用充電方法は、前記第一の充電インタフェースの温度を取得し、前記第一の充電インタフェースの温度が予め設定された保護温度よりも大きい時に、前記スイッチング手段をオフにすることをさらに含み。即ち、充電インタフェースの温度がある温度を超えた時に、制御手段は、高温保護措置を実行することが必要となり、制御スイッチング手段をオフに制御し、電源アダプタに電池への充電を終わらせ、充電インタフェースの高温保護を実現し、充電の安全性を向上させることができる。
【0204】
もちろん、本発明のもう一実施例において、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し前記第一の充電インタフェースの温度を取得し、前記第一の充電インタフェースの温度が予め設定された保護温度よりも大きい時に、前記電池に充電を終わらせる。即ち、端末側から、充電制御スイッチをオフに制御し、電池の充電過程を終わらせ、充電の安全性を向上させることができる。
【0205】
しかも、電源アダプタが端末を充電する過程には、電圧サンプリング値が第二の所定電圧値よりも大きい時に、スイッチング手段をオフに制御する。言い換えれば、電源アダプタが端末を充電する過程には、さらに、電圧サンプリング値の大きさを判断し、電圧サンプリング値が第二の所定電圧値よりも大きい場合に、電源アダプタが出力した、電圧が高すぎると判断し、この場合にスイッチング手段をオフに制御し、電源アダプタに端末への充電を終わらせ、即ち、制御スイッチング手段をオフに制御し、電源アダプタの過電圧保護を実現し、充電の安全性を向上させることができる。
【0206】
もちろん、本発明の一実施例において、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し前記電圧サンプリング値を取得し、前記電圧サンプリング値が第二の所定電圧値よりも大きい時に、前記電池に充電を終わらせるように制御し、即ち、端末側から、充電制御スイッチをオフに制御し、電池の充電過程を終わらせ、充電の安全性を向上させることができる。
【0207】
本発明の一実施例において、電源アダプタが端末を充電する過程において、前記電流サンプリング値が予め設定された電流値よりも大きい時に、前記スイッチング手段をオフに制御する。言い換えれば、電源アダプタが端末を充電する過程には、さらに、電流サンプリング値の大きさを判断し、電流サンプリング値が予め設定された電流値よりも大きい場合に、電源アダプタが出力した、電流が大きすぎると判断し、この場合にスイッチング手段をオフに制御し、電源アダプタに端末への充電を終わらせ、即ち、スイッチング手段をオフに制御することにより、電源アダプタの過電流保護を実現し、充電の安全を保証することができる。
【0208】
同様に、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し前記電流サンプリング値を取得し、前記電流サンプリング値が予め設定された電流値よりも大きい時に、前記電池に充電を終わらせ、即ち、端末側から、充電制御スイッチをオフに制御し、電池の充電過程を終わらせ、充電の安全を保証することができる。
【0209】
なお、第二の所定電圧値と予め設定された電流値は、何れも実際の状況に応じて設定され得る。
【0210】
本発明による実施例では、前記端末の状態情報は、前記電池の電力量、前記電池の温度、前記端末の電圧/電流、前記端末のインタフェース情報、前記端末の回路インピーダンスの情報などを含んでもよい。
【0211】
具体的に、前記電源アダプタと端末がユニバーサルシリアルバス(UniversalSerialBus、USB)インタフェースを介して接続され、このUSBインタフェースは普通のUSBインタフェースであってもよく、microUSBインタフェースであってもよい。USBインタフェースのデータ線である第一の充電インタフェースのデータ線は、前記電源アダプタと前記端末との双方向通信に用いられ、このデータ線は、USBインタフェースにおけるD+線及び/又はD−線であり、双方向通信とは、電源アダプタと端末が両者で情報のやり取りを行うことを意味する。
【0212】
なお、前記電源アダプタは、前記USBインタフェースのデータ線を介して前記端末と双方向通信し、前記急速充電モードを特定し前記端末を充電する。
【0213】
選択的に、一実施例として、前記電源アダプタは、前記第一の充電インタフェースを介して前記端末と双方向通信し前記急速充電モードを特定し前記端末を充電する時に、前記電源アダプタは、前記端末が前記急速充電モードを開始するかどうかを問い合わせるための第一のコマンドに前記端末に送信し、前記電源アダプタは、前記端末の開始を許可する前記急速充電モードを示すための前記第一のコマンドの応答コマンドを前記端末から受信する。
【0214】
選択的に、一実施例として、前記電源アダプタが前記端末に前記第一のコマンドを送信する前に、前記電源アダプタと前記端末との間で、前記普通充電モードで充電し、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きくなったと特定した後に、前記電源アダプタが前記端末に前記第一のコマンドを送信する。
【0215】
理解可能なことは、電源アダプタは、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きいと特定した後に、電源アダプタは、端末が自体を電源アダプタとして既に識別したと認識し、急速充電問い合わせ通信を開始することができる。
【0216】
選択的に、一実施例として、さらに、前記スイッチング手段を制御し前記電源アダプタに充電電流を前記急速充電モードに対応する充電電流に調整させるように制御し、前記電源アダプタが前記急速充電モードに対応する充電電流で前記端末を充電する前に、前記第一の充電インタフェースを介して前記端末と双方向通信し、前記急速充電モードに対応する充電電圧を特定し、前記電源アダプタに充電電圧を前記急速充電モードに対応する充電電圧に調整させるように制御する。
【0217】
選択的に、一実施例として、前記の前記第一の充電インタフェースを介して前記端末と双方向通信し、前記急速充電モードに対応する充電電圧を特定することは、前記電源アダプタは、前記電源アダプタの現在出力電圧が前記急速充電モードの充電電圧として適当であるかどうかを問い合わせるための第二のコマンドを前記端末に送信すること、前記電源アダプタは、前記端末が送信した、前記電源アダプタの現在出力電圧が適当であるか、高いか又は低いかを示すための前記第二のコマンドの応答コマンドを受信すること、前記電源アダプタは、前記第二のコマンドの応答コマンドに基づいて、前記急速充電モードの充電電圧を特定することを含む。
【0218】
選択的に、一実施例として、前記電源アダプタを制御し充電電流を前記急速充電モードに対応する充電電流に調整する前に、さらに、前記第一の充電インタフェースを介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定する。
【0219】
選択的に、一実施例として、前記の前記第一の充電インタフェースを介して前記端末と双方向通信し、前記急速充電モードに対応する充電電流を特定することは、前記電源アダプタは、前記端末が現在許容する最大充電電流を問い合わせるための第三のコマンドを前記端末に送信すること、前記電源アダプタは、前記端末が送信した、前記端末が現在許容する最大充電電流を示すための前記第三のコマンドの応答コマンドを受信すること、前記電源アダプタは、前記第三のコマンドの応答コマンドに基づいて、前記急速充電モードの充電電流を特定することを含む。
【0220】
電源アダプタは、直接に、上記最大充電電流を急速充電モードの充電電流として特定し、或いは、充電電流をこの最大充電電流よりも小さいある電流値に設置してもよい。
【0221】
選択的に、一実施例として、前記電源アダプタが前記急速充電モードで前記端末を充電する過程には、さらに、前記第一の充電インタフェースを介して前記端末と双方向通信し、前記スイッチング手段を制御することにより、前記電源アダプタが電池に出力した充電電流を継続して調整してもよい。
【0222】
なお、電源アダプタは、例えば、端末の電池電圧、電池電力量などの端末の現在状態情報を継続して問い合わせ、充電電流を継続して調整する。
【0223】
選択的に、一実施例として、前記の前記第一の充電インタフェースを介して前記端末と双方向通信し、前記スイッチング手段を制御し、前記電源アダプタが電池に出力した充電電流を継続して調整することは、前記電源アダプタは、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを前記端末に送信すること、前記電源アダプタは、前記端末が送信した、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを受信すること、前記電池の現在電圧に基づいて、前記スイッチング手段を制御し前記充電電流を調整することを含む。
【0224】
選択的に、一実施例として、前記の前記電池の現在電圧に基づいて前記スイッチング手段を制御し前記充電電流を調整することは、前記電池の現在電圧、及び予め設定された電池電圧値と充電電流値との対応関係に基づいて、前記スイッチング手段を制御し、前記電源アダプタが電池に出力した充電電流を前記電池の現在電圧に対応する充電電流値に調整することを含む。
【0225】
具体的に、電源アダプタは、電池電圧値と充電電流値との対応関係を予め保存することができる。
【0226】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードで前記端末を充電する過程において、さらに、前記第一の充電インタフェースを介して前記端末と双方向通信し、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定し、なお、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があると特定した時に、前記電源アダプタを制御し前記急速充電モードを終わらせる。
【0227】
選択的に、一実施例として、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定する前に、前記電源アダプタは、前記端末から、前記端末の回路インピーダンスを示すための情報を受信し、なお、前記電源アダプタは、前記端末内の電池の電圧を問い合わせるための第四のコマンドを前記端末に送信し、前記電源アダプタは、前記端末が送信した、前記端末内の電池の電圧を示すための前記第四のコマンドの応答コマンドを受信し、前記電源アダプタの出力電圧と前記電池の電圧に基づいて、前記電源アダプタから前記電池までの回路インピーダンスを特定し前記電源アダプタから前記電池までの回路インピーダンス、前記端末の回路インピーダンス、及び前記電源アダプタと前記端末との間の充電線線路の回路インピーダンスに基づいて、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかを特定する。
【0228】
選択的に、一実施例として、前記電源アダプタに前記急速充電モードを終わらせるように制御する前に、さらに、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良がある旨を示すための第五のコマンドを前記端末に送信する。
【0229】
電源アダプタは、第五のコマンドを送信したら、急速充電モードを終了する、又は、リセットする。
【0230】
以上は、電源アダプタの視点から、本発明の実施例による急速充電過程を詳しく説明したが、以下に、端末の視点から本発明の実施例による急速充電過程を説明する。
【0231】
本発明による実施例では、前記端末は、普通充電モードと急速充電モードを有し、なお、前記急速充電モードの充電電流が前記普通充電モードの充電電流よりも大きい、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し前記電源アダプタに前記急速充電モードで前記端末を充電させ、なお、前記電源アダプタが前記急速充電モードに対応する充電電流を出力し、前記端末内の電池を充電する。
【0232】
選択的に、一実施例として、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し前記電源アダプタに前記急速充電モードを特定し前記端末を充電することは、前記端末は、前記電源アダプタが送信した、前記端末が前記急速充電モードを開始するかどうかを問い合わせるための第一のコマンドを受信すること、前記端末は、前記端末が前記急速充電モードの開始を許可する旨を示すための前記第一のコマンドの応答コマンドを前記電源アダプタに送信することを含む。
【0233】
選択的に、一実施例として、前記端末は、前記電源アダプタが送信した、第一のコマンドを受信する前に、前記端末と前記電源アダプタとの間で、前記普通充電モードで充電を行い、前記電源アダプタは、前記普通充電モードの充電時間が予め設定されたしきい値よりも大きくなったと特定した後に、前記端末は、前記電源アダプタが送信した、前記第一のコマンドを受信する。
【0234】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードに対応する充電電流を出力し、前記端末内の電池を充電する前に、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記急速充電モードに対応する充電電圧を特定させる。
【0235】
選択的に、一実施例として、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記急速充電モードに対応する充電電圧を特定させることは、前記端末は、前記電源アダプタが送信した、前記電源アダプタの現在出力電圧が前記急速充電モードの充電電圧として適当であるかどうかことを問い合わせるための第二のコマンドを受信すること、前記端末は、前記電源アダプタの現在出力電圧が適当であるか、高いか又は低いかを示すための前記第二のコマンドの応答コマンドを前記電源アダプタに送信することを含む。
【0236】
選択的に、一実施例として、前記端末は、前記電源アダプタから、前記急速充電モードに対応する充電電流を取得し、前記端末内の電池を充電する前に、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記急速充電モードに対応する充電電流を特定させる。
【0237】
なお、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記急速充電モードに対応する充電電流を特定させることは、前記端末は、前記電源アダプタが送信した、前記端末が現在許容する最大充電電流を問い合わせるための第三のコマンドを受信すること、前記端末は、前記端末が現在許容する最大充電電流を示すための前記第三のコマンドの応答コマンドを前記電源アダプタに送信し、前記電源アダプタに前記最大充電電流に基づいて前記急速充電モードに対応する充電電流を特定させることを含む。
【0238】
選択的に、一実施例として、前記電源アダプタは、前記急速充電モードで前記端末を充電する過程には、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記電源アダプタが電池に出力した充電電流を継続して調整させることを含む。
【0239】
なお、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記電源アダプタが電池に出力した充電電流を継続して調整させることは、前記端末は、前記電源アダプタが送信した、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを受信すること、前記端末は、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを前記電源アダプタに送信し、前記電池の現在電圧に基づいて、前記電源アダプタが電池に出力した充電電流を継続して調整することを含む。
【0240】
選択的に、一実施例として、前記電源アダプタが前記急速充電モードで前記端末を充電する過程には、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記第一の充電インタフェースに前記第二の充電インタフェースとの間に接触不良があるかどうかことを特定させることを含む。
【0241】
なお、前記端末は、前記第二の充電インタフェースを介して前記電源アダプタと双方向通信し、前記電源アダプタに前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかことを特定させることは、前記端末は、前記電源アダプタが送信した、前記端末内の電池の現在電圧を問い合わせるための第四のコマンドを受信すること、前記端末は、前記端末内の電池の現在電圧を示すための前記第四のコマンドの応答コマンドを前記電源アダプタに送信し、前記電源アダプタに前記電源アダプタの出力電圧と前記電池の現在電圧に基づいて、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良があるかどうかことを特定させることを含む。
【0242】
選択的に、一実施例として、前記端末は、前記電源アダプタが送信した、前記第一の充電インタフェースと前記第二の充電インタフェースとの間に接触不良がある旨を示すための第五のコマンドを受信する。
【0243】
電源アダプタは、急速充電モードを開始して利用するために、端末との急速充電通信の処理を開始し、一回又は二回のハンドシェイクを行い、電池への急速充電を実現する。具体的に、図6を参照して、本発明の実施例における急速充電通信の処理、及び、急速充電過程に含まれる各段階を詳しく説明する。理解すべきことは、図6に示す通信過程又は操作は、例示に過ぎず、本発明の実施例について他の操作や図6の各種類の操作を変更可能である。図6の各段階は、図6に示されるものと異なる順番に従って行ってもよく、必ず図6の操作全体を行うわけではない。
【0244】
要するに、本発明の実施例による端末用充電方法は、電源アダプタを制御することにより、充電の要求を満たす第三の脈動波形の電圧を出力し、電源アダプタが出力した、第三の脈動波形の電圧を端末の電池に直接印加し、電池に対する脈動の出力電圧/電流の直接急速充電を実現することができる。なお、脈動の出力電圧/電流の大きさは、周期性に変換され、従来の定電圧定電流に比べると、リチウム電池のリチウム析出現象を抑制させ、電池の使用寿命を向上させ、かつ、充電インタフェースにおける電気接点のアーク発生の確率及び強度を低減し、充電インタフェースの寿命を向上させ、また、電池の分極効果を下げ、充電速度を速くさせ、電池の発熱を減少させ、端末を充電する時の安全性と確実性を保証することができる。また、電源アダプタが出力するのは脈動波形の電圧であることから、電源アダプタに電解コンデンサーを設置する必要がなくなり、電源アダプタの簡素化と小型化を実現すると共に、コストを大幅に削減することもできる。
【0245】
本発明の説明において、理解すべきなのは、「中心」、「縦方向」、「横方向」、「長さ」、「幅」、「厚さ」、「上」、「下」、「前」、「后」、「左」、「右」、「垂直」、「水平」、「頂」、「底」、「内」、「外」、「時計回り」、「反時計回り」、「軸方向」、「径方向」、「周方向」等の用語により示された方位又は位置関係は、図面に示すものに基づく方位又は位置関係になっており、本発明の説明の便宜及び説明の簡略化のために使用されたものに過ぎず、該当する装置又は素子が特定の方位を有し、特定の方位で構成及び操作しなければならないことを意味又は暗示するものではないため、本発明に対する限制として理解すべきではない。
【0246】
また、用語「第一」、「第二」は単に目的を説明するためのみに用いられ、相対的な重要性に明示的にも暗示的にも関連づけられまたは示された技術特徴の数量を、暗示的に使用されるものではない。そのため、「第一」、「第二」を含む特徴を限定することは少なくとも1つの当該特徴を明示的にまたは暗示的に含むことができる。本発明において、別途、明確に限定した場合を除き、用語「複数」は少なくとも2つ、たとえば、2つ、3つなどである。
【0247】
本発明において、特に明確な規定や限定がない限り、「取付」、「繋がり」、「接続」、「固定」等の用語は、広義的に理解すべきであり、例えば、固定接続であってもよいし、着脱可能な接続であってもよく、又は、一体になってもよい。そして、機械的な接続であってもよいし、電気的な接続であってもよい。また、直接に接続されてもよいし、中間媒介物を介して間接に接続されてもよい。更に、特に明確な限定がない限り、2つの素子の内部の連通、又は、2つ素子の相互作用関係でもよい。当業者にとっては、具体的な状況に基づいて上記用語の本発明での具体的な意味を理解することが可能である。
【0248】
本発明において、特に明確な規定や限定がない限り、第一特徴が第二特徴の「上」又は「下」にあるというのは、第一特徴と第二特徴とが直接に接触してもよく、又は、中間媒介物を介して間接に接触してもよい。更に、第一特徴が第二特徴「の上」、「上方」及び「上側」にあるというのは、第一特徴が第二特徴の真上又は斜め上方にあってもよく、もしくは、第一特徴の水平高度が第二特徴よりも大きいことだけを示してもよい。第一特徴が第二特徴「の下」、「下方」及び「下側」にあるというのは、第一特徴が第二特徴の真下又は斜め下方にあってもよく、もしくは、第一特徴の水平高度が第二特徴よりも小さいことだけを示してもよい。
【0249】
本明細書において、「一実施形態」、「一部の実施形態」、「例」、「具体例」或いは「一部の例」などの用語を参照した説明とは、当該実施形態或いは例に結合して説明された具体的特徴、構成、材料或いは特徴が、本発明の少なくとも1つの実施形態或いは例に含まれることをいう。本明細書において、上記用語に対する例示的な表現は、必ずしも同じ実施形態或いは例を示すことではない。また、説明された具体的特徴、構成、材料或いは特徴は、いずれか1つ或いは複数の実施形態または例において適切に結合することが可能である。また、矛盾しない限り、当業者は、本明細書の異なる実施形態または例、および、異なる実施形態または例の特徴を結合したり、組み合わせたりすることができる一実施例一実施例。
【0250】
本願に開示される実施例に基づいて記載される各例示の手段やアルゴリズムの処理過程が、電子ハードウェア或いはコンピュータープログラムと電子ハードウェアとの組み合わせにより実現され得ることは、当業者とって明らかである。これらの機能は、ハードウェアにより実行されるか或いはソフトウェアにより実行されるかについて、技術案の特定の応用場合や設計の制限条件などによって決められる。当業者は、特定応用ごとに、異なる方法により記載される機能を実現できるが、これらの実現は、本発明の範囲を超えてならない。
【0251】
当業者とっては、説明を便宜且つ簡潔にするように、前記記載のシステム、装置、及び手段の具体的な動作の過程について、前記方法の実施例の対応する過程を参照することが理解可能であるため、ここで省略する。
【0252】
本願の提供する幾つかの実施例では、開示されるシステム、装置及び方法が他の形態により実現され得ると理解するべきである。例えば、上記に説明された装置の実施例は、例示するためのものに過ぎない。例えば、前記手段の分離は、ロジックの機能に基づくものに過ぎず、実際に実現するときに別の分離形態を有してもよい。例えば、複数の手段或いは部品を組み合わせ、また、別のシステムに集積し、或いは、若干の特徴を省略し、或いは実行しなくてもよい。さらに、提示されたり検討されたりする相互の結合や直接結合や通信接続は、インタフェース、装置或いは手段の間接の結合や通信接続であってもよいし、電気、機械や他の形態であってもよい。
【0253】
前記分離部品として説明された手段は、物理的に分離してもよいし、分離しなくてもよい。即ち、一つの箇所に設置してもよいし、複数のネットワーク手段に設置してもよい。実際の要求に応じて手段の一部や全部を選択して本実施例の技術案の目的を実現することができる。
【0254】
また、本発明に係る各実施例の各機能手段は、一つの処理手段に集積してもよいし、各手段として単独に物理に存在してもよいし、二つ以上手段として一つの手段に集積してもよい。
【0255】
前記機能は、ソフトウェアの機能手段として実現され、かつ、独立の製品として販売されたり使用されたりする場合、コンピュータ読み取り可能な記録媒体に記憶されてもよい。この理解によれば、本発明の技術案について、本質的な部分、或いは、従来技術に貢献できた部分或いは該技術案の一部は、ソフトウェアの製品として表現され得る。このコンピュータープログラムの製品は、記憶媒体に記憶されており、一つのコンピュータ(パソコン、サーバー、或いはネットワーク機器などであってもよい)に本発明の各実施例に係る前記方法の全部或いは一部の過程を実行するための複数のコマンドが含まれている。前記した記憶媒体は、フラッシュメモリー、ポータブルハードディスク、読み出し専用メモリ(ROM、Read−Only Memory)、ランダムアクセスメモリ(RAM、Random Access Memory)、磁気ディスク或いは光ディスクなどの各種のプログラムコードを記憶可能な媒体を含むことができる。
【0256】
以上に本発明の実施例を説明し記載したが、理解可能なことは、上記実施例が例示であり、本発明を限定するものではない。当業者は、本発明が開示した技術範囲に、容易に変化や置換を想到できる。
図1A
図1B
図1C
図1D
図1E
図2A
図2B
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11
図12
図13
図14
図15
図16A
図16B